図面 (/)

この項目の情報は公開日時点(2018年2月8日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (11)

課題・解決手段

セル電圧検出機能診断終了後、すぐにセル電圧の測定を実行する。電池管理装置10において、電圧検出部140は、電池セル21、22それぞれの端子電圧を検出する。RCフィルタ110は、電圧検出線L1、L2、L3に電気的に接続されており、状態変化発生部130は、電圧検出線L1、L2、L3に対する電気的状態変化を発生する。電圧変動部120は、状態変化発生部130が発生した電気的状態変化を受けて電池セル21、22の端子電圧を変動させる。マイコン150は、電圧変動部120により電池セル21、22の端子電圧を変動させたときの電圧検出部140による電池セル21、22の端子電圧の検出結果に基づいて、電圧検出部140を診断する。

概要

背景

ハイブリッド自動車HEV)や電気自動車EV)などでは、所望の高電圧を確保するため、二次電池電池セルを多数直列接続して構成される組電池電池ステム)が一般的に用いられている。従来、このような組電池には、各電池セル容量計算保護管理のため、所定数電池セルごとに、集積回路等を用いた電池管理装置が接続されている。この電池管理装置により、各電池セルの充放電状態を制御することで、電池セルの管理が行われている。

特に、電池セルにリチウムイオン電池を用いた組電池の場合、リチウムイオン電池は高エネルギー密度であるため、電池管理装置が正常に動作せずに過充電状態となるのは危険である。そこで、電池管理装置の信頼性と安全性を高めるために、特許文献1の技術が知られている。特許文献1には、電池セルの電池状態を検出する電池状態検出回路疑似電圧情報を入力して、電池状態検出回路が正常に動作しているか否かを診断することが開示されている。

概要

セル電圧検出機能の診断終了後、すぐにセル電圧の測定を実行する。電池管理装置10において、電圧検出部140は、電池セル21、22それぞれの端子電圧を検出する。RCフィルタ110は、電圧検出線L1、L2、L3に電気的に接続されており、状態変化発生部130は、電圧検出線L1、L2、L3に対する電気的状態変化を発生する。電圧変動部120は、状態変化発生部130が発生した電気的状態変化を受けて電池セル21、22の端子電圧を変動させる。マイコン150は、電圧変動部120により電池セル21、22の端子電圧を変動させたときの電圧検出部140による電池セル21、22の端子電圧の検出結果に基づいて、電圧検出部140を診断する。

目的

このようにしたので、電池セル21、22の端子電圧を測定できない期間をなくして、さらに高機能な電池管理装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

複数の電池セルのそれぞれの両極電圧検出線を介して電気的に接続され、前記複数の電池セルそれぞれの端子電圧を検出する電圧検出部と、前記電圧検出線に電気的に接続されたフィルタ回路と、前記電圧検出線に対する電気的状態変化を発生する状態変化発生部と、前記フィルタ回路と前記電圧検出部との間で前記電圧検出線と電気的に接続され、前記状態変化発生部が発生した前記電気的状態変化を受けて前記端子電圧を変動させる電圧変動部と、前記電圧変動部により前記端子電圧を変動させたときの前記電圧検出部による前記端子電圧の検出結果に基づいて、前記電圧検出部を診断する診断部と、を備える電池管理装置

請求項2

請求項1に記載の電池管理装置において、前記電圧変動部は、抵抗を用いて構成される電池管理装置。

請求項3

請求項1または2に記載の電池管理装置において、前記状態変化発生部は、電流源を用いて構成され、前記電流源から出力された電流を前記電圧検出線に流すことで前記電気的状態変化を発生する電池管理装置。

請求項4

請求項1に記載の電池管理装置において、前記診断部は、前記電圧変動部により前記端子電圧を変動させたときの前記端子電圧の検出結果における電圧変化が所定の閾値未満であるときに、前記電圧検出部が異常であると診断する電池管理装置。

請求項5

請求項4に記載の電池管理装置において、前記電圧変動部は、抵抗を用いて構成され、前記状態変化発生部は、電流源を用いて構成され、前記電流源から出力された電流を前記電圧検出線に流すことで前記電気的状態変化を発生し、前記閾値は、前記抵抗の抵抗値および前記電流源が出力する電流の大きさに基づいて決定される電池管理装置。

請求項6

請求項1または2に記載の電池管理装置において、前記電圧検出部は、前記端子電圧の検出結果をそれぞれ格納するための第1の記憶部および第2の記憶部を有する電池管理装置。

