図面 (/)

技術 保冷庫、移動体、氷スラリー供給システム、被保冷品輸送システム、被保冷品の保冷方法、被保冷品の輸送方法

出願人 ブランテック株式会社
発明者 廣兼美雄井筒伊朗
出願日 2016年11月18日 (2年10ヶ月経過) 出願番号 2017-551960
公開日 2018年5月31日 (1年3ヶ月経過) 公開番号 WO2017-086464
状態 特許登録済
技術分野 冷凍機械と関連しない装置 特殊荷物運搬車両 食品の凍結・冷却及び乾燥 フレーク氷の製造 氷の製造,作業,貯蔵または分配
主要キーワード クロムニッケル鋼 長時間輸送 モネルメタル 搬送品 アルミ青銅 マンガニン 保冷空間 運搬用車両
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2018年5月31日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (7)

課題・解決手段

保冷能力が高く、二酸化炭素の発生もなく、冷熱源リサイクルが可能な保冷庫並びに移動体及び氷スラリー供給システムを提供すること。 保冷庫1は、保冷空間5を画成するケーシング4が断熱構造とされ、保冷空間5の少なくとも上部にケーシング4と対向する隔壁6が設けられ、ケーシング4と隔壁6との間の空隙50に、ブライン凍結させたフレークアイスと前記ブラインとの混合物である氷スラリー3が充填される。また、空隙50に氷スラリー3を供給する供給口40と、空隙50から氷スラリー3を排出する排出口41とを備えることができる。

概要

背景

従来より、保冷庫冷熱源として、電力その他の動力源を必要とする各種冷凍機が使用されている。しかし、保冷庫は一日中使用される場合も多く、冷凍機による電力消費ランニングコスト及び省エネルギーの観点から好ましいものではない。特に、保冷庫を備えている保冷車では、エンジン等の動力源を駆動する燃料を必要とするため、長時間の保冷には向いていない。
これに対して、保冷コンテナ(保冷庫)内の上部一端側にドライアイス収納する冷却室を設け、ドライアイスによって冷却された空気を送風機を介して荷物室内へ吹き出す技術が開示されている(例えば特許文献1参照)。

概要

保冷能力が高く、二酸化炭素の発生もなく、冷熱源のリサイクルが可能な保冷庫並びに移動体及び氷スラリー供給システムを提供すること。 保冷庫1は、保冷空間5を画成するケーシング4が断熱構造とされ、保冷空間5の少なくとも上部にケーシング4と対向する隔壁6が設けられ、ケーシング4と隔壁6との間の空隙50に、ブライン凍結させたフレークアイスと前記ブラインとの混合物である氷スラリー3が充填される。また、空隙50に氷スラリー3を供給する供給口40と、空隙50から氷スラリー3を排出する排出口41とを備えることができる。

目的

本発明はかかる事情に鑑みてなされたものであり、保冷能力が高く、二酸化炭素の発生もなく、冷熱源のリサイクルが可能な保冷庫並びに移動体及び氷スラリー供給システムを提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

保冷空間画成するケーシング断熱構造とされ、前記保冷空間の少なくとも上部に前記ケーシングと対向する隔壁が設けられ、前記ケーシングと前記隔壁との間の空隙に、ブライン凍結させたフレークアイスと前記ブラインとの混合物である氷スラリー充填される、保冷庫

請求項2

前記空隙に前記氷スラリーを供給する供給口と、前記空隙から前記氷スラリーを排出する排出口とを備える、請求項1に記載の保冷庫。

請求項3

前記空隙には、前記氷スラリーが充填された氷スラリー格納容器収納される、請求項1に記載の保冷庫。

請求項4

前記ケーシングは、断熱材が介装された二重壁とされ、前記断熱材と接する壁面に、輻射熱反射する遮熱シートが貼着されている、請求項1乃至3のいずれか1項に記載の保冷庫。

請求項5

請求項1乃至4のいずれか1項に記載の保冷庫を複数個搭載可能な、移動体

請求項6

請求項5に記載の移動体に搭載される保冷庫に前記氷スラリーを供給する氷スラリー供給設備物流拠点配備されている、氷スラリー供給システム

請求項7

ブラインを凍結させたフレークアイスを含む冷却材が供給された請求項1乃至4のうちいずれか1項に記載の前記保冷庫に、被保冷品を挿入して輸送する被保冷品輸送システムにおいて、前記被保冷品に要求される保冷温度に基づいて、前記ブラインの凍結点を調整する凍結点調整手段と、凍結点が調整された前記ブラインから、前記フレークアイスを製造するフレークアイス製造手段と、生成された前記フレークアイスについて、前記被保冷品に要求される輸送時間に基づいて、前記保冷庫への供給量を調整する供給量調整手段と、を備える被保冷品輸送システム。

請求項8

前記ブラインは、塩水であり、前記凍結点調整手段は、前記塩水の溶質濃度を調整することで、前記フレークアイス製造手段に供給され前記ブラインの凍結点を調整する、請求項7に記載の被保冷品輸送システム。

請求項9

凍結点の異なる複数種類の前記ブラインが用意されており、前記凍結点調整手段は、前記複数種類のうち所定の種類のブラインを選択することで、前記フレークアイス製造手段に供給される前記ブラインの凍結点を調整する、請求項7に記載の被保冷品輸送システム。

請求項10

前記保冷庫に供給される前記冷却材は、前記フレークアイスと前記ブラインとの混合物である氷スラリーである、請求項7乃至9のうちいずれか1項に記載の被保冷品輸送システム。

請求項11

請求項1乃至4のいずれか1項に記載の保冷庫を用いた、被保冷品の保冷方法

請求項12

請求項5に記載の移動体を用いた、被保冷品の輸送方法

請求項13

請求項7乃至9のいずれか1項に記載の被保冷品輸送システムを用いた、被保冷品の輸送方法。

技術分野

0001

本発明は、保冷庫、移動体氷スラリー供給システム被保冷品輸送システム、被保冷品の保冷方法、被保冷品の輸送方法に関する。

背景技術

0002

従来より、保冷庫の冷熱源として、電力その他の動力源を必要とする各種冷凍機が使用されている。しかし、保冷庫は一日中使用される場合も多く、冷凍機による電力消費ランニングコスト及び省エネルギーの観点から好ましいものではない。特に、保冷庫を備えている保冷車では、エンジン等の動力源を駆動する燃料を必要とするため、長時間の保冷には向いていない。
これに対して、保冷コンテナ(保冷庫)内の上部一端側にドライアイス収納する冷却室を設け、ドライアイスによって冷却された空気を送風機を介して荷物室内へ吹き出す技術が開示されている(例えば特許文献1参照)。

先行技術

0003

特開2004−26174号公報

発明が解決しようとする課題

0004

しかしながら、ドライアイスを使用する保冷コンテナでは、ドライアイスの昇華によって発生する二酸化炭素荷物室漏れないよう、冷却室を密閉構造とし、保冷コンテナに設けた貫通孔や、収納扉密閉するパッキンのうち下辺のパッキンを無くしてできた隙間から二酸化炭素を大気中に排出しなければならない。二酸化炭素の排出手段が無い場合、冷却室の密閉度によっては二酸化炭素が冷却室に充満して冷却室内圧力が上昇し冷却室が変形する場合もある。
また、二酸化炭素は代表的な温室効果ガスであり、ドライアイスの昇華により発生する二酸化炭素を大気中に排出することは地球環境保全の観点から好ましいことではない。さらにまた、ドライアイスはリサイクルできないため、コストが掛かるという難点もある。

0005

本発明はかかる事情に鑑みてなされたものであり、保冷能力が高く、二酸化炭素の発生もなく、冷熱源のリサイクルが可能な保冷庫並びに移動体及び氷スラリー供給システムを提供することを目的とする。

課題を解決するための手段

0006

上記目的を達成するため、本発明の一態様の保冷庫は、
保冷空間画成するケーシング断熱構造とされ、前記保冷空間の少なくとも上部に前記ケーシングと対向する隔壁が設けられ、
前記ケーシングと前記隔壁との間の空隙に、ブライン凍結させたフレークアイスと前記ブラインとの混合物である氷スラリーが充填されている。

