図面 (/)

技術 パワーコンディショナ

出願人 三菱電機株式会社
発明者 佐々木宏
出願日 2016年1月20日 (3年5ヶ月経過) 出願番号 2017-562209
公開日 2018年4月12日 (1年3ヶ月経過) 公開番号 WO2017-126047
状態 特許登録済
技術分野 予備電源装置
主要キーワード 有線配線 スリープ指令 復帰回路 停電検知信号 ワイヤレス送受信機 切り離し状態 停電検知回路 電力変換機
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2018年4月12日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (4)

課題・解決手段

パワーコンディショナは、直流電圧交流電圧に変換し第一端子に出力する主回路と、交流電圧を第一直流電圧に変換して第二端子に出力する交流直流電圧変換器と、第一直流電圧により蓄電される蓄電池と、第一直流電圧を第二の直流電圧に変換する第一直流直流電圧変換器と、第一端子の電圧停電状態か否か検知してスリープ信号を発生する制御回路と、第二端子の電圧と基準電圧大小関係電圧検出信号として出力する電圧検出回路と、蓄電池の電圧を第三直流電圧に変換して外部機器に供給する第二直流直流電圧変換器と、外部機器電流基準電流の大小関係を電流検出信号として出力する電流検出回路と、スリープ信号、電圧検出信号および電流検出信号に基づいて第二端子と蓄電池との接続を開閉し、第一端子の電圧が停電状態で且つ第二端子と蓄電池とが非接続状態の場合に電流検出信号の変化を検知したときに第二端子と蓄電池とを接続状態にするスイッチを備える。

概要

背景

EVパワーコンディショナは、系統停電時に電気自動車が内蔵するリチウムイオン蓄電池の発生する直流電圧を源として交流系統電圧に変換して家庭内分電盤に供給する機能を有している。この交流の系統電圧からEV用パワーコンディショナ自身が消費する電力も得ている。しかし、停電時において、電気自動車が家庭帰着していない、もしくは帰着していても放電を開始していないといった場合においては、電気自動車からの電力を得るまでにおいて、EV用パワーコンディショナは自身に内蔵した蓄電池から待機電力を得る。

蓄電池の容量が12Ahで、蓄電池の電圧が24Vである場合、常時動作するマイクロコンピュータを含んだEV用パワーコンディショナの待機電力が24Wであるとすると、24W/24V=1Aの電流が流れるので、蓄電池は、12Ah/1A=12h、すなわち12時間しか待機動作を維持することができない。待機動作が維持できなくなるとEV用パワーコンディショナを起動することができず、その後に、電気自動車を接続しても交流の系統電圧を得ることができなくなってしまう。

これを防ぐために、停電を検知すると自動的に機器起動回路だけに通電してその他の制御回路を停止するスリープモードに入って待機電力を抑え、スリープモード状態からは停電復帰用のスイッチを押すことで通常モードに復帰すると言った手法が提案されている。特許文献1では、スリープモード時はトランジスタでマイクロコンピュータの電源遮断して待機電力を削減する手法が述べられている。

概要

パワーコンディショナは、直流電圧を交流電圧に変換し第一端子に出力する主回路と、交流電圧を第一直流電圧に変換して第二端子に出力する交流直流電圧変換器と、第一直流電圧により蓄電される蓄電池と、第一直流電圧を第二の直流電圧に変換する第一直流直流電圧変換器と、第一端子の電圧が停電状態か否か検知してスリープ信号を発生する制御回路と、第二端子の電圧と基準電圧大小関係電圧検出信号として出力する電圧検出回路と、蓄電池の電圧を第三直流電圧に変換して外部機器に供給する第二直流直流電圧変換器と、外部機器電流と基準電流の大小関係を電流検出信号として出力する電流検出回路と、スリープ信号、電圧検出信号および電流検出信号に基づいて第二端子と蓄電池との接続を開閉し、第一端子の電圧が停電状態で且つ第二端子と蓄電池とが非接続状態の場合に電流検出信号の変化を検知したときに第二端子と蓄電池とを接続状態にするスイッチを備える。

