図面 (/)

技術 分光輝度計の校正に用いる基準光源装置及びそれを用いる校正方法

出願人 大塚電子株式会社
発明者 白岩久志佐野弘幸
出願日 2015年3月24日 (6年3ヶ月経過) 出願番号 2017-507231
公開日 2018年1月11日 (3年5ヶ月経過) 公開番号 WO2016-151778
状態 特許登録済
技術分野 各種分光測定と色の測定
主要キーワード 中空半球状 半球殻 スポット測定 内面反射率 トレーサビリティー 測定ポート 特定事業者 校正済み
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2018年1月11日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (14)

課題・解決手段

輝度基準面における輝度ムラを低減する。開口である輝度基準面(18)を備える積分球(12)と、前記積分球(12)の外壁(12b)に互いに離間して設けられ、前記積分球(12)の内部に波長特性が同等の光をそれぞれ入射する複数の第1光ポート(14a),(14b)と、を含む分光輝度計(40)の校正に用いる基準光源装置(10)が提供される。前記複数の第1光ポート(14a),(14b)は、前記積分球(12)の外壁(12b)における、前記輝度基準面(18)の中心からの距離が等しく、前記輝度基準面(18)の中心を通る前記積分球(12)の回転対称軸Rに対して回転対称性を有する複数位置に設けられてよい。

概要

背景

下記特許文献1及び2には、分光輝度計校正を行うことができる基準光源が開示されている。これらの文献に開示された基準光源は、LED又は半導体レーザの光が外部から入射される積分球を備えており、該積分球内多重反射した光は、該積分球の外壁に設けられた開口である輝度基準面から出射する。校正対象の分光輝度計は、輝度基準面に対向するように設置されて、該輝度基準面の輝度を測定する。このようにして測定された輝度と、別途他の測定手段により測定される、確からしい前記輝度基準面の輝度と、に基づいて、校正対象の分光輝度計が校正される。

概要

輝度基準面における輝度ムラを低減する。開口である輝度基準面(18)を備える積分球(12)と、前記積分球(12)の外壁(12b)に互いに離間して設けられ、前記積分球(12)の内部に波長特性が同等の光をそれぞれ入射する複数の第1光ポート(14a),(14b)と、を含む分光輝度計(40)の校正に用いる基準光源装置(10)が提供される。前記複数の第1光ポート(14a),(14b)は、前記積分球(12)の外壁(12b)における、前記輝度基準面(18)の中心からの距離が等しく、前記輝度基準面(18)の中心を通る前記積分球(12)の回転対称軸Rに対して回転対称性を有する複数位置に設けられてよい。

目的

本発明は上記課題に鑑みてなされたものであって、第1の目的は、積分球の輝度基準面における輝度ムラを抑えることができる基準光源装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

開口である輝度基準面を備える積分球と、前記積分球の外壁において互いに離間して設けられ、前記積分球の内部に波長特性が同等の光をそれぞれ入射する複数の第1光ポートと、を含むことを特徴とする分光輝度計校正に用いる基準光源装置

請求項2

請求項1に記載の基準光源装置であって、前記複数の第1光ポートは、前記積分球の外壁における、前記輝度基準面の中心からの距離が等しく、前記輝度基準面の中心を通る前記積分球の回転対称軸に対して回転対称性を有する複数位置に設けられる、ことを特徴とする分光輝度計の校正に用いる基準光源装置。

請求項3

請求項2に記載の基準光源装置であって、前記積分球は全球状であり、前記複数の第1光ポートは、前記回転対称軸に垂直な面で前記積分球を切った円のうち最大半径となる円よりも前記輝度基準面側の円を等分する複数位置に設けられる、ことを特徴とする基準光源装置。

請求項4

請求項2に記載の基準光源装置であって、前記積分球はその中心に前記輝度基準面を備える円形平板を含む半球状であり、前記複数の第1光ポートは、前記円形平板と同心の円を等分する、前記円形平板上の複数位置に設けられる、ことを特徴とする基準光源装置。

請求項5

請求項1乃至4のいずれかに記載の基準光源装置であって、前記複数の第1光ポートのそれぞれに対し、光ファイバにより光を供給する単一の光源をさらに含む、ことを特徴とする基準光源装置。

請求項6

請求項5に記載の基準光源装置であって、前記単一の光源から前記複数の第1光ポートのそれぞれまでの光ファイバの長さが等しい、ことを特徴とする基準光源装置。

請求項7

請求項1乃至6のいずれかに記載の基準光源装置であって、前記積分球の外壁において互いに離間して設けられ、前記積分球の内部に前記複数の第1光ポートとは波長特性の異なる、同等の波長特性の光をそれぞれ入射する複数の第2光ポートをさらに含む、ことを特徴とする基準光源装置。

