図面 (/)
課題・解決手段
システムの異常が、障害に起因した異常か、経年劣化に起因した異常かを判別する。監視装置(100)は、モデル記憶部(122)、モデル生成部(112)、及び、判定部(114)を含む。モデル記憶部(122)は、システムの複数のメトリック間の関係性を示すモデルであって、一の時点のモデルである、監視用モデルを記憶する。モデル生成部(112)は、複数のメトリック間の関係性が監視用モデルに適合しない時点のモデルである、比較用モデルを生成する。判定部(114)は、監視用モデルにおいて関係性が示されているメトリック間の関係性が、比較用モデルにおいて示されている場合、システムのメトリック間の関係性が変化したと判定し、判定結果を出力する。
概要
背景
化学プラントや石油精製プラント等のプラントシステムでは、経年劣化によって、配管の内壁にゴミ等が付着し、プラントの動作に支障をきたす可能性がある。このため、配管の定期的な点検や清掃が行われる。点検や清掃の間隔は、一般に、経験則に従って決められており、その間隔が適当であるかどうかは明らかでない。したがって、点検や清掃の間隔を適正化して保守コストを低減するために、経年劣化の発生を検出することが求められる。
プラントシステムの異常を検出するための技術として、例えば、特許文献1に記載されている不変関係分析が知られている。不変関係分析では、システムのメトリック(性能指標)間の統計的関係性を示す相関モデルが生成され、システムの挙動と相関モデル間に差異がある場合、システムの異常として検出される。
なお、関連技術として、特許文献2には、不変関係分析において、障害発生時に相関破壊が検出された相関関係の情報を用いて、不具合要因を推測する技術が開示されている。また、特許文献3には、不変関係分析において、正常時や異常時の相関破壊の分布を用いて、システムの障害の予兆を検出する技術が開示されている。
概要
システムの異常が、障害に起因した異常か、経年劣化に起因した異常かを判別する。監視装置(100)は、モデル記憶部(122)、モデル生成部(112)、及び、判定部(114)を含む。モデル記憶部(122)は、システムの複数のメトリック間の関係性を示すモデルであって、一の時点のモデルである、監視用モデルを記憶する。モデル生成部(112)は、複数のメトリック間の関係性が監視用モデルに適合しない時点のモデルである、比較用モデルを生成する。判定部(114)は、監視用モデルにおいて関係性が示されているメトリック間の関係性が、比較用モデルにおいて示されている場合、システムのメトリック間の関係性が変化したと判定し、判定結果を出力する。
目的
効果
実績
- 技術文献被引用数
- 0件
- 牽制数
- 1件
この技術が所属する分野
(分野番号表示ON)※整理標準化データをもとに当社作成
請求項1
システムの複数のメトリック間の関係性を示すモデルであって、一の時点のモデルである、第1のモデルを記憶するモデル記憶手段と、前記複数のメトリック間の関係性が前記第1のモデルに適合しない時点の前記モデルである、第2のモデルを生成するモデル生成手段と、前記第1のモデルにおいて関係性が示されているメトリック間の関係性が、前記第2のモデルにおいて示されている場合、前記システムのメトリック間の関係性が変化したと判定し、判定結果を出力する、判定手段と、を備える情報処理装置。
請求項2
前記判定手段は、前記第1のモデルにおいて関係性が示されているメトリック間の関係性が、前記第2のモデルにおいて示されていない場合、前記システムの障害が発生したと判定する、請求項1に記載の情報処理装置。
請求項3
前記モデルは、前記複数のメトリック間の関係性を、当該複数のメトリックの内の一のメトリックと他のメトリックとの間のメトリックの値の関係式により示し、前記判定手段は、前記第1のモデルに含まれるメトリックのペアと同じペアの前記関係式が前記第2のモデルに存在する場合、前記第1のモデルにおいて関係性が示されているメトリック間の関係性が、前記第2のモデルにおいて示されていると判定する、請求項1または2に記載の情報処理装置。
請求項4