目的

本発明は、上記に鑑みてなされたものであって、スリープ状態解除のためのスイッチまたはボタンを新たに設けることなくスリープ状態の解除が可能なEV用パワーコンディショナを得ることを目的とする

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

直流電圧交流電圧に変換して、系統が接続されている第一端子に出力する主回路と、前記第一端子に接続されて、前記主回路または前記系統が出力する前記交流電圧を第一の直流電圧に変換して第二端子に出力する交流直流電圧変換器と、前記第一の直流電圧により蓄電される蓄電池と、前記第二端子に接続されて、前記第一の直流電圧を第二の直流電圧に変換する第一の直流直流電圧変換器と、前記第二の直流電圧によって動作し、前記第一端子の電圧停電状態か否かを検知してスリープ指令信号を発生する制御回路と、前記第二端子の電圧と基準電圧との大小関係電圧検出信号として出力する電圧検出回路と、前記蓄電池の電圧を第三の直流電圧に変換して外部機器に供給する第二の直流直流電圧変換器と、前記第二の直流直流電圧変換器が前記外部機器に供給する外部機器電流基準電流との大小関係を電流検出信号として出力する電流検出回路と、前記スリープ指令信号、前記電圧検出信号および前記電流検出信号に基づいて、前記第二端子と前記蓄電池との接続を開閉するスイッチであって、前記第一端子の電圧が停電状態であって且つ前記第二端子と前記蓄電池とが非接続状態である場合において、前記電流検出信号の変化を検知したときに、前記第二端子と前記蓄電池とを接続状態にするスイッチと、を備えることを特徴とするパワーコンディショナ

請求項2

前記制御回路は、前記第一端子の電圧が停電状態か否かを検知する停電検知回路および前記主回路を制御するマイクロコンピュータを備えることを特徴とする請求項1に記載のパワーコンディショナ。

請求項3

前記スイッチは、前記第二端子と前記蓄電池との間に並列接続された第一スイッチおよび第二スイッチを備え、前記第一スイッチは、前記スリープ指令信号および前記電圧検出信号により制御され、前記第二スイッチは、前記電流検出信号により制御されることを特徴とする請求項1または2に記載のパワーコンディショナ。

技術分野

0001

本発明は、電気自動車(Electric Vehicle、以下、EVと称する)用に用いられるパワーコンディショナに関する。

背景技術

0002

EV用パワーコンディショナは、系統停電時に電気自動車が内蔵するリチウムイオン蓄電池の発生する直流電圧を源として交流系統電圧に変換して家庭内分電盤に供給する機能を有している。この交流の系統電圧からEV用パワーコンディショナ自身が消費する電力も得ている。しかし、停電時において、電気自動車が家庭帰着していない、もしくは帰着していても放電を開始していないといった場合においては、電気自動車からの電力を得るまでにおいて、EV用パワーコンディショナは自身に内蔵した蓄電池から待機電力を得る。

0003

蓄電池の容量が12Ahで、蓄電池の電圧が24Vである場合、常時動作するマイクロコンピュータを含んだEV用パワーコンディショナの待機電力が24Wであるとすると、24W/24V=1Aの電流が流れるので、蓄電池は、12Ah/1A=12h、すなわち12時間しか待機動作を維持することができない。待機動作が維持できなくなるとEV用パワーコンディショナを起動することができず、その後に、電気自動車を接続しても交流の系統電圧を得ることができなくなってしまう。

0004

これを防ぐために、停電を検知すると自動的に機器起動回路だけに通電してその他の制御回路を停止するスリープモードに入って待機電力を抑え、スリープモード状態からは停電復帰用のスイッチを押すことで通常モードに復帰すると言った手法が提案されている。特許文献1では、スリープモード時はトランジスタでマイクロコンピュータの電源遮断して待機電力を削減する手法が述べられている。

