図面 (/)

技術 光偏向装置

出願人 北陽電機株式会社
発明者 浅田規裕
出願日 2016年3月3日 (3年1ヶ月経過) 出願番号 2018-502952
公開日 2019年2月7日 (2ヶ月経過) 公開番号 WO2017-149713
状態 未査定
技術分野 機械的光走査系 機械的光制御・光スイッチ マイクロマシン
主要キーワード サポートベース 金属弾性部材 駆動電流周波数 深堀加工 測定対象区間 微小機械装置 検知構造 開口空間
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2019年2月7日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (13)

課題・解決手段

光偏向部の揺動に起因する固定部に伝達される振動を抑制して固定部が取り付けられる筐体騒音が生じることがない光偏向装置を提供する。光反射部とコイルを備えた可動部3の両側に一対の梁部4が設けられた光偏向部5と、前記梁部4を介して前記光偏向部5が揺動可能に固定されるとともに磁界形成部を備えた固定部とを備え、前記コイルに流れる駆動電流と前記磁界形成部で形成される磁界とで発生する電磁力により、前記梁部4を捻り回転軸として前記可動部3を揺動する光偏向装置であって、前記光偏向部5の揺動位相逆相で揺動するカウンター揺動体15を、前記光偏向部5と対向するように前記固定部2に備えている。

概要

背景

上述した光偏向装置は、MEMS(Micro Electro Mechanical Systems)技術などを用いて製造される微小機械装置であり、測距装置レーザービームプリンタなどに用いられている。

特許文献1には、防振性に優れた光偏向用の共振型振動モータを提供することを目的として、磁気空隙を形成する永久磁石およびヨークが配設されたバランサーと、磁気空隙内に配置される磁界発生用コイルが固着された動作物と、サポートベースとを具備するとともに、動作物とバランサーとが共振可能にサポートベースに接続された共振型揺動モータが開示されている。

当該光偏向用の共振型の振動モータは、サポートベースに対してバランサーと動作物とが例えば板バネなどを用いて接続され、コイルに駆動電流が流れると、コイルの磁界と永久磁石の磁界との相互作用によって動作物とバランサーとの間に大きさが等しく反対方向の駆動力が発生するように構成されている。

動作物とバランサーは各々の振幅を有する共振状態に到達し、以後この共振状態に保持されることにより、サポートベースに接続される部材を介して光ビームの書き込みや読み取りに関係する部分への振動伝達が防止され、高精度な位置決めに適した振動モータが得られる。

特許文献2には、揺動アクチュエータ装置から駆動トルク反作用周期的に作用する場合であっても、ミラーの角度を指令値追従制御する際にミラーの振動を抑制するとともに加工精度を上げることを目的として、揺動アクチュエータ装置の回転軸にミラー支持させ、このミラーを回転軸の軸線の回りに位置決めするスキャナ装置であって、揺動アクチュエータ装置を支持するサポートと、サポートの共振周波数に等しい固有振動数を有する動吸振器とを備え、動吸振器がサポートに固定されているスキャナ装置が提案されている。

概要

光偏向部の揺動に起因する固定部に伝達される振動を抑制して固定部が取り付けられる筐体騒音が生じることがない光偏向装置を提供する。光反射部とコイルを備えた可動部3の両側に一対の梁部4が設けられた光偏向部5と、前記梁部4を介して前記光偏向部5が揺動可能に固定されるとともに磁界形成部を備えた固定部とを備え、前記コイルに流れる駆動電流と前記磁界形成部で形成される磁界とで発生する電磁力により、前記梁部4を捻り回転軸として前記可動部3を揺動する光偏向装置であって、前記光偏向部5の揺動位相逆相で揺動するカウンター揺動体15を、前記光偏向部5と対向するように前記固定部2に備えている。

目的

特許文献1には、防振性に優れた光偏向用の共振型の振動モータを提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

光反射部とコイルを備えた可動部の両側に一対の梁部が設けられた光偏向部と、前記梁部を介して前記光偏向部が揺動可能に固定されるとともに磁界形成部を備えた固定部とを備え、前記コイルに流れる駆動電流と前記磁界形成部で形成される磁界とで発生する電磁力により、前記梁部を捻り回転軸として前記可動部を揺動する光偏向装置であって、前記光偏向部の揺動位相逆相で揺動するカウンター揺動体を、前記光偏向部と対向するように前記固定部に備えている光偏向装置。

請求項2

前記カウンター揺動体は、巻回方向が前記可動部のコイルと逆向きに設定されたカウンターコイルを備えたカウンター可動部と、前記カウンター可動部の両側に設けられた一対のカウンター梁部で構成され、前記コイルに印加される駆動電流の向きと逆向きに前記カウンターコイルに前記駆動電流が印加されるように構成されている請求項1記載の光偏向装置。

請求項3

前記光偏向部の共振周波数と前記カウンター揺動体の共振周波数が一致または近接するように設定されている請求項2記載の光偏向装置。

請求項4

前記カウンター揺動体は、カウンター可動部と前記カウンター可動部の両側に設けられた一対のカウンター梁部とで構成され、前記光偏向部の揺動により前記固定部に作用する応力を受けて前記光偏向部の揺動位相と略逆相で揺動するように構成されている請求項1記載の光偏向装置。

請求項5

前記駆動電流の周波数は前記光偏向部の共振周波数の近傍に設定されるとともに、前記カウンター揺動体の共振周波数は前記駆動電流の周波数より小に設定されている請求項4記載の光偏向装置。

請求項6

前記カウンター可動部に前記可動部を臨む開口部が形成され、前記開口部を挟んで前記光偏向部の揺動周期計測可能に構成されている請求項1から5の何れかに記載の光偏向装置。

請求項7

前記可動部及び/または前記カウンター可動部に共振周波数を調整する質量調整部を備えている請求項1から6の何れかに記載の光偏向装置。

請求項8

前記可動部または前記カウンター可動部と一体に揺動可能に構成され、前記可動部または前記カウンター可動部を挟んで外方から調整可能な質量調整部を備えている請求項1から6の何れかに記載の光偏向装置。

