図面 (/)

技術 ステンレス鋼及び油井用ステンレス鋼材

出願人 新日鐵住金株式会社
発明者 富尾悠索海藤宏志
出願日 2016年6月29日 (5年3ヶ月経過) 出願番号 2017-532433
公開日 2017年12月14日 (3年10ヶ月経過) 公開番号 WO2017-022374
状態 特許登録済
技術分野 鋼の加工熱処理
主要キーワード 高温炭 X線回折法 理論計算値 延性脆性遷移温度 原油価格 常温近傍 分布率 Crステンレス鋼
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年12月14日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (10)

課題・解決手段

耐食性及び低温靱性に優れたステンレス鋼を提供する。ステンレス鋼は、質量%で、Cr:15.5〜18.0%を含有し、Mo及びWからなる群から選択された1種又は2種を式(1)を満たす範囲で含有する。マトリクス組織が、体積率で、40〜80%の焼戻しマルテンサイト相と、10〜50%のフェライト相と、1〜15%のオーステナイト相とを有する。マトリクス組織を100倍の倍率撮影したミクロ組織画像をxy座標系に配置し、1024×1024の各画素グレースケールで表したとき、式(2)で定義されるβが1.55以上である。1.0≦Mo+0.5W≦3.5 (1)ここで、Mo,Wは、質量%で表したMo,Wの含有量である。

概要

背景

従来から、油井環境において、マルテンサイト系ステンレス鋼が広く使用されてきた。従来の油井環境は、炭酸ガス(CO2)及び/又は塩素イオン(Cl−)を含有する。13質量%前後のCrを含有するマルテンサイト系ステンレス鋼(以下、13%Cr鋼という)は、このような従来の油井環境において、優れた耐食性を有する。

近年、原油価格の高騰に起因して、深層油井の開発が進んでいる。深層油井の深度は深い。そして、深層油井は腐食性が高く、高温である。より具体的には、深層油井は、高温の腐食性ガスを含有する。腐食性ガスは、CO2及び/又はCl−を含有し、さらに、硫化水素ガスを含有する場合もある。高温での腐食反応は、常温での腐食反応よりも激しい。そのため、深層油井に使用される油井用鋼は、13%Cr鋼よりも高い強度及び耐食性を求められる。

ここで、二相ステンレス鋼は、13%Cr鋼よりもCr含有量が高い。そのため、二相ステンレス鋼は、13%Cr鋼よりも高い耐食性を有する。二相ステンレス鋼は例えば、22%のCrを含有する22%Cr鋼や、25%のCrを含有する25%Cr鋼などである。しかしながら、二相ステンレス鋼は合金元素を多く含有するため高価である。したがって、13%Cr鋼よりも高い耐食性を有し、二相ステンレス鋼よりも安価なステンレス鋼が求められている。

この要求に応じて、15.5〜18%のCrを含有し、高温の油井環境において高い耐食性を有するステンレス鋼が提案されている。特開2005−336595号公報(特許文献1)は、高強度を有し、230℃の高温環境において耐炭酸ガス腐食性を有するステンレス鋼管を提案する。この鋼管化学組成は、15.5〜18%のCrと、1.5〜5%のNiと、1〜3.5%のMoとを含有し、Cr+0.65Ni+0.6Mo+0.55Cu−20C≧19.5を満たし、さらに、Cr+Mo+0.3Si−43.5C−0.4Mn−Ni−0.3Cu−9N≧11.5を満たす。この鋼管の金属組織は、10〜60%のフェライト相と、30%以下のオーステナイト相とを含有し、残部はマルテンサイト相からなる。

国際公開第2010/050519号(特許文献2)は、200℃の高温炭ガス環境において耐食性を有し、さらに、原油又はガス回収が一時的に停止されることにより油井又はガス井環境温度が低下した場合であっても高い耐硫化物応力腐食割れ性を有するステンレス鋼管を提案する。この鋼管の化学組成は、16%超〜18%のCrと、2%超〜3%のMoと、1〜3.5%のCuと、3〜5%未満のNiとを含有し、[Mn]×([N]−0.0045)≦0.001を満たす。この鋼管の金属組織は、体積率で10〜40%のフェライト相と、10%以下の残留オーステナイト相とを含有し、残部はマルテンサイト相である。

国際公開第2010/134498号(特許文献3)は、高温環境で優れた耐食性を有し、常温で優れた耐SSC性を有する高強度のステンレス鋼を提案する。この鋼の化学組成は、16%超〜18%のCrと、1.6〜4.0%のMoと、1.5〜3.0のCuと、4.0超〜5.6%のNiとを含有し、Cr+Cu+Ni+Mo≧25.5を満たし、−8≦30(C+N)+0.5Mn+Ni+Cu/2+8.2−1.1(Cr+Mo)≦−4を満たす。この鋼の金属組織は、マルテンサイト相と、10〜40%のフェライト相と、残留オーステナイト相とを含有し、フェライト相分布率が85%よりも高い。

ところで、これらの文献に開示された15.5〜18%のCrを含有する高Crステンレス鋼において、低温靱性が不十分な場合がある。特開2010−209402号公報(特許文献4)は、低温靱性に優れた油井用高強度ステンレス鋼管を提案する。この鋼管は、15.5〜17.5%のCrを含有し、ミクロ組織内の結晶粒のうち最も大きいものにおいて、当該結晶粒内の任意の2点間の距離が200μm以下である(換言すれば、結晶粒径が200μm以下である)。また、国際公開第2013/179667号(特許文献5)は、肉厚方向に引いた線分単位長さ当たりに存在するフェライトマルテンサイト粒界の数として定義されるGSI値肉厚中心部で120以上である組織を有することで、優れた耐食性及び低温靱性を兼備することができると記載されている。

概要

耐食性及び低温靱性に優れたステンレス鋼を提供する。ステンレス鋼は、質量%で、Cr:15.5〜18.0%を含有し、Mo及びWからなる群から選択された1種又は2種を式(1)を満たす範囲で含有する。マトリクス組織が、体積率で、40〜80%の焼戻しマルテンサイト相と、10〜50%のフェライト相と、1〜15%のオーステナイト相とを有する。マトリクス組織を100倍の倍率撮影したミクロ組織画像をxy座標系に配置し、1024×1024の各画素グレースケールで表したとき、式(2)で定義されるβが1.55以上である。1.0≦Mo+0.5W≦3.5 (1)ここで、Mo,Wは、質量%で表したMo,Wの含有量である。

目的

本発明の目的は、高強度を有し、高温での耐応力腐食割れ性耐SCC性)及び常温での耐硫化物応力腐食割れ性(耐SSC性)に優れ、かつ低温靱性に優れたステンレス鋼及び油井用ステンレス鋼材を提供する