請求項7

請求項6に記載の電池管理装置において、前記電圧検出部は、前記状態変化発生部が前記電気的状態変化を発生したときの前記端子電圧を前記第1の記憶部に記憶し、前記状態変化発生部が前記電気的状態変化を発生していないときの前記端子電圧を前記第2の記憶部に記憶し、前記診断部は、前記第1の記憶部と前記第2の記憶部にそれぞれ記憶された前記端子電圧を前記電圧検出部から読み込み、読み込んだ前記端子電圧に基づいて前記電圧検出部を診断する電池管理装置。

請求項8

請求項1に記載の電池管理装置において、前記電圧変動部は、抵抗を用いて構成され、前記状態変化発生部は、前記抵抗の両端にそれぞれ配置された電流源を用いて構成され、前記電流源から出力された電流を前記電圧検出線に流すことで前記電気的状態変化を発生する電池管理装置。

請求項9

複数の電池セルのそれぞれの両極に電圧検出線を介して電気的に接続され、前記複数の電池セルそれぞれの端子電圧を検出する電圧検出部と、前記電圧検出線に電気的に接続されたフィルタ回路と、前記電圧検出線に対する電気的状態変化を発生する状態変化発生部と、前記状態変化発生部が前記電気的状態変化を発生したときの前記電圧検出部による前記端子電圧の検出結果に基づいて、前記電圧検出部を診断する診断部と、を備え、前記電圧検出部は、前記端子電圧の検出結果をそれぞれ格納するための第1の記憶部および第2の記憶部を有する電池管理装置。

請求項10

複数の電池セルのそれぞれの両極に、フィルタ回路が接続された電圧検出線を介して電気的に接続され、前記複数の電池セルそれぞれの端子電圧を検出する電圧検出部と、前記電圧検出線に対する電気的状態変化を発生する状態変化発生部と、前記フィルタ回路と前記電圧検出部との間で前記電圧検出線と電気的に接続され、前記状態変化発生部が発生した前記電気的状態変化を受けて前記端子電圧を変動させる電圧変動部と、を備える電池監視回路

請求項11

請求項1に記載の電池管理装置と、前記複数の電池セルで構成された組電池から供給される電力を用いて、前記電池管理装置を搭載した車両を走行させるための走行用モータ駆動制御を行う走行用インバータと、前記走行用インバータを制御する車両制御装置と、を備え、前記電池管理装置は、前記複数の電池セルのいずれか少なくとも一つまたは前記電圧検出部が異常と診断した場合に、当該異常に関する異常情報を前記車両制御装置に出力し、前記車両制御装置は、前記異常情報に基づいて、前記組電池からの電力供給を制限するための制御を前記走行用インバータに対して行い、前記車両制御装置は、前記制御において、前記複数の電池セルのいずれか少なくとも一つが異常である場合と比べて、前記電圧検出部が異常である場合には、前記組電池からの電力供給に対する制限を緩和する制御システム

請求項12

請求項1に記載の電池管理装置と、前記複数の電池セルで構成された組電池から供給される電力を利用する機器の制御を行う制御装置と、を備え、前記制御装置は、前記機器から前記組電池に出力されるノイズに関するノイズ情報を前記電池管理装置に出力し、前記電池管理装置は、前記ノイズ情報に基づいて、前記診断部による前記電圧検出部の診断および/または前記電圧検出部による前記端子電圧の検出を無効化する制御システム。

請求項13

請求項1に記載の電池管理装置と、前記複数の電池セルで構成された組電池から供給される電力を利用する機器の制御を行う制御装置と、を備え、前記制御装置は、前記機器から前記組電池に出力されるノイズを推定し、その推定結果に基づいて、前記電池管理装置から出力される前記電圧検出部の診断結果および/または前記端子電圧の検出結果を無効化する制御システム。

技術分野

0001

本発明は、電池管理装置電池監視回路および制御システムに関する。

背景技術

0002

ハイブリッド自動車HEV)や電気自動車EV)などでは、所望の高電圧を確保するため、二次電池電池セルを多数直列接続して構成される組電池電池システム)が一般的に用いられている。従来、このような組電池には、各電池セル容量計算保護管理のため、所定数電池セルごとに、集積回路等を用いた電池管理装置が接続されている。この電池管理装置により、各電池セルの充放電状態を制御することで、電池セルの管理が行われている。

0003

特に、電池セルにリチウムイオン電池を用いた組電池の場合、リチウムイオン電池は高エネルギー密度であるため、電池管理装置が正常に動作せずに過充電状態となるのは危険である。そこで、電池管理装置の信頼性と安全性を高めるために、特許文献1の技術が知られている。特許文献1には、電池セルの電池状態を検出する電池状態検出回路疑似電圧情報を入力して、電池状態検出回路が正常に動作しているか否かを診断することが開示されている。