請求項9

前記質量調整部は質量の増量により共振周波数を粗調整し、質量の減量により共振周波数を微調整するように構成されている請求項7または8記載の光偏向装置。

請求項10

前記梁部及びカウンター梁部は、テンションアニール法で圧延されたステンレス材炭素工具鋼材、またはみがき鋼材の何れかの金属を用いて、集束イオンビーム法エッチング法、及びメッキ法の何れかにより断面積が1mm2以下に成形されている請求項1から9の何れかに記載の光偏向装置。

技術分野

0001

本発明は、光偏向装置に関し、詳述すると光反射部とコイルを備えた可動部の両側に一対の梁部が設けられた光偏向部と、梁部を介して光偏向部が揺動可能に固定されるとともに磁界形成部を備えた固定部とを備え、コイルに流れる電流と磁界形成部で形成される磁界とで発生する電磁力により、梁部を捻り回転軸として可動部を揺動する光偏向装置に関する。

背景技術

0002

上述した光偏向装置は、MEMS(Micro Electro Mechanical Systems)技術などを用いて製造される微小機械装置であり、測距装置レーザービームプリンタなどに用いられている。

0003

特許文献1には、防振性に優れた光偏向用の共振型振動モータを提供することを目的として、磁気空隙を形成する永久磁石およびヨークが配設されたバランサーと、磁気空隙内に配置される磁界発生用のコイルが固着された動作物と、サポートベースとを具備するとともに、動作物とバランサーとが共振可能にサポートベースに接続された共振型揺動モータが開示されている。

0004

当該光偏向用の共振型の振動モータは、サポートベースに対してバランサーと動作物とが例えば板バネなどを用いて接続され、コイルに駆動電流が流れると、コイルの磁界と永久磁石の磁界との相互作用によって動作物とバランサーとの間に大きさが等しく反対方向の駆動力が発生するように構成されている。

0005

動作物とバランサーは各々の振幅を有する共振状態に到達し、以後この共振状態に保持されることにより、サポートベースに接続される部材を介して光ビームの書き込みや読み取りに関係する部分への振動伝達が防止され、高精度な位置決めに適した振動モータが得られる。

0006

特許文献2には、揺動アクチュエータ装置から駆動トルク反作用周期的に作用する場合であっても、ミラーの角度を指令値追従制御する際にミラーの振動を抑制するとともに加工精度を上げることを目的として、揺動アクチュエータ装置の回転軸にミラー支持させ、このミラーを回転軸の軸線の回りに位置決めするスキャナ装置であって、揺動アクチュエータ装置を支持するサポートと、サポートの共振周波数に等しい固有振動数を有する動吸振器とを備え、動吸振器がサポートに固定されているスキャナ装置が提案されている。

先行技術

0007

特開平09−93901号公報
特開2008−298857号公報

発明が解決しようとする課題

0008

しかし、上述した光反射部とコイルを備えた可動部の両側に一対の梁部が設けられた光偏向部と、梁部を介して光偏向部が揺動可能に固定されるとともに磁界形成部を備えた固定部とを備え、梁部を捻り回転軸として可動部を揺動する光偏向装置では、磁界形成部を備えた固定部に梁部を介して光偏向部が揺動可能に固定されるため、特許文献1に開示された防振構造を採用することができなかった。

0009

そのため、光偏向部の振動が、固定部を介して固定部が取り付けられた筐体に伝達されて、筐体側が光偏向部の駆動周波数と近い共振周波数を有する場合には、異常に振動して騒音が発生するという問題があった。

0010

特許文献2に開示されたスキャナ装置は、揺動アクチュエータ装置の停止時に慣性力によるミラーの振動を動吸振器の反力で抑制することにより、ミラーの停止時の応答性を上げるものであり、例えば揺動駆動されるミラーによって他の構造部材に及ぼす振動を抑制するような構造ではなかった。

0011

本発明の目的は、上述した問題点に鑑み、光偏向部の揺動に起因する固定部に伝達される振動を抑制して固定部が取り付けられる筐体に騒音が生じることがない光偏向装置を提供する点にある。

課題を解決するための手段

0012

上述の目的を達成するため、本発明による光偏向装置の第一の特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、光反射部とコイルを備えた可動部の両側に一対の梁部が設けられた光偏向部と、前記梁部を介して前記光偏向部が揺動可能に固定されるとともに磁界形成部を備えた固定部とを備え、前記コイルに流れる駆動電流と前記磁界形成部で形成される磁界とで発生する電磁力により、前記梁部を捻り回転軸として前記可動部を揺動する光偏向装置であって、前記光偏向部の揺動位相逆相で揺動するカウンター揺動体を、前記光偏向部と対向するように前記固定部に備えている点にある。

0013

梁部を介して光偏向部が固定部に揺動可能に固定され、当該固定部に光偏向部と対向するようにカウンター揺動体が配置される。そして、カウンター揺動体が光偏向部の揺動位相と逆相で揺動されることにより、光偏向部が固定部に作用する加振力がカウンター揺動体の加振力で相殺されるようになる。

0014

同第二の特徴構成は、同請求項2に記載した通り、上述の第一の特徴構成に加えて、前記カウンター揺動体は、巻回方向が前記可動部のコイルと逆向きに設定されたカウンターコイルを備えたカウンター可動部と、前記カウンター可動部の両側に設けられた一対のカウンター梁部で構成され、前記コイルに印加される駆動電流の向きと逆向きに前記カウンターコイルに前記駆動電流が印加されるように構成されている点にある。

0015

可動部に備えたコイルと、光偏向部に対向配置されたカウンター揺動体のコイルのそれぞれに流れる駆動電流が逆方向となり、光偏向部とカウンター揺動体が互いに逆相で揺動駆動されるようになる結果、光偏向部が固定部に作用する加振力が、カウンター揺動体の加振力によって相殺されるようになる。このとき、共通の駆動電流で、光偏向部とカウンター揺動体を逆相で揺動駆動することができるようになり、また、光偏向部とカウンター揺動体の共振周波数が一致していると両者は完全に逆相で揺動駆動されることになる。

0016

同第三の特徴構成は、同請求項3に記載した通り、上述の第二の特徴構成に加えて、前記光偏向部の共振周波数と前記カウンター揺動体の共振周波数が一致または近接するように設定されている点にある。