先行技術

0005

特開2009−44841号公報

発明が解決しようとする課題

0006

しかし、EV用パワーコンディショナのように常時起動していることが平常である機器においては、停電が起こったときには平常使わない非常用のスイッチを押すことは、緊急時に速やかな動作を行うことを阻害するという問題点があった。また、スリープ状態からの起動を手動スイッチにすれば待機電力は不要となるが、停電を検知して機器を自動的にスリープ状態にすることができないという問題がある。

0007

本発明は、上記に鑑みてなされたものであって、スリープ状態の解除のためのスイッチまたはボタンを新たに設けることなくスリープ状態の解除が可能なEV用パワーコンディショナを得ることを目的とする。

課題を解決するための手段

0008

上述した課題を解決し、目的を達成するために、本発明は、直流電圧を交流電圧に変換して、系統が接続されている第一端子に出力する主回路と、第一端子に接続されて、主回路または系統が出力する交流電圧を第一の直流電圧に変換して第二端子に出力する交流直流電圧変換器と、第一の直流電圧により蓄電される蓄電池と、第二端子に接続されて、第一の直流電圧を第二の直流電圧に変換する第一の直流直流電圧変換器と、第二の直流電圧によって動作し、第一端子の電圧が停電状態か否かを検知してスリープ指令信号を発生する制御回路と、第二端子の電圧と基準電圧との大小関係電圧検出信号として出力する電圧検出回路と、を備えることを特徴とする。本発明は、蓄電池の電圧を第三の直流電圧に変換して外部機器に供給する第二の直流直流電圧変換器と、第二の直流直流電圧変換器が外部機器に供給する外部機器電流と基準電流との大小関係を電流検出信号として出力する電流検出回路と、スリープ指令信号、電圧検出信号および電流検出信号に基づいて、第二端子と蓄電池との接続を開閉するスイッチであって、第一端子の電圧が停電状態であって且つ第二端子と蓄電池とが非接続状態である場合において、電流検出信号の変化を検知したときに、第二端子と蓄電池とを接続状態にするスイッチと、を備えることを特徴とする。

発明の効果

0009

本発明によれば、スリープ状態の解除のためのスイッチまたはボタンを新たに設けることなくスリープ状態の解除が可能になるという効果を奏する。

図面の簡単な説明

0010

本発明の実施の形態1にかかるEV用パワーコンディショナ100の構成を示す図
実施の形態1にかかる通常時から停電発生を経てスリープ状態に至るまでの状態変移を説明するタイミングチャート
実施の形態1にかかるスリープ状態から自立運転開始までの状態変移を説明するタイミングチャート

実施例

0011

以下に、本発明の実施の形態にかかるパワーコンディショナを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。

0012

実施の形態1.
図1は、本発明の実施の形態1にかかるEV用パワーコンディショナ100の構成を示す図である。EV用パワーコンディショナ100は、双方向電力変換機である主回路16と、停電発生時及び復帰時の動作の制御を行う停電停止及び復帰回路30と、を備える。主回路16および停電停止及び復帰回路30は、系統20に接続された第一端子18に共に接続されている。双方向電力変換機である主回路16は、交流電圧を直流電圧に変換することと直流電圧を交流電圧に変換することの両方の機能を有している。第一端子18には宅内分電盤15も接続されている。

0013

停電停止及び復帰回路30は、交流直流電圧変換器であるAC(Alternating Current)/DC(Direct Current)電源1と、第一スイッチであるスイッチA2と、第一の直流直流電圧変換器であるDC/DC電源A3と、蓄電池4と、制御回路5と、AND回路10と、電流検出回路11と、第二の直流直流電圧変換器であるDC/DC電源B12と、第二スイッチであるスイッチB13と、電圧検出回路である電圧V1検出回路14と、を備える。制御回路5は、停電検知回路6と、スリープ信号発生回路7と、マイクロコンピュータ8と、を備える。

0014

AC/DC電源1は、第一端子18に接続されている。AC/DC電源1は、系統20からの交流電圧である系統電圧V0を第一端子18より入力されて、系統電圧V0を第一の直流電圧である電池電圧V1にAC/DC変換して第二端子19に出力する。第二端子19に接続されて電池電圧V1が入力されたDC/DC電源A3は、電池電圧V1を制御回路5に適した第二の直流電圧である制御回路電源電圧V2にDC/DC変換する。