効果

実績

技術文献被引用数
1件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

化学組成が、質量%で、C:0.001〜0.06%、Si:0.05〜0.5%、Mn:0.01〜2.0%、P:0.03%以下、S:0.005%未満、Cr:15.5〜18.0%、Ni:2.5〜6.0%、V:0.005〜0.25%、Al:0.05%以下、N:0.06%以下、O:0.01%以下、Cu:0〜3.5%、Co:0〜1.5%、Nb:0〜0.25%、Ti:0〜0.25%、Zr:0〜0.25%、Ta:0〜0.25%、B:0〜0.005%、Ca:0〜0.01%、Mg:0〜0.01%、及びREM:0〜0.05%を含有し、さらに、Mo:0〜3.5%、及びW:0〜3.5%からなる群から選択された1種又は2種を式(1)を満たす範囲で含有し、残部がFe及び不純物からなり、マトリクス組織が、体積率で、40〜80%の焼戻しマルテンサイト相と、10〜50%のフェライト相と、1〜15%のオーステナイト相とを有し、前記マトリクス組織を100倍の倍率撮影して得られた1mm×1mmのミクロ組織画像を、肉厚方向をx軸としかつ長さ方向をy軸とするxy座標系に配置し、1024×1024の各画素グレースケールで表したとき、式(2)で定義されるβが1.55以上である、ステンレス鋼。1.0≦Mo+0.5W≦3.5(1)ここで、Mo,Wは、質量%で表したMo,Wの含有量である。ただし、式(2)において、Suは式(3)で定義され、Svは式(4)で定義される。式(3)及び式(4)において、F(u,v)は式(5)で定義される。式(5)において、f(x,y)は座標(x,y)の画素の階調を表す。

請求項2

請求項1に記載のステンレス鋼であって、前記化学組成が、質量%で、Cu:0.2〜3.5%、及びCo:0.05〜1.5%からなる群から選択された1種又は2種を含有する、ステンレス鋼。

請求項3

請求項1又は請求項2に記載のステンレス鋼であって、前記化学組成が、質量%で、Nb:0.01〜0.25%、Ti:0.01〜0.25%、Zr:0.01〜0.25%、及びTa:0.01〜0.25%からなる群から選択された1種又は2種以上を含有する、ステンレス鋼。

請求項4

請求項1〜請求項3のいずれか1項に記載のステンレス鋼であって、前記化学組成が、質量%で、B:0.0003〜0.005%、Ca:0.0005〜0.01%、Mg:0.0005〜0.01%、及びREM:0.0005〜0.05%からなる群から選択された1種又は2種以上を含有する、ステンレス鋼。

請求項5

請求項1〜請求項4のいずれか1項に記載のステンレス鋼からなる、油井ステンレス鋼材

技術分野

0001

本発明は、ステンレス鋼に関し、特に油井ステンレス鋼材に関する。

背景技術

0002

従来から、油井環境において、マルテンサイト系ステンレス鋼が広く使用されてきた。従来の油井環境は、炭酸ガス(CO2)及び/又は塩素イオン(Cl−)を含有する。13質量%前後のCrを含有するマルテンサイト系ステンレス鋼(以下、13%Cr鋼という)は、このような従来の油井環境において、優れた耐食性を有する。

0003

近年、原油価格の高騰に起因して、深層油井の開発が進んでいる。深層油井の深度は深い。そして、深層油井は腐食性が高く、高温である。より具体的には、深層油井は、高温の腐食性ガスを含有する。腐食性ガスは、CO2及び/又はCl−を含有し、さらに、硫化水素ガスを含有する場合もある。高温での腐食反応は、常温での腐食反応よりも激しい。そのため、深層油井に使用される油井用鋼は、13%Cr鋼よりも高い強度及び耐食性を求められる。

0004

ここで、二相ステンレス鋼は、13%Cr鋼よりもCr含有量が高い。そのため、二相ステンレス鋼は、13%Cr鋼よりも高い耐食性を有する。二相ステンレス鋼は例えば、22%のCrを含有する22%Cr鋼や、25%のCrを含有する25%Cr鋼などである。しかしながら、二相ステンレス鋼は合金元素を多く含有するため高価である。したがって、13%Cr鋼よりも高い耐食性を有し、二相ステンレス鋼よりも安価なステンレス鋼が求められている。

0005

この要求に応じて、15.5〜18%のCrを含有し、高温の油井環境において高い耐食性を有するステンレス鋼が提案されている。特開2005−336595号公報(特許文献1)は、高強度を有し、230℃の高温環境において耐炭酸ガス腐食性を有するステンレス鋼管を提案する。この鋼管化学組成は、15.5〜18%のCrと、1.5〜5%のNiと、1〜3.5%のMoとを含有し、Cr+0.65Ni+0.6Mo+0.55Cu−20C≧19.5を満たし、さらに、Cr+Mo+0.3Si−43.5C−0.4Mn−Ni−0.3Cu−9N≧11.5を満たす。この鋼管の金属組織は、10〜60%のフェライト相と、30%以下のオーステナイト相とを含有し、残部はマルテンサイト相からなる。

0006

国際公開第2010/050519号(特許文献2)は、200℃の高温炭ガス環境において耐食性を有し、さらに、原油又はガス回収が一時的に停止されることにより油井又はガス井環境温度が低下した場合であっても高い耐硫化物応力腐食割れ性を有するステンレス鋼管を提案する。この鋼管の化学組成は、16%超〜18%のCrと、2%超〜3%のMoと、1〜3.5%のCuと、3〜5%未満のNiとを含有し、[Mn]×([N]−0.0045)≦0.001を満たす。この鋼管の金属組織は、体積率で10〜40%のフェライト相と、10%以下の残留オーステナイト相とを含有し、残部はマルテンサイト相である。

0007

国際公開第2010/134498号(特許文献3)は、高温環境で優れた耐食性を有し、常温で優れた耐SSC性を有する高強度のステンレス鋼を提案する。この鋼の化学組成は、16%超〜18%のCrと、1.6〜4.0%のMoと、1.5〜3.0のCuと、4.0超〜5.6%のNiとを含有し、Cr+Cu+Ni+Mo≧25.5を満たし、−8≦30(C+N)+0.5Mn+Ni+Cu/2+8.2−1.1(Cr+Mo)≦−4を満たす。この鋼の金属組織は、マルテンサイト相と、10〜40%のフェライト相と、残留オーステナイト相とを含有し、フェライト相分布率が85%よりも高い。

0008

ところで、これらの文献に開示された15.5〜18%のCrを含有する高Crステンレス鋼において、低温靱性が不十分な場合がある。特開2010−209402号公報(特許文献4)は、低温靱性に優れた油井用高強度ステンレス鋼管を提案する。この鋼管は、15.5〜17.5%のCrを含有し、ミクロ組織内の結晶粒のうち最も大きいものにおいて、当該結晶粒内の任意の2点間の距離が200μm以下である(換言すれば、結晶粒径が200μm以下である)。また、国際公開第2013/179667号(特許文献5)は、肉厚方向に引いた線分単位長さ当たりに存在するフェライトマルテンサイト粒界の数として定義されるGSI値肉厚中心部で120以上である組織を有することで、優れた耐食性及び低温靱性を兼備することができると記載されている。

0009

しかしながら、これらの技術を用いても、破面遷移温度の観点で靭性を評価した場合、必ずしも十分な低温靭性が実現できない場合がある。特に肉厚の大きい場合に問題が顕在化する。

0010

本発明の目的は、高強度を有し、高温での耐応力腐食割れ性耐SCC性)及び常温での耐硫化物応力腐食割れ性(耐SSC性)に優れ、かつ低温靱性に優れたステンレス鋼及び油井用ステンレス鋼材を提供することである。