先行技術

0004

特開2010−249793号公報

発明が解決しようとする課題

0005

一般的に、電池セルと電池管理装置の間に接続されている電圧検出線には、ノイズを除去するためのノイズフィルタとして、RCフィルタが接続されている。そのため、特許文献1に記載の技術のように、電池管理装置に疑似電圧情報を入力してセル電圧検出機能の診断を行うと、疑似電圧情報の入力を終了した後に入力電圧がセル電圧と一致するまで、RCフィルタの時定数に応じた待ち時間が必要となる。したがって、セル電圧の検出機能の診断終了後、すぐにはセル電圧の測定を実行できないという問題がある。

課題を解決するための手段

0006

本発明の一態様による電池管理装置は、複数の電池セルのそれぞれの両極に電圧検出線を介して電気的に接続され、前記複数の電池セルそれぞれの端子電圧を検出する電圧検出部と、前記電圧検出線に電気的に接続されたフィルタ回路と、前記電圧検出線に対する電気的状態変化を発生する状態変化発生部と、前記フィルタ回路と前記電圧検出部との間で前記電圧検出線と電気的に接続され、前記状態変化発生部が発生した前記電気的状態変化を受けて前記端子電圧を変動させる電圧変動部と、前記電圧変動部により前記端子電圧を変動させたときの前記電圧検出部による前記端子電圧の検出結果に基づいて、前記電圧検出部を診断する診断部と、を備える。
本発明の他の一態様による電池管理装置は、複数の電池セルのそれぞれの両極に電圧検出線を介して電気的に接続され、前記複数の電池セルそれぞれの端子電圧を検出する電圧検出部と、前記電圧検出線に電気的に接続されたフィルタ回路と、前記電圧検出線に対する電気的状態変化を発生する状態変化発生部と、前記状態変化発生部が前記電気的状態変化を発生したときの前記電圧検出部による前記端子電圧の検出結果に基づいて、前記電圧検出部を診断する診断部と、を備え、前記電圧検出部は、前記端子電圧の検出結果をそれぞれ格納するための第1の記憶部および第2の記憶部を有する。
本発明による電池監視回路は、複数の電池セルのそれぞれの両極に、フィルタ回路が接続された電圧検出線を介して電気的に接続され、前記複数の電池セルそれぞれの端子電圧を検出する電圧検出部と、前記電圧検出線に対する電気的状態変化を発生する状態変化発生部と、前記フィルタ回路と前記電圧検出部との間で前記電圧検出線と電気的に接続され、前記状態変化発生部が発生した前記電気的状態変化を受けて前記端子電圧を変動させる電圧変動部と、を備える。
本発明の一態様による制御システムは、上記の電池管理装置と、前記複数の電池セルで構成された組電池から供給される電力を用いて、前記電池管理装置を搭載した車両を走行させるための走行用モータ駆動制御を行う走行用インバータと、前記走行用インバータを制御する車両制御装置と、を備え、前記電池管理装置は、前記複数の電池セルのいずれか少なくとも一つまたは前記電圧検出部が異常と診断した場合に、当該異常に関する異常情報を前記車両制御装置に出力し、前記車両制御装置は、前記異常情報に基づいて、前記組電池からの電力供給を制限するための制御を前記走行用インバータに対して行い、前記車両制御装置は、前記制御において、前記複数の電池セルのいずれか少なくとも一つが異常である場合と比べて、前記電圧検出部が異常である場合には、前記組電池からの電力供給に対する制限を緩和する。
本発明の他の一態様による制御システムは、上記の電池管理装置と、前記複数の電池セルで構成された組電池から供給される電力を利用する機器の制御を行う制御装置と、を備え、前記制御装置は、前記機器から前記組電池に出力されるノイズに関するノイズ情報を前記電池管理装置に出力し、前記電池管理装置は、前記ノイズ情報に基づいて、前記診断部による前記電圧検出部の診断および/または前記電圧検出部による前記端子電圧の検出を無効化する。
本発明のさらに別の一態様による制御システムは、上記の電池管理装置と、前記複数の電池セルで構成された組電池から供給される電力を利用する機器の制御を行う制御装置と、を備え、前記制御装置は、前記機器から前記組電池に出力されるノイズを推定し、その推定結果に基づいて、前記電池管理装置から出力される前記電圧検出部の診断結果および/または前記端子電圧の検出結果を無効化する。