請求項8

請求項1乃至7のいずれかに記載の基準光源装置であって、前記積分球の外壁に設けられ、分光照度を測定する分光照度計が接続される測定ポートをさらに含む、ことを特徴とする基準光源装置。

請求項9

請求項1乃至8のいずれかに記載の基準光源装置であって、前記積分球の外壁に設けられるとともに、波長校正用光源が接続され、前記積分球の内部に既知波長ピークを有する光を入射する波長校正ポートをさらに含む、ことを特徴とする基準光源装置。

請求項10

請求項1に記載の基準光源装置を用いる分光輝度計の校正方法であって、校正対象分光輝度計により前記輝度基準面の輝度を測定するステップと、校正済み分光照度計により前記輝度基準面の照度を測定するステップと、前記測定される輝度と、前記測定される照度と、前記輝度と前記照度との関係と、に基づいて前記校正対象分光輝度計を校正するステップと、を含むことを特徴とする校正方法。

請求項11

請求項10に記載の校正方法であって、前記校正するステップは、前記関係に基づいて前記測定される照度を輝度に変換する、ことを特徴とする校正方法。

請求項12

請求項10又は11に記載の校正方法であって、前記関係は、校正済み分光照度計により測定される前記輝度基準面の照度と、校正済み分光輝度計により測定される前記輝度基準面の輝度と、を関連づけることにより得られる、ことを特徴とする校正方法。

請求項13

請求項10乃至12のいずれかに記載の校正方法において、前記校正済み分光照度計は、前記校正対象分光計を分光照度計として用いるための光学系を取り付け、分光放射照度標準電球により校正したものである、ことを特徴とする校正方法。

技術分野

0001

本発明は分光輝度計校正に用いる基準光源装置及びそれを用いる校正方法に関する。

背景技術

0002

下記特許文献1及び2には、分光輝度計の校正を行うことができる基準光源が開示されている。これらの文献に開示された基準光源は、LED又は半導体レーザの光が外部から入射される積分球を備えており、該積分球内多重反射した光は、該積分球の外壁に設けられた開口である輝度基準面から出射する。校正対象の分光輝度計は、輝度基準面に対向するように設置されて、該輝度基準面の輝度を測定する。このようにして測定された輝度と、別途他の測定手段により測定される、確からしい前記輝度基準面の輝度と、に基づいて、校正対象の分光輝度計が校正される。

先行技術

0003

特開2006−177785号公報
特開2009−52978号公報

発明が解決しようとする課題

0004

理論的には、積分球は積分球の中心に光源を配置することで光束の空間的均一化を図る装置であるところ、上記従来の輝度光源においては、光源の光が積分球の外部から積分球内に入射されており、厳密には、輝度基準面の輝度は均一とならない。すなわち、輝度基準面には輝度ムラが生じる。一方で、校正対象となる分光輝度計は、一般的には、測定角度が小さなスポット測定を行うものであるため、校正対象の分光輝度計が実際に輝度基準面のどこに向けられているかにより、輝度測定値は大きく異なることになる。

0005

また、上記従来の基準光源においては、それぞれ波長特性の異なる複数の個別光源の光が積分球の外壁上の異なる位置から積分球内に入射されているため、輝度基準面の輝度ムラの態様は個別光源により異なる。すなわち、個別光源の変更に伴う輝度ムラの変化によって、校正対象の分光輝度計による輝度測定値は大きな影響を受けることになる。

0006

このように、輝度基準面における輝度の均一性が確保されていない従来の基準光源によれば、分光輝度計の校正の信頼性は低くならざるを得ないという問題があった。

0007

本発明は上記課題に鑑みてなされたものであって、第1の目的は、積分球の輝度基準面における輝度ムラを抑えることができる基準光源装置を提供することにある。

0008

また、第2の目的は、積分球の輝度基準面における輝度ムラが抑えられた基準光源装置を用いる、信頼性が高く且つ簡便な分光輝度計の校正方法を提供することにある。

課題を解決するための手段

0009

上記課題を解決するために、本発明に係る基準光源装置は、開口である輝度基準面を備える積分球と、前記積分球の外壁において互いに離間して設けられ、前記積分球の内部に波長特性が同等の光をそれぞれ入射する複数の第1光ポートと、を含む。なお、本発明においては、「積分球」の語を、全球状、半球状、1/8球状など、内壁面での多重反射により入射光を均一化する装置を広く含む意味に用いる。

0010

ここで、前記複数の第1光ポートは、前記積分球の外壁における、前記輝度基準面の中心からの距離が等しく、前記輝度基準面の中心を通る前記積分球の回転対称軸に対して回転対称性を有する複数位置に設けられてよい。