0011

本発明の一実施形態によるステンレス鋼は、化学組成が、質量%で、C:0.001〜0.06%、Si:0.05〜0.5%、Mn:0.01〜2.0%、P:0.03%以下、S:0.005%未満、Cr:15.5〜18.0%、Ni:2.5〜6.0%、V:0.005〜0.25%、Al:0.05%以下、N:0.06%以下、O:0.01%以下、Cu:0〜3.5%、Co:0〜1.5%、Nb:0〜0.25%、Ti:0〜0.25%、Zr:0〜0.25%、Ta:0〜0.25%、B:0〜0.005%、Ca:0〜0.01%、Mg:0〜0.01%、及びREM:0〜0.05%を含有し、さらに、Mo:0〜3.5%、及びW:0〜3.5%からなる群から選択された1種又は2種を式(1)を満たす範囲で含有し、残部がFe及び不純物からなる。マトリクス組織が、体積率で、40〜80%の焼戻しマルテンサイト相と、10〜50%のフェライト相と、1〜15%のオーステナイト相とを有する。マトリクス組織を100倍の倍率撮影して得られた1mm×1mmのミクロ組織画像を、肉厚方向をx軸としかつ長さ方向をy軸とするxy座標系に配置し、1024×1024の各画素グレースケールで表したとき、式(2)で定義されるβが1.55以上である。
1.0≦Mo+0.5W≦3.5 (1)

0012

ここで、Mo,Wは、質量%で表したMo,Wの含有量である。

0013

ただし、式(2)において、Suは式(3)で定義され、Svは式(4)で定義される。

0014

式(3)及び式(4)において、F(u,v)は式(5)で定義される。

0015

式(5)において、f(x,y)は座標(x,y)の画素の階調を表す。

0016

本発明によるステンレス鋼及び油井用ステンレス鋼材は、高強度を有し、高温での耐SCC性及び常温での耐SSC性に優れ、かつ優れた低温靱性を有する。

図面の簡単な説明

0017

図1は、本発明の一実施形態によるステンレス鋼のミクロ組織の一例を示すミクロ組織画像である。
図2は、図1のミクロ組織画像を2次元離散フーリエ変換して得られた対数周波数スペクトル図である。
図3は、比較例であるステンレス鋼のミクロ組織の一例を示す写真である。
図4は、図3のミクロ組織画像を2次元離散フーリエ変換して得られた対数周波数スペクトル図である。
図5は、本発明の一実施形態によるステンレス鋼のミクロ組織の一例を示すミクロ組織画像である。
図6は、図5のミクロ組織画像を2次元離散フーリエ変換して得られた対数周波数スペクトル図である。
図7は、比較例であるステンレス鋼のミクロ組織の一例を示す写真である。
図8は、図7のミクロ組織画像を2次元離散フーリエ変換して得られた対数周波数スペクトル図である。
図9は、βと延性脆性遷移温度との関係を示すグラフである。

0018

本発明者らは、上記課題を解決するため、低温靱性の関係について調査した。その結果、本発明者らは、以下の知見を得た。

0019

ステンレス鋼のマトリクス組織は、フェライト相と、焼戻しマルテンサイト相及びオーステナイト相(以下、実質マルテンサイト相という)とを含む。マトリクス組織において、フェライト相及び実質マルテンサイト相が圧延方向(長さ方向)に沿って延びかつ層状に配列される場合、ステンレス鋼は低温靱性に優れる。一方、マトリクス組織において、フェライト相が網目状に不規則分布する場合、ステンレス鋼の低温靱性は低い。ステンレス鋼が鋼板の場合、圧延により延びた鋼板の中心軸を圧延方向とする。ステンレス鋼が鋼管の場合、鋼管の中心軸を圧延方向とする。

0020

ここで、本発明者は、ステンレス鋼のフェライト相及び実質マルテンサイト相が、長さ方向に長く伸びることを特徴とする、ミクロ組織層状度を、ミクロ組織画像を2次元離散フーリエ変換することにより、肉厚方向及び長さ方向の両方を評価して定量化することができることを見出した。以下、この点について詳述する。

0021

ステンレス鋼の任意の板幅方向に垂直な断面から、観察倍率100倍であって1mm×1mmのミクロ組織画像を光学顕微鏡を用いて、グレースケール(256階調)にて撮影して得る。ミクロ組織画像の一例を図1に示す。図1では、ミクロ組織画像をxy座標系に配置している。図1中のy軸は長さ方向であり、x軸は長さ方向に垂直な肉厚方向である。図1において、灰色部分が実質マルテンサイト相であり、実質マルテンサイト相の粒の間に位置する白い部分がフェライト相である。ミクロ組織画像は、x軸方向にM=1024個の画素を有し、y軸方向にN=1024個の画素を有する。つまり、ミクロ組織画像は、M×N=1024×1024の画素数を有する。

0022

ミクロ組織画像から各画素(x、y)(x=0〜M−1、y=0〜N−1)の2次元データf(x,y)を得る。f(x,y)は座標(x,y)の画素のグレースケールでの階調を表す。得られた2次元データに対して、式(5)で定義される2次元離散フーリエ変換(2DDFT)を実施する。M−1=1023、N−1=1023である。

0023

ここで、F(u,v)は、2次元データf(x,y)の2次元離散フーリエ変換後の2次元周波数スペクトルである。周波数スペクトルF(u,v)は一般に複素数であり、2次元データf(x,y)の周期性及び規則性の情報を含む。換言すれば、周波数スペクトルF(u,v)は、図1に示すようなミクロ組織画像内における、フェライト相及び実質マルテンサイト相の組織の周期性及び規則性に関する情報を含む。

0024

図2は、図1に示すミクロ組織画像の対数周波数スペクトル図である。図2横軸v軸であり、縦軸はu軸である。図2の周波数スペクトル図は、白黒階調画像グレースケール画像)であり、周波数スペクトルの最大値が白色、最小値黒色である。周波数スペクトルの高い部分(図2中の白色部分)は、例えば図2の場合、u軸に延びた形状であり、境界は明確ではない。

0025

ここで、周波数スペクトル図の周波数スペクトルF(u,v)において、u軸上のスペクトルの絶対値の総和Suは、式(3)で定義される。周波数スペクトルF(u,v)において、v軸上のスペクトルの絶対値の総和Svは、式(4)で定義される。さらに、Svに対するSuの比は、式(2)で定義されるβである。なお、Su,Svは、(u,v)空間で座標(0,0)のスペクトル強度を含まない。

0026

また、同様の方法により、図3,5,7に示すステンレス鋼のミクロ組織画像を得る。さらに、図3,5,7に示すミクロ組織画像各々から対数周波数スペクトル図を求める。図4は、図3に示すミクロ組織画像の対数周波数スペクトル図であり、図6は、図5に示すミクロ組織画像の対数周波数スペクトル図であり、図8は、図7に示すミクロ組織画像の対数周波数スペクトル図である。以下、図1に示すミクロ組織を、組織1といい、図3に示すミクロ組織を、組織2といい、図5に示すミクロ組織を、組織3といい、図7に示すミクロ組織を、組織4という。

0027

組織1の画像(図1)と組織2の画像(図3)とを比較すると、組織1は組織2よりもフェライト相及び実質マルテンサイト相が圧延方向(長さ方向)に延びた形状である。さらに、組織1は、組織2よりもフェライト相及び実質マルテンサイト相の積層周期(肉厚方向に並ぶ周期)が短く、規則的である。組織1の画像と組織3の画像(図5)とを比較すると、組織1及び組織3のいずれも、各相が長さ方向に延びた形状である。さらに、組織3は、組織1と同様に、積層周期が短く、規則的である。組織3の画像と組織4の画像(図7)とを比較すると、組織3は組織4よりも各相が長さ方向に延びた形状である。さらに、組織3は、組織4よりも積層周期が短く、規則的である。