前記判定手段は、前記第1のモデルに含まれるメトリックのペアと同じペアの前記関係式が前記第2のモデルに存在し、かつ、前記第1のモデルと前記第2のモデルとの間で変化した同じペアの前記関係式の数が所定の閾値以上の場合、前記システムのメトリック間の関係性が変化したと判定する、請求項3に記載の情報処理装置。
請求項5
前記関係式は、前記一のメトリックの時刻tの値をx(t)、前記他のメトリックの時刻tの値をy(t)とした場合、パラメータn(nは1以上の整数)、m(mは1以上の整数)、k(kは0以上の整数)、及び、係数ai(1≦i≦n)、bj(1≦j≦m)、cを用いて、次式で表され、前記判定手段は、前記第1のモデルと前記第2のモデルとの間で、同じペアの前記関係式の前記係数ai、bj、及び、cのいずれかの差分が所定の閾値以上の場合、または、前記パラメータn、m、kのいずれかが変化した場合、当該同じペアの関係式が変化したと判定する、請求項4に記載の情報処理装置。
請求項6
前記判定手段は、前記第1のモデル、及び、前記第2のモデルの各々の、前記変化した関係式を出力する、請求項4または5に記載の情報処理装置。
請求項7
システムの複数のメトリック間の関係性を示すモデルであって、一の時点のモデルである、第1のモデルを記憶し、前記複数のメトリック間の関係性が前記第1のモデルに適合しない時点の前記モデルである、第2のモデルを生成し、前記第1のモデルにおいて関係性が示されているメトリック間の関係性が、前記第2のモデルにおいて示されている場合、前記システムのメトリック間の関係性が変化したと判定し、判定結果を出力する、情報処理方法。
請求項8
技術分野
背景技術
0002
化学プラントや石油精製プラント等のプラントシステムでは、経年劣化によって、配管の内壁にゴミ等が付着し、プラントの動作に支障をきたす可能性がある。このため、配管の定期的な点検や清掃が行われる。点検や清掃の間隔は、一般に、経験則に従って決められており、その間隔が適当であるかどうかは明らかでない。したがって、点検や清掃の間隔を適正化して保守コストを低減するために、経年劣化の発生を検出することが求められる。
0003
プラントシステムの異常を検出するための技術として、例えば、特許文献1に記載されている不変関係分析が知られている。不変関係分析では、システムのメトリック(性能指標)間の統計的関係性を示す相関モデルが生成され、システムの挙動と相関モデル間に差異がある場合、システムの異常として検出される。
0004
なお、関連技術として、特許文献2には、不変関係分析において、障害発生時に相関破壊が検出された相関関係の情報を用いて、不具合要因を推測する技術が開示されている。また、特許文献3には、不変関係分析において、正常時や異常時の相関破壊の分布を用いて、システムの障害の予兆を検出する技術が開示されている。
先行技術
0005
特許第4872944号公報
特許第5267736号公報
特許第5459431号公報
発明が解決しようとする課題
0006
上述の特許文献1に記載の不変関係分析をプラントシステムに適用した場合、システムの異常(システムの挙動とモデルとの間に差異が生じた状態)は検出できる。しかしながら、検出されたシステムの異常が、障害に起因した異常か、経年劣化に起因した異常かを判別できないという課題があった。
0007
本発明の目的は、上述した課題を解決し、システムの異常が、障害に起因した異常か、経年劣化に起因した異常かを判別できる、情報処理装置、情報処理方法、及び、記録媒体を提供することである。
課題を解決するための手段
0008
本発明の情報処理装置は、システムの複数のメトリック間の関係性を示すモデルであって、一の時点のモデルである、第1のモデルを記憶するモデル記憶手段と、前記複数のメトリック間の関係性が前記第1のモデルに適合しない時点の前記モデルである、第2のモデルを生成するモデル生成手段と、前記第1のモデルにおいて関係性が示されているメトリック間の関係性が、前記第2のモデルにおいて示されている場合、前記システムのメトリック間の関係性が変化したと判定し、判定結果を出力する、判定手段と、を備える。
0009
