図面 (/)

技術 画像処理装置、眼底撮像システム、画像処理方法、およびプログラム

出願人 国立大学法人九州大学興和株式会社
発明者 石橋達朗園田康平中尾新太郎薮崎克己田中伸
出願日 2017年10月30日 (2年4ヶ月経過) 出願番号 2018-547816
公開日 2019年9月19日 (6ヶ月経過) 公開番号 WO2018-079765
状態 不明
技術分野
  • -
主要キーワード 対照ブロック 高輝度部位 差分輝度 フォトダイオードセンサ 抽出対象物 許容サイズ ラスタースキャン方式 Bモード
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2019年9月19日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題・解決手段

実施形態の画像処理装置は、光干渉断層法により眼球に光を照射することで生成され、第1方向の解像度が、前記第1方向に直交する第2方向の解像度に比して高い複数の光干渉断層画像であって、前記第1方向および前記第2方向のそれぞれと直交する第3方向に並べられた複数の光干渉断層画像を取得する取得部と、前記取得部により取得された複数の光干渉断層画像により形成される仮想的な三次元画像において、検出領域と、前記検出領域を囲む領域内に設定される対照領域との画素値の比較に基づいて、前記検出領域が、前記眼球において所定の事象が発生している所定の画像領域であるのか否かを判定する判定部と、を備える。

概要

背景

OCT(Optical Coherence Tomography)を用いて眼底断層像撮像する装置(以下、OCT撮像装置と称する)が知られている。OCT撮像装置により撮像された画像(以下、OCT画像と称する)から、Hyperreflective foci(以下、HRFと称する)と呼ばれる高輝度部位観測される場合がある。このHRFは、リポタンパクマクロファージを表すものだといわれている。近年、糖尿病網膜症を患った患者眼球のOCT画像から観測されたHRFの数と、その患者の視機能とに関連があるという学術的報告がなされている。

概要

実施形態の画像処理装置は、光干渉断層法により眼球に光を照射することで生成され、第1方向の解像度が、前記第1方向に直交する第2方向の解像度に比して高い複数の光干渉断層画像であって、前記第1方向および前記第2方向のそれぞれと直交する第3方向に並べられた複数の光干渉断層画像を取得する取得部と、前記取得部により取得された複数の光干渉断層画像により形成される仮想的な三次元画像において、検出領域と、前記検出領域を囲む領域内に設定される対照領域との画素値の比較に基づいて、前記検出領域が、前記眼球において所定の事象が発生している所定の画像領域であるのか否かを判定する判定部と、を備える。

目的

本発明は、このような事情を考慮してなされたものであり、OCT画像から画像処理によって、HRFなどの眼球(網膜)に生じた事象を検出することができる画像処理装置、眼底撮像ステム画像処理方法、およびプログラムを提供する

効果

実績

技術文献被引用数
- 件
牽制数
- 件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

該当するデータがありません

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

光干渉断層法により眼球に光を照射することで生成され、第1方向の解像度が、前記第1方向に直交する第2方向の解像度に比して高い複数の光干渉断層画像であって、前記第1方向および前記第2方向のそれぞれと直交する第3方向に並べられた複数の光干渉断層画像を取得する取得部と、前記取得部により取得された複数の光干渉断層画像により形成される仮想的な三次元画像において、検出領域と、前記検出領域を囲む領域内に設定される対照領域との画素値の比較に基づいて、前記検出領域が、前記眼球において所定の事象が発生している所定の画像領域であるのか否かを判定する判定部と、を備える画像処理装置

請求項2

前記第1方向は、前記光干渉断層画像の生成過程において前記眼球に照射される光の照射方向に沿う方向である、請求項1に記載の画像処理装置。

請求項3

前記対照領域は、前記第1方向周りに前記検出領域を囲む領域である、請求項1または2に記載の画像処理装置。

請求項4

前記検出領域の長手方向は、前記第1方向である、請求項1から3のうちいずれか1項に記載の画像処理装置。

請求項5

前記判定部は、前記検出領域の画素値の平均値と、前記対照領域の画素値の平均値との差分が第1閾値以上である場合に、前記検出領域が、所定の画像領域であると判定する、請求項1から4のうちいずれか1項に記載の画像処理装置。

請求項6

前記判定部は、更に、前記検出領域の画素値の最大値が第2閾値以上であるのか否かを判定し、前記検出領域の画素値の最大値が第2閾値以上でない場合に、前記検出領域が、所定の画像領域でないと判定する、請求項1から5のうちいずれか1項に記載の画像処理装置。

請求項7

前記判定部は、更に、前記検出領域の画素値の平均値が第3閾値以上であるのか否かを判定し、前記検出領域の画素値の平均値が第3閾値以上でない場合に、前記検出領域が、所定の画像領域でないと判定する、請求項1から6のうちいずれか1項に記載の画像処理装置。

請求項8

前記対照領域は、前記検出領域が設定された前記光干渉断層画像上に設定される、請求項1から7のうちいずれか1項に記載の画像処理装置。

請求項9

前記対照領域は、前記第2方向において前記検出領域と隣り合う位置のいずれか一方または双方に設定される、請求項8に記載の画像処理装置。

請求項10

前記対照領域は、前記取得部により取得された複数の光干渉断層画像のうち、前記第3方向において、前記検出領域が設定された前記光干渉断層画像と隣り合う、少なくとも1つ以上の光干渉断層画像上に設定される、請求項8または9に記載の画像処理装置。

請求項11

前記対照領域は、前記第1方向において、前記検出領域の位置に基づく位置に設定される、請求項8から10のうちいずれか1項に記載の画像処理装置。

請求項12

前記対照領域は、少なくとも前記第1方向において前記検出領域と同程度の大きさで設定される、請求項8から11のうちいずれか1項に記載の画像処理装置。

請求項13

前記判定部により所定の画像領域であると判定された画像領域のうち、画素値の平均値が同程度の画像領域をグループ化した画像領域グループを生成するグループ生成部と、前記グループ生成部により生成された画像領域グループの数と、前記検出領域が設定された前記光干渉断層画像とを関連付けて表示部に表示させる表示制御部と、を更に備える、請求項1から12のうちいずれか1項に記載の画像処理装置。

請求項14

前記検出領域が設定される予定の前記光干渉断層画像を、前記検出領域の設定を禁止する禁止領域と、前記検出領域の設定を許可する許可領域とに分割するセグメンテーション処理部を更に備える、請求項13に記載の画像処理装置。

請求項15

前記検出領域が設定された前記光干渉断層画像を、前記検出領域の設定を禁止する禁止領域と、前記検出領域の設定を許可する許可領域とに分割するセグメンテーション処理部を更に備える、請求項13に記載の画像処理装置。

請求項16

前記グループ生成部により生成された画像領域グループの数に基づいて、前記眼球の病状診断する診断部を更に備え、前記表示制御部は、前記診断部による診断結果に基づく画像を前記表示部に表示させる、請求項13から15のうちいずれか1項に記載の画像処理装置。