0028

また、組織1〜組織4各々の対数周波数スペクトル図はいずれも、白色部分がu軸に沿って延びる。しかしながら、組織1及び組織3は、組織2及び組織4に比べて白色部分のv軸方向の幅が狭い。βは、組織1が2.024であり、組織2が1.458であり、組織3が2.183であり、組織4が1.395である。要するに、βが低いほど、白色部分はu軸方向に短くなり、v軸方向に広がる。

0029

また、延性脆性の遷移温度は、組織1が−82℃であり、組織2が−12℃であり、組織3が−109℃であり、組織4が−19℃である。なお、遷移温度は後述の実施例と同じ条件での結果である。図9は、βと遷移温度(℃)との関係を示す図である。図9は、次の方法により得られた。化学組成は後述の本実施形態の範囲内であり、βが異なる複数のステンレス鋼を製造した。各ステンレス鋼に対して、後述の低温靱性評価試験を実施して、遷移温度を得て、図9を作成した。図9中の直線は図9中の全てのプロットから最小2乗法により得た線であり、R2は相関関数である。

0030

このように、βが大きくなると、低温靱性に優れる傾向があることが分かった。以上より、βは、前記層状度を指標するものと考えることができる。

0031

βを大きくするためには、鋼素材熱間圧延する際、熱間圧延の温度でのオーステナイトの分率が大きくなるようにし、かつ圧延率を大きくすればよい。熱間圧延の温度でのオーステナイトの分率を大きくするためには、鋼素材の化学組成を調整するか、熱間圧延の温度を低くすればよい。ただし、熱間圧延の温度を低くしすぎると、熱間加工性の低下によって鋼素材表面に疵が発生する場合がある。圧延率を大きくするのも限界がある。

0032

化学組成の調整によって熱間圧延の温度でのオーステナイトの分率を大きくするためには、C、Ni、Cu、Co等のオーステナイト形成元素の含有量を多くするか、Si、Cr、V、Mo、W等のフェライト形成元素の含有量を少なくすればよい。なかでも、Ni含有量を多くすることが効果的である。これによって、現実的な圧延温度及び圧延率の範囲でβを1.55以上にすることができる。一方、熱間圧延の温度でのオーステナイトの分率が大きくなるように化学組成を調整すると、室温でのオーステナイトの分率、すなわち残留オーステナイトの量も多くなりやすい。そのため、必要な強度を得るのが困難になる。

0033

本発明者らは、さらに検討を進めた結果、鋼素材にVを含有させることが有効であることを見いだした。Vは、上述のとおりフェライト形成元素であり、熱間圧延の温度でのオーステナイトの分率を大きくするためには不利な元素である。一方、Vは、焼戻し軟化抵抗を高めて鋼の強度を向上させる。Vを適量含有させることで、βを1.55以上にすることと、必要な強度を確保することとを両立することができる。

0034

本発明者らは、前述の知見に基づいて本発明を完成させた。まず、本発明の一実施形態の概要を説明する。

0035

本発明の一実施形態によるステンレス鋼は、化学組成が、質量%で、C:0.001〜0.06%、Si:0.05〜0.5%、Mn:0.01〜2.0%、P:0.03%以下、S:0.005%未満、Cr:15.5〜18.0%、Ni:2.5〜6.0%、V:0.005〜0.25%、Al:0.05%以下、N:0.06%以下、O:0.01%以下、Cu:0〜3.5%、Co:0〜1.5%、Nb:0〜0.25%、Ti:0〜0.25%、Zr:0〜0.25%、Ta:0〜0.25%、B:0〜0.005%、Ca:0〜0.01%、Mg:0〜0.01%、及びREM:0〜0.05%を含有する。さらに、Mo:0〜3.5%、及びW:0〜3.5%からなる群から選択された1種又は2種を式(1)を満たす範囲で含有する。残部がFe及び不純物からなる。マトリクス組織が、体積率で、40〜80%の焼戻しマルテンサイト相と、10〜50%のフェライト相と、1〜15%のオーステナイト相とを有する。マトリクス組織を100倍の倍率で撮影して得られた1mm×1mmのミクロ組織画像を、肉厚方向をx軸としかつ長さ方向をy軸とするxy座標系に配置し、1024×1024の各画素をグレースケールで表したとき、式(2)で定義されるβが1.55以上である。
1.0≦Mo+0.5W≦3.5 (1)

0036

ここで、Mo,Wは、質量%で表したMo,Wの含有量である。

0037

ただし、式(2)において、Suは式(3)で定義され、Svは式(4)で定義される。

0038

式(3)及び式(4)において、F(u,v)は式(5)で定義される。

0039

式(5)において、f(x,y)は座標(x,y)の画素の階調を表す。

0040

このステンレス鋼は、βが1.55以上であることで、延性脆性の遷移温度が−30℃以下となる。その結果、このステンレス鋼は、低温靱性に優れる。さらに、このステンレス鋼は、高強度を有し、高温での耐SCC性及び常温での耐SSC性に優れる。

0041

本発明の一実施形態によるステンレス鋼の化学組成は、質量%で、Cu:0.2〜3.5%、及びCo:0.05〜1.5%からなる群から選択された1種又は2種を含有してもよい。

0042

本発明の一実施形態によるステンレス鋼の化学組成は、質量%で、Nb:0.01〜0.25%、Ti:0.01〜0.25%、Zr:0.01〜0.25%、及びTa:0.01〜0.25%からなる群から選択された1種又は2種以上を含有してもよい。

0043

本発明の一実施形態によるステンレス鋼の化学組成は、質量%で、B:0.0003〜0.005%、Ca:0.0005〜0.01%、Mg:0.0005〜0.01%、及びREM:0.0005〜0.05%からなる群から選択された1種又は2種以上を含有してもよい。

0044

本発明の一実施形態によるステンレス鋼の好ましい使用形態は、油井用鋼材としての使用である。

0045

[化学組成]
本発明の一実施形態によるステンレス鋼は、以下の化学組成を有する。以降、元素に関する「%」は、質量%を意味する。

0046

C:0.001〜0.06%
炭素(C)は鋼の強度を高める。しかしながら、C含有量が多すぎれば、焼戻し後硬度が高くなり過ぎ、耐SSC性が低下する。さらに、本実施形態の化学組成では、C含有量が増加するに従い、Ms点が低下する。そのため、C含有量が増加するに従い、オーステナイトが増加しやすくなり、降伏強度が低下しやすくなる。したがって、C含有量は、0.06%以下である。C含有量は、好ましくは0.05%以下であり、さらに好ましくは0.03%以下である。また、製鋼工程における脱炭処理に掛かるコストを考慮すれば、C含有量は0.001%以上である。C含有量は、好ましくは0.003%以上であり、さらに好ましくは、0.005%以上である。

0047

Si:0.05〜0.5%
シリコン(Si)は鋼を脱酸する。しかしながら、Si含有量が多すぎれば、鋼の靱性及び熱間加工性が低下する。Si含有量が多すぎればさらに、フェライトの生成量が増加し、降伏強度が低下しやすくなる。また、βを大きくすることが難しくなる。したがって、Si含有量は0.05〜0.5%である。Si含有量は、好ましくは0.5%未満であり、さらに好ましくは0.4%以下である。Si含有量は、好ましくは0.06%以上であり、さらに好ましくは、0.07%以上である。