0007

また、本発明の一態様の保冷庫は、前記空隙に前記氷スラリーを供給する供給口と、前記空隙から前記氷スラリーを排出する排出口とを備えることができる。

0008

また、前記空隙には、前記氷スラリーが充填された氷スラリー格納容器が収納させることができる。

0009

また、前記ケーシングは、断熱材が介装された二重壁とされ、前記断熱材と接する壁面に、輻射熱反射する遮熱シートが貼着させることができる。

0010

本発明の一態様の移動体は、保冷庫を複数個搭載することができる。

0011

本発明の一態様の氷スラリー供給システムは、移動体に搭載される保冷庫に前記氷スラリーを供給する氷スラリー供給設備物流拠点配備させることができる。

0012

また、本発明の一態様の被保冷品輸送システムは、
ブラインを凍結させたフレークアイスを含む冷却材が供給された保冷庫に、被保冷品を挿入して輸送する被保冷品輸送システムにおいて、
前記被保冷品に要求される保冷温度に基づいて、前記ブラインの凍結点を調整する凍結点調整手段と、
凍結点が調整された前記ブラインから、前記フレークアイスを製造するフレークアイス製造手段と、
生成された前記フレークアイスについて、前記被保冷品に要求される輸送時間に基づいて、前記保冷庫への供給量を調整する供給量調整手段と、
を備える。

0013

また、前記ブラインは、塩水であり、
前記凍結点調整手段は、前記塩水の溶質濃度を調整することで、前記フレークアイス製造手段に供給され前記ブラインの凍結点を調整することができる。

0014

また、凍結点の異なる複数種類の前記ブラインが用意されており、
前記凍結点調整手段は、前記複数種類のうち所定の種類のブラインを選択することで、前記フレークアイス製造手段に供給される前記ブラインの凍結点を調整することができる。

0015

また、前記保冷庫に供給される前記冷却材は、前記フレークアイスと前記ブラインとの混合物である氷スラリーとすることができる。

発明の効果

0016

本発明によれば、保冷能力が高く、二酸化炭素の発生もなく、冷熱源のリサイクルが可能な保冷庫による被保冷品長時間輸送を実現する手法を提供することができる。

図面の簡単な説明

0017

本発明の一実施形態に係る保冷庫の構成を示す断面図である。
本発明の他の実施形態に係る保冷庫の構成を示す断面図である。
本発明の一実施形態に係るフレークアイス製造装置概要を示す部分断面斜視図を含むイメージ図である。
図3のフレークアイス製造装置を含むフレークアイス製造システムの全体の概要を示すイメージ図である。
本発明の一実施形態に係る氷スラリー供給システムの概要を示すイメージ図である。
図1の保冷庫の断熱構造の一例を示す図である。

実施例

0018


本発明の保冷庫に使用される氷は、以下の(a)及び(b)の条件を満たす、溶質を含有する水溶液を含む液体(ブラインともいう。)の氷(フレークアイスともいう。)である。
(a)融解完了時の温度が0℃未満である
(b)融解過程で前記氷から発生する水溶液の溶質濃度の変化率が30%以内である

0019

水に溶質を融解した場合、その水溶液の凝固点が低下するという凝固点降下が生じることが知られている。凝固点降下の作用により、食塩等の溶質が融解した水溶液は、その凝固点が低下している。つまり、そのような水溶液からなる氷は、真水からなる氷より低い温度で凝固した氷である。
ここで、氷が水に変化するときに必要な熱を「潜熱」というが、この潜熱は温度変化を伴わない。このような潜熱の効果により、上記のような凝固点が低下した氷は、融解時に真水の凝固点以下の温度で安定な状態が続くため、冷熱エネルギーを蓄えた状態が持続することになる。
よって、本来であれば、被冷却物冷却能が真水からなる氷より高くなるはずである。しかし、従来の技術によって製造された氷は、冷却の際に自身の温度が経時的に早く上がる等、被冷却物を冷却する能力が十分なものではないことを本発明者らは発見した。その理由について本発明者らは検討したところ、従来の技術では食塩等の溶質を含有する水溶液から氷を製造したとしても、実際は、水溶液が凍る前に溶質を含まない氷が先に製造されてしまい、結果として製造されるのは溶質を含まない氷と溶質との混合物となってしまうか、あるいは、凝固点の低下した氷はほんの僅かしか生成されないため、冷却能の高い氷が製造されていなかったことがわかった。

0020

しかしながら、本発明者らは、所定の方法により(詳細は後述する)、凝固点が低下した水溶液を含む液体の氷を製造することに成功した。このような本発明の保冷庫に使用される氷は、上述の(a)及び(b)の条件を満たすものである。以下、上述の(a)及び(b)の条件について説明する。

0021

(融解完了時の温度)
上記(a)に関して、本発明の保冷庫に使用される氷は、溶質を含む水溶液を含む液体の氷であるため、真水(溶質を含まない水)の凝固点より凝固点の温度が低下している。そのため、融解完了時の温度が0℃未満であるという特徴を有する。「融解完了時の温度」とは、本発明の保冷庫に使用される氷を融点以上の環境下(例えば、室温、大気圧下)に置くことで氷の融解を開始させ、全ての氷が融解して水になった時点におけるその水の温度のことを指す。

0022

融解完了時の温度は0℃未満であれば特に限定されず、溶質の種類、濃度を調整することで適宜変更することができる。融解完了時の温度は、より冷却能が高いという点で、温度が低い方が好ましく、具体的には、−1℃以下(−2℃以下、−3℃以下、−4℃以下、−5℃以下、−6℃以下、−7℃以下、−8℃以下、−9℃以下、−10℃以下、−11℃以下、−12℃以下、−13℃以下、−14℃以下、−15℃以下、−16℃以下、−17℃以下、−18℃以下、−19℃以下、−20℃以下等)であることが好ましい。他方、凝固点を、被冷却物の凍結点に近づけた方が好ましい場合もあり(例えば、生鮮動植物の損傷を防ぐため等)、このような場合は、融解完了時の温度が高すぎない方が好ましく、例えば、−21℃以上(−20℃以上、−19℃以上、−18℃以上、−17℃以上、−16℃以上、−15℃以上、−14℃以上、−13℃以上、−12℃以上、−11℃以上、−10℃以上、−9℃以上、−8℃以上、−7℃以上、−6℃以上、−5℃以上、−4℃以上、−3℃以上、−2℃以上、−1℃以上、−0.5℃以上等)であることが好ましい。

0023

(溶質濃度の変化率)
上記(b)に関して、本発明の保冷庫に使用される氷は、融解過程で氷から発生する水溶液の溶質濃度の変化率(以下、本明細書において「溶質濃度の変化率」と略称する場合がある。)が30%以内であるという特徴を有する。特許文献1に記載されたような方法においても、わずかに凝固点の低下した氷が生じる場合もあるが、そのほとんどは溶質を含まない水の氷と溶質の結晶との混合物であるため、冷却能が十分なものでない。このように溶質を含まない水の氷と溶質の結晶との混合物が多く含まれる場合、氷を融解条件下においた場合、融解に伴う溶質の溶出速度が不安定であり、融解開始時に近い時点である程、溶質が多く溶出し、融解が進むとともに溶質の溶出する量が少なくなり、融解が完了時に近い時点程、溶質の溶出量が少なくなる。これに対し、本発明の保冷庫に使用される氷は、溶質を含む水溶液を含む液体の氷からなるものであるため、融解過程における溶質の溶出速度の変化が少ないという特徴を有する。具体的には、融解過程で氷から発生する水溶液の溶質濃度の変化率が30%である。なお、「融解過程で氷から発生する水溶液の溶質濃度の変化率」とは、融解過程の任意の時点での発生する水溶液における溶質濃度に対する、融解完了時における水溶液の濃度の割合を意味する。なお、「溶質濃度」とは、水溶液中の溶質の質量の濃度を意味する。

0024

本発明の保冷庫に使用される氷における溶質濃度の変化率は30%以内であれば特に限定されないが、その変化率が少ない方が、凝固点の低下した水溶液の氷の純度が高いこと、つまり、冷却能が高いことを意味する。この観点から、溶質濃度の変化率は、25%以内(24%以内、23%以内、22%以内、21%以内、20%以内、19%以内、18%以内、17%以内、16%以内、15%以内、14%以内、13%以内、12%以内、11%以内、10%以内、9%以内、8%以内、7%以内、6%以内、5%以内、4%以内、3%以内、2%以内、1%以内、0.5%以内等)であることが好ましい。他方、溶質濃度の変化率は、0.1%以上(0.5%以上、1%以上、2%以上、3%以上、4%以上、5%以上、6%以上、7%以上、8%以上、9%以上、10%以上、11%以上、12%以上、13%以上、14%以上、15%以上、16%以上、17%以上、18%以上、19%以上、20%以上等)であってもよい。