本発明の情報処理方法は、システムの複数のメトリック間の関係性を示すモデルであって、一の時点のモデルである、第1のモデルを記憶し、前記複数のメトリック間の関係性が前記第1のモデルに適合しない時点の前記モデルである、第2のモデルを生成し、前記第1のモデルにおいて関係性が示されているメトリック間の関係性が、前記第2のモデルにおいて示されている場合、前記システムのメトリック間の関係性が変化したと判定し、判定結果を出力する。
0010
本発明のコンピュータが読み取り可能な記録媒体は、コンピュータに、システムの複数のメトリック間の関係性を示すモデルであって、一の時点のモデルである、第1のモデルを記憶し、前記複数のメトリック間の関係性が前記第1のモデルに適合しない時点の前記モデルである、第2のモデルを生成し、前記第1のモデルにおいて関係性が示されているメトリック間の関係性が、前記第2のモデルにおいて示されている場合、前記システムのメトリック間の関係性が変化したと判定し、判定結果を出力する、処理を実行させるプログラムを格納する。
発明の効果
0011
本発明の効果は、システムの異常が、障害に起因した異常か、経年劣化に起因した異常かを判別できることである。
図面の簡単な説明
0012
本発明の実施の形態の特徴的な構成を示すブロック図である。
本発明の実施の形態における、監視システム1の構成を示すブロック図である。
本発明の実施の形態における、コンピュータにより実現された監視装置100の構成を示すブロック図である。
本発明の実施の形態における、監視装置100の処理を示すフローチャートである。
本発明の実施の形態における、異常要因判定処理(ステップS105)の詳細を示すフローチャートである。
本発明の実施の形態における、監視用モデル132の例を示す図である。
本発明の実施の形態における、比較用モデル133の例を示す図である。
本発明の実施の形態における、異常要因判定の例を示す図である。
本発明の実施の形態における、判定結果履歴134の例を示す図である。
本発明の実施の形態における、関係式比較結果135の例を示す図である。
本発明の実施の形態における、判定結果画面200の例を示す図である。
本発明の実施の形態における、比較用モデル133の他の例を示す図である。
本発明の実施の形態における、異常要因判定の他の例を示す図である。
本発明の実施の形態における、判定結果画面200の他の例を示す図である。
実施例
0013
(第1の実施の形態) 本発明の実施の形態について説明する。
0014
はじめに、本発明の実施の形態の構成を説明する。図2は、本発明の実施の形態における、監視システム1の構成を示すブロック図である。
0015
図2を参照すると、監視システム1は、監視装置100、及び、対象システム500(または、単にシステムとも記載する)を含む。監視装置100と対象システム500は、ネットワーク等により接続される。監視システム1は、本発明の情報処理システムの一実施形態である。また、監視装置100は、本発明の情報処理装置の一実施形態である。
0016
監視システム1は、例えば、プラントシステムである。この場合、対象システム500は、例えば、化学プラントや、石油精製プラント、製鉄プラント等、所定の処理を行うプラントである。
0017
対象システム500は、センサ501を含む。センサ501は、対象システム500における監視対象である、複数のメトリック(指標)の値を一定間隔毎に測定する。ここで、メトリックとして、例えば、対象システム500の各部の温度や圧力、振動、電力、電圧、電流等が用いられる。また、メトリックとして、対象システム500の各部における、原料や生産物の重さ、量、割合等が用いられてもよい。以下、監視対象の複数のメトリックを監視データとも呼ぶ。
0018
監視装置100は、対象システム500の異常を検出する。
0020
監視データ収集部111は、対象システム500から監視データの時系列を収集する。
0021
監視データ記憶部121は、収集した監視データの時系列を記憶する。
0022