請求項17

請求項1から16のうちいずれか1項に記載の画像処理装置と、前記第1方向の分解能が前記第2方向の分解能に比して高く、前記光干渉断層法により眼球に光を照射することで前記複数の光干渉断層画像を生成する光干渉断層画像撮像装置と、を備える眼底撮像ステム

請求項18

コンピュータが、光干渉断層法により眼球に光を照射することで生成され、第1方向の解像度が、前記第1方向に直交する第2方向の解像度に比して高い複数の光干渉断層画像であって、前記第1方向および前記第2方向のそれぞれと直交する第3方向に並べられた複数の光干渉断層画像を取得し、前記取得した複数の光干渉断層画像により形成される仮想的な三次元画像において、検出領域と、前記検出領域を囲む領域内に設定される対照領域との画素値の比較に基づいて、前記検出領域が、前記眼球において所定の事象が発生している所定の画像領域であるのか否かを判定する、画像処理方法

請求項19

コンピュータに、光干渉断層法により眼球に光を照射することで生成され、第1方向の解像度が、前記第1方向に直交する第2方向の解像度に比して高い複数の光干渉断層画像であって、前記第1方向および前記第2方向のそれぞれと直交する第3方向に並べられた複数の光干渉断層画像を取得させ、前記取得させた複数の光干渉断層画像により形成される仮想的な三次元画像において、検出領域と、前記検出領域を囲む領域内に設定される対照領域との画素値の比較に基づいて、前記検出領域が、前記眼球において所定の事象が発生している所定の画像領域であるのか否かを判定させる、プログラム

技術分野

0001

本発明は、画像処理装置眼底撮像ステム画像処理方法、およびプログラムに関する。
本願は、2016年10月31日に、日本に出願された特願2016‐213815号に基づき優先権を主張し、その内容をここに援用する。

背景技術

0002

OCT(Optical Coherence Tomography)を用いて眼底断層像撮像する装置(以下、OCT撮像装置と称する)が知られている。OCT撮像装置により撮像された画像(以下、OCT画像と称する)から、Hyperreflective foci(以下、HRFと称する)と呼ばれる高輝度部位観測される場合がある。このHRFは、リポタンパクマクロファージを表すものだといわれている。近年、糖尿病網膜症を患った患者眼球のOCT画像から観測されたHRFの数と、その患者の視機能とに関連があるという学術的報告がなされている。

0003

特開2015−160105号公報

先行技術

0004

Yabusaki, Katsumi, Joshua D. Hutcheson, Payal Vyas, Sergio Bertazzo, Simon C. Body, Masanori Aikawa, and Elena Aikawa. 2016. “Quantification of Calcified Particles in Human Valve Tissue Reveals Asymmetry of Calcific Aortic Valve Disease Development.” Frontiers in Cardiovascular Medicine 3 (1): 44.doi:10.3389/fcvm.2016.00044. http://dx.doi.org/10.3389/fcvm.2016.00044.

発明が解決しようとする課題

0005

しかしながら、従来の技術では、医師などがOCT画像からHRFを認識していたが、画像処理によってHRFを検出するのは困難であった。

0006

本発明は、このような事情を考慮してなされたものであり、OCT画像から画像処理によって、HRFなどの眼球(網膜)に生じた事象を検出することができる画像処理装置、眼底撮像システム、画像処理方法、およびプログラムを提供することを目的の一つとする。

課題を解決するための手段

0007

上記問題を解決する本発明の一態様は、光干渉断層法により眼球に光を照射することで生成され、第1方向の解像度が、前記第1方向に直交する第2方向の解像度に比して高い複数の光干渉断層画像であって、前記第1方向および前記第2方向のそれぞれと直交する第3方向に並べられた複数の光干渉断層画像を取得する取得部と、前記取得部により取得された複数の光干渉断層画像により形成される仮想的な三次元画像において、検出領域と、前記検出領域を囲む領域内に設定される対照領域との画素値の比較に基づいて、前記検出領域が、前記眼球において所定の事象が発生している所定の画像領域であるのか否かを判定する判定部と、を備える画像処理装置である。

発明の効果

0008

本発明によれば、OCT画像から画像処理によって、HRFなどの眼球に生じた事象を検出することができる。

図面の簡単な説明

0009

第1実施形態における画像処理装置200を含む眼底撮像システム1の構成の一例を示す図である。
OCTユニット110の構成の一例を示す図である。
画像処理装置200の構成の一例を示す図である。
OCT三次元データ212を模式的に示す図である。
走査位置情報214の一例を示す図である。
制御部220による一連の処理の一例を示すフローチャートである。
セグメンテーション処理を説明するための図である。
セグメンテーション処理を説明するための図である。
高輝度部位の抽出処理の一例を示すフローチャートである。
対照領域Rbの設定方法の一例を説明するための図である。
対照領域Rbの設定方法の一例を説明するための図である。
対照領域Rbの設定方法の一例を説明するための図である。
対照領域Rbの設定方法の他の例を説明するための図である。
対照領域Rbの設定方法の他の例を説明するための図である。
対照領域Rbの設定方法の他の例を説明するための図である。
画像領域グループGPの生成方法の一例を示す図である。
画像領域グループGPの生成方法の一例を示す図である。
画像領域グループGPの生成方法の一例を示す図である。
画像領域グループGPの生成方法の他の例を示す図である。
画像領域グループGPの生成方法の他の例を示す図である。
画像領域グループGPの生成方法の他の例を示す図である。
診断判定部234による診断結果に基づく画像が表示された表示部204の一例を示す図である。
検出領域Raとの間にギャップを設けて対照領域Rbを設定する方法の一例を説明するための図である。
検出領域Raと対照領域Rbとの間にギャップを設けない場合の高輝度部位の検出結果の一例を示す図である。
検出領域Raと対照領域Rbとの間にギャップを設けた場合の高輝度部位の検出結果の一例を示す図である。
ギャップを設けるときの対照領域Rbの設定方法のバリエーションの一例を示す図である。
ギャップを設けるときの対照領域Rbの設定方法のバリエーションの一例を示す図である。
ギャップを設けるときの対照領域Rbの設定方法のバリエーションの一例を示す図である。
ギャップを設けるときの対照領域Rbの設定方法のバリエーションの一例を示す図である。
ギャップを設けるときの対照領域Rbの設定方法のバリエーションの一例を示す図である。
実施形態の画像処理装置200のハードウェア構成の一例を示す図である。