0025

(溶質)
本発明の保冷庫に使用される氷に含まれる溶質の種類は、水を溶媒としたときの溶質であれば特に限定されず、所望の凝固点、使用する氷の用途等に応じて、適宜選択することができる。溶質としては、固体状の溶質、液状の溶質等が挙げられるが、代表的な固体状の溶質としては、塩類無機塩有機塩等)が挙げられる。特に、塩類のうち、食塩(NaCl)は、凝固点の温度を過度下げすぎず、生鮮動植物又はその一部の冷却に適してことから好ましい。また、食塩は海水に含まれるものであるため、調達が容易であるという点でも好ましい。また、液状の溶質としては、エチレングリコール等が挙げられる。なお、溶質は1種単独で含まれてもよく、2種以上含まれてもよい。

0026

本発明の保冷庫に使用される氷に含まれる溶質の濃度は特に限定されず、溶質の種類、所望の凝固点、使用する氷の用途等に応じて、適宜選択することができる。例えば、溶質として食塩を用いた場合は、水溶液の凝固点をより下げて、高い冷却能を得ることができる点で、食塩の濃度は0.5%(w/v)以上(1%(w/v)以上、2%(w/v)以上、3%(w/v)以上、4%(w/v)以上、5%(w/v)以上、6%(w/v)以上、7%(w/v)以上、8%(w/v)以上、9%(w/v)以上、10%(w/v)以上、11%(w/v)以上、12%(w/v)以上、13%(w/v)以上、14%(w/v)以上、15%(w/v)以上、16%(w/v)以上、17%(w/v)以上、18%(w/v)以上、19%(w/v)以上、20%(w/v)以上等)であることが好ましい。他方、本発明の保冷庫に使用される氷を生鮮動植物又はその一部の冷却に用いる場合等においては、凝固点の温度を過度に下げすぎない方が好ましく、この観点で、23%(w/v)以下(20%(w/v)以下、19%(w/v)以下、18%(w/v)以下、17%(w/v)以下、16%(w/v)以下、15%(w/v)以下、14%(w/v)以下、13%(w/v)以下、12%(w/v)以下、11%(w/v)以下、10%(w/v)以下、9%(w/v)以下、8%(w/v)以下、7%(w/v)以下、6%(w/v)以下、5%(w/v)以下、4%(w/v)以下、3%(w/v)以下、2%(w/v)以下、1%(w/v)以下等)であることが好ましい。

0027

本発明の保冷庫に使用される氷は冷却能に優れるため、被保冷物を冷却させる冷媒としての使用に適している。被保冷物を冷却させる低温の冷媒としては、氷以外に、エタノール等の不凍液として使用される有機溶媒が挙げられるが、これらの不凍液より氷の方が熱伝導率が高く、比熱が高い。そのため、本発明の保冷庫に使用される氷のような溶質を溶解させて凝固点が低くなった氷は、不凍液のような他の0℃未満の冷媒より、冷却能が優れている点においても有用である。

0028

本発明の保冷庫に使用される氷は、上記の溶質以外の成分を含んでもよく、含まなくてもよい。

0029

本発明において、「氷」とは、水溶液を含む液体が凍ったものを指す。

0030

また、本発明の保冷庫に使用される氷は、真水の凝固点以下の温度で安定な状態が続くため、すなわち、分離しない状態を長く持続させることができる。そのため、例えば、後述のとおり、本発明の保冷庫に使用される氷を構成する液体が、上記の溶質を含有する水溶液に加え、さらに、油を含む液体であった場合、該油が均一な状態が長持ちし、つまり、分離しない状態を長く持続させることができる。

0031

上述のとおり、本発明の保冷庫に使用される氷を構成する液体は、上記の溶質を含有する水溶液に加え、さらに、油を含む液体であってもよい。そのような液体としては、生乳、水と油を含む産業廃棄物廃棄乳等)が挙げられる。液体が生乳であった場合、その氷を食したときの官能性が向上する点で好ましい。このように、官能性が向上する理由は、生乳に含まれる油(脂肪)が氷の中に閉じ込められた状態であるからと推測される。なお、本発明の保冷庫に使用される氷は、上記の溶質を含有する水溶液を凍結させたもののみから構成してもよい。

0032

本発明の保冷庫に使用される氷を構成する液体がさらに油を含む場合、液体中の水と油との比率は、特に限定されず、例えば、1:99〜99:1(10:90〜90:10、20:80〜80:20、30:80〜80:30、40〜60:40〜60等)の範囲で適宜選択してもよい。

0033

また、本発明の保冷庫に使用される氷は、凝固点降下度の異なる2種以上の溶質を含む水溶液の氷であってもよい。この場合、本発明の保冷庫に使用される氷は、一方の溶質を含む水溶液の氷と、他方の溶質を含む水溶液の氷との混合物であってもよい。かかる場合、例えば、溶質としてエチレングリコールを含む水溶液の氷に、エチレングリコールと凝固点降下度の異なる溶質として食塩を含む水溶液の氷を加えることで、エチレングリコールを含む水溶液の氷の融解を遅らせることができる。あるいは、本発明の保冷庫に使用される氷は、2種以上の溶質を同一の水溶液に溶解した水溶液の氷であってもよい。また、凝固点降下度の異なる2種以上の溶質を併用する場合、対象となる溶質を含む水溶液の氷の融点を下げる場合においても有用である。例えば、溶質として食塩を用いる場合に、食塩よりさらに融点を下げることができる溶質(エチレングリコール、塩化カルシウム等)を併用することで、食塩水の氷の融点を下げることができ、例えば、食塩水の氷のみではなしえない−30℃近辺での温度を実現できる。凝固点降下度の異なる2種以上の溶質の比率は、目的に応じて適宜変更することができる。

0034

(被保冷物を冷却させる冷媒(氷スラリーともいう。))
本発明は、上記の氷を含む、被保冷物を冷却させる冷媒を包含する。上記のとおり、本発明の保冷庫に使用される氷は冷却能に優れるため、被保冷物を冷却させる冷媒に好適である。

0035

氷スラリーは、上記の氷の他の成分を含んでもよく、例えば、上記の氷以外に水を含むことで、氷と水との混合物により構成してもよい。例えば、氷に含まれる溶質と同一の溶質を含有する水をさらに含む場合、氷における溶質の濃度と、水における溶質の濃度は近い方が好ましい。その理由は、以下のとおりである。

0036

氷の溶質濃度が水の溶質濃度より高い場合、氷の温度が水の飽和凍結点より低いため、溶質濃度が低い水を混合した直後に水分が凍結する。一方、氷の溶質濃度が水の溶質濃度より低い場合、氷の飽和凍結点よりも水の飽和凍結点のほうが低いため氷が融解し、氷と水との混合物からなる氷スラリーの温度が低下する。つまり、氷と水との混合物の状態(氷スラリーの状態)を変動させないようにするためには、上述のとおり、混合する氷と水の溶質濃度を同程度とすることが好ましい。また、氷と水との混合物の状態である場合、水は、上記氷が融解してなるものであってもよく、別途調製したものであってもよいが、上記氷が融解してなるものであることが好ましい。

0037

具体的には、氷スラリーを氷と水との混合物により構成する場合、氷における溶質の濃度と、水における溶質の濃度との比が、75:25〜20:80であることがより好ましく、70:30〜30:70であることがさらに好ましく、60:40〜40:60であることがより一層好ましく、55:45〜45:55であることがさらに一層好ましく、52:48〜48:52であることが特に好ましく、50:50であることが最も好ましい。特に、溶質として食塩を用いる場合、氷における溶質の濃度と、水における溶質の濃度との比が上記範囲内にあることが好ましい。

0038

本発明の保冷庫に使用される氷の原料となる水は、特に限定されないが、溶質として食塩を使用する場合、海水、海水に塩を追加した水、又は海水の希釈水、の氷であることが好ましい。海水、海水に塩を追加した水、又は海水の希釈水は、調達が容易であり、これによりコストの削減も可能となる。