0048

Mn:0.01〜2.0%
マンガン(Mn)は、鋼を脱酸及び脱硫し、熱間加工性を高める。Mn含有量が少なすぎれば、上記効果が有効に得られない。一方、Mn含有量が高すぎれば、焼入れ時にオーステナイトが過剰に残留しやすくなり、鋼の強度を確保することが困難になる。したがって、Mn含有量は0.01〜2.0%である。Mn含有量は、好ましくは1.0%以下であり、さらに好ましくは0.6%以下である。Mn含有量は、好ましくは0.02%以上であり、さらに好ましくは0.04%以上である。

0049

P:0.03%以下
リン(P)は不純物である。Pは鋼の耐SSC性を低下する。したがって、P含有量はなるべく少ない方が好ましい。P含有量は0.03%以下である。P含有量は、好ましくは0.028%以下、さらに好ましくは0.025%以下である。また、P含有量は可能な限り低減することが好ましいが、極度の低減は製鋼コストの増大を招く。そのため、P含有量は、好ましくは0.0005%以上であり、さらに好ましくは0.0008%以上である。

0050

S:0.005%未満
硫黄(S)は不純物である。Sは鋼の熱間加工性を低下する。したがって、S含有量はなるべく少ない方が好ましい。S含有量は0.005%未満である。S含有量は、好ましくは0.003%以下であり、さらに好ましくは0.0015%以下である。また、S含有量は可能な限り低減することが好ましいが、極度の低減は製鋼コストの増大を招く。そのため、S含有量は、好ましくは0.0001%以上であり、さらに好ましくは0.0003%以上である。

0051

Cr:15.5〜18.0%
クロム(Cr)は鋼の耐食性を高める。具体的には、Crは腐食速度を低くし、鋼の耐SCC性を高める。C含有量が少なすぎれば、上記効果が有効に得られない。一方、Cr含有量が多すぎれば、鋼中のフェライト相の体積率が増加して鋼の強度が低下する。また、βを大きくすることが難しくなる。したがって、Cr含有量は15.5〜18.0%である。Cr含有量は、好ましくは17.8%以下であり、さらに好ましくは17.5%以下である。Cr含有量は、好ましくは16.0%以上であり、さらに好ましくは16.3%以上である。

0052

Ni:2.5〜6.0%
ニッケル(Ni)は鋼の靱性を高める。Niはさらに、鋼の強度を高める。Niは、熱間加工の温度でのオーステナイトの分率を高め、βを大きくするのに寄与する。Ni含有量が少なすぎれば、上記効果が有効に得られない。一方、Ni含有量が多すぎれば、残留オーステナイトが多く生成しやすくなり、その結果、鋼の強度が低下する。したがって、Ni含有量は2.5〜6.0%である。Ni含有量は、好ましくは6.0%未満であり、さらに好ましくは5.9%以下である。Ni含有量は、好ましくは3.0%以上であり、さらに好ましくは3.5%以上である。

0053

V:0.005〜0.25%
バナジウム(V)は、鋼の強度を高める。Vが0.005%未満では、必要な強度が得られない。しかしながら、V含有量が多すぎれば、靱性が低下する。また、βを大きくすることが難しくなる。したがって、V含有量は0.005〜0.25%とする。V含有量は、好ましくは0.20%以下であり、さらに好ましくは0.15%以下である。V含有量は、好ましくは0.008%以上であり、さらに好ましくは0.01%以上である。

0054

Al:0.05%以下
アルミニウム(Al)は鋼を脱酸する。しかしながら、Al含有量が多すぎれば、鋼中の介在物が増加して鋼の靱性が低下する。そのため、上限は0.05%とする。Al含有量は、好ましくは0.048%以下であり、さらに好ましくは0.045%以下である。Al含有量は、好ましくは0.0005%以上であり、さらに好ましくは0.001%以上である。

0055

N:0.06%以下
窒素(N)は鋼の強度を高める。しかしながら、N含有量が多すぎれば、オーステナイトが過剰に生成し、鋼中の介在物も増加する。その結果、鋼の靱性が低下する。したがって、N含有量は0.06%以下である。N含有量は、0.05%以下であり、さらに好ましくは0.03%以下である。N含有量は可能な限り低減することが好ましいが、極度の低減は製鋼コストの増大を招く。そのため、N含有量は、好ましくは0.001%以上であり、さらに好ましくは0.002%以上である。

0056

O:0.01%以下
酸素(O)は不純物である。Oは鋼の靭性及び耐食性を低下させる。したがって、O含有量は0.01%以下である。O含有量は、好ましくは0.01%未満であり、より好ましくは0.009%以下、さらに好ましくは0.006%以下である。O含有量は可能な限り低減することが好ましいが、極度の低減は製鋼コストの増大を招く。そのため、O含有量は、好ましくは0.0001%以上であり、さらに好ましくは0.0003%以上である。

0057

Mo:0〜3.5%、W:0〜3.5%
モリブデン(Mo)及びタングステン(W)は互いに置換可能な元素であり、両方を含有してもよく、一方だけを含有してもよい。Mo及びWは、少なくとも一方を含有することが必須である。これらの元素は鋼の耐SCC性を高める。一方、これらの元素の含有量が多すぎれば、その効果が飽和するとともに、βを大きくすることが難しくなる。したがって、Mo含有量は0〜3.5%であり、W含有量は0〜3.5%であり、Mo及びWからなる群から選択された1種又は2種を式(1)を満たす範囲で含有する必要がある。Mo含有量は、好ましくは3.3%以下であり、さらに好ましくは3.0%以下である。Mo含有量は、好ましくは0.01%以上であり、さらに好ましくは0.03%以上である。W含有量は、好ましくは3.3%以下であり、さらに好ましくは3.0%以下である。W含有量は、好ましくは0.01%以上であり、さらに好ましくは0.03%以上である。
1.0≦Mo+0.5W≦3.5 (1)

0058

本実施形態によるステンレス鋼の化学組成は、下記の選択元素を含有しても良い。すなわち、下記の元素は、いずれも本実施形態によるステンレス鋼に含有されていなくても良い。また、一部だけが含有されていても良い。

0059

Cu:0〜3.5%、Co:0〜1.5%
銅(Cu)及びコバルト(Co)は互いに置換可能な元素である。これらの元素は選択元素である。これらの元素は、焼戻しマルテンサイト相の体積分率を増加させ、鋼の強度を高める。また、βを大きくするのに寄与する。さらに、Cuは焼戻し時にCu粒子として析出し、その強度をさらに高める。これらの元素の含有量が少なすぎれば、上記効果が有効に得られない。一方、これらの元素の含有量が多すぎれば、鋼の熱間加工性が低下する。したがって、Cu含有量は0〜3.5%とし、Co含有量は0〜1.5%とする。さらに、上記効果を十分に得るためには、Cu:0.2〜3.5%及びCo:0.05〜1.5%からなる群から選択された1種又は2種を含有することが好ましい。Cu含有量は、好ましくは3.3%以下であり、さらに好ましくは3.0%以下である。Cu含有量は、好ましくは0.3%以上であり、さらに好ましくは0.5%以上である。Co含有量は、好ましくは1.0%以下であり、さらに好ましくは0.8%以下である。Co含有量は、好ましくは0.08%以上であり、さらに好ましくは0.1%以上である。