モデル生成部112は、監視データ記憶部121に記憶された、所定長のモデル化期間の監視データの時系列をもとに、監視対象の複数のメトリック間の統計的関係性(以下、単に関係性とも記載する)を表すモデルを生成する。モデル生成部112は、モデルとして、監視用モデル132(第1のモデル)、及び、比較用モデル133(第2のモデル)を生成する。監視用モデル132は、対象システム500の正常動作時に生成されるモデルである。比較用モデル133は、対象システム500の異常検出時に生成されるモデルである。ここで、対象システム500の異常とは、対象システム500のメトリック間の関係性が監視用モデル132に適合しない(対象システム500の挙動と監視用モデル132との差異がある)状態である。
0023
また、本発明の実施の形態では、モデル生成部112は、モデルとして、相関モデルを生成する。相関モデルは、監視対象の複数のメトリックの各ペア(対)の相関関係を示す関係式である、相関関数の集合である。
0025
0027
モデル生成部112は、例えば、監視対象の複数のメトリックの全ペアについて、特許文献1の運用管理装置と同様に、相関関数を算出する。モデル生成部112は、例えば、メトリックの各ペアについて、パラメータn、m、kの複数の組み合わせについて、相関関数を算出し、変換誤差が最小となるようなパラメータの組み合わせに対する相関関数を当該ペアの相関関数として選択する。さらに、モデル生成部112は、メトリックの全ペアの相関関数から、変換誤差が所定の閾値以下の相関関数(有効な相関関数)を抽出し、当該抽出された相関関数の集合を相関モデルに設定する。
0028
モデル記憶部122は、モデル生成部112が生成した監視用モデル132、及び、比較用モデル133を記憶する。
0029
分析部113は、監視用モデル132を用いて、対象システム500の異常を検出する。
0030
分析部113は、特許文献1の運用管理装置と同様に、新たに取得した監視データについて、監視用モデル132に含まれる相関関数に対する相関破壊を検出することにより、対象システム500の異常を検出する。ここで、分析部113は、メトリックの各ペアについて、入力メトリックの測定値を相関関数に入力して得られた出力メトリックの予測値と、当該出力メトリックの測定値との差分(相関関数による変換誤差)を算出する。分析部113は、差分が所定値以上の場合、当該ペアの相関関数に対する相関破壊として検出する。そして、分析部113は、例えば、相関破壊が検出された相関関数の数が所定の閾値以上の場合、対象システム500が異常であると判定する。
0031
また、分析部113は、監視用モデル132に対する異常が検出されたときに、モデル生成部112に、比較用モデル133の生成を指示する。
0032
判定部114は、監視用モデル132に対する異常が検出されたときに、監視用モデル132と比較用モデル133を比較することにより、当該異常の要因を判定する。
0033
ここで、監視用モデル132で関係性が示されているメトリックと同じメトリック間の関係性が、比較用モデル133でも示されている場合は、例えば、経年変化等により、メトリック間の関係は保たれているが、関係の度合いが変化したと考えられる。一方、監視用モデル132で関係性が示されているメトリックと同じメトリック間の関係性が、比較用モデル133で示されていない場合は、例えば、障害等により、メトリック間の関連性が消失したと考えられる。
0034
そこで、判定部114は、対象システム500の異常の要因を、次のように判定する。判定部114は、監視用モデル132において関係性が示されているメトリック間の関係性が、比較用モデル133でも示されており、監視用モデル132と比較用モデル133との間で変化した相関関数の数が所定の閾値以上の場合、「関係性変化」と判定する。また、判定部114は、監視用モデル132において関係性が示されているメトリック間の関係性が、比較用モデル133で示されていない場合、「障害」と判定する。
0035
また、判定部114は、「監視用モデル132において関係性が示されていると同じメトリック間の関係性(以下、対象関係性とも記載する)が、比較用モデル133でも示されているかどうか」を、次のように判定する。判定部114は、監視用モデル132のメトリックの全ペアの相関関数が比較用モデル133にも存在する場合、「対象関係性が、比較用モデル133でも示されている」と判定する。また、判定部114は、監視用モデル132のメトリックのペアの内の少なくとも1つのペアの相関関数が比較用モデル133に存在しない場合、「対象関係性が比較用モデル133では示されていない」と判定する。