0039

氷スラリーは、さらに、上記の本発明の保冷庫に使用される氷より高い熱伝導率を有する固体を含有してもよく、含有さなくてもよいが、含有することが好ましい。短時間で冷却対象物を冷却しようとした場合、熱伝導率の高い固体を利用することにより達成可能であるが、この場合、その固体自身も短時間で冷熱エネルギーを失い温度が上がりやすいため、長時間の冷却には不適である。他方、熱伝導率の高い固体を利用しない方が長時間の冷却に適しているが、短時間で冷却対象物を冷却するのには不適である。しかしながら、本発明の保冷庫に使用される氷は、上記のように冷却能が高いため、熱伝導率の高い固体による短時間の冷却能力を得つつ、長時間の冷却も可能としている点で有用である。本発明の保冷庫に使用される氷より高い熱伝導率を有する固体としては、例えば、金属(アルミニウム、銀、銅、金、ジュラルミンアンチモンカドミウム亜鉛すずビスマスタングステンチタン、鉄、鉛、ニッケル白金マグネシウムモリブデンジルコニウムベリリウムインジウムニオブクロムコバルトイリジウムパラジウム)、合金(鋼(炭素鋼クロム鋼ニッケル鋼クロムニッケル鋼ケイ素鋼タングステン鋼マンガン鋼等)、ニッケルクロム合金アルミ青銅砲金黄銅マンガニン洋銀コンスタンタンはんだアルメルクロメルモネルメタル、白金イリジウム等)、ケイ素炭素セラミックスアルミナセラミックスフォルステライトセラミックス、ステアタイトセラミックス等)、大理石レンガマグネシアレンガ、コルハルトレンガ等)等であって、本発明の保冷庫に使用される氷より高い熱伝導率を有するものが挙げられる。また、本発明の保冷庫に使用される氷より高い熱伝導率を有する固体は、熱伝導率が2.3W/m K以上(3W/m K以上、5W/m K以上、8W/m K以上等)の固体であることが好ましく、熱伝導率が10W/m K以上(20W/m K以上、30W/m K以上、40W/m K以上等)の固体であることがより好ましく、熱伝導率が50W/m K以上(60W/m K以上、75W/m K以上、90W/m K以上等)の固体であることがさらに好ましく、熱伝導率が100W/m K以上(125W/m K以上、150W/m K以上、175W/m K以上等)の固体であることがより一層好ましく、熱伝導率が200W/m K以上(250W/m K以上、300W/m K以上、350W/m K以上等)の固体であることがなお好ましく、熱伝導率が200W/m K以上の固体であることがなお好ましく、熱伝導率が400W/m K以上(410W/m K以上等)の固体であることが特に好ましい。

0040

本発明の保冷庫に使用される氷スラリーが、上記の本発明の保冷庫に使用される氷より高い熱伝導率を有する固体を含有する場合、上記のとおり、多くの固体を含んでも長時間の冷却に適しており、例えば、本発明の保冷庫に使用される氷より高い熱伝導率を有する固体の質量/氷スラリーに含まれる本発明の保冷庫に使用される氷の質量(又は氷スラリーに含まれる本発明の保冷庫に使用される氷と水溶液を含む液体との合計質量)は、1/100000以上(1/50000以上、1/10000以上、1/5000以上、1/1000以上、1/500以上、1/100以上、1/50以上、1/10以上、1/5以上、1/4以上、1/3以上、1/2以上等)であってもよい。

0041

本発明における上記固体は、どのような形状であってもよいが、粒子状であることが好ましい。また、上記固体は、本発明の保冷庫に使用される氷の内部に含まれた形態で含まれていてもよく、氷の外部に含まれた形態で含まれていてもよいが、氷の外部に含まれた形態で含まれていた方が冷却対象物に直接接しやすくなるため、冷却能が高くなる。このことから、氷の外部に含まれた形態で含まれていた方が好ましい。また、氷スラリーが上記固体を含有する場合、あらかじめ原料となる水に混合した状態で、氷を製造してもよい。

0042

以下、本発明の一実施形態を図面に基づいて説明する。

0043

[保冷庫1]
図1は、本発明の一実施形態に係る保冷庫1の構成を示す断面図である。
図1に示すように、保冷庫1は、ケーシング4と、保冷空間5と、隔壁6と、断熱材7と、遮熱シート8とを備える。

0044

ケーシング4は、直方体形状からなり、断熱構造となっている。また、ケーシング4の内方には、ケーシング4と対向し保冷空間5を取り囲む隔壁6が配置されている。ケーシング4を断熱構造とするための手段は特に限定されない。なお、本実施形態では、保冷庫1は、鋼製若しくはFRP(Fiber−Reinforced Plastics/繊維強化プラスチック)製の二重壁構造とし、二重壁の間の空隙に断熱材7が介装されている。断熱材7として採用する部材は、特に限定されず、具体的には、例えばウレタンフォームグラスウール真空断熱材等を採用することができる。なお、「真空断熱材」とは、多孔質芯材ラミネートフィルム被覆し、内部を減圧して封止した断熱材を意味する。

0045

保冷空間5は、隔壁6が取り囲むことによって形成される、被保冷物を格納するための空間である。
隔壁6は、保冷空間5を取り囲む壁であり、後述する氷スラリー50によって自らが冷却されることにより保冷空間5を冷却する。隔壁6は、熱伝導率の高い材質で構成されることが望ましい。具体的には、例えばアルミニウム、銅などの金属を採用することができる。これにより、効率良く保冷庫1の保冷空間5を冷却することができる。

0046

ケーシング4と隔壁6との間には、空隙50が設けられている。空隙50には、氷スラリー3が充填されている。即ち、要求される氷点下の温度を維持可能なブラインを用いた氷スラリー3を空隙50に充填させることにより、要求される氷点下の温度まで保冷空間5を冷却することができる。
ここで、「ブライン」とは、凍結点の低い液体の熱媒体を含む液体を意味する。具体的には、例えば塩化ナトリウム水溶液(塩水)や塩化カルシウム水溶液塩化マグネシウム水溶液、エチレングリコール等がブラインに含まれる。
また、「フレークアイス」とは、ブラインを濃度が均一になるように凍結させたフレーク薄片)状の氷を意味する。フレークアイスは比表面積が大きいため、被保冷物を素早く冷却することができる。即ち、ブラインを凍結させたフレークアイスは、融解する際に大量の潜熱を周囲から奪うことができる。また、その間、温度が上昇することもない。従って、長時間に亘って被保冷物を保冷することができる。
また、氷スラリーは、ブラインを凍結させたフレークアイスと、当該ブラインとの混合物を含み、シャーベット状の氷が含まれる。また、氷スラリーは、硬いブロック状の氷に比べて、空隙50への充填が容易であり、また、冷却むらが生じ難い等の特徴を有する。

0047

ケーシング4の側面上部には、空隙50に氷スラリー3を供給可能な氷スラリー供給口40が設けられている。また、ケーシング4の側面下部には、空隙50から氷スラリー3を排出可能な氷スラリー排出口41が設けられている。さらに、氷スラリー供給口40には開閉弁42が設けられ、氷スラリー排出口41には開閉弁43が設けられている。
これにより、ポンプ等を用いて供給口から空隙に氷スラリーを充填すると共に、溶けた氷スラリーを排出口から排出させることができるため、空隙50内に充填されている氷スラリーの冷却能力を高い状態で維持させることができる。

0048

断熱材7と接する内方側の壁面には、輻射熱を反射させるための遮熱シート8が貼着されている。なお、輻射熱を反射させる手法は特に限定されないが、本実施形態では、遮熱シート8を貼着させる手法を採用している。なお、この場合には、遮熱シート8として、アルミニウムの蒸着膜の表側をフィルム補強し、裏側には織布や発泡シート等の断熱材を接着剤で貼り合せて積層させたもの等を用いることができる。
また、図示していないが、保冷庫1の側面部には、被保冷物を搬出入するための断熱扉が設けられている。
なお、本実施形態では、断熱材7と接する内方側の壁面にのみ遮熱シート8を貼着させているが、断熱材7と接する内方側の壁面に加えて、断熱材7と接する外方側の壁面に遮熱シート8を貼着させてもよい。これにより、二重壁の内面に貼着した遮熱シートを用いて輻射熱を反射させるため、保冷空間に熱が伝達しないようにすることができる。