0011

この場合、前記積分球は全球状であってよい。前記複数の第1光ポートは、前記回転対称軸に垂直な面で前記積分球を切った円のうち最大半径となる円よりも前記輝度基準面側の円を等分する複数位置に設けられてよい。

0012

また、前記積分球はその中心に前記輝度基準面を備える円形平板を含む半球状であってよい。前記複数の第1光ポートは、前記円形平板と同心の円を等分する、前記円形平板上の複数位置に設けられてよい。

0013

また、基準光源装置は、前記複数の第1光ポートのそれぞれに対し、光ファイバにより光を供給する単一の光源をさらに含んでよい。前記単一の光源から前記複数の第1光ポートのそれぞれまでの光ファイバの長さは等しくてよい。

0014

また、基準光源装置は、前記積分球の外壁において互いに離間して設けられ、前記積分球の内部に前記複数の第1光ポートとは波長特性の異なる、同等の波長特性の光をそれぞれ入射する複数の第2光ポートをさらに含んでよい。

0015

また、基準光源装置は、前記積分球の外壁に設けられ、分光照度を測定する分光照度計が接続される測定ポートをさらに含んでよい。

0016

また、基準光源装置は、前記積分球の外壁に設けられるとともに、波長校正用光源が接続され、前記積分球の内部に既知波長ピークを有する光を入射する波長校正ポートをさらに含んでよい。

0017

本発明に係る校正方法は、上記基準光源装置を用いる分光輝度計の校正方法であって、校正対象分光輝度計により前記輝度基準面の輝度を測定するステップと、校正済み分光照度計により前記輝度基準面の照度を測定するステップと、前記測定される輝度と、前記測定される照度と、前記輝度と前記照度との関係と、に基づいて前記校正対象分光輝度計を校正するステップと、を含む。

0018

ここで、前記校正するステップは、前記関係に基づいて前記測定される照度を輝度に変換してよい。

0019

また、前記関係は、校正済み分光照度計により測定される前記輝度基準面の照度と、校正済み分光輝度計により測定される前記輝度基準面の輝度と、を関連づけることにより得られてよい。

0020

また、前記校正済み分光照度計は、前記校正対象分光計を分光照度計として用いるための光学系を取り付け、分光放射照度標準電球により校正したものであってよい。

図面の簡単な説明

0021

本発明の一実施形態に係る基準光源装置及びそれを用いる校正システムの全体図である。
基準光源装置の平面図である。
図2におけるIII−III線断面図である。
校正対象分光輝度計の構成図である。
本発明の一実施形態に係る分光輝度計の校正方法を示すフロー図である。
輝度基準面における輝度の均一性を示す図である。
第1変形例に係る基準光源装置及びそれを用いる校正システムの全体図である。
第1変形例に係る基準光源装置の平面図である。
図8におけるIX−IX線断面図である。
第2変形例に係る基準光源装置を示す斜視図である。
第2変形例に係る基準光源装置を示す平面図である。
第3変形例に係る基準光源装置及びそれを用いる校正システムの全体図である。
図12に示す校正システムを用いる分光輝度計の校正方法を示すフロー図である。

実施例

0022

以下、本発明の一実施形態について図面に基づき詳細に説明する。

0023

図1は、本発明の一実施形態に係る基準光源装置及びそれを用いる校正システムの全体図である。同図において積分球12は斜視図で示されている。また、図2は、半球状である積分球12を割面側から見た平面図であり、図3は、図2におけるIII−III線断面図である。

0024

これらの図に示すように、基準光源装置10は積分球12を含んでいる。積分球12は中空半球状に形成されており、その外壁は半球殻部12aと円形平板部12bにより構成されている。割面である円形平板部12bの内面アルミ蒸着等によるミラーであり、また半球殻部12aの内面は硫酸バリウムPTFE(ポリテトラフルオロエチレン焼結品等による白色高拡散反射面である。円形平板部12bの中心には円形の開口である輝度基準面18が設けられており、積分球12は、輝度基準面18の中心を通り円形平板部12bに垂直な回転対称軸Rに対してn回対称(nは2以上の任意整数)の3次元形状である。積分球12を半球状とすることにより、後述の全球状のものと比べて、装置全体コンパクトにすることができ、また輝度基準面18に到達する光の量を約2倍とすることができる。