0060

Nb:0〜0.25%、Ti:0〜0.25%、Zr:0〜0.25%及びTa:0〜0.25%
ニオブ(Nb)、チタン(Ti)、ジルコニウム(Zr)及びタンタル(Ta)は互いに置換可能な元素である。これらの元素は選択元素である。これらの元素は鋼の強度を高める。これらの元素は鋼の耐孔食性及び耐SCC性を向上させる。これらの元素が少しでも含有されれば、上記効果が得られる。しかしながら、これらの元素の含有量が多すぎれば、鋼の靭性が低下する。したがって、Nb含有量は0〜0.25%であり、Ti含有量は0〜0.25%であり、Zr含有量は0〜0.25%であり、Ta含有量は0〜0.25%である。さらに、上記効果を十分に得るためには、Nb:0.01〜0.25%、Ti:0.01〜0.25%、Zr:0.01〜0.25%、及びTa:0.01〜0.25%からなる群から選択された1種又は2種以上を含有することが好ましい。Nb含有量は、好ましくは0.23%以下であり、さらに好ましくは0.20%以下である。Nb含有量は、好ましくは0.02%以上であり、さらに好ましくは0.05%以上である。Ti含有量は、好ましくは0.23%以下であり、さらに好ましくは0.20%以下である。Ti含有量は、好ましくは0.02%以上であり、さらに好ましくは0.05%以上である。Zr含有量は、好ましくは0.23%以下であり、さらに好ましくは0.20%以下である。Zr含有量は、好ましくは0.02%以上であり、さらに好ましくは0.05%以上である。Ta含有量は、好ましくは0.24%以下であり、さらに好ましくは0.23%以下である。Ta含有量は、好ましくは0.02%以上であり、さらに好ましくは0.05%以上である。

0061

Ca:0〜0.01%、Mg:0〜0.01%、REM:0〜0.05%及びB:0〜0.005%
カルシウム(Ca)、マグネシウム(Mg)、希土類元素(REM)及びボロン(B)は互いに置換可能な元素である。これらの元素は選択元素である。これらの元素は製造時の熱間加工性を改善する。これらの元素が少しでも含有されれば、上記効果がある程度得られる。しかしながら、Ca、Mg及びREMの含有量が多すぎれば、酸素と結合して合金清浄性を著しく低下させ、耐SSC性を劣化させる。また、B含有量が多すぎれば、鋼の靭性を低下させる。したがって、Ca含有量は0〜0.01%であり、Mg含有量は0〜0.01%であり、REM含有量は0〜0.05%であり、B含有量は0〜0.005%である。また、上記効果を十分に得るためには、Ca:0.0005〜0.01%、Mg:0.0005〜0.01%、REM:0.0005〜0.05%及びB:0.0003〜0.005%からなる群から選択された1種又は2種以上を含有することが好ましい。Ca含有量は、好ましくは0.008%以下であり、さらに好ましくは0.005%以下である。Ca含有量は、好ましくは0.0008%以上であり、さらに好ましくは0.001%以上である。Mg含有量は、好ましくは0.008%以下であり、さらに好ましくは0.005%以下である。Mg含有量は、好ましくは0.0008%以上であり、さらに好ましくは0.001%以上である。REM含有量は、好ましくは0.045%以下であり、さらに好ましくは0.04%以下である。REM含有量は、好ましくは0.0008%以上であり、さらに好ましくは0.001%以上である。B含有量は、好ましくは0.0045%以下であり、さらに好ましくは0.004%以下である。B含有量は、好ましくは0.0005%以上であり、さらに好ましくは0.0008%以上である。

0062

REMとは、スカンジウム(Sc)、イットリウム(Y)及びランタノイドの合計17元素の総称である。本実施形態において、REM含有量とは、上述の17元素の1種又は2種以上の総含有量を意味する。

0063

なお、本実施形態によるステンレス鋼の化学組成の残部は、Fe及び不純物である。ここでいう不純物とは、ステンレス鋼を工業的に製造する際に、原料として利用される鉱石スクラップから混入する元素、又は製造過程の環境等から混入する元素を意味する。

0064

[ミクロ組織]
本実施形態によるステンレス鋼のマトリクス組織は、体積率で、40〜80%の焼戻しマルテンサイト相と、10〜50%のフェライト相と、1〜15%のオーステナイト相とを有する。以降、マトリクス組織のこれらの体積率(分率)に関する%は、体積%を意味する。

0065

焼戻しマルテンサイト相の体積率が低すぎると、必要な強度が得られない。一方、焼戻しマルテンサイト相の分率が高すぎると、必要な耐食性や靱性が得られない。焼戻しマルテンサイト相の体積率の下限は、好ましくは45%であり、さらに好ましくは50%である。焼戻しマルテンサイト相の体積率の上限は、好ましくは75%であり、さらに好ましくは70%である。

0066

フェライト相の体積率が低すぎると、必要な耐食性が得られない。一方、フェライト相の体積率が高すぎると、必要な強度や靱性が得られない。フェライト相の体積率の下限は、好ましくは15%であり、さらに好ましくは20%である。フェライト相の体積率の上限は、好ましくは45%であり、さらに好ましくは40%である。

0067

オーステナイト相の体積率が低すぎると、必要な靱性が得られない。一方、オーステナイト相の体積率が高すぎると、必要な強度が得られない。オーステナイト相の体積率の下限は、好ましくは1.5%であり、さらに好ましくは2%である。オーステナイト相の体積率の上限は、好ましくは12%であり、さらに好ましくは10%である。

0068

なお、C、Ni、Cu、Co等のオーステナイト形成元素の含有量を多くすれば、焼戻しマルテンサイト相及びオーステナイト相の体積率が高くなり、フェライト相の体積率が低くなる。また、Si、Cr、V、Mo、W等のフェライト形成元素の含有量を多くすれば、フェライト相の体積率が高くなり、焼戻しマルテンサイト相及びオーステナイト相の体積率が低くなる。

0069

マトリクス組織中のフェライト相の体積率(フェライト分率:%)、オーステナイト相の体積率(オーステナイト分率:%)及び焼戻しマルテンサイト相の体積率(マルテンサイト分率:%)は次の方法で測定する。

0070

[フェライト分率の測定方法
ステンレス鋼の任意の位置からサンプルを採取する。ステンレス鋼の断面に相当するサンプルの表面(以下、観察面という)を研磨する。王水グリセリンとの混合溶液を用いて、研磨された観察面をエッチングする。エッチングにより白く腐食された部分がフェライト相であり、このフェライト相の面積率を、JIS G0555(2003)に準拠した点算法で測定する。測定された面積率は、フェライト相の体積分率に等しいと考えられるため、これをフェライト分率(%)と定義する。

0071

[オーステナイト分率の測定方法]
オーステナイト分率は、X線回折法を用いて求める。ステンレス鋼の任意の位置から、15mm×15mm×2mmのサンプルを採取する。サンプルを用いて、フェライト相(α相)の(200)面及び(211)面、オーステナイト相(γ相)の(200)面、(220)面及び(311)面の各々のX線強度を測定し、各面の積分強度を算出する。算出後、α相の各面とγ相の各面との組み合わせ(合計6組)毎に、以下の式(6)を用いて体積率Vγを求める。各面の体積率Vγの平均値を、オーステナイト分率(%)と定義する。
Vγ=100/{1+(Iα×Rγ)/(Iγ×Rα)} (6)

0072

ここで、Iαはα相の積分強度であり、Rγはγ相の結晶学理論計算値であり、Iγはγ相の積分強度であり、Rαはα相の結晶学的理論計算値である。

0073

[マルテンサイト分率の測定方法]
マトリクス組織のうち、フェライト相及びオーステナイト相以外の残部を、焼戻しマルテンサイト相の体積率(マルテンサイト分率)と定める。つまり、マルテンサイト分率(%)は100%からフェライト分率(%)及びオーステナイト分率(%)を引いた値である。