発明の効果

0007

本発明によれば、セル電圧の検出機能の診断終了後、すぐにセル電圧の測定を実行することができる。

図面の簡単な説明

0008

本発明の第1の実施形態による電池管理装置の構成を示す図である。
比較例としての電池管理装置の構成を示す図である。
本発明の第1の実施形態と比較例においてそれぞれ測定される端子電圧の変動の様子を示す図である。
本発明の一実施形態による電池管理装置において実行される診断処理フローチャートである。
本発明の第2の実施形態による電池管理装置の構成を示す図である。
本発明の第2の実施形態において測定される端子電圧の変動の様子を示す図である。
本発明の第3の実施形態による電池管理装置の構成を示す図である。
本発明の第4の実施形態による電池管理装置の構成を示す図である。
本発明の第5の実施形態による制御システムの構成を示す図である。
本発明の第6の実施形態による制御システムの構成を示す図である。

実施例

0009

−第1の実施形態−
図1は、本発明の第1の実施形態による電池管理装置10の構成を示す図である。電池管理装置10は、組電池20の電池セル21、22を管理するものであり、電池監視回路100、RCフィルタ110、電圧変動部120およびマイコン150を備える。なお、説明を簡略化するため、図1では組電池20を2つの電池セル21、22で構成されるものとして、この組電池20を管理する電池管理装置10の構成を示している。しかし、組電池20を構成する電池セルの数はこれに限定されない。任意の個数の電池セルで組電池20を構成し、その電池セルの個数に合わせて、電池管理装置10の構成を決定することができる。

0010

電池監視回路100は、状態変化発生部130および電圧検出部140を備える。電圧検出部140は、電池セル21、22のそれぞれの両極に電圧検出線L1、L2、L3を介して電気的に接続されている。電圧検出部140は、マルチプレクサ101、AD変換器102、第1バッファメモリ103および第2バッファメモリ104を有する。

0011

マルチプレクサ101は、マイコン150の指示に応じて、電池セル21、22のいずれかを端子電圧の測定対象として選択する。そして、電圧検出線L1、L2、L3のうち、測定対象とした電池セルの両極に接続されている一対の電圧検出線を選択し、それぞれの電圧をAD変換器102に出力する。AD変換器102は、マルチプレクサ101により選択された一対の電圧検出線間の電位差を検出することで、測定対象の電池セルの端子電圧(セル電圧)を検出する。そして、端子電圧の検出結果をアナログ値からデジタル値に変換して、第1バッファメモリ103に出力する。電池監視回路100は、上記のような動作を電池セル21、22について順次行うことにより、電池セル21、22それぞれの端子電圧を検出することができる。

0012

第1バッファメモリ103は、AD変換器102から出力された端子電圧の検出結果を一時的に格納するための記憶装置である。第1バッファメモリ103に格納された端子電圧の検出結果は、マイコン150の指示により、第2バッファメモリ104に出力される。第2バッファメモリ104は、第1バッファメモリ103から出力された端子電圧の検出結果を一時的に格納するための記憶装置である。第2バッファメモリ104に格納された端子電圧の検出結果は、マイコン150に読み込まれる。

0013

マイコン150は、第2バッファメモリ104から読み込んだ端子電圧の検出結果に基づいて、組電池20を監視および管理する。たとえば、端子電圧が異常な値を示す場合は、組電池20に異常があると判断し、その判断結果を示す信号を不図示の上位コントローラに出力する。

0014

RCフィルタ110は、電圧検出線L1、L2、L3に重畳されたノイズを除去するためのものであり、電圧検出線L1、L2、L3に電気的に接続されている。RCフィルタ110は、電圧検出線L1、L2、L3上にそれぞれ設けられた抵抗要素R11、R12、R13と、電圧検出線L1、L2、L3と接地線GNDとの間にそれぞれ設けられた容量要素C11、C12、C13とで構成される。

0015

状態変化発生部130は、電圧検出線L1、L2、L3に対する電気的状態変化を発生するためのものであり、電流源G11、G12、G13により構成される。電流源G11、G12、G13は、電圧検出線L1、L2、L3とそれぞれ接続されており、電圧検出線L1、L2、L3に所定の電流をそれぞれ流すことで電気的状態変化を発生する。このとき、電圧検出線L1、L2には、図の左側から右側の方向に電流がそれぞれ流れ、電圧検出線L3には、図の右側から左側の方向に電流が流れる。なお、電流源G11、G12、G13のオンオフは、マイコン150により個別に制御することができる。