0025

円形平板部12bには、第1光源であるハロゲンランプ28からの光を積分球12内に入射するため、2つの第1光ポート16a,16bが設けられている。第1光ポート16a,16bの位置は、それらの位置から輝度基準面18の中心までの距離が等しく、また回転対称軸Rに対して2回対称となるよう設定されている。つまり、第1光ポート16a,16bは、輝度基準面18の同心円を2等分する位置に設けられている。第1光ポート16a,16bには、上述のように単一の光源であるハロゲンランプ28の光がY字状に形成されて途中で分岐した光ファイバにより導光されている。ハロゲンランプ28から第1光ポート16a、16bまでの光ファイバの長さは等しい。このため、ハロゲンランプ28が劣化して波長特性が変化しても、第1光ポート16a,16bからは常に同一の波長特性の光が出射される。

0026

同様に、円形平板部12bには、第2光源である重水素ランプ30からの光を積分球12内に入射するため、2つの第2光ポート14a,14bも設けられている。第2光ポート14a,14bの位置も、それらの位置から輝度基準面18の中心までの距離が等しく、また回転対称軸Rに対して2回対称となるよう調整されている。つまり、第2光ポート14a,14bも、輝度基準面18の中心を通る円を2等分する位置に設けられている。ここでは、第1光ポート16a,16bと第2光ポート14a,14bは互いに90度ずれた位置に設けられている。第2光ポート14a,14bには、上述のように単一の光源である重水素ランプ30の光がY字状に形成されて途中で分岐した光ファイバにより導光されている。重水素ランプ30から第2光ポート14a、14bまでの光ファイバの長さは等しい。このため、重水素ランプ30が劣化して波長特性が変化しても、第2光ポート14a,14bからは常に同一の波長特性の光が出射される。なお、ハロゲンランプ28は可視近赤外領域の光を出射し、重水素ランプ30は紫外領域の光を出射する。

0027

なお、第1光ポート16a,16b及び第2光ポート14a,14bの取り付け位置は上述のものに限らず、積分球12の半球殻部12aに設けられてもよい。この場合も、輝度基準面18の中心からの距離が等しく、輝度基準面18の中心を通る積分球12の回転対称軸Rに対して回転対称性を有する複数位置に、第1光ポート16a,16bや第2光ポート14a,14bが設けられることが望ましい。この場合、第1光ポート16a,16bや第2光ポート14a,14bから出射される光が輝度基準面18に届かないように、積分球12の内面に所要数遮光壁を設けることが望ましい。この点、上述のように円形平板部12bに第1光ポート16a,16b及び第2光ポート14a,14bを設ければ、このような遮光壁は不要であり、また平板に対する加工で済むために製造が容易となる。

0028

半球殻部12aの縁部には、内蔵分光照度計24が光ファイバにより接続される測定ポート20と、波長校正用光源26が光ファイバにより接続される波長校正ポート22と、がさらに設けられる。内蔵分光照度計24は、後述するように、校正対象(被校正)分光輝度計40を校正する基準となる輝度基準面18の輝度を測定するものである。半球殻部12aの内面には、第1光ポート16a,16b及び第2光ポート14a,14bから出射される光が測定ポート20に直接届かないよう、測定ポート20の周囲に環状の遮光壁21が立設されている。波長校正用光源26は、例えば水銀ランプ及びネオンランプを含んでおり、既知の波長ピーク(水銀輝線及びネオン輝線)を有する光を出射する。

0029

ハロゲンランプ28及び重水素ランプ30が点灯すると、それぞれの光は第1光ポート16a,16b及び第2光ポート14a,16bから積分球12内に入射し、多重反射した後に輝度基準面18に達し、そこから外部に出射する。校正対象となる分光輝度計40は輝度基準面18から所定距離の位置に輝度基準面18に対向するように設置され、この光を測定することにより校正が実施される。

0030

なお、後述するように分光輝度計40の位置には、内蔵分光照度計24の感度校正のために分光放射照度標準電球32を設置可能となっている。分光放射照度標準電球32は、所定の波長特性を有するものとして特定事業者により校正された電球である。

0031

ハロゲンランプ28、重水素ランプ30、内蔵分光照度計24、波長校正用光源26、分光輝度計40及び分光放射照度標準電球32は、いずれもコンピュータにより構成されたコントローラ34に接続されている。これにより、コントローラ34はハロゲンランプ28、重水素ランプ30、波長校正用光源26及び分光放射照度標準電球32の点灯を制御できる。また、コントローラ34は、内蔵分光照度計24により測定された照度を取得したり、内蔵分光照度計24の校正を行ったりできる。さらに、コントローラ34は、校正対象分光輝度計40により測定された輝度を取得したり、校正対象分光輝度計40の校正を行ったりできる。