実施例

0010

以下、図面を参照し、本発明の画像処理装置、眼底撮像システム、画像処理方法、およびプログラムの実施形態について説明する。

0011

(第1実施形態)
[全体構成]
図1は、第1実施形態における画像処理装置200を含む眼底撮像システム1の構成の一例を示す図である。眼底撮像システム1は、例えば、OCT撮像装置(光干渉断層画像撮像装置)100と、画像処理装置200とを備える。本実施形態におけるOCT撮像装置100は、人間などの眼球Eに光を照射し、その光の反射光と照射した一部の光とが互いに干渉した干渉光計測することで、眼球E内部の変位を測定する装置である。これによって、例えば、網膜を含む眼底Erが写し出されたOCT画像IMが取得される。本実施形態におけるOCT撮像装置100は、眼球Eの深さ方向(図中z方向)の分解能が、その深さ方向に直交する方向(例えば図中x方向)の分解能に比して高いものとする。深さ方向の分解能は、例えば、2[μm]程度である。また、本実施形態におけるOCT撮像装置100は、スペクトラルドメインOCT(Spectral-domain OCT;SD-OCT)や波長掃引OCT(Swept-source OCT;SS-OCT)等のフーリエドメインOCT(Fourier-domain OCT;FD-OCT)として説明するが、これに限られない。OCT撮像装置100は、例えば、タイムドメインOCT(Time-domain OCT;TD-OCT)やその他の方式を採用したものであってもよい。

0012

画像処理装置200は、OCT撮像装置100により生成されたOCT画像IMに対して種々の画像処理を行って、OCT画像IMから、眼球Eにおいて所定の事象が発生している画像領域を抽出する。所定の事象とは、例えば、HRFである。例えば、画像処理装置200は、OCT画像IMからHRFを示す高輝度部位を抽出する。

0013

[OCT撮像装置の構成]
以下、眼底撮像システム1における各装置について説明する。図1に示すように、OCT撮像装置100は、例えば、OCTユニット110と、照明光学系120と、撮像光学系130とを備える。OCTユニット110は、光を照射すると共に、反射光と照射光とを干渉させてOCT画像IMを生成する。OCTユニット110と撮像光学系130は、例えば、光ファイバFaによって互いに接続される。OCTユニット110により照射された照射光は、光ファイバFaを介して撮像光学系130に導光される。また、OCTユニット110により照射された照射光は、光ファイバFaを介して撮像光学系130に導光される。

0014

図2は、OCTユニット110の構成の一例を示す図である。図示の例のように、OCTユニット110は、光源111と、信号検出部112と、光カプラ113と、光ファイバ113aから113dと、参照光コリメータ114および117と、ガラスブロック115と、フィルタ116と、参照ミラー118とを備える。

0015

光源111は、例えば、近赤外(例えば700〜1100nm程度)の波長の照射光(プローブ光)を照射する。光源111は、例えば、SLDスーパールミネッセントダイオード)や超短波パルスレーザ等の波長掃引光源であってよい。

0016

光源111から照射された照射光は、光ファイバ113a内を導光し、光カプラ113によって、参照光側コリメータ114側へ導光される光と、光ファイバFa側、すなわち撮像光学系130側へ導光される光とに分割される。以下、参照光側コリメータ114側へ導光する光を、「参照光LR」と称し、撮像光学系130側へ導光する光を、「測定光LS」と称する。

0017

参照光LRは、例えば、光ファイバ113bを介して参照光側コリメータ114に導光され、参照光側コリメータ114によって平行光に変化される。その後平行光は、ガラスブロック115およびフィルタ116を通過して参照光側コリメータ117に導光される。ガラスブロック115およびフィルタ116は、参照光LRと測定光LSとの光路長を合わせたり、分散特性を合わせたりするために設けられる。参照光側コリメータ117に導光された平行光は、参照光側コリメータ117によって集光される。参照光側コリメータ117によって集光された光(参照光)は、参照ミラー118によって反射される。参照ミラー118によって反射された参照光は、例えば、参照光側コリメータ117によって平行光に変化され、その後平行光が参照光側コリメータ114によって集光され、光ファイバ113bを介して光カプラ113に導光される。なお、OCT撮像装置100がタイムドメインOCTの場合、参照ミラー118を固定せず、光源111から参照ミラー118までの光路長を変化させるように参照ミラー118或いは他の光学系を駆動可能な状態にしておいてよい。

0018

一方、測定光LSは、光ファイバ113cおよびFaを介して撮像光学系130に導光され、眼球Eに照射される。眼球Eに照射された測定光LS(反射光)は、眼球Eの反射面(眼底Erなど)にて反射され、光ファイバ113cおよびFaに入射される。

0019

光カプラ113は、参照ミラー118によって反射された参照光LRと眼球Eにて反射された測定光LSとを、例えば同軸の光ファイバ113dを介して、信号検出部112に導光する。光ファイバ113dに導光される参照光LRおよび測定光LSは、光カプラ113内部において互いに干渉する。以下、互いに干渉した参照光LRおよび測定光LSを、「干渉光LC」と称する。

0020

信号検出部112は、例えば、干渉光側コリメータレンズ112aと、回折格子112bと、結像レンズ112cと、受光素子112dとを備える。信号検出部112に導光された干渉光LCは、干渉光側コリメータレンズ112aを介して平行光に変化された後、回折格子112bによって分光される。回折格子112bによって分光された光は、結像レンズ112cによって、受光素子112dの受光面に結像される。受光素子112dは、例えば、CCD(Charge Coupled Device)等のフォトダイオードセンサであり、結像レンズ112cを介した光を検出し、検出した光に応じた検出信号を生成する。そして、信号検出部112は、撮像光学系130による照射光の走査に応じて順次生成する検出信号に基づいて、眼球Eの深さ方向(図中z方向)の断層を示すOCT画像(光干渉断層画像)IMを生成する。OCT画像IMは、所謂Bモード画像、或いはBスキャン画像のことである。

0021

図1の説明に戻る。照明光学系120は、例えば、ハロゲンランプキセノンランプ等の照明用の光源(不図示)を備え、この光源から照射された光を眼底Erに導光することで眼底Erを照らす。

0022

撮像光学系130は、眼底Erにおいて反射された反射光を、光ファイバFaを介してOCTユニット110側に導光する。また、撮像光学系130は、OCTユニット110から光ファイバFaを介して導光された照射光を走査しながら眼球Eに導光する。例えば、撮像光学系130は、コリメータやガルバノミラー(いずれも不図示)などを備え、眼球Eに対して照射される照射光の照射方向(図中z方向)を、その照射方向に対して直交する水平方向(図中x方向またはy方向)に関して変更する。すなわち、撮像光学系130は、ラスタースキャン方式によって照射光を走査する。これによって、眼球Eに照射される照射光は、x方向およびy方向に関して走査されることになる。

0023

[画像処理装置の構成]
図3は、画像処理装置200の構成の一例を示す図である。図示の例のように、画像処理装置200は、通信インターフェース202と、表示部204と、記憶部210と、制御部220とを備える。

0024

通信インターフェース202は、例えば、有線または無線によってOCT撮像装置100と通信を行う。また、通信インターフェース202は、OCT撮像装置100以外の他装置と通信を行ってもよい。

0025

表示部204は、例えば、LCD(Liquid Crystal Display)や有機EL(Electroluminescence)ディスプレイなどの表示装置である。

0026

記憶部210は、例えば、HDD(Hard Disc Drive)、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、ROM(Read Only Memory)、RAM(Random Access Memory)等により実現される。記憶部210は、例えば、制御部220において参照されるプログラムや、OCT三次元データ212、走査位置情報214等を格納する。