0015

停電検知回路6は、第一端子18の電圧を検出し、停電状態か否かを検知して、停電状態である場合には停電を検知したことを示す停電検知信号をマイクロコンピュータ8に通知する。マイクロコンピュータ8は、停電検知回路6から与えられた停電状態か否かの情報と停電の検知からの経過時間とに基づいて、蓄電池4を通電状態にするか否かを判断しスリープ信号発生回路7にスリープ指令を送る。スリープ指令は、スリープ状態となることを指令する指令であり、スリープ状態とは、第二端子19と蓄電池4とが非接続状態となってDC/DC電源A3が蓄電池4から切り離されてマイクロコンピュータ8が動作を停止した状態である。スリープ状態は、停電時において、蓄電池4の消耗を抑えるための状態である。スリープ指令を受け取ったスリープ信号発生回路7が、スリープ指令に応じて出力するスリープ指令信号は、AND回路10に入力される。スリープ指令信号はノーマルハイの信号であり、通常は“H”となるようにプルアップされているが、スリープ信号発生回路7がマイクロコンピュータ8からスリープ指令を受け取っている期間だけ“L”となる。その後、実際にスリープ状態に移行するとマイクロコンピュータ8が動作を停止するのでスリープ指令信号は“H”に戻る。

0016

電圧V1検出回路14は、DC/DC電源A3に入力される第二端子19の電圧である電池電圧V1を検出して、電池電圧V1と予め定めた基準電圧Vrefとの大小関係を電圧検出信号として出力する。具体的には、電池電圧V1が基準電圧Vref以上か否を判定し、判定結果として電圧検出信号であるV1検出信号をAND回路10に出力する。具体的には、V1≧Vrefの場合はV1検出信号は“H”であり、V1<Vrefの場合はV1検出信号は“L”となる。

0017

AND回路10は、スリープ信号発生回路7からのスリープ指令信号と、電圧V1検出回路14からのV1検出信号とが入力され、両者の論理積演算して、スイッチA2に出力する。

0018

スイッチA2は、AND回路10の出力信号に基づいて、DC/DC電源A3と蓄電池4との間を接続するか切り離すかの動作を行う。具体的には、AND回路10の出力信号が“H”の場合はショート、すなわち接続状態にスイッチし、AND回路10の出力信号が“L”の場合はオープン、すなわち切り離し状態にスイッチする。

0019

蓄電池4はバックアップ電池であり、第二端子19と蓄電池4とが接続された状態において、AC/DC電源1が出力している場合は供給された電池電圧V1により充電され、また、AC/DC電源1が停止している場合はDC/DC電源A3に電池電圧V1を供給する。

0020

DC/DC電源B12は、蓄電池4の電圧を妥当な電圧である第三の直流電圧に変換して電源線21を介して外部機器である表示器9に供給するDC/DC変換器である。したがって、第二端子19と蓄電池4とが接続されていて第二端子19の電圧が電池電圧V1である場合は、蓄電池4の電圧も電池電圧V1となるので、DC/DC電源B12は、電池電圧V1を上記妥当な電圧に変換して表示器9に供給することになる。

0021

表示器9は、マイクロコンピュータ8からの通信信号によりEV用パワーコンディショナ100の動作状態を表示する。また、表示器9は、使用者の操作を受け付けて、マイクロコンピュータ8に指示を伝達する機能も有している。表示器9は、タッチパネルといった機器で構成されており、使用者の入出力機器として動作する。