0032

図4は、校正対象分光輝度計40の構成例を示す図である。同図に示す校正対象分光輝度計40は、いわゆるポリクロメータであり、集光光学系41を介して入射スリット42に導かれる被測定光凹面型回折格子44により回折され、回折光受光センサアレイ45に至る。受光センサアレイ45には波長分散像結像するので、受光センサアレイ45の各画素出力値対応波長の輝度に変換される。すなわち、受光センサアレイ45に接続されたコントローラ46は画素−波長テーブル記憶部47及び感度補正値記憶部48を含んでいる。画素−波長テーブル記憶部47は、どの画素がどの波長に対応するかを記憶するものである。一方、感度補正値記憶部48は各画素の出力値を輝度に変換する係数を記憶するものである。本実施形態に係る校正システムでは、コントローラ34が、画素−波長テーブルを更新することにより、校正対象分光輝度計40の波長校正を実施し、感度補正値を更新することにより、校正対象分光輝度計40の感度校正を実施する。なお、内蔵分光照度計24も同様の構成を有している。

0033

図5は、校正システムによる校正方法を示すフロー図である。同図に示される各ステップは、コントローラ34により順に実行されるものであるが、もちろん校正作業者による手作業で実行されてもよい。まず、本校正方法では、まず内蔵分光照度計24の波長校正を実施する(S101)。具体的には、コントローラ34は波長校正用光源26を点灯させ、既知の波長ピークを有する光を積分球12内に入射する。また、入射光の分光照度を内蔵分光照度計24により計測し、波長ピークが既知の値に一致するよう、内蔵分光照度計24に記憶される画素−波長テーブルを更新する。

0034

次に、内蔵分光照度計24の感度校正を実施する(S102)。具体的には、コントローラ34は、分光放射照度標準電球32を輝度基準面18の正面であって輝度基準面18から所定距離だけ離れた位置に設置し、分光放射照度標準電球32を点灯させる。こうして、分光放射照度標準電球32は輝度基準面18を既知の分光照度にて照らす。なお、分光放射照度標準電球32の移動は電気的手段及び機械的手段により自動化してもよいし、ガイドメッセージなどを表示して校正作業者に手作業で行わせてもよい。次に、コントローラ34は、内蔵分光照度計24により分光照度を測定する。そして、各波長での照度が、分光放射照度標準電球32のそれとして既知のものと一致するよう、内蔵分光照度計24に記憶される感度補正値を更新する。

0035

次に、このようにして波長校正及び感度校正を終えた内蔵分光照度計24を用いて、ハロゲンランプ28及び重水素ランプ30により出射される光の分光照度を計測する(S103)。具体的には、コントローラ34は、ハロゲンランプ28及び重水素ランプ30を点灯させるとともに、内蔵分光照度計24により分光照度を計測させ、その計測値を取り込む。

0036

次に、コントローラ34は、内蔵分光照度計24により計測された分光照度を、照度−輝度テーブルにより分光輝度に変換する(S104)。本校正方法では、事前に製造会社の工場サービス拠点で校正済みの分光輝度計を準備し、前記S101・S102・S103を完了後、校正済みの分光輝度計を校正対象分光輝度計40の設置位置に設置し、ハロゲンランプ28及び重水素ランプ30を点灯させ、内蔵分光照度計24で分光照度を計測すると同時に校正済みの分光輝度計で分光輝度を計測する。そして、こうして計測される分光照度及び分光輝度を関連づけることにより、照度−輝度テーブル、すなわち波長ごとの照度及び輝度の変換係数を事前に得ている。照度−輝度テーブルは事前にコントローラ34に記憶されている。S104では、内蔵分光照度計24により得られる各波長の照度に、この照度−輝度テーブルに含まれる変換係数を乗じることにより、各波長の輝度、すなわち分光輝度を得ている。

0037

次に、コントローラ34は校正対象分光輝度計40の波長校正を実施する(S105)。具体的には、分光放射照度標準電球32を輝度基準面18の正面から退去させてから、校正作業者に対してガイドメッセージを表示し、校正対象分光輝度計40を輝度基準面18の正面であって該輝度基準面18から所定距離に配置させる。さらに、コントローラ34は波長校正用光源26を点灯させ、校正対象分光輝度計40により分光輝度を計測させる。そして、計測される波長ピークが既知の値に一致するよう、校正対象分光輝度計40の画素−波長テーブル記憶部47に記憶される画素−波長テーブルを更新する。

0038

次に、コントローラ34は、このようにして波長校正を終えた校正対象分光輝度計40を用いて、ハロゲンランプ28及び重水素ランプ30により出射される光の分光輝度を計測する(S106)。具体的には、コントローラ34は、ハロゲンランプ28及び重水素ランプ30を点灯させるとともに、校正対象分光輝度計40により分光輝度を計測させ、その計測値を取り込む。

0039

その後、コントローラ34は、S106で測定される分光輝度がS104で得られる分光輝度に一致するよう、校正対象分光輝度計40の感度補正値記憶部48に記憶される感度補正値を更新する(S107)。