0017

駆動電流の周波数を光偏向部の共振周波数つまり固有周波数に設定すると、駆動効率は最大になるが、このような機械系の共振周波数は周囲温度による影響を受けて大きく変動する。温度変動に関わらず光偏向部の振幅を一定に制御するためには、常に共振周波数の変動を把握しておく必要があり、そうでない限り制御性が悪くなってしまう。そこで、駆動電流の周波数と光偏向部の共振周波数をずらし、駆動効率が最大効率より低くなる周波数域の駆動電流で駆動することで、周囲温度の変動があっても例えば駆動電流の周波数や電流値を調整することにより容易且つ安定的な振幅制御が可能になる。

0018

駆動電流の周波数が光偏向部の共振周波数と等しいときに光偏向部の揺動振幅が最大となり、光偏向部の揺動位相が駆動電流に対して90度の位相遅れとなる。駆動電流の周波数が光偏向部の共振周波数より高い場合は揺動振幅が小さくなり、位相遅れは90度より大きくなる。逆に駆動電流の周波数が光偏向部の共振周波数より低い場合は揺動振幅が小さくなり、位相遅れは90度より小さくなる。

0019

カウンター揺動体を光偏向部と共通の駆動電流で駆動する場合に共振特性が光偏向部と同一であれば、カウンターコイルの巻回方向が可動部のコイルと逆であるために揺動方向が光偏向部と反転位相差180度)する点を除いて、振幅特性と位相のずれは光偏向部と同一となる。即ち、光偏向部とカウンター揺動体の共振特性が同一で共振周波数が一致する場合は、光偏向部とカウンター揺動体は常に逆相かつ同一振幅で揺動される。

0020

その結果、常にカウンター揺動体が光偏向部に対して逆相で駆動され、光偏向部及びカウンター揺動体の固定部に作用する加振力が安定的に相殺されるようになる。また光偏向部とカウンター揺動体の共振特性が同一でなくても十分近接していれば揺動位相はほぼ逆相に保たれるため、固定部に作用する加振力はほぼ相殺される。

0021

同第四の特徴構成は、同請求項4に記載した通り、上述の第一の特徴構成に加えて、前記カウンター揺動体は、カウンター可動部と前記カウンター可動部の両側に設けられた一対のカウンター梁部とで構成され、前記光偏向部の揺動により前記固定部に作用する応力を受けて前記光偏向部の揺動位相と略逆相で揺動するように構成されている点にある。

0022

光偏向部に備えた可動部のコイルに駆動電流が流れると、梁部を捻り回転軸として光偏向部が揺動駆動される。このとき、光偏向部の揺動により固定部に作用する応力を受けてカウンター揺動体が光偏向部の揺動周波数で揺動する。カウンター揺動体の共振周波数と揺動周波数の関係を適切に設定すると、光偏向部の揺動位相とカウンター揺動体の揺動位相が略逆相で揺動するようになり、光偏向部の固定部に作用する加振力に対しカウンター揺動体の固定部に作用する加振力が相殺する方向に働く。

0023

同第五の特徴構成は、同請求項5に記載した通り、上述の第四の特徴構成に加えて、前記駆動電流の周波数は前記光偏向部の共振周波数の近傍に設定されるとともに、前記カウンター揺動体の共振周波数は前記駆動電流の周波数より小に設定されている点にある。

0024

既述したように、駆動電流の周波数が光偏向部の共振周波数に設定されると駆動効率は最大になるが、機械系の共振周波数は周囲温度により大きな影響を受ける。温度変動に関わらず光偏向部の振幅を一定に制御するためには、常に共振周波数の変動を把握しておく必要があり、そうでない限り制御性が悪くなってしまう。そのような場合でも、駆動電流の周波数と光偏向部の共振周波数をずらすことで安定的な揺動駆動が可能になる。

0025

駆動電流の周波数を光偏向部の共振周波数の近傍で高い領域または低い領域に設定することで、例えば駆動電流の電流値一定の下での周波数可変制御や、周波数一定の下での電流値可変制御等によって、光偏向部は安定して一定振幅に制御される。このときの駆動電流の周波数に従って揺動する光偏向部の加振力により固定部が振動し、当該固定部の振動の反力を受けてカウンター揺動体が揺動する。

0026

カウンター揺動体の共振周波数が駆動電流の周波数、即ち光偏向部の揺動周波数と同一の場合にはカウンター揺動体の振幅は最大となり、カウンター揺動体は光偏向部の揺動位相から90度遅れて揺動する。カウンター揺動体の共振周波数が揺動周波数より低い場合は、振幅は小さくなる一方で光偏向部の揺動位相からの遅れは90度より大きくなり、カウンター揺動体の共振周波数が揺動周波数より高い場合は、光偏向部の揺動位相からの遅れは90度より小さくなる。

0027

即ち、カウンター揺動体の共振周波数が揺動周波数より低い場合は光偏向部の揺動位相からの位相遅れが90度以上となり、カウンター揺動体による加振力が光偏向部の加振力を相殺する方向に作用する。一方カウンター揺動体の共振周波数が揺動周波数より高い場合は光偏向部の揺動位相からの位相遅れが90度より小さくなり、カウンター揺動体による加振力が光偏向部の加振力を相殺する方向には働かない。

0028

同第六の特徴構成は、同請求項6に記載した通り、上述の第一から第五の何れかの特徴構成に加えて、前記カウンター可動部に前記可動部を臨む開口部が形成され、前記開口部を挟んで前記光偏向部の揺動周期計測可能に構成されている点にある。

0029

カウンター可動部に形成された開口部を通して光偏向部の裏面から光偏向部の揺動周期を計測することができるようになる。

0030

同第七の特徴構成は、同請求項7に記載した通り、上述の第一から第六の何れかの特徴構成に加えて、前記可動部及び/または前記カウンター可動部に共振周波数を調整する質量調整部を備えている点にある。

0031

製造時に光偏向部及び/またはカウンター揺動体の共振周波数のばらつきが生じると、駆動電流の周波数に対して所期の周波数で光偏向部及び/またはカウンター揺動体を揺動駆動することが困難になる、また駆動時の温度上昇によって光偏向部及び/またはカウンター揺動体の共振周波数が変動する場合にも同様の問題が発生する。そのような場合に、可動部及び/またはカウンター可動部に質量調整部を備えていれば、共振周波数の製造時のばらつきや温度変化による変動を抑制して、予め設定した駆動電流の周波数に対して所期の周波数で光偏向部及び/またはカウンター揺動体を適正に駆動することができるようになる。