0016

電圧変動部120は、RCフィルタ110と電圧検出部140との間で電圧検出線L1、L2、L3と電気的に接続されており、診断用抵抗R21、R22、R23により構成される。診断用抵抗R21、R22、R23は、電圧検出線L1、L2、L3上にそれぞれ設けられている。状態変化発生部130の電流源G11、G12、G13が電圧検出線L1、L2、L3にそれぞれ電流を流すと、電圧検出部140において検出される通電時の端子電圧は、診断用抵抗R21、R22、R23での電圧降下により、非通電時の端子電圧から変化する。これにより、電圧変動部120は、状態変化発生部130が発生した電気的状態変化を受けて、電池セル21、22それぞれの端子電圧を変動させる。

0017

上記のようにして電圧変動部120により変動された端子電圧は、電圧検出部140においてマルチプレクサ101により選択された後、AD変換器102により検出される。そして、第1バッファメモリ103および第2バッファメモリ104にそれぞれ格納された後、マイコン150に読み込まれる。マイコン150は、第2バッファメモリ104から読み込んだ端子電圧の検出結果に基づいて、電圧検出部140が正しく端子電圧を検出しているかを診断する。

0018

たとえば電池セル21を測定対象としたときに、電流源G11から電圧検出線L1に電流を流すと、電圧検出部140が正しく端子電圧を測定できていれば、診断用抵抗R21での電圧降下により、非通電時と比べて端子電圧の測定値に差が生じる。しかし、マルチプレクサ101が測定対象ではない電池セルを誤って選択するなどの理由により、電圧検出部140が電池セル21の端子電圧を正しく測定できていない場合は、通電時と非通電時とで端子電圧の測定値に差が生じない。これを利用して、マイコン150は、電圧検出線L1を介した電圧検出部140の端子電圧測定に関する診断を行うことができる。さらにマイコン150は、電圧検出線L2、L3を介した端子電圧測定に関しても、同様の方法で診断を行うことができる。すなわち、電流源G12、G13を用いて電圧検出線L2、L3にそれぞれ電流を流したときの電池セル21、22の端子電圧を測定し、その測定値が非通電時と比べて変化するか否かを調べることで、電圧検出線L2、L3を介した電圧検出部140の端子電圧測定が正常か否かを診断することができる。このようにして、マイコン150は、電圧検出部140が電池セル21、22の端子電圧を正しく測定しているか否かを診断することができる。

0019

上記のような診断を行うことで、マイコン150は、電圧検出部140を診断する診断部として機能する。その結果、電圧検出部140が正しく端子電圧を測定できていないと判断した場合、マイコン150は、その判断結果を示す信号を不図示の上位コントローラに出力する。

0020

以上説明したように、電池管理装置10は、状態変化発生部130が発生した電気的状態変化を受けて電圧変動部120が電池セル21、22の端子電圧を変動させることを利用して、電圧検出部140の診断を行う。これにより、RCフィルタ110の時定数に関わらず、電圧検出部140の診断を素早く行うことを可能としている。この点について、以下に詳しく説明する。

0021

図2は、比較例としての電池管理装置10hの構成を示す図である。電池管理装置10hは、電圧変動部120が設けられていない点と、電圧検出部140に替えて電圧検出部140hを備える点以外は、図1の電池管理装置10と同じ構成を有している。電圧検出部140hには、図1の第1バッファメモリ103および第2バッファメモリ104に替えて、バッファメモリ105が一つだけ設けられている。

0022

電池管理装置10hにおいて、状態変化発生部130の電流源G11、G12、G13が電圧検出線L1、L2、L3にそれぞれ電流を流すと、電圧検出部140hにより検出される端子電圧は、RCフィルタ110の時定数に応じた速度で変動する。この端子電圧の変動を検出することで、電池管理装置10と同様に、電圧検出部140hが端子電圧を正しく測定しているか否かを診断することができる。

0023

図3は、本発明の第1の実施形態と比較例においてそれぞれ測定される端子電圧の変動の様子を示す図である。図3(a)は、図1に示した本発明の第1の実施形態による電池管理装置10で測定される端子電圧を示し、図3(b)は、図2に示した比較例による電池管理装置10hで測定される端子電圧を示している。なお、図3(a)、(b)では、電流源G11を用いて電圧検出線L1に電流を流した場合の電池セル21の端子電圧の変化の様子を例としてそれぞれ示した。しかし、他の電流源G12またはG13を用いて電圧検出線L2またはL3に電流を流した場合にも、電池セル22の端子電圧は、図3(a)、(b)に示したのと同様に変化する。

0024

電池管理装置10の場合、時刻t1において電流源G11により電圧検出線L1に電流を流すと、図3(a)に示すように、診断用抵抗R21での電圧降下により、電圧検出部140で端子電圧を測定して得られる測定電圧31がすぐに変化する。たとえば、電流源G11の出力電流値を50μA、診断用抵抗R21の抵抗値を1kΩとすると、測定電圧31において50mVの変化が生じる。これを検出することで、電圧検出部140の診断が行われる。