0040

本実施形態に係る基準光源装置10によれば、上述のように、波長特性が同じ光を互いに離間した第1光ポート16a,16bから積分球12内に入射するようにしたので、1箇所だけから光を入射する場合に比して、輝度基準面18の輝度ムラを抑えることができる。特に、第1光ポート16a,16bは、積分球12の外壁における、輝度基準面18の中心からの距離が等しく、回転対称軸Rに対して回転対称性を有する位置に設けられるので、輝度基準面18の輝度ムラをより効果的に抑えられる。同様に、第2光ポート14a,14bから入射する光についても輝度基準面18での輝度ムラが抑えられる。

0041

図6は、輝度基準面18における輝度の均一性を示す図である。同図(a)は、第1光ポート16aから光を入射した場合の輝度ムラを示す図であり、同図(b)は、第1光ポート16a,16bの双方から光を入射した場合の輝度ムラを示す図である。横軸は、輝度基準面18の中心から測定位置までの距離を、輝度基準面18の半径に対する百分率で示している。縦軸は、当該測定位置での輝度を、輝度基準面18の中心での輝度に対する百分率で示している。測定は、第1光ポート16aの中心と輝度基準面18の中心を結ぶ線上を、輝度基準面18の中心から25%離れた位置から25%近づいた位置まで移動させて実施した。これらの図によれば、第1光ポート16a,16bから出射した光が相互に重なりあって、輝度基準面18の輝度ムラを大きく低減していることが確認できる。

0042

また、このように基準光源装置10によれば輝度基準面18の輝度ムラを大きく低減することができるので、本実施形態によれば、予め校正された分光輝度計を用いずとも、内蔵分光照度計24により測定された分光照度を用いて、校正対象分光輝度計40の校正を精度よく行うことができる。すなわち、既に説明したように、分光輝度計は、一般的には、測定角度が小さなスポット測定を行うものであるため、輝度基準面18の輝度ムラが大きいと、分光輝度計が実際に輝度基準面18のどこに向けられているかにより、輝度測定値は大きく異なることになる。このため、校正済みの分光照度計及び校正済みの分光輝度計を用いて照度−輝度テーブルを作成する際の当該校正済み分光輝度計と全く同一の位置の輝度を、校正対象分光輝度計40が測定しない限り、校正の信頼性は保証されない。本実施形態によれば、輝度基準面18の輝度ムラが大きく低減されているので、照度−輝度テーブルを作成する際の校正済み分光輝度計の測定位置とずれた位置の輝度を、実際に校正対象分光輝度計40で測定したとしても、その差は小さいので、校正の信頼性を維持することができる。

0043

また、内蔵分光照度計24の校正は分光放射照度標準電球32を用いて簡単に行うことができるので、製造会社の工場やサービス拠点でなくても、ユーザ側で、分光放射照度標準電球32とのトレーサビリティーが確保された校正を実施することができる。

0044

また、本実施形態によれば、第1ポート16a,16b及び第2ポート14a,14bから異なる波長特性の光を入射しているので、広い波長範囲分光放射輝度校正が可能となる。上述のようにハロゲンランプ28及び重水素ランプ30を用いれば、紫外領域から赤外領域までの広波長領域での分光放射輝度校正が可能となる。

0045

また、内蔵分光照度計24で都度、基準光源装置10の照度を測定することができるので、ハロゲンランプ28及び重水素ランプ30の光量を変更して、複数の輝度値により校正対象分光輝度計40の校正を行うことができる。さらに、積分球12の内面反射率が低下しても、信頼性の高い分光放射輝度校正を実施することができる。

0046

なお、本発明は上記実施形態に限定されず、種々の変形実施が可能である。

0047

図7は、第1変形例に係る基準光源装置及びそれを用いる校正システムの全体図である。図8は、第1変形例に係る基準光源装置を輝度基準面118側から見た平面図であり、図9は、図8におけるIX−IX線断面図である。図7において、基準光源装置110は斜視図で示されている。第1変形例は、図1に示される校正システムと比して基準光源装置110のみ異なっているので、他の要素は図1と同一符号を付し、ここでは詳細説明を省略する。

0048

基準光源装置110は全球状の積分球112を備えており、積分球112の1箇所に円形の開口である輝度基準面118が設けられており、輝度基準面118の中心及び積分球112の中心を通る回転対称軸Rに対して、積分球112はn回対称(nは2以上の任意整数)の3次元形状である。