0036
判定結果記憶部124は、判定部114により生成された判定結果履歴134、及び、関係式比較結果135を記憶する。判定結果履歴134は、判定結果(「障害」または「関係性変化」)の履歴を示す。関係式比較結果135は、監視用モデル132と比較用モデル133の間の相関関数の比較結果を示す。
0037
出力部115は、判定結果を示す判定結果画面200を、ユーザ等に出力(表示)する。
0038
なお、監視装置100は、CPU(Central Processing Unit)とプログラムを記憶した記憶媒体を含み、プログラムに基づく制御によって動作するコンピュータであってもよい。
0039
図3は、本発明の実施の形態における、コンピュータにより実現された監視装置100の構成を示すブロック図である。監視装置100は、CPU101、ハードディスクやメモリ等の記憶デバイス102(記憶媒体)、他の装置等とデータ通信を行う通信デバイス103、キーボード等の入力デバイス104、及び、ディスプレイ等の出力デバイス105を含む。
0040
CPU101は、監視装置100、監視データ収集部111、モデル生成部112、分析部113、判定部114、及び、出力部115の機能を実現するためのコンピュータプログラムを実行する。記憶デバイス102は、監視データ記憶部121、モデル記憶部122、及び、判定結果記憶部124に格納される情報を記憶する。通信デバイス103は、対象システム500から、監視データを受信する。入力デバイス104は、ユーザ等から、監視に係る指示を受け付ける。出力デバイス105は、ユーザ等へ、判定結果画面200を出力(表示)する。
0042
次に、本発明の実施の形態の動作を説明する。
0043
図4は、本発明の実施の形態における、監視装置100の処理を示すフローチャートである。
0044
ここでは、監視データ収集部111が、対象システム500において測定された監視データの値を、例えば、定期的に取得し、監視データ記憶部121に保存していると仮定する。
0045
モデル生成部112は、監視用モデル132を生成する(ステップS101)。モデル生成部112は、生成した監視用モデル132をモデル記憶部122に保存する。
0046
ここで、モデル生成部112は、対象システム500が正常に動作しているときのモデル化期間の監視データをもとに、監視用モデル132を生成する。
0047
図6は、本発明の実施の形態における、監視用モデル132の例を示す図である。図6の監視用モデル132では、入出力メトリックのペア「A,B」、「A,C」、「A,D」、「C,E」、及び、「C,F」について、相関関数が設定されている。
0048
例えば、モデル生成部112は、図6のような監視用モデル132を生成する。
0049
分析部113は、監視用モデル132を用いて、新たに取得した監視データに対して、対象システム500の異常の有無を監視する(ステップS102)。
0050
ステップS102で異常が検出されない場合(ステップS103/N)、分析部113は、ステップS102からの処理を繰り返す。
0051
ステップS102で異常が検出された場合(ステップS103/Y)、分析部113は、モデル生成部112に、比較用モデル133の生成を指示する。
0052
モデル生成部112は、比較用モデル133を生成する(ステップS104)。モデル生成部112は、生成した比較用モデル133をモデル記憶部122に保存する。
0053
ここで、モデル生成部112は、異常検出時刻を含むモデル化期間、或いは、異常検出時刻近傍(例えば、異常検出時刻直後)のモデル化期間の監視データをもとに、上述の監視用モデル132の生成方法と同様の方法で、比較用モデル133を生成する。
0054
図7は、本発明の実施の形態における、比較用モデル133の例を示す図である。図7の比較用モデル133でも、入出力メトリックのペア「A,B」、「A,C」、「A,D」、「C,E」、及び、「C,F」について、相関関数が設定されている。