0025

電池管理装置10では、上記のように、電圧検出線L1に電流を流すと端子電圧の測定値がすぐに変化する。そのため、電流源G11をオンしてから通電時の端子電圧を測定するまでの時間を短縮することができる。このとき、RCフィルタ110と電圧変動部120の間における電圧検出線L1の電圧は、抵抗要素R11での電圧降下により、非通電時の値から変化する。この電圧変化の速度は、抵抗要素R11の抵抗値と容量要素C11の容量値とによって定まる時定数に応じて決定される。

0026

通電時の端子電圧を測定した後、時刻t2で電流源G11をオフして電流を停止すると、電圧検出線L1の電圧は、時刻t1以前の状態へと戻る。このとき、時刻t1から時刻t2の期間で生じた電圧変化分が、上記の時定数に応じて決定される変化速度で解消されることにより、測定電圧31が本来の電圧に戻る。このときの時刻をt3とすると、時刻t2から時刻t3までの期間では、正しい端子電圧を示す測定電圧31を得ることができない。しかし、前述のように、電流源G11をオンしてから通電時の端子電圧を測定するまでの時間を短縮することで、時刻t1から時刻t2の期間を短くすることができる。そのため、端子電圧を測定できない期間を短縮することができる。

0027

一方、電池管理装置10hの場合、時刻t1において電流源G11により電圧検出線L1に電流を流すと、図3(b)に示すように、電圧検出部140hで端子電圧を測定して得られる測定電圧32はゆっくりと変化する。この測定電圧32の変化速度は、RCフィルタ110を構成する抵抗要素R11の抵抗値と容量要素C11の容量値とによって定まる時定数に応じて決定される。たとえば、抵抗要素R11の抵抗値を10kΩ、容量要素C11の容量値を1μFとすると、時定数は10msとなる。

0028

電池管理装置10hでは、上記のように、電圧検出線L1に電流を流しても端子電圧の測定値はすぐに変化せず、RCフィルタ110の時定数に応じた速度で変化する。そのため、電流源G11をオンしてから通電時の端子電圧を測定するまでに、電池管理装置10の場合よりも長い時間が必要となる。

0029

通電時の端子電圧を測定した後、時刻t4で電流源G11をオフして電流を停止すると、電圧検出線L1の電圧は、時刻t1以前の状態へと戻る。このとき、図3(a)で説明したのと同様に、時刻t1から時刻t4の期間で生じた電圧変化分が、上記の時定数に応じて決定される変化速度で解消されることにより、測定電圧32が本来の電圧に戻る。このときの時刻をt5とすると、時刻t4から時刻t5までの期間では、正しい端子電圧を示す測定電圧32を得ることができない。電池管理装置10hでは、電流源G11をオンしてから通電時の端子電圧を測定するまでに、前述のように電池管理装置10の場合よりも長い時間が必要である。そのため、図3(b)に示すように、電池管理装置10の場合と比べて、電流源G11をオンする期間が長くなり、それに応じて端子電圧を測定できない期間も長くなることが分かる。

0030

次に、電池管理装置10において電圧検出部140の診断を行うときの処理について説明する。図4は、本発明の一実施形態による電池管理装置10において実行される電圧検出部140の診断処理のフローチャートである。なお、図4では、ステップS10〜S120の各処理ステップを示すボックス縦方向(高さ方向)の幅により、各処理ステップの実行に要する処理時間の目安を表している。

0031

ステップS10において、電池管理装置10は、電圧検出部140のマルチプレクサ101およびAD変換器102を用いて、電圧検出線L1、L2、L3のいずれかを選択する。ステップS20において、電池管理装置10は、電圧検出部140のAD変換器102を用いて、ステップS10で選択した電圧検出線のオフ電圧、すなわち非通電時の端子電圧を測定する。ステップS30において、電池管理装置10は、ステップS20で測定したオフ電圧を第1バッファメモリ103に格納する。

0032

ステップS40において、電池管理装置10は、状態変化発生部130の電流源G11、G12、G13のうちステップS10で選択した電圧検出線に対応するものをオンし、その電圧検出線に電流を流す。ステップS50において、電池管理装置10は、電圧検出部140のAD変換器102を用いて、ステップS10で選択した電圧検出線のオン電圧、すなわち通電時の端子電圧を測定する。ステップS60において、電池管理装置10は、ステップS30で格納したオフ電圧を第1バッファメモリ103から第2バッファメモリ104に移動した後、ステップS50で測定したオン電圧を第1バッファメモリ103に格納する。ステップS70において、電池管理装置10は、ステップS40でオンした電流源をオフし、電流を停止する。