0074

[β]
本実施形態のステンレス鋼は、式(2)で定義されるβが1.55以上である。βは、次の方法で求める。ステンレス鋼の任意の板幅方向に垂直な断面(鋼管の場合は、管軸に平行な肉厚断面)から、マトリクス組織を100倍の倍率で撮影する。得られた1mm×1mmのミクロ組織画像を、肉厚方向をx軸としかつ長さ方向をy軸とするxy座標系に配置し、1024×1024の各画素をグレースケールで表す。したがって、グレースケール(256階調)で表されるミクロ組織画像は、ステンレス鋼のうち、肉厚方向及び長さ方向を含む面での断面から得られる。さらに、2次元離散フーリエ変換を用いて、グレースケールで表されるミクロ組織画像から、式(2)で定義されるβを求める。

0075

ただし、式(2)において、Suは式(3)で定義され、Svは式(4)で定義される。

0076

式(3)及び式(4)において、F(u,v)は式(5)で定義される。

0077

式(5)において、f(x,y)は座標(x,y)の画素の階調を表す。

0078

上述のとおり、βと低温靱性とは図9に示す関係を有する。本発明の一実施形態によるステンレス鋼は、マトリクス組織から求めたβが1.55以上であれば、図9に示すとおり、延性脆性の遷移温度が−30℃以下となる。したがって、本発明の一実施形態によるステンレス鋼は通常要求される−10℃において優れた低温靱性を示す。βは、好ましくは、1.6以上であり、さらに好ましくは、1.65以上である。

0079

βは、熱間加工の温度でのオーステナイト分率、及び圧延率に依存する。熱間加工の温度でのオーステナイト分率が高いほど、また、圧延率が大きいほど、βは大きくなる。熱間加工の温度でのオーステナイト分率を高くするには、C、Ni、Cu、Co等のオーステナイト形成元素の含有量を多くするか、Si、Cr、V、Mo、W等のフェライト形成元素の含有量を少なくすればよい。あるいは、低温で熱間加工すればよい。

0080

以上のことから、本発明の一実施形態によるステンレス鋼は、高強度を有し、高温での耐SCC性及び常温での耐SSC性に優れ、かつ優れた低温靱性を有する。本実施形態のステンレス鋼は、油井用ステンレス鋼材に用いることが好ましい。

0081

本実施形態によるステンレス鋼は、好ましくは、758MPa以上の降伏強度を有する。本実施形態によるステンレス鋼は、より好ましくは、800MPa以上の降伏強度を有する。

0082

本実施形態によるステンレス鋼は、好ましくは、延性脆性遷移温度が−30℃以下である。本実施形態によるステンレス鋼は、より好ましくは、延性脆性遷移温度が−35℃以下である。

0083

[製造方法]
本実施形態のステンレス鋼の製造方法の一例を説明する。上述の化学組成を有する鋼素材(スラブブルームビレット等の鋳片又は鋼片)を適切な温度範囲においてなるべく高い圧延率で熱間圧延することにより、βが1.55以上のマトリクス組織が得られる。本例では、ステンレス鋼の製造方法の一例として、ステンレス鋼板の製造方法について説明する。

0084

上述の化学組成を有する鋼素材を準備する。素材は、連続鋳造により製造された鋳片であってもよいし、鋳片又はインゴットを熱間加工して製造された板材であってもよい。

0085

準備された素材を加熱炉又は均熱炉装入し、加熱する。加熱された素材を熱間圧延して、中間材(熱間圧延後の鋼素材)を製造する。このとき、熱間圧延工程での圧延率40%以上とする。ここで、圧延率(r:%)は、次の式(7)で定義される。
r={1−(熱間圧延後の鋼素材の肉厚/熱間圧延前の鋼素材の肉厚)}×100 (7)

0086

熱間圧延時における鋼材温度圧延開始温度)を1200〜1300℃にする。ここでいう鋼材温度とは、素材の表面温度を意味する。素材の表面温度は、例えば、熱間圧延開始時に測定される。素材の表面温度は、素材の軸方向に沿って測定された表面温度の平均である。素材を加熱炉にて、例えば、1250℃の加熱温度均熱した場合、鋼材温度は実質的に加熱温度に等しくなり、1250℃になる。さらに、熱間圧延終了時の鋼材温度(圧延終了温度)は、1100℃以上が好ましい。

0087

製造工程中、複数の熱間圧延工程が存在する場合、圧延率は、1100〜1300℃の鋼材温度の素材に対して連続して実施された熱間圧延工程の累積の圧延率を意味する。

0088

熱間圧延時に鋼材温度が1100℃を下回る場合、熱間加工性の低下により鋼材表面に多量の疵が発生することがある。したがって、疵防止の観点からは、鋼材の加熱温度は高い方が好ましい。一方、層状度を高める(すなわち、βを大きくする)ためには低い温度で圧延することが好ましい。

0089

また、層状度を高める(すなわち、βを大きくする)ためには高い圧延率で圧延することが好ましい。

0090

熱間圧延後の素板(中間材)に対して焼入れ及び焼戻しを実施する。中間材に焼入れ及び焼戻しを実施することにより、ステンレス鋼板の降伏強度を758MPa以上にすることができる。さらに、マトリクス組織が焼戻しマルテンサイト相とフェライト相を有する。

0091

好ましくは、焼入れ工程では、中間材を一旦常温近傍の温度まで冷却する。そして、冷却された中間材を850〜1050℃の温度範囲に加熱する。加熱された中間材を、水等で冷却し、焼入れしてステンレス鋼板を製造する。好ましくは、焼戻し工程では、焼入れ後の中間材を650℃以下の温度に加熱する。つまり、焼戻し温度は好ましくは650℃以下である。焼戻し温度が650℃を超えると、鋼中に室温で残留するオーステナイト相が増加し、強度が低下しやすくなるからである。好ましくは、焼戻し工程では、焼入れ後の中間材を500℃を超えた温度に加熱する。つまり、焼戻し温度は好ましくは500℃を超えた温度である。

0092

以上の製造工程により、βが1.55以上であるステンレス鋼板が製造される。ステンレス鋼は、鋼板に限定されず、鋼板以外の他の形状であってもよい。好ましくは、素材を1200〜1250℃の温度で所定時間均熱し、その後、圧延率50%以上で圧延終了温度1100℃以上の熱間圧延を実施する。この場合、表面疵の発生を抑えつつ高い層状度をもつステンレス鋼材を得ることができる。

0093

表1に示す化学組成を有する鋼種A〜Wの鋼を溶製し、インゴットを製造した。鋼種A〜Vの化学組成は、本実施形態の範囲内である。鋼種Wは、Vを含有しない比較例である。各インゴットを熱間鍛造して、幅100mm、高さ30mmの板材を製造した。製造された板材を、番号1〜37の鋼素材として準備した。なお、表1に示す化学組成において、各元素の含有量は質量%であり、残部はFe及び不純物である。

0094

0095

準備された複数の素材を加熱炉で加熱した。加熱された素材を加熱炉から抽出し、抽出後速やかに熱間圧延を実施し、番号1〜37の中間材を製造した。熱間圧延時の素材各々の鋼材温度を、表2に示す。本実施例においては、素材を加熱炉にて十分な時間で加熱したため、鋼材温度は加熱温度に等しかった。各番号の熱間圧延での圧延率を、表2に示す。