0055
例えば、時刻T11における異常検出時に、モデル生成部112は、図7のような比較用モデル133を生成する。
0056
判定部114は、ステップS101で生成した監視用モデル132とステップS104で生成した比較用モデル133とを比較し、異常の要因が、対象システム500の障害か、関係性の変化かを判定する(ステップS105)。
0057
図5は、本発明の実施の形態における、異常要因判定処理(ステップS105)の詳細を示すフローチャートである。
0059
判定部114は、監視用モデル132に含まれる相関関数に係るメトリックのペアの中から、ペアを1つ選択する(ステップS202)。
0060
判定部114は、比較用モデル133において、選択したメトリックのペアと同じペアに係る相関関数があるかどうかを判定する(ステップS203)。
0061
ステップS203で同じペアに係る相関関数がある場合(ステップS203/Y)、判定部114は、監視用モデル132と比較用モデル133との間で、相関関数が変化したかどうかを判定する(ステップS204)。
0062
ここで、判定部114は、例えば、次のいずれかの条件を満たしている場合、相関関数が変化したと判定する。1)監視用モデル132と比較用モデル133との間で、数1式におけるパラメータn、m、kの内の少なくとも1つの値が異なる場合。すなわち、出力メトリックy(t)が依存する入出力メトリックx(t)、y(t)の時間軸上の範囲が異なる場合や、時間軸上の移動がある場合。この場合、例えば、配管内の流れの滞り等により、相関関数の時間軸上の変化が生じたと考えられる。2)監視用モデル132と比較用モデル133との間で、数1式における係数ai、bj、cの内の少なくとも1つの差分が所定の差分閾値以上の場合。すなわち、出力メトリックy(t)が依存する各時刻の入出力メトリックx(t)、y(t)の依存度が異なる場合。この場合、例えば、配管の詰まり等により、相関関数の絶対値方向の変化が生じたと考えられる。
0063
ステップS204で相関関数が変化している場合(ステップS204/Y)、判定部114は、カウンタに1を加算する(ステップS205)。
0064
判定部114は、監視用モデル132に含まれる相関関数に係るメトリックの全ペアについて、ステップS202からの処理を繰り返す(ステップS206)。
0065
メトリックの全ペアについて処理が行われた後で、カウンタの値が所定の閾値以上の場合(ステップS207/Y)、判定部114は、異常の要因を、経年劣化等の「関係性変化」と判定し(ステップS208)、処理を終了する。
0066
一方、ステップS203で同じペアに係る相関関数が無い場合(ステップS203/N)、判定部114は、異常の要因を対象システム500の「障害」と判定し(ステップS209)、処理を終了する。
0067
図8は、本発明の実施の形態における、異常要因判定の例を示す図である。
0068
例えば、図6の監視用モデル132と図7の比較用モデル133とを比較した場合、監視用モデル132に含まれるメトリックの各ペアと同じペアに係る相関関数が、比較用モデル133にも存在する。また、監視用モデル132に含まれるメトリックの5つのペアの内、3つのペア「A,B」、「A,C」、「C,E」の相関関数が変化している。ここで、「関係性変化」と判定するための閾値が、監視用モデル132に含まれるメトリックのペアの数の20%の場合、判定部114は、異常の要因を「関係性変化」と判定する。
0069
次に、判定部114は、判定結果(「障害」、「関係性変化」)を、判定結果記憶部124の判定結果履歴134に登録する(ステップS106)。また、判定部114は、判定結果記憶部124に、関係式比較結果135も保存する。
0071
例えば、判定部114は、異常検出時刻T11について、図9のように、判定結果「関係性変化」を判定結果履歴134に登録する。また、判定部114は、異常検出時刻T11について、図10のような関係式比較結果135aを保存する。
0072
判定部114は、判定結果を、出力部115を介して、ユーザ等に出力する(ステップS107)。
0073