0049

第1光ポート116a,116bは、積分球112の外壁における、輝度基準面118の中心からの距離が等しく、回転対称軸Rに対して回転対称性を有する位置に設けられる。ここでは、第1光ポート116a,116bは、回転対称軸Rに垂直な面で積分球112を切った円のうち最大半径となる円X(赤道)よりも輝度基準面118側の円Yを2等分した位置に光の出射方向が積分球112の中心を向くようにして設けられている。同様に、第2光ポート114a,114bも、積分球112の外壁における、輝度基準面118の中心からの距離が等しく、回転対称軸Rに対して回転対称性を有する位置に設けられる。ここでは、第2光ポート114a,114bは円Yを2等分した位置に光の出射方向が積分球112の中心を向くようにして設けられており、ここでは、第1光ポート116a,116bと第2光ポート114a,114bは互いに90度ずれた位置に設けられている。積分球112の外壁には、測定ポート120及び波長校正ポート122も設けられている。ここでは測定ポート120及び波長校正ポート122は円X上において180度ずれた位置に設けられている。なお、第1光ポート116a,116b及び第2光ポート114a,114bの取り付け位置は上述のものに限らず、輝度基準面118の中心からの距離が等しく、輝度基準面118の中心を通る積分球112の回転対称軸Rに対して回転対称性を有する複数位置であれば、どこであってもよい。但し、第1光ポート116a,116b及び第2光ポート114a,114bを、それらの光の出射方向が積分球112の中心を向くようにして円Y上に設けることで、出射される光(1次光)が輝度基準面118に直接到達しないようにするための遮光壁を設けずに済むという利点がある。

0050

第1変形例に係る積分球112でも、ハロゲンランプ28の光を互いに離間した第1光ポート116a,116bから、重水素ランプ32の光を互いに離間した第2光ポート114a,114bから、積分球112内にそれぞれ入射するようにしたので、それぞれの光を1箇所だけから光を入射する場合に比して、輝度基準面18の輝度ムラを抑えることができる。第1光ポート116a,116bは、積分球112の外壁における、輝度基準面118の中心からの距離が等しく、回転対称軸Rに対して回転対称性を有する位置に設けられるので、輝度基準面118の輝度ムラをより効果的に抑えられる。同様に、第2光ポート114a,114bから入射する光についても輝度基準面118での輝度ムラが抑えられる。

0051

図10は、第2変形例に係る基準光源装置を示す斜視図である。また、図11は、第2変形例に係る基準光源装置を矢印X側から見た平面図である。同図に示す基準光源装置210は1/8球状の積分球212を備えており、その外壁は扇型の平板部212a,212b,212cと1/8球殻部212dとから構成される。また、平板部212a,212b,212cにより構成されるべき角部は回転対称軸Rに垂直な面にて切り欠かれており、その面に円形の開口である輝度基準面218がその中心が回転対称軸Rに一致するようにして開設されている。平板部212a,212b,212cの各内面、輝度基準面218が設けられた外壁部分の内面は、いずれもアルミ蒸着等によるミラーであり、また1/8球殻部212dの内面は硫酸バリウムやPTFE焼結品等による白色高拡散反射面である。積分球212は、回転対称軸Rに対して3回対称の3次元形状である。積分球212を1/8球状とすることで、装置をさらにコンパクトにすることができ、また輝度基準面218に到達する光の量をさらに増加させることができる。

0052

平板部212aに第1光ポート216aが設けられ、平板部212bに第1光ポート216bが設けられ、平板部212cに第1光ポート216cが設けられ、それらは輝度基準面218の中心からの距離が等しく、回転対称軸Rに対して回転対称性(3回対称)を有している。同様に、平板部212aには第1光ポート216aの隣に第2光ポート214aが設けられ、平板部212bには第1光ポート216bの隣に第2光ポート214bが設けられ、平板部212cには第1光ポート216cの隣に第2光ポート214cが設けられ、それらも輝度基準面218の中心からの距離が等しく、回転対称軸Rに対して回転対称性(3回対称)を有している。

0053

平板部212bには、測定ポート220が設けられ、平板部212cには波長校正ポート222が設けられている。第2変形例に係る基準光源装置210でも、輝度基準面218における輝度ムラを抑えることができる。

0054

図12は、第3変形例に係る基準光源装置及びそれを用いる校正システムの全体図である。同図に示す校正システムは、図1に示す校正システムに比して、基準光源装置310に測定ポート20、内蔵分光照度計24、波長校正ポート22、波長校正用光源26、分光放射照度標準電球32が設けられてない点、校正済み分光照度計320が設けられている点が異なる。その他の要素には図1と同一符号を付し、ここでは詳細説明を省略する。