0049

[保冷庫2]
図1の保冷庫1では、空隙50に対し直接氷スラリー3が充填される構成をとったが、特にこれに限定されず、空隙50には、氷スラリー3が充填された氷スラリー格納容器が収納されていてもよい。即ち、ポンプ等を用いて空隙50に氷スラリー3を充填する代わりに、氷スラリー3が充填された複数の氷スラリー格納容器9を空隙50に載置してもよい。
図2は、本発明の他の実施形態に係る保冷庫2の構成を示す断面図である。
図2に示すように、保冷庫2では、ケーシング4と隔壁6との間の空隙50に、氷スラリー3が充填された複数の氷スラリー格納容器9が載置される。
氷スラリー格納容器9の形状及び材質は特に限定されないが、空隙50に載置し易い形状であり、かつ熱伝導率の高い材質で形成されることが望ましい。なお、本実施形態に係る保冷庫2では、熱伝導率の高い金属によって形成された筒状の密閉容器であって、氷スラリー50の入れ替えが可能な氷スラリー格納容器9を採用している。
なお、図示していないが、隔壁6には、氷スラリー格納容器9を空隙50に収納するための開閉扉が設けられている。

0050

[フレークアイス製造装置]
容器に溜められた状態の水溶液を含む液体を外部から冷却しても、本発明の保冷庫に使用される氷を製造することはできない。これは、冷却速度が十分でないことに起因すると考えられる。しかしながら、本発明の一実施形態であるフレークアイス製造装置10によれば、溶質を含有する水溶液を含む液体を噴霧することで霧状となった水溶液が凝固点以下の温度に保持された壁面に直接接することにより、従来なかった急速な冷却を可能としている。これにより、上記(a)及び(b)の条件を満たす、冷却能の高い氷を生成することができると考えられる。

0051

壁面は、例えば、後述する図3におけるドラム11のような円柱型構造物内壁等が挙げられるが、水溶液の凝固点以下の温度に保持できるような壁面であれば特に限定されない。壁面の温度は、水溶液の凝固点以下の温度に保持されていれば特に限定されないが、上記(a)及び(b)の条件を満たす氷の純度が高い氷を製造できる点で、水溶液の凝固点より1℃以上低い温度(2℃以上低い温度、3℃以上低い温度、4℃以上低い温度、5℃以上低い温度、6℃以上低い温度、7℃以上低い温度、8℃以上低い温度、9℃以上低い温度、10℃以上低い温度、11℃以上低い温度、12℃以上低い温度、13℃以上低い温度、14℃以上低い温度、15℃以上低い温度、16℃以上低い温度、17℃以上低い温度、18℃以上低い温度、19℃以上低い温度、20℃以上低い温度、21℃以上低い温度、22℃以上低い温度、23℃以上低い温度、24℃以上低い温度、25℃以上低い温度等)に保持されることが好ましい。

0052

噴霧の方法は、特に限定されないが、例えば、後述する図3における噴射部13のように、噴射孔13aを備える噴射手段から、噴射することにより、噴霧をすることができる。この場合において、噴射する際の水圧は、例えば、0.001MPa以上(0.002MPa以上、0.005MPa以上、0.01MPa以上、0.05MPa以上、0.1MPa以上、0.2MPa以上等)であってもよく、1MPa以下(0.8MPa以下、0.7MPa以下、0.6MPa以下、0.5MPa以下、0.3MPa以下、0.1MPa以下、0.05MPa以下、0.01MPa以下等)であってもよい。

0053

また、後述する図1に示すように、竪型ドラム11の中心軸上に回転可能な回転軸12を設ける等の回転手段を設け、回転させながら噴霧を行う等の連続的な噴霧により行ってもよい。

0054

回収工程)
本発明は、上述の氷生成工程後に、壁面上において生じた氷を回収する工程を有する。

0055

回収する方法は、特に限定されず、例えば、後述する図3に示すように、壁面上の氷をブレード15等の手段により掻き取り、落下した氷を回収してもよい。

0056

また、氷が生成される際に、製氷熱が発生するが、この製氷熱を帯びることで、実際の融解完了温度に影響を与える可能性がある。このように、融解完了温度は、溶質の種類、濃度のみでなく、製氷熱の影響を受けると考えられる。そのため、氷に残存する製氷熱の熱量を調整することで、実際の融解完了温度を調整することができる。製氷熱を調整するためには、本発明における回収工程において、氷を壁面上の保持時間を調整することで行うことができる。

0057

図3は、本発明の一実施形態に係るフレークアイス製造装置10の概要を示す部分断面斜視図を含むイメージ図である。

0058

図3に示すように、フレークアイス製造装置10は、ドラム11と、回転軸12と、噴射部13と、掻取部14と、ブレード15と、フレークアイス排出口16と、上部軸受部材17と、防熱保護カバー19と、ギヤードモータ20と、ロータリージョイント21と、冷媒クリアランス24と、ブッシュ28と、冷媒供給部29と、回転制御部27とを備える。
ドラム11は、内筒22と、内筒22を囲繞する外筒23と、内筒22と外筒23との間に形成される冷媒クリアランス24とで構成される。また、ドラム11の外周面は、円筒状の防熱保護カバー19によって覆われている。内筒22及び外筒23の材質は特に限定されない。なお、本実施形態では鋼が採用されている。
冷媒クリアランス24には、冷媒供給部29から冷媒配管35を介して冷媒が供給される。これにより内筒22の内周面が冷却される。

0059

回転軸12は、ドラム11の中心軸上に配置され、上部軸受部材17の上方に設置されたギヤードモータ20を動力源として、当該中心軸を軸として材軸回りに回転する。なお、ギヤードモータ20の回転速度は、後述の回転制御部27によって制御される。
また、回転軸12の頂部にはロータリージョイント21が取り付けられている。なお、回転軸12の上部には、材軸方向に延在し各パイプ13と連通する竪穴12aが形成されている(図4参照)。

0060

噴射部13は、内筒22の内周面に向けてブラインを噴射する噴射孔13aを先端部に有する複数のパイプで構成され、回転軸12と共に回転する。噴射孔13aから噴射されたブラインは、冷媒によって冷却された内筒22の内周面に付着し、分離する時間も与えられずに急速に凍結する。
噴射部13を構成する複数のパイプは、回転軸12からドラム11の半径方向に放射状に延出している。各パイプの設置高さは特に限定されないが、本実施形態では、ドラム11の内筒22高さの上部位置に設置されている。なお、パイプに代えてスプレーノズル等を採用してもよい。

0061

掻取部14は、ドラム11の内周面に凍結した状態で付着したブラインを掻き取るブレード15を先端部に装着する複数のアームで構成される。なお、掻取部14は、ドラム11の半径方向に延出し、回転軸12と共に回転する。
掻取部14を構成する複数のアームは、回転軸12に関して対称となるように装着されている。アームの本数は特に限定されないが、本実施形態では、アームの本数を2本としている。各アームの先端部に装着されているブレード15の大きさ及び材質は、特に限定されず、凍結したブラインを掻き取ることができればよい。なお、本実施形態におけるブレード15は、内筒22の全長全高)に略等しい長さを有するステンレス製板材からなり、内筒22に面する端面には複数の鋸歯15aが形成されている。
凍結したブラインは、ブレード15によって掻き取られると、フレークアイスとなり、当該フレークアイスは、フレークアイス排出口16から落下する。フレークアイス排出口16から落下したフレークアイスは、フレークアイス製造装置10の直下に配置されたフレークアイス貯留タンク34(図4)内に貯えられる。

0062

上部軸受部材17は、を逆さにした形状からなり、ドラム11の上面を封止している。上部軸受部材17の中心部には、回転軸12を支持するブッシュ24が嵌装されている。なお、回転軸12は、上部軸受部材17にのみ支持され、回転軸12の下端部は軸支されていない。
即ち、ドラム11の下方には、ブレード15によって掻き取られたフレークアイスが落下する際に障害となる物がないため、ドラム11の下面はフレークアイスを排出するフレークアイス排出口16となる。
冷媒供給部29は、冷媒クリアランス24に対して、内筒22の内周面を冷却させるための冷媒を、冷媒配管35を介して供給する。なお、冷媒供給部29によって供給される冷媒は特に限定されず、内筒22の内周面を冷却させるものであればよい。具体的には例えば、冷媒として、LNG(Liquefied Natural Gas/液化天然ガス)を採用することができる。
本実施形態では、冷媒クリアランス24に供給される冷媒は、冷媒クリアランス24と冷媒供給部36との間を冷媒配管35を介して循環させることができる。これにより、冷媒クリアランス24に供給されている冷媒を冷却機能が高い状態で維持させることができる。
回転制御部27は、ギヤードモータ20の回転速度を調節することにより、回転軸12と共に回転する噴射部13及び掻取部14の回転速度を調節する。なお、回転制御部27が回転速度を制御する手法は特に限定されない。具体的には、例えばインバータによる制御手法を採用してもよい。