0027

図4は、OCT三次元データ212を模式的に示す図である。図示のように、OCT三次元データ212は、複数のOCT画像IMn(nは任意の自然数)から構成される。各OCT画像IMj(1≦j≦n)のz方向は、照射光の照射方向(照射光の光軸)に沿う方向を表し、眼球Eの深さ方向を表している。照射光の照射方向に沿う方向とは、例えば、照射光の光軸に対して数度から十数度程度の誤差角度幅)を許容した方向である。

0028

また、各OCT画像IMjのx方向は、z方向に直交する平面のいずれか一方向を表している。これらのOCT画像IMnは、z方向およびx方向の双方に対して直交するy方向において並べられている。y方向は、各OCT画像IMの撮像時刻tに対応する。すなわち、各OCT画像IMは、撮像時刻順に並べられている。本実施形態では、OCT画像IMは、深さ方向(z方向)の分解能が他の方向の分解能よりも高いOCT撮像装置100によって撮像されているため、各OCT画像IMjのz方向の解像度が、x方向やy方向の解像度と比べて細かいものとなっている。なお、図示のOCT三次元データ212の例は、あくまでも複数のOCT画像IMの構成について模式的に示すものであり、実際は、各OCT画像IMに対して、撮像時刻tやその撮像時のy方向における位置情報対応付けられたデータの集合として扱われてよい。z方向は、「第1方向」の一例であり、x方向は、「第2方向」の一例であり、y方向は、「第3方向」の一例である。

0029

図5は、走査位置情報214の一例を示す図である。走査位置情報214は、後述する検出領域Raの設定位置に関する情報であり、各OCT画像IMにおけるx−z座標に対して、高輝度部位フラグが対応付けられた情報である。x−z座標は、各OCT画像IMにおける画素の座標を示している。また、高輝度部位フラグは、x−z座標が示す画素が高輝度部位であるのかどうかを示すためのフラグである。例えば、ある検出領域Raと重なる画像領域が高輝度部位であると判定された場合、当該画像領域に含まれる全ての画素の座標に対して「1」のフラグが付与され、検出領域Raと重なる画像領域が高輝度部位でない場合、「0」のフラグが付与される。このとき、OCT画像IMに含まれる全ての画素の高輝度部位フラグは、高輝度部位であるか否かの判定前に、予め「0」が付与されているものとする。この処理を検出領域の位置を変える(位置をずらす)毎に行い、最終的に1回でも「1」のフラグが付与された画素(フラグが「0」から「1」に書き換えられた画素)は高輝度部位である画素とされ、図5に示されている高輝度部位フラグは「1」となる。すなわち、一度でも高輝度部位フラグが「0」から「1」に変更されると、当該フラグは、「1」の状態で保持される。

0030

制御部220は、例えば、取得部222と、画像前処理部224と、検出領域走査部226と、輝度演算部228と、高輝度部位判定部230と、グループ生成部232と、診断判定部234と、表示制御部236とを備える。これらの構成要素の一部または全部は、CPU(Central Processing Unit)などのプロセッサが記憶部210に格納されたプログラムを実行することにより実現される。また、制御部220の構成要素の一部または全部は、LSI(Large Scale Integration)、ASIC(Application Specific IntegratedCircuit)、またはFPGA(Field-Programmable Gate Array)などのハードウェアにより実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。

0031

以下、制御部220による一連の処理についてフローチャートを用いて説明する。図6は、制御部220による一連の処理の一例を示すフローチャートである。本フローチャートの処理は、所定の周期で繰り返し行われてよい。

0032

まず、取得部222は、通信インターフェース202を介してOCT撮像装置100からOCT画像IMを取得し(ステップS100)、取得したOCT画像IMをOCT三次元データ212として記憶部210に記憶させる。また、通信インターフェース202がOCT画像IMを記憶する記憶装置(例えばクラウドサーバ等)と通信する場合、取得部222は、この記憶装置からOCT画像IMを取得してもよい。なお、取得部222は、OCT撮像装置100等から一つずつOCT画像IMを取得する場合、各OCT画像IMの撮像時刻tやその撮像時のy方向における位置情報を参照することで、順次取得したOCT画像IMをy方向に関して並べてよい。このとき取得部222は、例えば、時系列順になるように、適宜OCT画像IMをy方向に関して並び替えてよい。

0033

次に、画像前処理部224は、OCT三次元データ212に含まれる全てのOCT画像IMに対して、種々の前処理を行う(ステップS102)。例えば、前処理には、歪み補正処理ノイズ除去処理セグメンテーション層境界自動検出)処理、禁止領域および許可領域区分して設定する処理などが含まれる。画像前処理部224は、「セグメンテーション処理部」の一例である。

0034

歪み補正処理は、例えば、OCT画像IM同士の位置ずれ補正する処理であり、x方向、y方向、z方向のうち、一部または全部に関して位置ずれを補正する。

0035

また、ノイズ除去処理は、例えば、OCT画像IM内のある着目画素輝度値を、その着目画素の周辺画素の輝度値の平均値中央値に置き換える処理である。なお、ノイズ除去処理は、一般的には輝度値の代わりに反射強度色相明度彩度に関してノイズを除去する処理もあるが、OCT画像は通常、干渉信号強弱を灰色の濃淡表現したグレイスケール画像、または、その強弱を色の違いで表現した擬似カラー画像であるため、輝度値または反射強度に着目してノイズ処理を行うこととなる。

0036

また、セグメンテーション処理は、OCT画像IMを、検出領域Raの設定を禁止する禁止領域と、検出領域Raの設定を許可する許可領域とに区分する処理を行うために事前に行う処理である。

0037

図7および図8は、セグメンテーション処理を説明するための図である。図7におけるz(軸)の方向は前眼部から眼底に向かう方向をプラス方向としているので、網膜の位置から見ると、眼球Eの硝子体が存在する側がマイナス側であり、眼球E内のより浅い方向を示している。また逆に、z方向のプラス側は、眼球E内のより深い方向を示している。例えば、画像前処理部224は、OCT画像IMから、ラインILMおよびラインRPEを検出する。ラインILMは、網膜の内層側、つまり眼球の中心に近い側の硝子体との境界線である。ラインRPEは、網膜の外層側、つまり脈絡膜との境界線である。画像前処理部224は、図8に示すように、検出したラインILMからz方向のプラス側に一定距離離れた位置にラインILM#を設定すると共に、検出したラインRPEからz方向のマイナス側に一定距離離れた位置にラインRPE#を設定する。この4つのラインの設定がセグメンテーション処理となる。そして、画像前処理部224は、ラインILM#およびラインRPE#の間の画像領域を許可領域に設定し、この許可領域を除く画像領域を禁止領域に設定する。そして、画像前処理部224は、検出領域及び対照領域を、自身の領域内の全部または一部に許可領域を含むように設定する。言い換えれば、検出領域または対照領域の一部は、禁止領域上に設定されてもよく、禁止領域のみを含む検出領域または対照領域は、その設定が禁止される。