0022

電流検出回路11は、DC/DC電源B12が表示器9に供給する出力電流である外部機器電流I1を検出して、外部機器電流I1と予め定めた基準電流Irefとの大小関係を電流検出信号として出力する。具体的には、外部機器電流I1が基準電流Iref以上か否かを判定し、判定結果として電流検出信号であるI1検出信号をスイッチB13に出力する。具体的には、I1≧Irefの場合はI1検出信号は“H”であり、I1<Irefの場合はI1検出信号は“L”となる。使用者が表示器9を操作すると表示器9が消費する外部機器電流I1は増大する。したがって、使用者が表示器9を操作することにより外部機器電流I1が変化して、Iref以上となるとI1検出信号が“H”になる。

0023

スイッチB13は、スイッチA2と並列して第二端子19と蓄電池4との間に接続されており、I1検出信号に基づいて、第二端子19と蓄電池4との間を接続するか切り離すかの動作を行う。具体的には、I1検出信号が“H”の場合はショート、すなわち接続状態にスイッチし、I1検出信号が“L”の場合はオープン、すなわち切り離し状態にスイッチする。スイッチB13とスイッチA2は並列に接続されているので、実際に第二端子19と蓄電池4との間、すなわちDC/DC電源A3と蓄電池4との間が切り離されるのは、スイッチA2およびスイッチB13の両方に“L”が入力される場合である。

0024

マイクロコンピュータ8は、主回路16に主回路制御信号を送って制御する。主回路16は、第一端子18を介して系統20および宅内分電盤15に接続されている。主回路16は、第一端子18に接続されていない別の端子を介して電気自動車内蓄電池17にも接続されている。主回路16は、系統20が第一端子18に出力した系統電圧V0に対してAC/DC変換を行ってEV電池電圧V3を生成して電気自動車内蓄電池17に充電する。あるいは、主回路16は、電気自動車内蓄電池17が生成するEV電池電圧V3からDC/AC変換を行って系統電圧V0を生成して第一端子18に出力し、宅内分電盤15に電力を供給する。このように、主回路16は、双方向電力変換機として機能する。

0025

系統20が非停電である通常状態の時には、系統20からAC/DC電源1に系統電圧V0が入力され、AC/DC電源1は、電池電圧V1を出力する。電池電圧V1は、DC/DC電源A3に入力され、DC/DC電源A3は制御回路電源電圧V2を出力し、制御回路5に供給する。

0026

制御回路5において、系統電圧V0が正常電圧である場合は、停電検知回路6が停電検知信号をマイクロコンピュータ8に出力せず、マイクロコンピュータ8がスリープ信号発生回路7に指令を送りスリープ指令信号として“H”を出力する。通常状態では、電池電圧V1が基準電圧Vref以上であるため、電圧V1検出回路14はV1検出信号として“H”をAND回路10に出力する。スリープ指令信号として“H”を、そしてV1検出信号として“H”を与えられたAND回路10は、スイッチA2に“H”を出力するためスイッチA2はショート状態となる。これにより、電池電圧V1はスイッチA2を介して蓄電池4にも供給され蓄電池4は充電状態となる。

0027

スイッチB13はスイッチA2と並列して第二端子19と蓄電池4との間に接続されている。従って、系統20が非停電である通常状態の時には、スイッチA2がショートしているため、外部機器電流I1がどのような値であっても、スイッチB13の接続状態にかかわらず蓄電池4はDC/DC電源A3と接続された状態となる。

0028

系統20の停電時には、EV用パワーコンディショナ100が停電を検知して、表示器9に停電状態であることを表示する。具体的には、停電検知回路6が停電検知信号をマイクロコンピュータ8に出力し、これに基づいてマイクロコンピュータ8が表示器9に停電状態であることを表示する。

0029

停電時に、使用者が表示器9を操作して、マイクロコンピュータ8が主回路16に主回路制御信号を送信することにより、電気自動車内蓄電池17から主回路16が系統電圧V0を生成する自立運転が直ちに開始されれば、主回路16から系統電圧V0が出力される。