0032

カウンター揺動体で効率よく光偏向体の加振力を相殺するためには、光偏向体の共振周波数とカウンター揺動体の共振周波数及び駆動電流の駆動周波数の相対関係を精度よく設定する必要がある。質量調整部分を備えることにより製造時の相対的な共振周波数のばらつきを調整することができるため、加振力の相殺効果を高めることができる。

0033

同第八の特徴構成は、同請求項8に記載した通り、上述の第一から第六の何れかの特徴構成に加えて、前記可動部または前記カウンター可動部と一体に揺動可能に構成され、前記可動部または前記カウンター可動部を挟んで外方から調整可能な質量調整部を備えている点にある。

0034

質量調整部が可動部またはカウンター可動部と一体に揺動するように、そして可動部またはカウンター可動部を挟んで外方から調整可能に構成することで、組み上がった後の光偏向装置に対してその後質量調整できるようになる。

0035

同第九の特徴構成は、同請求項9に記載した通り、上述の第七または第八の特徴構成に加えて、前記質量調整部は質量の増量により共振周波数を粗調整し、質量の減量により共振周波数を微調整するように構成されている点にある。

0036

共振周波数の調整に際して、質量調整部の質量を増量することにより粗調整し、質量調整部の質量を減量することにより微調整すると、共振周波数の調整作業が迅速且つ正確にできるようになる。

0037

同第十の特徴構成は、同請求項10に記載した通り、上述の第一から第九の何れかの特徴構成に加えて、前記梁部及びカウンター梁部は、テンションアニール法で圧延されたステンレス材炭素工具鋼材、またはみがき鋼材の何れかの金属を用いて、集束イオンビーム法エッチング法、及びメッキ法の何れかにより断面積が1mm2以下に成形されている点にある。

0038

集束イオンビーム法、エッチング法、及びメッキ法の何れかにより梁部及びカウンター梁部が加工されると、応力振幅により亀裂に成長するような傷が表面に形成される確率が非常に小さくなり、疲労強度が低下する虞が極めて低くなる。そして、断面積1mm2以下に成形されると、それだけ良好な実効耐力を示す梁部が構成できるようになり、テンションアニール法で圧延されたステンレス材、炭素工具鋼材、またはみがき鋼材の何れかの金属を用いて金属弾性部材を構成すれば、長期にわたり安定して動作可能な梁部が得られる。

発明の効果

0039

以上説明した通り、本発明によれば、光偏向部の揺動に起因する固定部に伝達される振動を抑制して固定部が取り付けられる筐体に騒音が生じることがない光偏向装置を提供することができるようになった。

図面の簡単な説明

0040

図1は本発明の光偏向装置が組み込まれた測距装置の斜視図である。
図2は光偏向装置の基本構造を示す斜視図である。
図3(a)は光偏向部の平面図、図3(b)は同断面図、図3(c)は光偏向部の別実施形態を示す断面図である。
図4(a)から図4(e)は梁部の製作過程の説明図である。
図5(a),図5(b),図5(c)は光偏向装置の組立手順の説明図である。
図6(a)は光偏向部とカウンター揺動体(カウンター光偏向部)の説明図、図6(b)は固定部に取付けられた光偏向部とカウンター揺動体(カウンター光偏向部)の断面図、図6(c)は光偏向部またはカウンター揺動体(カウンター光偏向部)の共振周波数を調整するための質量調整部の説明図である。
図7(a)は光偏向部とカウンター揺動体の説明図、図7(b)は固定部に取付けられた光偏向部とカウンター揺動体の断面図、図7(c)はカウンター揺動体の共振周波数を調整するための質量調整部の説明図である。
図8は光偏向部の揺動角度検知構造の説明図である。
図9(a)は別実施例を示し、光偏向部またはカウンター揺動体の説明図、図9(b)は別実施例を示し、固定部に取付けられた光偏向部とカウンター揺動体の断面図、図9(c)は別実施例を示し、光偏向部またはカウンター揺動体の共振周波数を調整するための質量調整部の説明図である。
図10(a)は光偏向部及びカウンター揺動体の双方が主体的に揺動する場合の駆動周波数と光偏向部とカウンター揺動体の共振周波数との関係の説明図、図10(b)は光偏向部に対してカウンター揺動体が受動的に揺動する場合の駆動周波数と光偏向部とカウンター揺動体の共振周波数との関係の説明図である。
図11(a)は周波数調整パターンと共振周波数の変動特性図、図11(b)は梁幅と共振周波数のばらつき特性図である。
図12(a)から図12(e)は別実施形態を示し、梁部の製作過程の説明図である。

実施例

0041

以下、本発明による光偏向装置の具体例を図面に基づいて説明する。
図1には、光偏向装置10が組み込まれた測距装置1が示されている。測距装置100は、電源回路信号処理回路が収容された直方体の本体ケーシング20と、本体ケーシング20の一側面に配置され、光偏向装置10が回転可能に収容された半透明光学機器ケーシング30を備えている。

0042

光学機器ケーシング30の内部には、基台40と、基台40に固定され縦軸心周りに回転する電磁モータを備えた回転走査部50と、回転走査部50の上部に固定された光偏向装置10と、光偏向装置10に向けて測定光投光するレーザダイオードなどを用いた光源と光偏向装置10で反射された反射光受光するフォトトランジスタなどを用いた受光部とを備えた投受光部60などが収容されている。

0043

図2に示すように、光偏向装置10は、光偏向部5と固定部2を備えている。光偏向部5は、上面側に光反射部となる偏向ミラー3aを備え、裏面側にコイルを備えた可動部3と、可動部3の両側に固定された一対の梁部4,4とで構成されている。

0044

固定部2はポリカーボネート等の樹脂で構成された直方体形状を呈し、平面視で可動部3よりもやや大きな面積矩形形状となるように、厚み方向に刳り抜かれた開口空間が形成されている。開口空間を挟んだ一対の対向縁部には、光偏向部5が梁部4,4を介して軸心周りに揺動可能に固定されている。

0045

さらに固定部2には、可動部3を両側から挟むように、磁界形成部6が配置されている。磁界形成部6は一方がN極となり他方6がS極となるように対向配置された一対の永久磁石6a,6bで構成され、各永久磁石6a,6bは高透磁率磁性体保持部7に保持されている。