0038

例えば、ラインILMおよびラインILM#の間の画像領域、またはラインRPEおよびラインRPEの間の画像領域には、ロドプシンなどの光感受性蛋白毛細血管等が存在するため、これらが高輝度部位として検出される可能性がある。すなわち、高輝度部位がHRF由来のものであるのかどうかの区別がつき難い。従って、このような領域をセグメンテーション処理によって予め禁止領域として設定しておくことで、後段の高輝度部位の抽出処理から当該領域を除外することができ、HRFの検出精度を維持しつつ処理負荷を軽減することができる。

0039

次に、制御部220は、前処理を行ったOCT画像に対して高輝度部位の抽出処理を行う(ステップS104)。高輝度部位の抽出処理の詳細については、別のフローチャートを用いて説明する。

0040

図9は、高輝度部位の抽出処理の一例を示すフローチャートである。本フローチャートの処理は、上述した図6に示すステップS104の処理に相当する。

0041

まず、検出領域走査部226は、画像前処理部224により前処理が行われたOCT画像IMの分解能に合わせて、OCT画像IMから抽出する抽出対象物(HRF)の大きさを決定する(ステップS200)。本実施形態では、OCT画像IMは、x方向の分解能に比してz方向の分解能の方が大きい画像であるため、抽出対象物の大きさは、x方向に比してz方向の長さの方が見かけ上大きくなる。

0042

次に、検出領域走査部226は、画像前処理部224により前処理が行われた複数のOCT画像IMの中から一つのOCT画像IMを選択し、このOCT画像IMに対して、抽出対象物の大きさに合わせた検出領域Raを設定し、設定した検出領域Raの設定位置を所定の周期で数画素ずつずらすことで、OCT画像IMに対して検出領域Raを走査する(ステップS202)。このとき、検出領域走査部226は、セグメンテーション処理により定められた許可領域に対して検出領域Raを設定する。検出領域Raは、x−z方向に関する二次元領域であってもよいし、x−y−z方向に関する三次元領域であってもよい。本実施形態におけるOCT画像IMは、x方向やy方向の解像度に比して、z方向の解像度が大きいことから、抽出対象物(HRF)の大きさは、x方向およびy方向に比してz方向の長さの方が見かけ上大きくなる。すなわち、抽出対象物は、見かけ上長細くなる。従って、二次元領域として設定される場合、検出領域Raは、x方向よりもz方向に関して大きくなるように設定される。三次元領域として設定される検出領域Raは、x方向およびy方向よりもz方向に関して大きくなるように設定される。以下の説明では、説明を簡略化するために、二次元領域の検出領域Raを設定するものとする。

0043

次に、輝度演算部228は、検出領域走査部226により検出領域Raが走査されるときに、検出領域Raの最大輝度値Aを算出する(ステップS204)。すなわち、輝度演算部228は、検出領域走査部226により所定の周期で検出領域Raが設定される度に、検出領域Raの最大輝度値Aを算出する。最大輝度値Aは、検出領域Raと重なる画像領域に含まれる複数の画素の輝度値の中で最大をとる輝度値である。

0044

次に、高輝度部位判定部230は、最大輝度値Aが最大輝度閾値THa以上であるのか否かを判定する(ステップS206)。例えば、OCT画像IMにおける画素の輝度値が0から255のレンジで表される場合、最大輝度閾値THaは、100程度に設定される。高輝度部位判定部230は、最大輝度値Aが最大輝度閾値THa未満であると判定した場合、検出領域Raが高輝度部位を示す画像領域ではないと判定する(ステップS208)。最大輝度閾値THaは、「第2閾値」の一例である。

0045

一方、最大輝度値Aが最大輝度閾値THa以上であると判定された場合、輝度演算部228は、検出領域Raの平均輝度値Bを算出する(ステップS210)。平均輝度値Bは、検出領域Raと重なる画像領域に含まれる複数の画素の輝度値の平均である。

0046

次に、高輝度部位判定部230は、平均輝度値Bが平均輝度閾値THb以上であるのか否かを判定する(ステップS212)。例えば、OCT画像IMにおける画素の輝度値が上述した数値例と同様に0から255のレンジで表される場合、平均輝度閾値THbは、30程度に設定される。高輝度部位判定部230は、平均輝度値Bが平均輝度閾値THb未満であると判定した場合、S208の処理に移り、検出領域Raが高輝度部位を示す画像領域ではないと判定する。平均輝度閾値THbは、「第3閾値」の一例である。

0047

一方、平均輝度値Bが平均輝度閾値THb以上であると判定された場合、検出領域走査部226は、画像前処理部224により前処理が行われた複数のOCT画像IMの中から、S202の処理で選択したOCT画像IMの前後のOCT画像を選択する(ステップS214)。「前後のOCT画像」とは、OCT三次元データ212において、y方向に関して直前直後の関係で隣り合う画像のことである。例えば、S202の処理でOCT画像IMjが選択された場合、OCT画像IMj−1とOCT画像IMj+1が前後のOCT画像として選択される。

0048

次に、検出領域走査部226は、S202の処理で選択したOCT画像IM(以下、着目OCT画像IMと称する)と、着目OCT画像の前後のOCT画像IMとのそれぞれに対して、対照領域Rbを設定する(ステップS216)。

0049

図10から図12は、対照領域Rbの設定方法の一例を説明するための図である。図10は、OCT画像IMj−1(着目OCT画像の前のOCT画像)を表し、図11は、OCT画像IMj(着目OCT画像)を表し、図12は、OCT画像IMj+1(着目OCT画像の後のOCT画像)を表している。

0050

例えば、OCT画像IMjに対して対照領域Rbを設定する場合、検出領域走査部226は、x方向に関して検出領域Raの両隣なりに対照領域Rbを設定する。具体的には、検出領域Raのz方向の大きさがΔz、x方向の大きさがΔx、検出領域Raの中心座標Pdが(xd,zd)である場合、検出領域走査部226は、座標Pc1(xd−Δx,zd)と、座標Pc2(xd+Δx,zd)とを中心座標として対照領域Rbを設定する。

0051

また、OCT画像IMj−1およびOCT画像IMj+1に対して対照領域Rbを設定する場合、検出領域走査部226は、OCT画像IMjに対して設定した検出領域Raの中心座標Pd(xd,zd)と同じ座標Pc(xd,zd)を中心座標として対照領域Rbを設定する。これらの対照領域Rbは、検出領域Raと同程度の大きさおよび/または形状で設定される。これによって、対照領域Rbは、三次元画像の少なくともx−y平面において、検出領域Raを囲む領域として設定される。

0052

大きさが「同程度」とは、例えば、検出領域Raの面積と対照領域Rbの面積との差が一定範囲内(例えばプラスマイナス20[%]程度)であることや、検出領域Raのアスペクト比と対照領域Rbのアスペクト比との差が一定範囲内(例えばプラスマイナス10[%]程度)であることを含む。また、形状が「同程度」とは、例えば、検出領域Raの形状と対照領域Rbの形状とが互いに相似形であることを含む。