0030

一方、停電時に、電気自動車をEV用パワーコンディショナ100にすぐにつなぐことができないと、電気自動車内蓄電池17を主回路16に直ちに接続することが出来ない。このような理由により系統電圧V0が消失した状態が続くと、AC/DC電源1に系統電圧V0が入力されないためAC/DC電源1の出力は停止するが、停電以前に電池電圧V1が出力されていたことにより電圧V1検出回路14が出力するV1検出信号は“H”でありスイッチA2はショート状態であるため、蓄電池4から放電が始まって電池電圧V1がDC/DC電源A3に供給され、DC/DC電源A3からは制御回路電源電圧V2が停電前と同じように制御回路5に供給される。この状態では、制御回路5は蓄電池4を電源として待機動作を行うため蓄電池4の蓄電量は減り続けるが、電気自動車がEV用パワーコンディショナ100に接続されて使用者が表示器9を操作して自立運転を開始するとAC/DC電源1が動作し電池電圧V1を出力するため、蓄電池4は再び充電状態となる。

0031

一方、電気自動車がEV用パワーコンディショナ100の設置場所の傍に存在しないといった理由により、自立運転をすぐに開始できない場合に、主回路16が電気自動車内蓄電池17から系統電圧V0を生成しない状態が予め定めた時間Tref以上継続すると、それを停電検知回路6の停電検知信号によりマイクロコンピュータ8が検知し、スリープ信号発生回路7にスリープ指令を送って、スリープ指令信号を“L”にすることを指示する。スリープ指令を受けたスリープ信号発生回路7は、AND回路10にスリープ指令信号として“L”を出力する。これにより、AND回路10のもう一つの入力であるV1検出信号の状態によらず、AND回路10は“L”をスイッチA2に出力する。AND回路10から“L”が入力されたスイッチA2はオープン状態となり、スイッチB13もオープン状態であれば、DC/DC電源A3は蓄電池4から切り離されて、マイクロコンピュータ8が動作を停止したスリープ状態になる。スリープ状態になると、主回路16も制御回路5も動作せず、蓄電池4はDC/DC電源B12を介して表示器9と電流検出回路11とを含んだ限られた回路に電力を供給する。

0032

電気自動車がEV用パワーコンディショナ100に接続可能になって、使用者がEV用パワーコンディショナ100の状態表示をさせるために表示器9を操作すると、外部機器電流I1の増大を電流検出回路11が検知してI1検出信号として“H”を出力し、スイッチB13をショート状態にする。スイッチB13がショート状態になると、蓄電池4がDC/DC電源A3に電力の供給を行い、DC/DC電源A3が制御回路5に電力を供給するため、マイクロコンピュータ8が動作を開始してスリープ状態が解除される。

0033

図2は、実施の形態1にかかる通常時から停電発生を経てスリープ状態に至るまでの状態変化のタイミングチャートを示す。図2横軸は時間であり、系統電圧V0、停電検知信号、スリープ指令信号、AND回路10の出力、スイッチA2、電池電圧V1、V1検出信号、I1検出信号およびスイッチB13それぞれの時間変化の様子が示されている。

0034

図2において、時刻t1で停電が発生し系統電圧V0が正常電圧から異常電圧になると、停電検知回路6がマイクロコンピュータ8に出力する停電検知信号が非検知の状態から検知の状態になる。マイクロコンピュータ8は、停電検知信号が非検知の状態から検知の状態に変化した時点から予め定めた時間Trefの期間検知状態持続した時刻t2でスリープ信号発生回路7にスリープ指令を送り、これを受けたスリープ信号発生回路7が出力するスリープ指令信号は、“H”から“L”に変化して、一定期間“L”の状態を維持する。電圧V1検出回路14の出力であるV1検出信号は時刻t2までは“H”であり、時刻t2までAND回路10の出力は“H”である。しかし、時刻t2以降にスリープ指令信号が“L”となるためにAND回路10の出力は“L”となり、スイッチA2がオープンとなる。一方、時刻t1から時刻t2の期間において表示器9は操作されていないので電流検出回路11の出力であるI1検出信号は常時“L”でありスイッチB13はオープンである。従って、時刻t2でスイッチA2およびスイッチB13が共にオープンとなるので、DC/DC電源A3は蓄電池4から切り離されてスリープ状態となる。時刻t2でスリープ状態になると、電池電圧V1の電圧がVrefより小さくなるため電圧V1検出回路14の出力であるV1検出信号は“L”となる。そして、時刻t2以降は、制御回路電源電圧V2がマイクロコンピュータ8に供給されなくなるため、上記したように一定期間“L”の状態を維持した後にスリープ指令信号は“H”となるが、V1検出信号が“L”になっているためAND回路10の出力は“L”のままでありスイッチA2はオープン状態を維持する。また、スリープ状態では制御回路5に制御回路電源電圧V2が供給されなくなるため、停電検知回路6の出力である停電検知信号は“L”となる。このように、時刻t2以降は、スリープ状態が維持されることになる。