0046

図3(a),(b)に示すように、可動部3は、ガラス基板またはシリコン基板に金またはアルミニウム等が蒸着された偏向ミラー3aと、ガラスエポキシ基板に銅製のコイルCと電極パッドEが印刷形成されたコイル基板3cと、それら間に配置される同じくガラスエポキシ製のスペーサ3bを備えている。

0047

梁部4,4は金属弾性部材で構成され、所定長金属棒状部4aと、金属棒状部4aの一端側に形成され固定部2に固定する固定側パッド4bと、金属棒状部4aの他端側に形成され可動部3に固定する可動側パッド4cとを備えている。

0048

一対の梁部4,4の可動側パッド4cが電極パッドEに接触するように位置決めされ、導電性接着剤を用いて偏向ミラー3aとコイル基板3cとの間に接着固定されている。尚、コイル基板3cを、エポキシ樹脂等を用いた各基板層コイルパターンを形成し、各基板層のコイルをビアで連結した多層基板で構成してもよい。

0049

スペーサ3bは中央部が絶縁部材33で形成され、両端部が金属部材34で構成されている。各電極パッドE,Eと各可動側パッド4c,4cとが金属部材34,34を通して電気的に接続されている。

0050

図3(c)に示すように、可動側パッド4cが上側のガラス基板でなる偏向ミラー3aと下側のガラスエポキシ基板でなるコイル基板3cの縁部近傍に固定され、金属棒状部4aが偏向ミラー3aとコイル基板3cで覆われないように配置される場合であれば、上部偏向ミラー3aの縁部に可動側パッド4cを収容する凹部が形成されていればよく、スペーサ3bを設ける必要は無い。

0051

図2に示すように、固定部2に設けられた位置決めピン2Pは金属で構成され、梁部4,4を介してコイル基板3cに形成されたコイルCに交流電流を印加する電極ピンとなる。

0052

一対の梁部4,4を介してコイルCに交流電流を印加すると、コイルCに流れる交流電流と固定部2に備えた永久磁石6a,6bにより形成される磁界とによってコイルCにローレンツ力が作用し、当該ローレンツ力によって梁部を捻り回転軸として可動部3が繰り返し揺動される。本実施形態では、可動部3が±11.25°揺動される。

0053

図1戻り、この状態で回転走査部50が縦軸心周りに回転すると、投受光部60に備えた光源から出射された測定光が、偏向ミラー3aで偏向されて、光学窓30aから測定対象区間に向けて回転走査される。そして、測定対象区間に存在する物体からの反射光が光学窓30aから偏向ミラー3aに入射し、偏向ミラー3aで偏向されて、投受光部60に備えた受光部で受光される。

0054

つまり、測定光は、回転走査部50によって縦軸心周りに回転走査されながら、同時に梁部4,4周りに揺動される偏向ミラー3aによって上下方向に±22.5°揺動走査されることで、三次元的に走査される。

0055

本体ケーシング20に備えた信号処理回路では、光源からの測定光の出射時期と受光部での反射光の検出時期との時間差に基づいて、測距装置1から測定対象空間に存在する物体までの距離が算出される。

0056

図4(a)から(e)には、梁部4,4を構成する金属弾性部材のエッチング法を用いた製作過程が示されている。本実施例では、母材にSUS304CSP−Hのテンションアニール材を用いている。

0057

所定厚さ(本実施形態では0.2mm)のステンレス薄板42(図4(a)参照)の表面にフォトレジスト43を均一に塗布し(図4(b)参照)、金属棒状部4a、固定側パッド4b、可動側パッド4c、枠体40、支持部41に対応する領域が遮光されるように形成されたフォトマスク(図示せず)を介して光露光する(図4(c)参照)。

0058

露光された領域のフォトレジスト43bを所定のエッチング液で除去すると、ステンレス薄板42の表面のうち、枠体40や梁部4に対応する領域にのみフォトレジスト43層が形成される(図4(d)参照)。

0059

その後、ステンレス薄板42の表面にステンレスを溶かすエッチング液を吹きかけて徐々にエッチング処理を進め、エッチング処理が完了すると溶剤でフォトレジスト43を除去する。

0060

以上のプロセスによって、一端側に固定側パッド4bが形成され他端側に可動側パッド4cが形成された一対の金属棒状部4aが、枠体40の内部で直線上に対称に配置され、各パッド4b,4cが支持部41を介して枠体40に固定されるように一体に形成された金属弾性部材が出来上がる(図2(e)参照)。

0061

メッキ法を用いて金属弾性部材を製作する場合には、図2(d)に示したフォトレジスト43の形状が凹部となる所定深さの型枠を作成し、型枠に離型材を塗布した後に、金属イオンを含む電解液を満たし、電解液中の金属を電着させることにより製作することができる。

0062

梁部4を構成する金属棒状部4aをプレス加工研削加工等の機械的加工法で形成すると、加工時に表面にできる複数の微小な傷に、応力振幅に起因する応力の集中が起こり、微小な傷が起点となって亀裂に成長して、疲労強度が低下するため、可動部3を長期にわたり安定して揺動することができない。

0063

しかし、上述したようなエッチング法、メッキ法、集束イオンビーム法等を用いて製作すれば、長期にわたり安定して揺動可能な梁部4,4を実現できる。梁部4,4の材料として、テンションアニール法で圧延されたステンレス材、炭素工具鋼材、またはみがき鋼材の何れかの金属を用いることができる。

0064

金属棒状部を断面積1mm2以下に成形することにより、良好な実効耐力を示す梁部が構成できるようになり、周波数150Hzから500Hzの範囲で可動部3を長期にわたり安定して揺動することができるようになる。尚、可動部3を構成する偏向ミラー3aの揺動角度は±11.25°に制限されることは無く、微小機械装置1の用途に応じて適宜設定される値である。

0065

図4(e)に示す梁部4,4を構成する金属棒状部4aは、断面積が1mm2以下に形成されていればよく、0.001mm2〜1mm2の範囲で成形されていることが好ましい。