0033

ステップS80において、電池管理装置10は、第2バッファメモリ104に格納されているオフ電圧をマイコン150により取得する。次のステップS90において、電池管理装置10は、第1バッファメモリ103に格納されているオン電圧を第2バッファメモリ104に移動し、その後、マイコン150により取得する。

0034

ステップS100において、電池管理装置10は、ステップS10で未選択の電圧検出線があるか否かを判定する。未選択の電圧検出線があればステップS10に戻り、その中でいずれかの電圧検出線をステップS10で選択した後、上述のステップS20以降の処理を繰り返す。これにより、電圧検出線L1、L2、L3のそれぞれについて、オン電圧およびオフ電圧を測定し、第1バッファメモリ103と第2バッファメモリ104にそれぞれ格納した後、マイコン150により取得する。ステップS100で未選択の電圧検出線がないと判定した場合、すなわち電圧検出線L1、L2、L3の全てについてオン電圧およびオフ電圧をマイコン150により取得済みである場合は、処理をステップS110に進める。

0035

ステップS110において、電池管理装置10は、マイコン150により、ステップS80、S90でそれぞれ取得した各電圧検出線のオフ電圧(非通電時の端子電圧)およびオン電圧(通電時の端子電圧)に基づいて、電圧検出部140が正常であるか否かを判定する。ここでは、各電圧検出線のオフ電圧とオン電圧の差を求めることで、状態変化発生部130が発生した電気的状態変化を受けて電圧変動部120が端子電圧を変動させたときの電圧変化を求める。こうして求めた各電圧検出線での端子電圧の電圧変化が所定の閾値以上であるか否かを判定し、閾値以上であれば、電圧検出部140が正常であると判断する。この場合、電池管理装置10は、図4のフローチャートに示す診断処理を終了する。一方、いずれかの電圧検出線における端子電圧の電圧変化が閾値未満であれば、電圧検出部140が異常であると判断する。この場合、電池管理装置10は、処理をステップS120に進める。

0036

なお、ステップS110の判定において用いられる閾値は、電圧変動部120の診断用抵抗R21、R22、R23の抵抗値と、状態変化発生部130の電流源G11、G12、G13が出力する電流の大きさとに基づいて決定することができる。すなわち、これらの値によって決定される通電時の診断用抵抗R21、R22、R23での電圧降下の大きさに基づいて、ステップS110の判定に用いる閾値が決定される。

0037

ステップS110で電圧検出部140が異常であると判定した場合、ステップS120において電池管理装置10は、マイコン150により、所定の異常信号を出力する。ここでは、電圧検出部140が正しく端子電圧を測定できていないことを示す異常信号を、マイコン150から不図示の上位コントローラに出力する。ステップS120を実行したら、電池管理装置10は、図4のフローチャートに示す診断処理を終了する。

0038

なお、以上説明した図4のフローチャートにおいて、ステップS20でオフ電圧を測定してからステップS50でオン電圧を測定するまでの時間をAと表すと、この時間Aの長さは図4に示す程度である。これは、図1に示したように、電池管理装置10は2つのバッファメモリ(第1バッファメモリ103および第2バッファメモリ104)を備えているため、先に測定したオフ電圧をマイコン150に取り込む前にオン電圧の測定を行うことが可能であることから達成できるものである。これに対して、図2に示した比較例の電池管理装置10hでは、1つのバッファメモリ105しか備えていないため、オフ電圧の測定結果をマイコン150に取り込んでからオン電圧の測定を行う必要がある。すなわち、図4のステップS30の後にステップS80の処理を実行してからでないと、ステップS40、S50の処理を実行することができない。そのため、時間Aよりも多くの時間がかかってしまうことになる。

0039

以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。

0040

(1)電池管理装置10は、状態変化発生部130および電圧検出部140を有する電池監視回路100と、RCフィルタ110、電圧変動部120およびマイコン150とを備える。電圧検出部140は、電池セル21、22のそれぞれの両極に電圧検出線L1、L2、L3を介して電気的に接続され、電池セル21、22それぞれの端子電圧を検出する。RCフィルタ110は、電圧検出線L1、L2、L3に電気的に接続されており、状態変化発生部130は、電圧検出線L1、L2、L3に対する電気的状態変化を発生する。電圧変動部120は、RCフィルタ110と電圧検出部140との間で電圧検出線L1、L2、L3と電気的に接続され、状態変化発生部130が発生した電気的状態変化を受けて電池セル21、22の端子電圧を変動させる。マイコン150は、電圧変動部120により電池セル21、22の端子電圧を変動させたときの電圧検出部140による電池セル21、22の端子電圧の検出結果に基づいて、電圧検出部140を診断する。このようにしたので、電池管理装置10において、電圧検出部140によるセル電圧の検出機能の診断終了後、すぐにセル電圧の測定を実行することができる。