0053

図13から図15は、対照領域Rbの設定方法の他の例を説明するための図である。図13は、図10と同様に、OCT画像IMj−1(着目OCT画像の前のOCT画像)を表し、図14は、図11と同様に、OCT画像IMj(着目OCT画像)を表し、図15は、図12と同様に、OCT画像IMj+1(着目OCT画像の後のOCT画像)を表している。OCT画像IMj−1およびOCT画像IMj+1に対して対照領域Rbを設定する場合、検出領域走査部226は、図13および図15に示すように、検出領域Raのx方向の大きさ(Δx)の3倍程度の大きさ(3Δx)をもつ対照領域Rbを設定してよい。

0054

ここで図9のフローチャートの説明に戻る。次に、輝度演算部228は、各OCT画像IMの画像領域のうち、対照領域Rbの平均輝度値Cを算出する(ステップS218)。平均輝度値Cは、対照領域Rbと重なる画像領域に含まれる複数の画素の輝度値の平均である。

0055

次に、高輝度部位判定部230は、平均輝度値Bから平均輝度値Cを減算した値(B−C)が差分輝度閾値THc以上であるのか否かを判定する(ステップS220)。例えば、OCT画像IMにおける画素の輝度値が上述した数値例と同様に0から255のレンジで表される場合、差分輝度閾値THcは、15程度に設定される。高輝度部位判定部230は、平均輝度値Bから平均輝度値Cを減算した値が差分輝度閾値THc未満であると判定した場合、S208の処理に移り、検出領域Raが高輝度部位を示す画像領域ではないと判定する。差分輝度閾値THcは、「第1閾値」の一例である。

0056

一方、高輝度部位判定部230は、平均輝度値Bから平均輝度値Cを減算した値が差分輝度閾値THc以上であると判定した場合、検出領域Raが高輝度部位を示す画像領域であると判定する(ステップS222)。

0057

次に、高輝度部位判定部230は、走査位置情報214において、検出領域Raに含まれる画素の各々に対応した高輝度部位フラグを更新する(ステップS224)。例えば、高輝度部位判定部230は、S208の処理で、検出領域Raが高輝度部位を示す画像領域ではないと判定した場合、走査位置情報214において、この検出領域Raの画素の高輝度部位フラグを「0」にする。また、高輝度部位判定部230は、S222の処理で、検出領域Raが高輝度部位を示す画像領域であると判定した場合、走査位置情報214において、この検出領域Raの画素の高輝度部位フラグを「1」にする。

0058

次に、検出領域走査部226は、S202の処理で選択したOCT画像IMの全画像領域(許可領域)について、検出領域Raの走査が完了したか否かを判定する(ステップS226)。検出領域走査部226は、検出領域Raの走査が完了していないと判定した場合、S202の処理に戻り、検出領域Raの設定位置を変更する。これによって、上述した高輝度部位の判定を繰り返す。

0059

一方、検出領域Raの走査が完了したと判定した場合、制御部220は、本フローチャートの処理を終了する。

0060

ここで、図6のフローチャートの説明に戻る。次に、グループ生成部232は、走査位置情報214を参照して、高輝度部位を示す画像領域のうち、平均輝度値Bが同程度の画像領域をグループ化した画像領域グループGPを生成する(ステップS106)。「輝度値が同程度」とは、例えば、比較対象とする輝度値に対して数[%]から十数[%]程度の誤差を許容した範囲で同じであることをいう。従って、「輝度値が同程度」には、輝度値が同じであることも含まれる。

0061

図16から図18は、画像領域グループGPの生成方法の一例を示す図である。例えば、図16および図17に示す例のように、OCT画像IMに複数の検出領域Raが設定されると、グループ生成部232は、ラベリング処理によって、複数の検出領域Raのうち、平均輝度値Bが同程度の領域同士を合成し、一つの画像領域グループGPにする。

0062

例えば、グループ生成部232は、OCT画像IMの全画素のうち、未だラベルが付与されていない画素を着目画素として選択し、当該着目画素に対して、あるラベルを付与する。次に、グループ生成部232は、ラベルを付与した着目画素の周囲の画素(例えば、x、z方向で着目画素に隣接する画素)に対して、既にラベルを付与したか否かを判定する。周囲の画素にラベルを付与しておらず、且つ着目画素と同程度の輝度値であれば、グループ生成部232は、着目画素に付与したラベルと同じラベルを周囲の画素に付与する。このとき、同じ画像領域グループGPに属する画素は、同じ輝度値(例えば平均輝度値B)として扱われるため、同じラベルが付与される。次に、グループ生成部232は、ラベルを付与した周囲の画素を新たな着目画素として扱い、更に周囲の画素についてラベルの付与の有無と輝度値の確認を行ってラベルを付与する。このようにして、グループ生成部232は、OCT画像IMの全画素に対してラベルを付与し、同じラベルが付与され、且つ互いに隣接関係にある画素の集合を一つの画像領域グループGPとして抽出する。

0063

次に、グループ生成部232は、画像領域グループGPの大きさが許容サイズ内であるのか否かを判定する(ステップS108)。許容サイズとは、眼球E内に存在することが想定される最も大きいHRFの実サイズを、OCT画像IMを撮像した装置の分解能に応じて拡縮した見込み上のサイズのことである。

0064

例えば、グループ生成部232は、上述した図18に示すように、画像領域グループGPのx方向の最大サイズΔLXと、x方向における許容サイズTHΔLXとを比較する。また、グループ生成部232は、画像領域グループGPのz方向の最大サイズΔLZと、z方向における許容サイズTHΔLZとを比較する。グループ生成部232は、最大サイズΔLXがTHΔLX以下であり、且つ最大サイズΔLZがTHΔLZ以下である場合に、画像領域グループGPの大きさが許容サイズ内であると判定する。一方、グループ生成部232は、最大サイズΔLXがTHΔLXを超える場合、または最大サイズΔLZがTHΔLZを超える場合に、画像領域グループGPの大きさが許容サイズ内でないと判定する。なお、グループ生成部232は、最大サイズΔLXまたは最大サイズΔLZのいずれか一方でも対応する許容サイズ以下であれば、画像領域グループGPの大きさが許容サイズ内であると判定してもよい。

0065

また、上述した例では、グループ生成部232は、x方向およびz方向に関して画像領域を合成することで画像領域グループGPを生成しているが、これに限られない。例えば、グループ生成部232は、x方向、z方向、およびy方向に関して画像領域を合成することで画像領域グループGPを生成してもよい。

0066

図19から図21は、画像領域グループGPの生成方法の他の例を示す図である。例えば、図19に示すように、y方向において並べられた各OCT画像IMに対して検出領域Raが設定された場合、グループ生成部232は、図20に示すように、同程度の平均輝度値Bを有する画像領域同士をy方向に関して合成することで、一つの画像領域グループGPを生成する。図20に示すように、グループ生成部232は、y方向に関して、互いに接するまたは重なる程度の仮想的な幅Δyを考慮して、画像領域同士を合成してよい。なお、図示の例では、説明を簡略化するために、各OCT画像IMに設定する検出領域Raは、x方向に関して同じ位置としている。また、y方向におけるOCT画像IMの間隔(すなわちy方向における照射光の走査間隔)は、例えば、想定されるHRFの最大サイズ以下であるものとする。