図11は、本発明の実施の形態における、判定結果画面200の例を示す図である。図11の例では、判定結果画面200は、関係式比較領域201、及び、関係式表示領域202を含む。関係式比較領域201には、監視用モデル132と比較用モデル133との間の各相関関数の変化の有無が、当該相関関数に係るメトリック、及び、当該メトリックの値が測定される装置と関連付けて示されている。また、関係式表示領域202には、監視用モデル132と比較用モデル133に含まれる各相関関数が示されている。
0075
以下、ステップS102からの処理が繰り返し実行される。
0076
図12は、本発明の実施の形態における、比較用モデル133の他の例を示す図である。図12の比較用モデル133では、入出力メトリックのペア「A,B」、「A,C」、及び、「A,D」について、相関関数が設定されている。
0077
例えば、時刻T21における異常検出時に、モデル生成部112は、図12のような比較用モデル133を生成する。
0078
図13は、本発明の実施の形態における、異常要因判定の他の例を示す図である。
0079
例えば、図6の監視用モデル132と図13の比較用モデル133とを比較した場合、監視用モデル132に含まれるメトリックのペア「C,E」、「C,F」と同じペアに係る相関関数が、比較用モデル133には存在しない。
0080
したがって、判定部114は、異常の要因を「障害」と判定する。そして、判定部114は、異常検出時刻T21について、図9のように、判定結果「障害」を判定結果履歴134に登録する。また、判定部114は、異常検出時刻T21について、図10のような関係式比較結果135bを保存する。
0081
図14は、本発明の実施の形態における、判定結果画面210の他の例を示す図である。図14の例では、判定結果画面210は、関係式比較領域211を含む。関係式比較領域211には、監視用モデル132に含まれる各相関関数の、比較用モデル133における存在有無が、当該相関関数に係るメトリック、及び、当該メトリックの値が測定される装置と関連付けて示されている。
0083
なお、出力部115は、ユーザ等からの要求に応じて、さらに、判定結果履歴134により示される判定結果の履歴を表示してもよい。また、出力部115は、ユーザ等からの要求に応じて、指定された異常検出時刻について、判定結果画面200、210を表示してもよい。
0084
以上により、本発明の実施の形態の動作が完了する。
0085
なお、本発明の実施の形態では、モデルとして相関モデルを用いた。しかしながら、これに限らず、メトリック間の統計的関係性を表すことができれば、モデルとして、統計処理の分野でよく知られた手法に基づく他のモデルを用いてもよい。例えば、モデルとして、自己回帰モデル、ロジスティック回帰モデル等の線形、非線形モデルや、確率分布モデルを用いてもよい。
0086
また、判定部114は、監視用モデル132のメトリックの全ペアの相関関数が比較用モデル133に存在する場合、対象関係性が、比較用モデル133でも示されていると判定した。しかしながら、これに限らず、判定部114は、監視用モデル132のメトリックペアの内の、所定の閾値以上のペアの相関関数が比較用モデル133に存在する場合、対象関係性が比較用モデル133でも示されていると判定してもよい。
0087
また、判定部114は、監視用モデル132のメトリックのペアの内の少なくとも1つのペアの相関関数が比較用モデル133に存在しない場合、対象関係性が比較用モデル133では示されていないと判定した。しかしながら、これに限らず、判定部114は、監視用モデル132のメトリックのペアの内の、所定の閾値以上のペアの相関関数が比較用モデル133に存在しない場合に、対象関係性が比較用モデル133で示されていないと判定してもよい。
0088
また、判定部114は、対象関係性が比較用モデル133でも示されており、変化した相関関数の数が所定の閾値以上の場合、異常の要因を「関係性変化」と判定した。しかしながら、これに限らず、判定部114は、対象システム500の異常が検出された場合に、対象関係性が比較用モデル133でも示されている場合、相関関数の変化を検出することなく、異常の要因を「関係性変化」と判定してもよい。