0063

[フレークアイス製造システム]
図4は、図3のフレークアイス製造装置10を含むフレークアイス製造システム60の全体の概要を示すイメージ図である。

0064

フレークアイス製造システム60は、フレークアイス製造装置10と、ブライン貯留タンク30と、ポンプ31と、ブライン配管32と、ブラインタンク33と、フレークアイス貯留タンク34と、冷媒配管35と、凍結点調節部36とを備える。
ブライン貯留タンク30は、フレークアイスの原料となるブラインを貯える。ブライン貯留タンク30に貯えられたブラインは、ポンプ31を作動させることによりブライン配管32を介してロータリージョイント21に送給され、フレークアイス製造装置10によってフレークアイスになる。即ち、ロータリージョイント21に送給されたブラインは、ロータリージョイント21及び回転軸12に形成された竪穴12aに送給され、竪穴12aから、噴射部13を構成する各パイプに送給される。

0065

ブラインタンク33は、ブライン貯留タンク30内のブラインが少なくなった場合に、ブライン貯留タンク30にブラインを供給する。
なお、内筒22の内周面で凍結せずに流下したブラインは、ブライン貯留タンク30に貯えられ、ポンプ31を作動させることによりブライン配管32を介してロータリージョイント21に再び送給される。
フレークアイス貯留タンク34は、フレークアイス製造装置10の直下に配置され、フレークアイス製造装置10のフレークアイス排出口16から落下したフレークアイスを貯える。

0066

凍結点調節部36は、ブラインタンク33によってブライン貯留タンク30に供給されるブラインの凍結点を調節する。例えばブラインが塩水である場合には塩水の凍結点は濃度によって異なるため、凍結点調節部36は、ブライン貯留タンク30に貯えられている塩水の濃度を調節する。
なお、ブラインの凍結点の調整手法は、特にこれに限定されない。例えば、次のような手法を採用することもできる。
即ち、ブライン貯留タンク30を複数個設け、凍結点が異なる複数種類のブラインを、数個のブライン貯留タンク30の夫々に貯留させる。そして、ブライン凍結点調整部37は、求められるフレークアイスの温度(例えば当該フレークアイスにより搬送される搬送品に対して、求められている保冷温度)に基づいて、所定種類のブラインを選択し、フレークアイス製造装置10に供給する。
このように、ブラインの凍結点を調節することにより、製造されるフレークアイスの温度を調節することができる。

0067

次に、上記構成を有するフレークアイス製造装置10を含むフレークアイス製造システム60の動作について、ブラインが塩水であるとして説明する。
まず、冷媒供給部36は、冷媒クリアランス24に冷媒を供給し、内筒22の内周面の温度を塩水の凍結点より−10℃程度低くなるように設定する。これにより、内筒22の内周面に付着した塩水が凍結させることができる。
内筒22の内周面が冷却されると、回転制御部27は、ギヤードモータ20を駆動させ、回転軸12を材軸周りに回転させる。
回転軸12が回転すると、ポンプ31は、ブライン貯留タンク30からロータリージョイント21を介して回転軸12内にブラインである塩水を供給する。
回転軸内12に塩水が供給されると、回転軸12と共に回転する噴射部13は、内筒22の内周面の内周面に向けて塩水を噴射する。噴射部13から噴射された塩水は、内筒22の内周面の内周面に接触すると瞬時に凍結し氷となる。
このとき、回転制御部27は、回転軸12の回転速度を2〜4rpmに制御する。なお、噴射部13の構成要素としてパイプではなくスプレーノズルを使用した場合には、回転制御部27は、回転軸12の回転速度を10〜15rpmに制御する。
内筒22の内周面に生成された氷は、回転軸12と共に回転する掻取部14によって掻き取られる。掻取部14によって掻き取られた氷は、フレークアイスとして排出口16から落下する。排出口16から落下したフレークアイスは、フレークアイス製造装置10の直下に配置されたフレークアイス貯留タンク34内に貯えられる。
上述したように、氷とならず、内筒22の内周面を流下した塩水はブライン貯留タンク30に貯えられ、ポンプ31を作動させることによりブライン配管32を介してロータリージョイント21に再び送給される。なお、ブライン貯留タンク30内の塩水が少なくなった場合は、ブラインタンク33が、自身に貯えられている塩水がブライン貯留タンク30に供給する。

0068

ここで、回転制御部27が、ギヤードモータ20の回転速度を変化させることにより、フレークアイス製造装置10により製造されるフレークアイスの温度を変化させることができる。
例えばブレインとして塩水が採用されているものとする。この場合、塩水が凍結する凍結点は、その溶質濃度のみに依存すると従来から考えられて来た。例えば溶質濃度が0.8%であれば、どんな場合でも−1.2℃で塩水が凍結すると従来から考えられて来た。
しかしながら、本出願人が、ブレインとして塩水を採用して、本実施形態のフレークアイス製造装置10を用いて、回転軸12の回転速度を変化させたところ、同一濃度の塩水から製造されるフレークアイスの温度が、回転数に応じて変化すること、特に回転数が低下すると温度が低下することを発見した。
この理由は、フレークアイスは、製氷熱を帯びた状態が融解し終わるまで維持されるためである。
これにより、ブラインの濃度を、冷蔵冷凍対象にあわせた所望値に固定しつつ、フレークアイスの温度を調節することができる。

0069

[氷スラリー製造手法
次に、上述したブラインとフレークアイスとを材料とする氷スラリーを製造する手法の一例を説明する。氷スラリー3については、予め用意された複数種類のブラインを材料とすることにより、要求される保冷温度と保冷時間とに対応させたもの製造することができる。
なお、ブラインは塩水であり、被保冷物は生鮮海産物であることとし、また、上述した保冷庫1又は保冷庫2を使用せずに、氷スラリー3の中に直接被保冷物である生鮮海産物を入れることにより瞬間凍結することを想定して説明する。

0070

生鮮海産物を瞬間凍結させるためには、氷スラリーの原料である塩水の溶質濃度を従来に比べて大幅に高く設定する。なお、溶質濃度が13.6%である塩水の理論飽和凍結点は−9.8℃となり、溶質濃度が23.1%である塩水の理論飽和凍結点は−21.2℃となる。
塩水の溶質濃度が13.6%未満の場合、製造した氷スラリー3による生鮮海産物の凍結速度は遅くなる。一方、塩水の溶質濃度が23.1%を超える場合、塩分が結晶として析出するため、塩水の飽和凍結点が上昇する。
なお、生鮮海産物を直接氷スラリー3に入れた場合、氷スラリーの溶質濃度が高くても、生鮮海産物の表面が瞬間凍結して氷結するため、生鮮海産物中に塩分が侵入することはない。

0071

氷スラリーを製造するために混合するフレークアイスと塩水との溶質濃度は、同程度(数%以内の濃度差)であることを好適とする。フレークアイスの溶質濃度が塩水の溶質濃度より高い場合、フレークアイスの温度が塩水の飽和凍結点より低いため、溶質濃度が低い塩水を混合した直後に水分が凍結する。一方、フレークアイスの溶質濃度が塩水の溶質濃度より低い場合、フレークアイスの飽和凍結点よりも塩水の飽和凍結点のほうが低いため、フレークアイスが融解し、氷スラリー3の温度が低下する。
従って、氷スラリー3の状態を変動させないようにするためには、混合するフレークアイスと塩水の溶質濃度を同程度とすることが望ましい。

0072

混合するフレークアイスと塩水の質量比は、フレークアイス:塩水=75:25〜20:80、好ましくはフレークアイス:塩水=60:40〜50:50とする。なお、フレークアイスの質量比が75質量%を超えると、固形分の比率が高くなるため、生鮮海産物と氷スラリー3との間に隙間が発生し、生鮮海産物に氷スラリー3が密着しなくなる。一方、氷の質量比が20質量%未満であると、製造した氷スラリーによって生鮮海産物を瞬間凍結し難くなるからである。