0066

本実施形態では、金属棒状部4aは幅Wが1.0mm、厚さTが0.2mm、長さLが5mmに形成され、断面積Sが0.20mm2に形成されている。尚、微小機械装置1の各部の大きさは以下の通りである。固定部2は幅23mm、奥行き26mm、厚さ5.5mm、可動部3は幅12.0mm、奥行き12.0mm、厚さ2.0mmに形成されている。

0067

可動部3を揺動駆動する周波数、つまりコイルCに印加する交流電流の周波数は、可動部3を含む梁部4,4の機械的共振周波数から僅かにずらせた周波数に設定することが好ましく、可動部3の大きさ、金属棒状部4aの断面積と長さとその物理的特性に依存して50Hzから約1kHzの範囲で設定可能である。

0068

例えば、可動ミラーの面積が12mm×12mmの場合で、上述した金属弾性部材を用いた梁部4の場合には、10Hzから1800Hzの周波数範囲、特に150Hzから500Hzの周波数範囲が好適である。

0069

上述した金属弾性部材を用いて光偏向装置10を組み立てる手順を説明する。
図5(a)に示すように、固定部2に設けられた一対の位置決めピン2Pが各固定側パッド4bに形成された一対の位置決め用の孔部に嵌め込まれて接着固定される。

0070

次に、図5(b)に示すように、可動側パッド4cに形成された一対の位置決め用孔部の上方から、偏向ミラー3aの裏面に形成された一対の位置決めピンが嵌め込まれ、次に可動側パッド4cの下方から開放空間を通してスペーサ3bがあてがわれ、さらにコイル基板3cに形成された一対の位置決め用孔部に偏向ミラー3aの位置決めピンが嵌め込まれ、それぞれが接着剤で接着固定される。

0071

図5(c)に示すように、各支持部41が切断されて枠体40が離脱されて、固定側パッド4bが確実に固定される。一対の金属棒状部4aで構成されるねじり回転軸の直線性が高精度に保たれた状態で可動部3を支持できるようになり、しかも組立作業も簡素化できるようになる。その後、下方から磁界形成部6が挿入固定される。

0072

上述した光偏向装置10が組み込まれた測距装置1では、光偏向部5(3,4)の振動が、固定部2を介して固定部2が取り付けられた回転走査部50を介して本体ケーシング20や光学機器ケーシング30に伝達されて、本体ケーシング20や光学機器ケーシング30が振動に共鳴して騒音が発生するという問題がある。

0073

そこで、図6(a),(b)に示すように、本発明による光偏向装置10には、光偏向部5の揺動位相と逆相で揺動するカウンター揺動体15が、光偏向部5と対向するように固定部2に揺動可能に配置されている。尚、図6(a)には、光偏向部5と、光偏向部5と対称形状のカウンター揺動体15の双方が、互いに対向するように配置された状態のみ示されている。

0074

尚、図2,3,5で説明した光偏向部5は、偏向ミラー3aとコイル基板3cが同一サイズの矩形形状に構成されているが、図6(a),(b)に示す光偏向部5は、略正方形形状に形成された偏向ミラー3aと、梁部4に沿った方向の辺が梁部4に直交する辺よりも長い長方形形状に構成されている点、梁部4,4の長さが図2,3,5で説明した梁部4,4の長さより長い点で相違するが、基本的な構造は同じである。

0075

図6(b)の例では、カウンター揺動体15は光偏向部5と全くの同一構造であり、互いにコイル基板3c,13c同士が対向するように対称に配置され、図示していないが、双方のコイル基板3c,13cを挟むように磁界形成部6が配置されている。固定部2に設けられた位置決めピン2Pを介して各コイル基板に形成されたコイルCに交流電流が印加されると、光偏向部5とカウンター揺動体15が略180°の位相差つまり反対方向に揺動駆動される。

0076

その結果、光偏向部5が固定部2に作用する加振力がカウンター揺動体15の固定部2に作用する加振力で相殺され、本体ケーシング20や光学機器ケーシング30に伝達される振動が減衰して騒音の発生が抑制される。

0077

つまり、カウンター揺動体15は、カウンターコイルを備えたカウンター可動部13と、カウンター可動部13の両側に設けられた一対のカウンター梁部14で構成されている。

0078

位置決めピン2Pから梁部4を経由して光偏向部5のコイルCに印加される駆動電流と同じ駆動電流が位置決めピン2Pからカウンター梁部14を経由してカウンター光偏向部15のカウンターコイルに印加される。コイルCとカウンターコイルとは対称に巻回されているので、コイルCとカウンターコイルに印加される駆動電流は互いに逆方向に印加され、光偏向部5とカウンター光偏向部15とは互いに逆相で揺動駆動される。

0079

図10(a)には、光偏向部5の共振周波数fと駆動電流の周波数fiの関係が示されている。光偏向部5の共振周波数fが駆動電流の周波数fiと一致する場合は、光偏向部は駆動電流より90度位相がずれて、最大振幅で揺動する。光偏向部5の共振周波数fよりも駆動電流の周波数fiが高い場合には振幅は小さくなり、光偏向部5の位相遅れは90度より大きくなる。光偏向部5の共振周波数fよりも駆動電流周波数fiが低い場合には振幅は同じく小さくなり、光偏向部5の位相遅れは90度より小さくなる。

0080

本実施例では動作の安定性を確保するために、駆動電流の周波数fi(この周波数が揺動周波数となる)を光偏向部5の共振周波数fとは異なる値に設定し、最大振幅より少し小さな目標振幅で駆動している。温度変化等によって共振周波数が変動すると揺動振幅が変化するが、光偏向部5の揺動角度が光センサ等でモニタされ、目標となる揺動角度つまり制御角度に維持されるように、例えば駆動電流の電流値一定の下で周波数可変制御や、周波数一定の下での電流値可変制御、さらには周波数及び電流値の双方の可変制御等が行なわれる。

0081

カウンター揺動体15は光偏向部5と全くの同一構造であればコイルcには互いに逆回転の電流が流れ、揺動方向が反転する同一振幅で揺動される。即ち、理想的にはカウンター揺動体15と光偏向部5が、温度特性を含めてまったく対称的に揺動駆動され、固定部2への加振力は等しく打ち消しあう方向に働く。

0082

しかし、実際には製造時の誤差や特性ばらつきなどの影響で共振周波数を含む物理的特性が完全に一致することはないので、カウンター揺動体15の揺動振幅は光偏向体とは一致せず、加振力の打ち消し効果は減少する。