0035

図3は、実施の形態1にかかるスリープ状態から自立運転開始までの状態変移を説明するタイミングチャートを示す。図3の横軸は時間であり、系統電圧V0、停電検知信号、スリープ指令信号、AND回路10の出力、スイッチA2、I1検出信号、スイッチB13、電池電圧V1、V1検出信号、制御回路電源電圧V2および主回路制御信号それぞれの時間変化の様子が示されている。

0036

図3の最初の状態は図2の最後の状態であるスリープ状態である。すなわち、系統電圧V0が異常電圧であり、停電検知信号が非検知の状態であり、スリープ指令信号が“H”であり、AND回路10の出力が“L”であり、スイッチA2およびスイッチB13が共にオープンになっている。前述したようにスリープ状態では制御回路5に制御回路電源電圧V2が供給されていないので、図3の最初の状態において制御回路電源電圧V2は“L”で、主回路制御信号は停止状態である。

0037

図3の時刻t3において、使用者が表示器9を操作すると電流検出回路11が外部機器電流I1の増加を検知して、I1検出信号を“H”にする。I1検出信号として“H”が入力されたスイッチB13はショート状態となり、蓄電池4とDC/DC電源A3とが接続されることにより、スリープ状態が解除される。スリープ状態が解除されると電池電圧V1は“H”となってVrefより高い電圧となるため、電圧V1検出回路14が出力するV1検出信号が“H”となる。また、電池電圧V1が“H”になると、DC/DC電源A3が出力する制御回路電源電圧V2が“H”となる。制御回路電源電圧V2が“H”になると制御回路5の回路動作が可能となって、使用者が表示器9を操作してマイクロコンピュータ8に自立運転開始の指示を送ることができる。

0038

その後、図3の時刻t4において、使用者が表示器9を操作してマイクロコンピュータ8に自立運転開始の指示を送ると、主回路制御信号が自立運転の状態となって、電気自動車内蓄電池17から主回路16が系統電圧V0を生成する。これにより、系統20は依然として停電状態であるにも関わらず、系統電圧V0は正常電圧に戻り、停電検知信号は非検知の状態に戻る。

0039

実施の形態1にかかるEV用パワーコンディショナ100は、EV用パワーコンディショナ100の動作状態を使用者が表示させる動作またはEV用パワーコンディショナ100を使用者が操作するという動作を停電時のスリープ状態から復帰する動作としても認識する回路構成を有する。これにより、稀にしか起こらない停電時のスリープ状態からの復帰に必要な操作を特別に行うことなくスリープ状態の解除が可能となる。

0040

すなわち、非常用の特別なスイッチを設けずに、通常時に運転操作を行うための表示器9を停電時のスリープ状態において使用者が操作したことによる変化を検知して、スリープ状態の解除を行う。これにより、停電といった非常時に、使用者は、通常時に操作することがないスイッチまたはボタンの操作または特別なマニュアルを見るといった作業を要することなくスリープ状態の解除を行うことができる。