0067

そして、グループ生成部232は、上述したように、最大サイズΔLXおよび最大サイズΔLZと、それぞれに対応する許容サイズとを比較すると共に、画像領域グループGPのy方向の最大サイズΔLYと、y方向における許容サイズTHΔLYとを比較することで、画像領域グループGPの大きさが許容サイズ内であるのか否かを判定してよい。

0068

図21に示すように、例えば、グループ生成部232は、画像領域グループGPの大きさが許容サイズ内でなければ、その画像領域グループGPが示す高輝度部位が抽出対象のHRFとは異なる対象物(例えば血管等)であると判断して、画像領域グループGPの元となった複数の画像領域の画素に対応付けられた高輝度部位フラグを「1」から「0」に変更する(ステップS110)。これによって、画像領域グループGPの元となった複数の画像領域に対してなされた、高輝度部位であるという判定結果が棄却され、当該画像領域が高輝度部位ではないものとして扱われることになる。一方、画像領域グループGPの大きさが許容サイズ内であれば、その画像領域グループGPが示す画像領域はHRFとして検出される。

0069

次に、グループ生成部232は、高輝度部位であるという判定結果が棄却されなかった画像領域グループGPの数、すなわち検出されたHRFの数を算出する(ステップS112)。

0070

次に、制御部220は、OCT三次元データ212に含まれる全てのOCT画像IMについて、S104からS112までの一連の処理を行ったか否かを判定する(ステップS114)。全てのOCT画像IMについて、上述した一例の処理を行っていないと判定した場合、制御部220は、S104の処理に戻る。

0071

一方、全てのOCT画像IMについて、上述した一例の処理を行ったと判定された場合、診断判定部234は、グループ生成部232により算出されたHRFの数(以下、HRF数と称する)に基づいて、被検体である眼球Eの診断を行う(ステップS116)。例えば、診断判定部234は、OCT画像IMごとのHRF数、或いはOCT三次元データ212ごとのHRF数を参照し、HRF数が基準値よりも大きい場合、「被験者は特定の疾病(例えば糖尿病網膜症)を患っている可能性がある」、といった診断結果を下してよい。例えば、基準値は、観測されたHRF数と、特定の疾病の発症の有無との相関結果などに基づいて適宜決定されてよい。

0072

次に、表示制御部236は、診断判定部234による診断結果に基づく画像を表示部204に表示させる(ステップS118)。これによって、本フローチャートの処理が終了する。

0073

図22は、診断判定部234による診断結果に基づく画像が表示された表示部204の一例を示す図である。図示の例では、表示制御部236は、表示部204を制御して、HRF数と、HRF数の基準値と、特定の疾病の有無(或いはその蓋然性)とを含む診断結果を表示させると共に、代表的なOCT画像IM(例えば、最もHRF数が多い画像)に、抽出されたHRFをその抽出位置重畳させて表示させている。このような画像を表示部204に表示させることによって、読影者(例えば医師や看護師など)ごとの経験や技量等に依存せずに、定量的かつ客観的に診断結果を下すことができる。なお、表示制御部236は、単にグループ生成部232により算出されたHRF数と、その算出元のOCT画像IMとを関連付けた画像を表示部204に表示させてもよい。これによって、少なくともHRF数について客観的に定量化することができる。

0074

なお、上述したフローチャートの処理において、画像前処理部224によるセグメンテーション処理と、禁止領域および許可領域を区分して設定する処理とは、S104に示す高輝度部位の抽出処理の前に行われるものとして説明したがこれに限られない。例えば、セグメンテーション処理と、禁止領域および許可領域を区分して設定する処理とは、S104に示す高輝度部位の抽出処理の後に行われてもよい。この場合、検出領域RaはOCT画像IMの全体に設定され、禁止領域に相当する画像領域からも高輝度部位が抽出され得る。高輝度部位判定部230は、画像領域グループGPの生成前の段階において、OCT画像IMの全体から抽出された高輝度部位が、禁止領域に属するのか否かを判定する。例えば、高輝度部位判定部230は、禁止領域から抽出された高輝度部位については、走査位置情報214において、その高輝度部位の抽出領域に対応する高輝度部位フラグを「0」に変更することで、高輝度部位であるという判定結果を棄却する。この結果、セグメンテーション処理と、禁止領域および許可領域を区分して設定する処理との双方が高輝度部位の抽出処理の前に行われるのと同様に、HRFの検出精度を維持しつつ処理負荷を軽減することができる。

0075

また、上述した第1実施形態では、対照領域Rbは、ある着目するOCT画像IMjと、その前後のOCT画像IMj−1およびOCT画像IMj+1とに設定されるものとして説明したがこれに限られない。例えば、検出領域Raがy方向にも延在する場合、すなわち検出領域Raが三次元領域として扱われる場合、y方向に並んだ複数のOCT画像IMに跨って検出領域Raが設定される。このとき、例えば、y方向に関して互いに隣接する2つのOCT画像IMjとIMj+1に対して同じ検出領域Raが設定されると、対照領域Rbは、OCT画像IMjの前のOCT画像IMj−1と、前々のOCT画像IMj−2とに設定されると共に、OCT画像IMj+1の後のOCT画像IMj+2と、後々のOCT画像IMj+3とに設定されてよい。すなわち、同じ検出領域Raが設定される複数のOCT画像IMを一つのブロック(以下、検出ブロックと称す)と考え、その検出ブロックの前後に対照領域Rbを設定するための同サイズのブロック(以下、対照ブロックと称す)を設定してもよい。同サイズとは、検出ブロックに含まれるOCT画像IMの数が同じであることをいう。例えば、検出ブロックに2つのOCT画像IMが含まれれば、前後の対照ブロックは、それぞれ2つのOCT画像IMを含むように設定される。なお、対照ブロックのサイズは、検出ブロックと異なっていてもよい。例えば、対照ブロックのサイズは、検出ブロックのサイズの2倍や3倍などであってもよい。

0076

以上説明した第1実施形態によれば、OCT三次元データが示す三次元画像において、検出領域Raと、検出領域Raを囲む対照領域Rbとの画素値の比較に基づいて、検出領域Raが、HRFを示す高輝度部位などの所定の画像領域であるのか否かを判定することにより、OCT画像IMから画像処理によって、HRFなどの眼球Eに生じた事象を検出することができる。

0077

(第2実施形態)
以下、第2実施形態における画像処理装置200について説明する。第2実施形態における画像処理装置200では、例えば、非特許文献1に開示された手法を応用し、検出領域Raと対照領域Rbとの間にギャップを設ける点で、第1実施形態と相違する。以下、第1実施形態との相違点を中心に説明し、第1実施形態と共通する部分についての説明は省略する。