0083

カウンター揺動体15と光偏向部5の特性ばらつきによって、互いの共振特性が異なる(fc≠f)場合、その共振周波数を外部からモニターし、共振周波数を等しくしてやることで揺動振幅を等しく調整し、加振力を等しく、その打消し効果を最大にすることができる。

0084

このような共振周波数の調整機構が備わっていると、カウンター揺動体の構成が光偏向体とまったく同一でなくとも、予め共振周波数が近くなるように構造設計することにより、組み立て後の調整で加振力を打ち消しあうように設定することができる。

0085

またカウンター揺動体15と光偏向部5の駆動電流を、駆動周波数は同一であるがそれぞれ異なる電流値で制御することができれば、より柔軟に加振力を打ち消しあうように振幅制御が可能となる。

0086

カウンター揺動体15と光偏向部5の共振特性を一致させることが望ましいが、その共振周波数が十分近接していれば、騒音抑制効果が期待できる。

0087

図7(a),(b)には、カウンター揺動体15の別実施形態が示されている。
カウンター揺動体15は、カウンター可動部13とカウンター可動部13の両側に備えた一対のカウンター梁部14,14とを備えて構成され、光偏向部5の揺動により固定部2に作用する応力を受けて受動的に光偏向部5の揺動位相と略逆相で揺動するように構成されている。

0088

カウンター可動部13及びカウンター梁部14,14は、ともに梁部4と同一材料で、図4で説明したエッチング法等によって一体に形成されている。

0089

光偏向部5に備えた可動部3のコイルに駆動電流が流れると、梁部4を捻り回転軸として光偏向部5が揺動駆動される。このとき、カウンター揺動体15の共振特性を適切に設定すると光偏向部5の揺動により固定部2に作用する応力を受けてカウンター可動部15が光偏向部5の揺動位相と逆相で揺動するようになり、光偏向部5及びカウンター揺動体15の固定部に作用する加振力が相殺または減衰される。

0090

図10(b)に示すように、駆動電流の周波数fiは光偏向部5の共振周波数fの近傍(本実施例では共振周波数fより大)に設定するとともに、カウンター揺動体15の共振周波数fcより大に設定されている。

0091

駆動電流の周波数fiを光偏向部5の共振周波数fの近傍に設定することで、光偏向部5の揺動振幅を最大振幅より少し低めで安定的に制御することができる。

0092

カウンター揺動体15の共振周波数fcが駆動電流の周波数fi、即ち光偏向部5の揺動周波数と同一の場合、カウンター揺動体15の振幅は最大となり、光偏向部5の揺動位相から90度遅れて揺動する。カウンター揺動体15の共振周波数が駆動電流の周波数より低い場合は、振幅は小さくなる一方で光偏向部5の揺動位相からの遅れは90度より大きくなり、カウンター揺動体15の共振周波数が駆動電流の周波数より高い場合は、光偏向部5の揺動位相からの遅れは90度より小さくなる。

0093

そこで、カウンター揺動体15の共振周波数fcが光偏向部5の揺動周波数fiよりも小に、つまり駆動電流の周波数fiの下側で駆動電流の周波数fiにより近い値に設定されることにより、カウンター揺動体15の揺動は光偏向部5からの位相遅れが90度以上となり、光偏向部5による加振力を相殺できる方向に働く。

0094

一方、駆動電流の周波数fiがカウンター揺動体15の共振周波数fcより小に設定されると、カウンター揺動体15の光偏向部からの位相遅れは90度より小さくなり、光偏向部5の加振力を相殺する方向には働かない。

0095

カウンター揺動体15の共振周波数fcは、駆動電流の周波数fiより低く光偏向部5の揺動位相より90度以上の位相遅れを有し、且つ揺動振幅ができるだけ大きくなるように、できるだけfiに近いことが望ましい。即ち、駆動電流の周波数fiとカウンター揺動体15の共振周波数fcの偏差は1Hz以下、できれば0.2Hz以下の値に設定することが望ましい。

0096

現実の製造ばらつき等を考慮すると、安定的にカウンター揺動体の周波数を駆動電流の周波数fiからの偏差を1Hz以下、望ましくは0.2Hz以下に設定することはきわめて困難なため、光偏向部及びカウンター揺動体に共振周波数を調整する質量調整部を備えていることが望ましい。

0097

図7(a)に示すように、カウンター揺動体15に備えたカウンター可動部13には、光偏向部5の可動部3を臨む開口部13aが形成され、開口部13aを挟んで光偏向部5の揺動周期を計測可能に構成されていることが好ましい。

0098

例えば、表面に銅製のコイルCが印刷されたガラスエポキシ基板のさらに上面にアルミ等を蒸着して鏡面に形成したコイル基板3cに対して、下方からモニタ光照射し、コイル基板3cからの反射光をフォトセンサで検知することにより揺動周期が計測できるようになる。

0099

図8に示すように、光偏向部5のコイル基板3cに向けてカウンター揺動体15の開口部13aよりも下方からモニタ光を照射するLEDと、コイル基板3cで反射したモニタ光を検知するフォトセンサPSとを備え、光偏向部5の揺動に伴って、フォトセンサPSで検知されるモニタ光の周期を算出することにより光偏向部5の揺動周期を検知することができるようになる。例えば、モニタ光が静止時のコイル基板3cの揺動幅方向中央部に垂直に入射するようにLEDを設置し、所定角度φ傾斜した位置にフォトセンサPSを設置すればよい。

0100

尚、カウンター揺動体にコイルを備え、駆動電流に能動的にカウンター揺動体を光偏向部に対して逆相で駆動する場合においても、コイル基板の形状等を適切に設計することにより、カウンター揺動体15に光偏向部の揺動周期計測のための開口部を設けることができる。

0101

製造時に光偏向部5やカウンター揺動体15の共振周波数が目標値に設定されていることが好ましいのであるが、実際にはばらつきが生じるため、製造後に共振周波数を調整するために、可動部3及び/またはカウンター可動部13に質量調整部18が設けられている。