0096

0097

番号1〜37各々の中間材に対して、焼入れ及び焼戻しを実施した。焼入れ温度は、950℃であった。焼入れ温度での保持時間(熱処理時間)は15分であった。水冷により、中間材に焼入れを実施した。焼戻し温度は、番号1、23〜30、32、33、37の中間材が550℃であり、番号2〜22、31、34〜36の中間材が600℃であった。焼戻し温度での保持時間は30分であった。以上の製造工程により、各番号の鋼板を製造した。

0098

ミクロ組織観察試験
番号1〜37各々の鋼板を幅中央で長さ方向に切断した。切断面(長さ方向をy軸、肉厚方向をx軸とする)のうち、鋼板の中心部分からミクロ組織観察用のサンプルを採取した。採取されたサンプルから、上述の方法で面積率を測定し、フェライト相の体積率と定義した。さらに、オーステナイト相の体積率を、上述のX線回折法により求めた。さらに、焼戻しマルテンサイト相の体積率を、フェライト相の体積率及びオーステナイト相の体積率を用いて上述の方法により求めた。

0099

さらに、観察面内の任意の位置から、観察倍率100倍であって1mm×1mmのミクロ組織画像(たとえば図1に示すような画像)を得た。得られたミクロ組織画像を用いて、上述の方法により、各番号の鋼板のβを算出した。

0100

[降伏強度評価試験]
番号1〜37各々の鋼板の肉厚方向の中央部分から、引張試験用の丸棒を採取した。丸棒の長手方向は、鋼板の圧延方向に平行な方向(L方向)であった。丸棒の平行部の直径は6mmであり、標点間距離は40mmであった。採取された丸棒に対して、JIS Z2241(2011)に準拠して、室温で引張試験を実施し、降伏強度(0.2%耐力)を求めた。

0101

[低温靱性評価試験]
低温靱性評価試験としてシャルピー衝撃試験を実施した。番号1〜37各々の鋼板の肉厚方向の中央部分から、ASTME23に準拠したフルサイズ試験片を採取した。試験片の長手方向は、板幅方向に平行であった。採取された試験片を用いて、20℃〜−120℃の温度範囲においてシャルピー衝撃試験を実施し、吸収エネルギー(J)を測定し、衝撃吸収エネルギーの延性−脆性遷移温度を求めた。

0102

高温耐SCC性評価試験
番号1〜37各々の鋼板から、4点曲げ試験片を採取した。試験片の長さは75mmであり、幅は10mmであり、厚さは2mmであった。試験片に4点曲げによるたわみを付与した。このとき、ASTMG39に準拠して、試験片に与えられる応力が試験片の0.2%オフセット耐力と等しくなるように、試験片のたわみ量を決定した。30bar(3.0MPa)のCO2と0.01bar(1kPa)のH2Sとが加圧封入された200℃のオートクレーブを番号1〜36各々に準備した。たわみをかけた試験片をオートクレーブに収納した。試験片は、オートクレーブ内で25mass%のNaCl溶液に720時間浸漬した。溶液は、0.41g/lのCH3COONaを含有したCH3COONa+CH3COOH緩衝系によりpH4.5に調整した。浸漬後の試験片に対して応力腐食割れ(SCC)の発生の有無を観察した。具体的には、試験片に対して、引張応力が付加された部分の断面を100倍の倍率で光学顕微鏡を用いて観察し、割れの有無を判定した。表3において、割れ無しが○であり、割れ有りが×であり、○の場合が×の場合よりも耐SCC性に優れる。さらに、試験片に対して、試験前の重量及び浸漬後の重量の変化量に基づいて、腐食減量を求めた。得られた腐食減量から年間腐食量(mm/Year)を計算した。

0103

[常温での耐SSC性評価試験]
番号1〜37各々の鋼板から、NACE TM0177 METHODA用の丸棒試験片を採取した。試験片の直径は6.35mmであり、平行部の長さは25.4mmであった。試験片の軸方向に引張応力を負荷した。このとき、NACA TM0177−2005に準拠して、試験片に与えられる応力が、試験材の実測の降伏応力の90%になるように調整した。試験片は、0.01bar(1kPa)のH2Sと0.99bar(0.099MPa)のCO2とを飽和させた25mass%のNaCl溶液に720時間浸漬した。溶液は、0.41g/lのCH3COONaを含有したCH3COONa+CH3COOH緩衝系によりpH4.0に調整した。さらに、溶液の温度は25℃に調整した。浸漬後の試験片に対して、硫化物応力割れSSC)の発生の有無を観察した。具体的には、番号1〜37の試験片のうち、試験中に破断した試験片、及び破断しなかった試験片の各々に対して、平行部を肉眼にて観察し、クラック又は孔食の発生の有無を判定した。表3において、クラック又は孔食の発生が無い場合が○であり、クラック又は孔食の発生がある場合が×であり、○の場合が×の場合よりも耐SSC性に優れる。

0104

[試験結果]
表3に試験結果を示す。番号1〜37の鋼板はいずれも、フェライト相の体積率(α分率)、オーステナイト相の体積率(γ分率)及び焼戻しマルテンサイト相の体積率(M分率)が、本実施形態の範囲内であった。このうち、番号1〜36の鋼材は、降伏強度が758MPa以上であり、年間腐食量が0.01mm/Year以下であり、耐SCC性及び耐SSC性が優れた。

0105

0106

番号1、4、7、10、12〜16、19〜36の各鋼材はいずれも、βが1.55以上であった。これらの鋼材は遷移温度が−30℃以下であり、低温靭性に優れる。

0107

番号37の鋼材は、βは1.55以上であったものの、降伏強度が758MPa未満であった。

0108

また、番号2、3、5、6、8、9、11、17、18の各鋼材はいずれも、βが1.5未満であり、遷移温度が−30℃を上回った。これらの鋼材は低温靭性に劣る。

実施例

0109

以上、本発明の一実施形態を説明したが、上述した実施形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施形態を適宜変形して実施することが可能である。

0110

本発明によれば、高強度を有し、常温での耐SSC性に優れ、かつ低温靱性に優れた油井用に好適なステンレス鋼を提供することができる。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

該当するデータがありません

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 日本製鉄株式会社の「 縦シーム溶接鋼管」が 公開されました。( 2021/08/19)

    【課題】鋼板を溶接入熱15〜110kJ/cmで溶接して鋼管とした場合であっても、低温での溶接金属部の靭性に優れた鋼管を得る。【解決手段】長手方向に内面及び外面が溶接された溶接部を有する縦シーム溶接鋼管... 詳細

  • 日本製鉄株式会社の「 機械部品、及び、機械部品の製造方法」が 公開されました。( 2021/08/19)

    【課題】疲労強度及び被削性に優れた機械部品を提供する。【解決手段】本開示の機械部品は、化学組成が、質量%で、C:0.30〜0.40%、Si:0.30〜1.00%、Mn:1.00〜2.00%、P:0.0... 詳細

  • 鈴木住電ステンレス株式会社の「 鋼線、その製造方法、及びばねまたは医療用線製品の製造方法」が 公開されました。( 2021/08/12)

    【課題・解決手段】本発明は、従来のステンレス鋼線の性能を著しく改善するばねまたは医療用線製品を製造するのに適した鋼線に関する。前記鋼線は(wt.%で):C:0.02〜0.15、Si:0.1〜0.9、M... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

該当するデータがありません

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