0089
また、本発明の実施の形態では、相関関数の変化を、パラメータや係数の変化により検出した。しかしながら、これに限らず、相関関数の変化を、入力メトリックx(t)の値の定義域に対する出力メトリックy(t)の値のとりうる範囲をもとに検出してもよい。この場合、例えば、監視用モデル132と比較用モデル133との間で、出力メトリックy(t)の値のとりうる範囲の差分が、所定の閾値以上の場合、相関関数が変化したと判定される。
0090
また、本発明の実施の形態では、比較用モデル133の生成、及び、監視用モデル132と比較用モデル133の比較を、対象システム500の異常検出時に行っている。しかしながら、これに限らず、対象システム500の異常が検出されていなくても、例えば、定期的に、比較用モデル133を生成してもよい。この場合、判定部114は、監視用モデル132と比較用モデル133の間で、変化した相関関数の数が所定の閾値以上の場合、対象関係性が変化したと判定してもよい。
0091
また、本発明の実施の形態では、対象システム500がプラントの場合を例に説明した。しかしながら、これに限らず、監視対象の複数のメトリックの値を取得できれば、対象システム500は、1以上のコンピュータを含むIT(Information Technology)システムでもよい。この場合、メトリックとして、CPU使用率、メモリ使用率、ディスクアクセス頻度等、コンピュータリソースやネットワークリソースの使用率、使用量等が用いられてもよい。また、対象システム500は、発電所のシステムや、キャリアの通信設備、自動車や鉄道、航空機、船舶等の移動体でもよい。また、対象システム500は、建物や橋梁等の構造物であってもよい。
0092
次に、本発明の実施の形態の特徴的な構成を説明する。図1は、本発明の実施の形態の特徴的な構成を示すブロック図である。
0093
監視装置100(情報処理装置)は、モデル記憶部122、モデル生成部112、及び、判定部114を含む。モデル記憶部122は、システムの複数のメトリック間の関係性を示すモデルであって、一の時点のモデルである、監視用モデル132(第1のモデル)を記憶する。モデル生成部112は、複数のメトリック間の関係性が監視用モデル132に適合しない時点のモデルである、比較用モデル133(第2のモデル)を生成する。判定部114は、監視用モデル132において関係性が示されているメトリック間の関係性が、比較用モデル133において示されている場合、システムのメトリック間の関係性が変化したと判定し、判定結果を出力する。
0094
次に、本発明の実施の形態の効果を説明する。
0095
本発明の実施の形態によれば、システムの異常が、障害に起因した異常か、経年劣化に起因した異常かを判別できる。その理由は、モデル生成部112が、システムの異常検出時に比較用モデル133を生成し、判定部114が、監視用モデル132で関係性が示されているメトリック間の関係性が比較用モデル133で示されている場合、関係性が変化したと判定するためである。
0096
また、本発明の実施の形態によれば、ユーザ等が、経年劣化の状況を容易に把握できる。その理由は、出力部115が、監視用モデル132と比較用モデル133の間の各相関関数の変化の有無、及び、監視用モデル132と比較用モデル133に含まれる各相関関数を示す判定結果画面200を表示するためである。
0097
以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
0099
1監視システム100監視装置101 CPU 102記憶デバイス103通信デバイス104入力デバイス105出力デバイス111監視データ収集部 112モデル生成部 113分析部114 判定部 115 出力部 121 監視データ記憶部 122モデル記憶部 124 判定結果記憶部 132監視用モデル 133 比較用モデル 134 判定結果履歴135関係式比較結果 200 判定結果画面201 関係式比較領域202 関係式表示領域 210 判定結果画面 211 関係式比較領域 500対象システム501 センサ