0102

図6(c)には、可動部3となるコイル基板3cに質量調整部18が設けられた例が示されている。コイル基板3cのうち、固定側パッド4bと対向する端縁部に質量調整部18が設けられている。コイル基板3c,13cの端縁部を例えばレーザトリミングして質量を調整することにより、共振周波数を目標値に調整するのである。図6(c)では、梁4を中心軸として両側に所定距離L離れた対称位置18a,18bに0.2mm角のサイズでレーザトリミング加工した例が示されている。

0103

そのため、光偏向部5及び/またはカウンター揺動体15のコイル基板3c,13cのサイズを偏向ミラー3aよりも大きなサイズに構成し、固定部の上方或いは下方からコイル基板3c,13cをレーザトリミング加工できるように構成している。

0104

図11(a)には、縦(長辺)13mm×横(短辺)6mm×厚み0.5mmのガラスエポキシ樹脂製の矩形の6層コイル基板3cに対して、中心軸から所定距離の位置を0.2mm角のサイズで、例えばレーザー加工機等によって高精度に打ち抜いた場合の共振周波数の調整特性が示されている。この例では、揺動回転中心軸から1.6mmから2.4mmの範囲の何れかを打ち抜くことにより、共振周波数がリニアな特性で調整できることが示されている。従って、目標値に調整するための加工位置が予め把握できるようになる。コイル基板3cを打ち抜くことなく、深堀加工すればさらに微妙な調整も可能になる。

0105

この例では質量を小さくすることにより共振周波数を上昇させる例を示しているが、逆に質量を大きくすることにより共振周波数を下降させることも可能になる。例えば、質量調整部18に重錘を付加すればよい。重錘としてバインダ樹脂活用できる。ディスペンサで計量されたバインダ樹脂を予め定めた位置に例えばインクジェット方式のディスペンサにより精度良く塗布することにより共振周波数を調整することができる。

0106

但し、レーザー加工のような高精度での質量調整は困難であるため、重錘の付加による質量の増量により共振周波数を粗調整し、レーザー加工等による質量の減量により共振周波数を微調整するように構成されている。

0107

共振周波数の調整に際して、質量調整部の質量を増量することにより粗調整し、質量調整部の質量を減量することにより微調整すると、共振周波数の調整作業が迅速且つ正確にできるようになる。

0108

図11(b)には、梁部14の幅と共振周波数との関係が示されている。梁の幅に0.98mmから0.99mmのばらつきが生じた場合に、共振周波数が1100Hzを中心に±10Hz程度変動することが分かる。このような場合には、重錘の付加による質量の増量により共振周波数を下方に粗調整した後に、レーザー加工等による質量の減量により微調整すればよい。

0109

図7(c)の例では、カウンター可動部13のうち、開口部13aを形成する対向辺部に質量調整部18が設けられている。図7(c)中、小さな矩形は0.2mm角のサイズで深堀加工された例が示されている。尚、カウンター梁部14とカウンター可動部13とは同一材料で構成されているが、捻り回転軸として機能するカウンター梁部14に質量調整部18を設けると揺動特性が変動する虞があるため、専らカウンター可動部13に質量調整部18が設けられることが好ましい。

0110

図6(c)及び図7(c)では、可動部及び/またはカウンター可動部に共振周波数を調整する質量調整部を備え、光偏向装置が組み上がった後に、上方または下方から質量調整部18に対して質量の増加または減少のための操作を行なう例を説明したが、例えばコイル基板3cのサイズが偏向ミラー3aのサイズよりも小さい場合には、偏向ミラー3aに妨げられて光偏向装置が組み上がった後の質量調整のための質量調整部18の加工が困難となる。

0111

図9(a),(b),(c)には、このような場合に備えた別実施形態が示されている。可動部及び/またはカウンター可動部以外に可動部及び/またはカウンター可動部と一体に揺動する部材9を偏向ミラー3aと重畳しないような位置に露出するように付加し、当該部材9に質量調整部18を設ければよい。部材9の材料として、可動部と同様の樹脂やガラス材料を用いることができ、また他の樹脂を用いることもできる。

0112

つまり、可動部3またはカウンター可動部13と一体に揺動可能な部材9が設けられ、可動部3またはカウンター可動部13を挟んで外方から調整可能な質量調整部18を備えていればよい。図9(c)には、質量調整部18に所定量に計量されたバインダ樹脂が重錘18wとして付加され、さらにレーザー加工により形成された所定サイズの打抜き部18hが示されている。

0113

質量調整部が可動部またはカウンター可動部と一体に揺動するように、そして可動部またはカウンター可動部を挟んで外方から調整可能に構成することで、組み上がった後の光偏向装置に対してその後質量調整できるようになる。

0114

予め設定された駆動電流の周波数fiに対して、組み上がった後の光偏向装置10の光偏向部5の共振周波数f及びカウンター揺動体15の共振周波数fcをそれぞれ調整するために質量調整部18を備えている。

0115

内部摩擦による発熱を効率よく放熱して、長期にわたり安定して動作可能な梁部14の構造として、梁部14に回転軸と交差する方向に複数の突起延出形成されていてもよい。

0116

このような突起を延出形成すると、梁部の揺動に伴って突起が雰囲気中で変位し、このときの風の流れで対流熱伝達が発生し、この現象を利用して梁部の捻り動作に伴う内部摩擦による発熱を効率的に放熱することができるようになり、長期間安定して捻り動作を継続させることができるようになる。

0117

図12(a)から(e)には、梁部14に回転軸と交差する方向に複数の突起4dが、エッチング法によって形成される手順が示され、例えば突起4dは幅が0.5mm、長さが0.5mm、厚さが0.2mmに形成される。

0118

上述した実施形態は、何れも本発明による金属弾性部材及び当該金属弾性部材を用いた微小機械装置の一例を説明したものであり、該記載により本発明の技術的範囲が限定されるものではなく、また突起の具体的な形状、サイズ、ピッチ等は本発明による作用効果を奏する範囲において適宜設定できることはいうまでもない。

0119

1:微小機械装置
2:固定部
3:可動部
4:梁部
4a:金属棒状部
4b:固定側パッド
4c:可動側パッド
5:光偏向部
6:磁界形成部
6a,6b:永久磁石
7:磁性体保持部
10:光偏向装置
13:カウンター可動部
14:カウンター梁部
15:カウンター揺動体

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

新着 最近 公開された関連が強い 技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する挑戦したい社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