0041

以上説明したように、実施の形態1にかかるEV用パワーコンディショナ100によれば、停電時に自動的にスリープ状態に移行する機能を有しつつ、スリープ解除のためにスイッチまたはボタンといった新たな機器を必要としない。スリープ状態において、起動用の回路だけには通電が必用なため、そのために使用する電力が消費されるという問題点があるが、実施の形態1にかかるEV用パワーコンディショナ100によれば、スリープ状態においては、制御回路5に電力を供給する必要が無く表示器9が消費する限られた電力の消費だけで済むので、停電停止及び復帰回路30が消費する電力を抑えることができる。また、スリープ状態の解除のために表示器9に対して行う操作は通常行う動作なので、スリープ状態でない場合に操作しても誤動作を引き起こすことがないという効果も得られる。

0042

なお、上記説明においては、制御回路5は、停電検知回路6、スリープ信号発生回路7およびマイクロコンピュータ8を搭載する構成であるとして説明したが、必ずしもこのような構成で制御回路5を実現する必要はない。具体的には、停電検知回路6およびスリープ信号発生回路7の機能をマイクロコンピュータ8が実現してもよく、その場合は、制御回路5にはマイクロコンピュータ8のみが実装される。

0043

また、図1においては、第二端子19と蓄電池4との間のスイッチを、並列接続されたスイッチA2およびスイッチB13からなる2つのスイッチで構成した。これにより、主たるスイッチA2がスタンバイ状態時も大きな電力を消費する構成である場合は、スリープ状態において、スイッチA2への電力の供給を完全に断って、小さな消費電力で済むスイッチB13の回路だけに電力の供給を行って消費電力の低減を図る効果が得られる。

0044

しかし、第二端子19と蓄電池4との間のスイッチを必ずしも2つのスイッチで構成する必要はない。具体的には、1つのスイッチを、AND回路10および電流検出回路11の出力信号を使って制御してもよい。すなわち、スリープ指令信号、V1検出信号およびI1検出信号に基づいて1つのスイッチを制御することにより、スイッチを2つ用いた場合と同様の動作を実現することができればかまわない。

0045

また、表示器9はマイクロコンピュータ8からの信号によりEV用パワーコンディショナ100の動作状態を表示するものであれば、有線配線リモコンでも、またはワイヤレス送受信機を介して離れた場所にて表示操作するワイヤレスリモコンでも実現することができる。特に、ワイヤレスリモコンを用いる場合は、ワイヤレス送受信機の電源をDC/DC電源B12とすれば、使用者によるワイヤレスリモコンの操作によって、ワイヤレスリモコンからの電波がワイヤレス送受信機にて受信されることにより、ワイヤレス送受信機の電源電流が変化することから、その変化を電流検出回路11に検出させることにより、有線配線の場合と同様な効果が得られることになる。

0046

以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。

0047

1 AC/DC電源、2 スイッチA、3 DC/DC電源A、4蓄電池、5制御回路、6停電検知回路、7スリープ信号発生回路、8マイクロコンピュータ、9表示器、10AND回路、11電流検出回路、12 DC/DC電源B、13 スイッチB、14電圧V1検出回路、15宅内分電盤、16主回路、17電気自動車内蓄電池、18 第一端子、19 第二端子、20系統、21電源線、30停電停止及び復帰回路、100EV用パワーコンディショナ。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 株式会社GSユアサの「 電源装置及び電源装置管理システム」が 公開されました。( 2019/04/25)

    【課題・解決手段】バックアップ用電源として用いられる電源装置(20)であって、電源装置(20)の位置に関連する情報を取得する電源側取得部(21)を備える。... 詳細

  • 株式会社GSユアサの「 電力貯蔵システム」が 公開されました。( 2019/04/25)

    【課題・解決手段】電力貯蔵システム(100)は、第一蓄電部(101)と、第二蓄電部(102)と、第一蓄電部(101)又は第二蓄電部(102)を電力貯蔵システム(100)の外部に選択可能に接続する切替部... 詳細

  • マルクアルトゲーエムベーハーの「 電気コンポーネント用のエネルギー供給回路」が 公開されました。( 2019/04/25)

    【課題】非常動作が可能な電気コンポーネント用のエネルギー供給回路を提供する。【解決手段】第1のデバイス4は、少なくとも2つの状態、すなわち、車のドアをロックする第1の状態と、車のドアをロック解除する第... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