0073

即ち、ブラインが塩水の場合、溶質濃度(ブラインの濃度)を13.6%〜23.1%とした塩水を用いてフレークアイス製造装置10により生成したフレークアイスと、溶質濃度が13.6%〜23.1%である塩水とを混合して氷スラリーを製造する。
本実施形態では、製造された氷スラリーの温度は−9.8℃〜−21.2℃となる。製造されたフレークアイスと混合する塩水の温度は、常温もしくはそれを下回る温度とする。なお、塩水の温度が低いほど、製氷効率は高くなる。

0074

なお、ブラインが塩水以外の場合は、製造される氷スラリーの温度が、必要とされる温度となるように、ブラインの濃度や、混合するフレークアイスとブラインの質量比を調整する。
このように、ブラインの濃度や、混合するフレークアイスとブラインの質量比を調整することにより、複数種類の温度の氷スラリーを製造することができる。

0075

[氷スラリー供給システム]及び[被保冷品輸送システム]
次に、上述した手法で製造された氷スラリーを保冷庫1に供給する手法、及び保冷庫1を利用した被保冷品の輸送手法について説明する。
図5は、本発明の一実施形態に係る氷スラリー供給システムの概要を示すイメージ図である。

0076

図5に示すように、本実施形態に係る保冷移動体44は、保冷庫1を備える貨物列車である。なお、保冷移動体44は、貨物列車に限定されず、貨物運搬用車両船舶航空機であってもよいが、貨物列車の場合には、自動車を使用しないことによる道路渋滞の解消、排気ガスを排出しないことによるCo2排出量削減、輸送効率の向上、エネルギー消費量の節約等の効果を期待することができる。
保冷庫1の空隙50に氷スラリー3が充填されることにより保冷空間5が冷却されるため、冷却のための電力を必要とせずに保冷空間5に被保冷物を格納し運搬することができる。また、ドライアイスのように昇華によって二酸化炭素のような温室効果ガスを発生させることもない。さらに、溶けた氷スラリーを凍結させることにより冷熱源として再利用することができる。

0077

保冷庫1は、他の保冷庫1とは独立して、保冷温度を自在に設定することができ、また、その搭載場所の温度は問わない。このため、常温の貨物(保冷庫1を使わない貨物)も含め、異なる保冷温度の貨物(保冷温度が別々に設定された複数の保冷庫1を含む貨物)を1台の保冷移動体44又は常温の移動体に同時に搭載することができる。これにより、効率の良い貨物の運搬に寄与することができる。
さらに、上述した様に、保冷庫1は、氷スラリー供給口40から氷スラリー3を供給させ、氷スラリー排出口41から氷スラリー3を排出することができるため、氷スラリー供給装置46を備える所定の物流拠点45で氷スラリー3の入れ替えを行うことができ、また、氷スラリー3の量を変えることで、搬送時間を自在に設定できる。これにより、物流拠点45を中継地点とした長距離輸送が可能となる。ここで、「物流拠点」は物流のハブであり、本発明では、貨物列車、トラック、船舶、航空機等の保冷移動体44が停車等する、ガソリンスタンド空港等を総称して「物流拠点」と呼ぶ。

0078

氷スラリー供給装置46を備える物流拠点45では、氷スラリー供給装置46によって氷スラリー3が製造される。氷スラリー供給装置46によって製造された氷スラリー3は、氷スラリー供給調節部47によって保冷庫1に供給される。
即ち、氷スラリー供給装置46で製造された氷スラリー3は、保冷移動体44に備えられている保冷庫1に、保冷庫1の氷スラリー供給口40からパイプ圧送される。また、既に保冷庫1に充填されていた氷スラリー3は、保冷庫1の氷スラリー排出口41を介して氷スラリー供給装置46に回収される。なお、氷スラリー供給装置46によって回収された氷スラリー3は、フレークアイスを製造するための原料として再利用することができる。

0079

氷スラリー供給調節部47は、保冷庫1の保冷温度と保冷時間とに応じて保冷庫1に対して供給する氷スラリー3の種類と供給量とを調節する。即ち、氷スラリー3は、フレークアイスの種類によって温度が異なる。そこで、氷スラリー供給調節部47は、保冷庫1の保冷温度に応じて温度の異なる複数種類の氷スラリー3の中から好適となる種類の氷スラリーを選択する。また、保冷庫1の保冷時間に応じて好適となる氷スラリー3の充填量を調節する。
即ち、ブレインとして塩水の場合、従来は、塩水を凍らせた氷は、凍結点の高い真水の部分から凍結し始め、最終的に凍結する部分には、少量の塩水が凍結した部分や、氷の周りに析出した塩が付着している状況となり、氷の溶質濃度は不均一となってしまう。そして、融解時には、最終的に凍結した部分が先に融解し、高濃度の塩水が出てくるため、融解水は、融解の過程で溶質濃度が大幅に変化したり、温度が0℃に向けて上昇するといった技術的な課題があった。
しかし、フレークアイス製造装置10によって製造されたフレークアイスは、水と塩とが分離する時間を与えられることなく瞬間凍結されるため、溶質濃度を略均一とすることができ、融解開始から融解し終わるまでの溶質濃度も氷の温度も略一定となる。
これにより、保冷庫1内の氷スラリー3の量を調節し、保冷庫1内の保冷温度を、要求される所定の保冷温度に維持できる時間を調節することができる。具体的には、保冷庫内の氷スラリー3の量が多くすれば保冷可能時間が長くすることができ、保冷庫内の氷スラリー3の量が少なくすれば保冷可能時間が短くすることができる。このため、被保冷物の運搬時間に合わせて氷スラリー3の充填量を調節することができる。
これにより、被保冷物を好適な保冷環境の下、効率良く長距離輸送することが可能となる。

0080

また、保冷庫2を備える保冷移動体44の場合には、物流拠点45において、保冷庫2に収納されている氷スラリー格納容器9を新規な氷スラリー格納容器9と交換することにより保冷空間5の保冷状態を維持させることができる。保冷庫2も保冷庫1と同様に、種類の異なる氷スラリー格納容器9の中から、保冷庫2の保冷温度に好適な氷スラリー格納容器9を選択し、また、保冷庫2の保冷時間に応じて好適となる氷スラリー格納容器9の数量を調節する。これにより、被保冷物を好適な保冷環境の下、効率良く長距離輸送することが可能となる。

0081

なお、上述した保冷庫1又は保冷庫2を使用することなく氷スラリー3の中に直接被保冷品を入れることにより瞬間凍結させて輸送することもできる。具体的には、例えば生鮮海産物は、氷スラリー3の中で瞬間凍結させた後に、氷スラリー3の中から取り出し、瞬間凍結時の温度以下で冷凍保存することもできる。これにより、遠隔地まで長時間輸送しても生鮮海産物の鮮度味覚落ちることがない。

0082

図6は、図1の保冷庫1の断熱構造の一例を示す図である。

0083

図6に示すように、保冷庫1のケーシング4は、断熱材7の外側に2重の壁を設け、当該壁の間には送風クリアランス81が設けられている。送風クリアランス81には常時空気が送風されている。これにより、保冷庫の断熱効果をさらに高めることができる。
なお、高い断熱効果を有する保冷庫1は、様々な分野に応用が可能である。具体的には、例えば冷蔵・冷凍庫リーファーコンテナ、冷蔵・冷凍トラック、コールドボックスクーラーボックスに利用することができる。
また、氷スラリー製造機46をステーション化させることにより、保冷庫1をあらゆる場面で利用できるようにすることもできる。保冷庫1は、冷凍機や発電機を不要とし、冷媒となるブライン(塩水)も再利用が可能であり、また優れた断熱効果によって長距離輸送も可能である。さらに、冷凍輸送、冷蔵輸送、常温輸送に対応することができ、省エネ、Co2削減にも寄与するという効果を有する。
なお、図6に示す断熱構造は、図2の保冷庫2にも適用することができる。

0084

以上、本発明の実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。また本発明の要旨を逸脱しない範囲内であれば種々の変更や上記実施の形態の組み合わせを施してもよい。