0055

同図に示す基準光源装置310も半球状であるが、上記のように内蔵分光照度計24及び波長校正用光源26が接続されない。代わりに、校正済み分光照度計32で輝度基準面18の照度を測定することにより、校正対象分光輝度計40の校正を実施することができる。校正済み分光照度計32は、例えば分光放射照度標準電球や、水銀ランプやネオンランプなどの波長校正用光源により、事前に校正されたものである。

0056

図13は、図12に示す校正システムを用いる分光輝度計の校正方法を示すフロー図である。同図に示すように、この方法では、まず校正済み分光照度計320により、ハロゲンランプ28及び重水素ランプ30により出射される光の分光照度を計測する(S201)。具体的には、コントローラ34は、ハロゲンランプ28及び重水素ランプ30を点灯させるとともに、校正済み分光照度計320により分光照度を計測させ、その計測値を取り込む。

0057

次に、コントローラ34は、校正済み分光照度計320により計測された分光照度を、照度−輝度テーブルにより分光輝度に変換する(S202)。ここでは、事前に校正済みの分光照度計及び分光輝度計を準備し、校正済みの分光照度計を輝度基準面18の正面であって該輝度基準面18から所定距離の位置に配置し、ハロゲンランプ28及び重水素ランプ30から出射される光の分光照度を計測する。また、校正済みの分光輝度計を輝度基準面18の正面であって該輝度基準面18から所定距離の位置に配置し、ハロゲンランプ28及び重水素ランプ30から出射される光の分光照度を計測する。そして、こうして計測される分光照度及び分光輝度を関連づけることにより、照度−輝度テーブル、すなわち波長ごとの照度及び輝度の変換係数を事前に得る。照度−輝度テーブルは事前にコントローラ34に記憶されている。S202では、校正済み分光照度計320により得られる各波長の照度に、この照度−輝度テーブルに含まれる変換係数を乗じることにより、各波長の輝度、すなわち分光輝度を得る。

0058

次に、コントローラ34は、校正対象分光輝度計40を用いて、ハロゲンランプ28及び重水素ランプ30により出射される光の分光輝度を計測する(S203)具体的には、コントローラ34はガイドメッセージの表示などにより、校正作業者に、校正対象分光輝度計40を輝度基準面18の正面であって該輝度基準面18から所定距離に配置させる。さらに、ハロゲンランプ28及び重水素ランプ30を点灯させるとともに、校正対象分光輝度計40により分光輝度を計測させ、その計測値を取り込む。

0059

その後、コントローラ34は、S203で測定される分光輝度がS202で得られる分光輝度に一致するよう、校正対象分光輝度計40の感度補正値記憶部48に記憶される感度補正値を更新する(S204)。

0060

このように、内蔵分光照度計24等を設けなくても、輝度ムラが抑えられた基準輝度面18を用いて、信頼性の高い分光放射輝度校正を実施できる。なお、校正対象分光輝度計40の中には、集光光学系の前方に拡散板その他の光学系を取り付けることにより、分光照度計として動作させることができるものも市販されている。このような校正対象分光輝度計40の場合には、分光照度計として動作する校正対象分光輝度計40を、例えば分光放射照度標準電球や、水銀ランプやネオンランプなどの波長校正用光源により事前に校正して、校正済み分光照度計320として用いることができる。当然ながら、校正済み分光照度計320の測定波長範囲は、校正対象分光輝度計40の測定波長範囲と同等か、それ以上の広波長範囲が必要である。

0061

また、以上の説明では第1光源及び第2光源としてハロゲンランプ28及び重水素ランプ30を用いたが、LEDやレーザなどの他の光源を用いてよいのはもちろんである。また、波長校正には、信頼性確保のために波長校正用光源26を用いたが、第1光源及び第2光源からの光の波長ピークを用いて波長校正を行ってもよい。また、光源の数は2つに限らず、3つ以上を用いてよい。さらに、各波長特性の光源は、3以上の光ポートから積分球内に入射されてよい。この場合も、輝度基準面の中心との距離が等しく、また回転対称軸Rに対して回転対象性を有するよう、各光ポートの位置を決定することが望ましい。例えば、図1の例では、円形平板部12bと同心円上で120度ずつ互いにずれた位置に3つの光ポートを配置してよい。光ポートの数を増やすことにより、輝度基準面の輝度ムラをさらに効果的に抑えることができる。

0062

また、本発明に係る基準光源装置は、本発明に係る校正方法だけでなく、他の校正方法にも適用可能である。例えば、分光照度計を用いずに、校正済みの分光輝度計により測定される分光輝度と、校正対象分光輝度計40により測定される分光輝度と、により、校正対象分光輝度計40の校正を実施する場合にも、本発明に係る基準光源装置は適用することができる。この場合も、輝度基準面18の輝度ムラが抑えられているので、より信頼性の高い分光放射輝度校正を実施できる。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