0078

図23は、検出領域Raとの間にギャップを設けて対照領域Rbを設定する方法の一例を説明するための図である。例えば、OCT画像IMjに対して対照領域Rbを設定する場合、検出領域走査部226は、x方向に関して検出領域Raの両隣なりに、それぞれ検出領域Ra一つ分のギャップを設けて、対照領域Rbを設定する。具体的には、検出領域Raのz方向の大きさがΔz、x方向の大きさがΔx、検出領域Raの中心座標Pdが(xd,zd)である場合、検出領域走査部226は、座標Pc1(xd−2Δx,zd)と、座標Pc2(xd+2Δx,zd)とを中心座標にして対照領域Rbを設定する。

0079

また、検出領域走査部226は、y方向に関して照領域Rbを設定する場合、検出領域Raが設定されたOCT画像IMjに対して前後に並んだOCT画像IMj−1およびOCT画像IMj+1を、対照領域Rbを設定する対象の画像から除き、OCT画像IMj−2およびOCT画像IMj+2やOCT画像IMj−3およびOCT画像IMj+3などの着目しているOCT画像IMjに隣接していない画像に対照領域Rbを設定する。これによって、x方向に加えてy方向に関しても検出領域Raと対照領域Rbとの間にギャップを設けることができる。

0080

図24は、検出領域Raと対照領域Rbとの間にギャップを設けない場合の高輝度部位の検出結果の一例を示す図である。また、図25は、検出領域Raと対照領域Rbとの間にギャップを設けた場合の高輝度部位の検出結果の一例を示す図である。例えば、検出対象である高輝度部位のx方向の大きさが、検出領域Raおよび対照領域Rbの双方のx方向の大きさと同程度である場合がある。このような場合において、図24に示すように、検出領域Raと対照領域Rbとの間にギャップを設けない場合、検出対象である高輝度部位が検出領域Raと対照領域Rbとの双方に重畳される可能性があり、検出領域Raの平均輝度値Bから対照領域Rbの平均輝度値Cを減算した値(B−C)が差分輝度閾値THc未満となりやすく、本来であれば、検出領域Raが高輝度部位を示す画像領域であると判定されるべきところが、検出領域Raが高輝度部位を示す画像領域でないと判定され得る。これに対して、図25に示すように、検出領域Raと対照領域Rbとの間にギャップを設けた場合、高輝度部位が大きく、検出領域Raに隣接した領域にも重畳するような場合であっても、その重畳する領域がギャップとして設けられた領域であるため、検出領域Raの平均輝度値Bから対照領域Rbの平均輝度値Cを減算した値(B−C)が差分輝度閾値THc以上となりやすく、高輝度部位を示す画像領域を精度良く検出することができる。

0081

図26から図30は、ギャップを設けるときの対照領域Rbの設定方法のバリエーションの一例を示す図である。いずれの図でも、三次元画像のあるx−y平面を表している。例えば、図26に例示するように、x−y平面において、検出領域Raの中心座標が(xd,yd)である場合、検出領域走査部226は、座標(xd,yd−2Δx)、(xd+2Δx,yd)、(xd,yd+2Δy)、(xd−2Δx,yd)の其々を中心座標とした4つの対照領域Rbを設定することで、x方向において検出領域Raの幅Δx分のギャップを設けることができ、y方向において検出領域Raの幅Δy分のギャップを設けることができる。

0082

また、図27に例示するように、検出領域走査部226は、座標(xd,yd−2Δx)および(xd,yd+2Δy)を中心座標として、検出領域Raのx方向の大きさ(Δx)の5倍程度の大きさ(5Δx)をもつ対照領域Rbを設定してもよい。

0083

また、図28に例示するように、検出領域走査部226は、x方向およびy方向に関して交差する方向(図示の例では45°の角度で交差する方向)に、ギャップを設けて対照領域Rbを設定してもよい。

0084

また、図29に例示するように、検出領域走査部226は、対照領域Rb同士が互いに一部重なるように、複数の対照領域Rbを設定してもよい。これによって、検出領域Raの周囲に、その領域が連続した見かけ上一つの対照領域Rbが設定される。

0085

また、検出領域走査部226は、検出領域Ra一つ分のギャップを設けた位置に対照領域Rbを設定する代わりに、図30に例示するように、例えば、検出領域Raの半分の大きさのギャップを設けた位置に対照領域Rbを設定してもよいし、検出領域Raの2倍や3倍などの等倍の大きさのギャップを設けた位置に対照領域Rbを設定してもよい。

0086

以上説明した第2実施形態によれば、検出領域Raとの間にギャップを設けて対照領域Rbを設定するため、HRFなどの高輝度部位の形状が歪であったり、その大きさがばらついていたりしても、精度良く高輝度部位を検出することができる。この結果、HRFなどの眼球Eに生じた事象を、より精度良く検出することができる。

0087

[ハードウェア構成]
上述した実施形態の画像処理装置200は、例えば、図31に示すようなハードウェアの構成により実現される。図31は、実施形態の画像処理装置200のハードウェア構成の一例を示す図である。

0088

画像処理装置200は、NIC(Network Interface Card)等の通信インターフェース200−1、CPU200−2、RAM200−3、ROM200−4、フラッシュメモリやHDD等の二次記憶装置200−5、およびドライブ装置200−6が、内部バスあるいは専用通信線によって相互に接続された構成となっている。ドライブ装置200−6には、光ディスク等の可搬型記憶媒体が装着される。二次記憶装置200−5に格納されたプログラム200−5aがDMAコントローラ(不図示)等によってRAM200−3に展開され、CPU200−2によって実行されることで、制御部220が実現される。また、CPU200−2が参照するプログラムは、ドライブ装置200−6に装着された可搬型記憶媒体に格納されていてもよいし、ネットワークを介して他の装置からダウンロードされてもよい。

0089

上記実施形態は、以下のように表現することができる。
情報を記憶するストレージと、
前記ストレージに格納されたプログラムを実行するプロセッサと、を備え、
前記プロセッサは、前記プログラムを実行することにより、
光干渉断層法により眼球に光を照射することで生成され、第1方向の解像度が、前記第1方向に直交する第2方向の解像度に比して高い複数の光干渉断層画像であって、前記第1方向および前記第2方向のそれぞれと直交する第3方向に並べられた複数の光干渉断層画像を取得し、
取得した複数の光干渉断層画像により形成される仮想的な三次元画像において、検出領域と、前記検出領域を囲む領域内に設定される対照領域との画素値の比較に基づいて、前記検出領域が、前記眼球において所定の事象が発生している所定の画像領域であるのか否かを判定するように構成された画像処理装置。

0090

以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。

0091

1‥眼底撮像システム、100…OCT撮像装置、110…OCTユニット、120…照明光学系、130…撮像光学系、200…画像処理装置、202…通信インターフェース、204…表示部、210…記憶部、212…OCT三次元データ、214…走査位置情報、220…制御部、222…取得部、224…画像前処理部、226…検出領域走査部、228…輝度演算部、230…高輝度部位判定部、232…グループ生成部、234…診断判定部、236…表示制御部、E…眼球、Er…眼底

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

該当するデータがありません

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

この 技術と関連性が強い技術

該当するデータがありません

この 技術と関連性が強い法人

該当するデータがありません

この 技術と関連性が強い人物

該当するデータがありません

この 技術と関連する社会課題

該当するデータがありません

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