0085

例えば、上述した実施形態では、ケーシング4の内方6面に空隙50を設け、氷スラリー3を充填しているが、ケーシングの内方1面(天井面など)のみに空隙50を設け、氷スラリー3を充填してもよい。
また、保冷庫1又は保冷庫2の形状は、上述した実施例のように直方体形状に限定されない。
また、保冷移動体44は貨物列車に限られない。自動車を含む貨物運搬用の車両、船舶、航空機等の移動体であってもよい。
また、ブラインは、上述した実施形態では塩水(塩化ナトリウム水溶液)としたが、特に限定されない。具体的には、例えば塩化カルシウム水溶液、塩化マグネシウム水溶液、エチレングリコール等を採用することができる。これにより、溶質又は濃度の違いに応じた凍結点の異なる複数種類のブラインを用意することができる。

0086

また、本発明の製氷装置により生成される氷は、上記(a)及び(b)の条件を満たす、溶質を含有する水溶液を含む液体の氷であることが望ましいが、(a)及び(b)の一方又は双方の条件を満たさない氷であってもよい。即ち、氷と水との溶質濃度が異なる氷スラリーを用いて被保冷物の保冷を行ってもよい。

0087

また、上述の氷スラリーが氷より高い熱伝導率を有する固体を含有する場合、冷却する工程において、氷スラリーに含まれる氷と被冷却物との間に、氷より高い熱伝導率を有する固体が介在するように冷却を行うことが好ましい。これにより、熱伝導率の高い固体による短時間の冷却能力を得つつ、長時間の冷却も可能となる。かかる場合、目的に応じて、氷、氷より高い熱伝導率を有する固体、被冷却物とのぞれぞれの間に、別のものが介在していてもよい。例えば、氷スラリーの中に被冷却物と直接接するのが好ましくないもの(例えば、安全性の観点で被冷却物と接するのが好ましくない、氷より熱伝導率が高い固体(金属等)等)が含まれる場合、袋に氷スラリー又は被冷却物のいずれか一方を収容して、氷スラリーと被冷却物とが直接接しないようにして冷却してもよい。

0088

以上まとめると、本発明が適用される保冷庫、移動体、氷スラリー供給システムは、次のような構成を取れば足り、各種各様な実施形態を取ることができる。
即ち、本発明が適用される保冷庫(例えば図1の保冷庫1)は、
保冷空間(例えば図1の保冷空間5)を画成するケーシング(例えば図1のケーシング4)が断熱構造とされ、前記保冷空間の少なくとも上部に前記ケーシングと対向する隔壁(例えば図1の隔壁6)が設けられ、
前記ケーシングと前記隔壁との間の空隙(例えば図1の空隙50)に、ブライン(例えば塩水)を凍結させたフレークアイスと前記ブラインとの混合物である氷スラリー(例えば図1の氷スラリー3)が充填される保冷庫である。
これにより、保冷能力が高く、二酸化炭素が発生することがなく、また、冷熱源である氷スラリーを再利用することができる保冷庫を提供することができる。また、被保冷物を遠方まで容易に輸送することができる。

0089

また、前記氷スラリーは、
前記フレークアイスより高い熱伝導率を有する固体(例えば金属)を含有することができる。
これにより、冷却能を高くすることができる。

0090

また、前記空隙に前記氷スラリーを供給する供給口(例えば図1の氷スラリー供給口40)と、前記空隙から前記氷スラリーを排出する排出口(例えば図1の氷スラリー排出口41)とを備えることができる。
これにより、これにより、氷スラリー排出口41から排出させた氷スラリー3を、フレークアイスを製造するための原料として再利用することができる。

0091

前記空隙には、前記氷スラリーが充填された氷スラリー格納容器(例えば図2の氷スラリー格納容器9)が収納されることができる。
これにより、保冷庫2に収納されている氷スラリー格納容器9を新規な氷スラリー格納容器9と交換することにより保冷空間5の保冷状態を維持させることができる。

0092

また、前記ケーシングは、断熱材(例えば図1の断熱材7)が介装された二重壁とされ、前記断熱材と接する壁面に、輻射熱を反射する遮熱シート(例えば図1の遮熱シート8)が貼着されることができる。

0093

また、本発明が適用される移動体(例えば図5の保冷移動体44)は、保冷庫を複数個搭載することができる。

0094

また、本発明が適用される氷スラリー供給システムは、移動体に搭載される保冷庫に前記氷スラリーを供給する氷スラリー供給設備(例えば図5の氷スラリー供給装置46)を物流拠点(例えば図5の物流拠点45)に配備させることができる。

0095

また、本発明が適用される被保冷品輸送システムは、
ブラインを凍結させたフレークアイスを含む冷却材(例えば図1の氷スラリー3)が挿入された保冷庫(例えば図1の保冷庫1)に、被保冷品を挿入して輸送する被保冷品輸送システムにおいて、
前記被保冷品に要求される保冷温度に基づいて、前記ブラインの凍結点を調整する凍結点調整手段(例えば図4の凍結点調節部36)と、
凍結点が調整された前記ブラインから、前記フレークアイスを生成するフレークアイス製造手段(例えば図3のフレークアイス製造装置10)と、
生成された前記フレークアイスについて、前記被保冷品に要求される輸送時間に基づいて、前記保冷庫への供給量を調整する供給量調整手段(例えば図5の氷スラリー供給調節部47)と、
を備える。
これにより、被保冷物を好適な保冷環境の下、効率良く長距離輸送することが可能となる。

0096

また、前記ブラインは、塩水であり、
前記凍結点調整手段は、前記塩水の溶質濃度を調整することで、前記フレークアイス製造手段に供給され前記ブラインの凍結点を調整することができる。

0097

また、凍結点の異なる複数種類の前記ブライン(例えば塩化マグネシウム水溶液、エチレングリコール等)が用意されており、
前記凍結点調整手段は、前記複数種類のうち所定の種類のブラインを選択することで、前記フレークアイス製造手段に供給される前記ブラインの凍結点を調整することができる。

0098

前記保冷庫に供給される前記冷却材は、前記フレークアイスと前記ブラインとの混合物である氷スラリー(例えば図1の氷スラリー3)とすることができる。

0099

1、2:保冷庫、3:氷スラリー、4:ケーシング、5:保冷空間、6:隔壁、7:断熱材、8:遮熱シート、9:氷スラリー格納容器、10:フレークアイス製造装置、11:ドラム、12:回転軸、12a:竪穴、13:噴射部、13a:噴射孔、14:掻取部、15:ブレード、15a:鋸歯、16:フレークアイス排出口、17:上部軸受部材、19:防熱保護カバー、20:ギヤードモータ、21:ロータリージョイント、22;内筒、23:外筒、24:冷媒クリアランス、27:回転制御部、28:ブッシュ、29:冷媒供給部、30:ブライン貯留タンク、31:ポンプ、32:ブライン配管、33:ブラインタンク、34:フレークアイス貯留タンク、35:冷媒配管、36:凍結点調節部、40:氷スラリー供給口、41:氷スラリー排出口、42、43:開閉弁、44:保冷移動体、45:物流拠点、46:氷スラリー供給設備、47:氷スラリー供給調節部、50:空隙、60:フレークアイス製造システム、70:氷スラリー供給システム、81:送風クリアランス

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 小野寺克義の「 移動式ステージ装置」が 公開されました。( 2019/07/25)

    【課題】 ステージ面をより高くして出演者を見え易くするとともに、控え室等として利用できる部屋を設けて利便性の向上を図る。【解決手段】 軽トラックからなる車両1の荷台2に出演者が乗ることが可能なステ... 詳細

  • イートアンド株式会社の「 餃子羽根形成剤」が 公開されました。( 2019/07/25)

    【課題】未加熱の餃子羽根形成剤を用いることにより、冷凍餃子の焼成時において良好な羽根を形成可能とする冷凍餃子及び冷凍餃子の製造方法を提供する。【解決手段】水、穀物粉、油、乳化剤を含み水の含有量が60重... 詳細

  • ダイキン工業株式会社の「 製氷システム」が 公開されました。( 2019/07/25)

    【課題】設備コストの抑制を図る製氷システムを提供する。【解決手段】製氷システムは、圧縮機2、圧縮機2から吐出された冷媒を凝縮する凝縮器3、凝縮器3からの冷媒を減圧する開度調整可能な第1膨張弁5、第1膨... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