0041

(2)電圧変動部120は、診断用抵抗R21、R22、R23を用いて構成される。そのため、単純な構成により、状態変化発生部130が発生した電圧検出線L1、L2、L3に対する電気的状態変化を受けて、電池セル21、22の端子電圧を容易かつ確実に変動させることができる。

0042

(3)状態変化発生部130は、電流源G11、G12、G13を用いて構成され、電流源G11、G12、G13から出力された電流を電圧検出線L1、L2、L3に流すことで、電圧検出線L1、L2、L3に対する電気的状態変化を発生する。このようにしたので、単純な構成により、電圧検出線L1、L2、L3に対する電気的状態変化を容易かつ確実に発生させることができる。

0043

(4)マイコン150は、ステップS110において、電圧変動部120により電池セル21、22の端子電圧を変動させたときの電池セル21、22の端子電圧の検出結果における電圧変化が所定の閾値未満であるときに、電圧検出部140が異常であると診断する。この閾値は、電圧変動部120を構成する診断用抵抗R21、R22、R23の抵抗値および状態変化発生部130を構成する電流源G11、G12、G13が出力する電流の大きさに基づいて決定される。このようにしたので、電圧検出部140が異常であるか否かを確実に診断することができる。

0044

(5)電圧検出部140は、電池セル21、22の端子電圧の検出結果をそれぞれ格納するための第1バッファメモリ103および第2バッファメモリ104を有する。具体的には、電圧検出部140は、状態変化発生部130が電圧検出線L1、L2、L3に対する電気的状態変化を発生したときの電池セル21、22の端子電圧を、各電圧検出線のオン電圧として、第1バッファメモリ103に記憶する(ステップS60)。また、状態変化発生部130が電圧検出線L1、L2、L3に対する電気的状態変化を発生していないときの電池セル21、22の端子電圧を、各電圧検出線のオフ電圧として、第2バッファメモリ104に記憶する(S30、S60)。マイコン150は、こうして第1バッファメモリ103と第2バッファメモリ104にそれぞれ記憶されたオン電圧およびオフ電圧を電圧検出部140から読み込み(ステップS80、S90)、読み込んだこれらの電圧に基づいて電圧検出部140を診断する(ステップS110)。このようにしたので、各電圧検出線のオン電圧およびオフ電圧を短時間で測定してマイコン150に読み込み、電圧検出部140の診断を行うことができる。

0045

−第2の実施形態−
次に本発明の第2の実施形態について説明する。前述の第1の実施形態で説明した例では、電流源G11、G12、G13から電圧検出線L1、L2、L3にそれぞれ電流を流すときに、抵抗要素R11、R12、R13での電圧降下により、RCフィルタ110の容量要素C11、C12、C13において電荷移動が生じる。そのため、図3(b)に示したように、短時間ではあるものの、端子電圧を測定できない期間が存在する。これに対して、以下の第2の実施形態では、RCフィルタ110の容量要素C11、C12、C13において電荷移動が生じないようにして、端子電圧を測定できない期間を略ゼロとした例を説明する。

0046

図5は、本発明の第2の実施形態による電池管理装置10aの構成を示す図である。本実施形態の電池管理装置10aは、第1の実施形態で説明した電池管理装置10と比べて、RCフィルタ110と電圧変動部120の間に、電流源G21、G22およびG23がさらに設けられている点が異なっている。電流源G21、G22、G23は、電圧検出線L1、L2、L3とそれぞれ接続されており、状態変化発生部130の電流源G11、G12、G13とそれぞれ協働して、電圧検出線L1、L2、L3に所定の電流をそれぞれ流す。これにより、第1の実施形態で説明したように、電圧検出線L1、L2、L3に対する電気的状態変化を発生する。すなわち、電流源G21、G22、G23は、電流源G11、G12、G13と共に、電圧検出線L1、L2、L3に対する電気的状態変化を発生するものである。

0047

電池管理装置10aでは、上記のように、電流源G11、G12、G13および電流源G21、G22、G23から電圧検出線L1、L2、L3にそれぞれ電流を流す。これにより、RCフィルタ110に電流を流すことなく、電圧変動部120の診断用抵抗R21、R22、R23にそれぞれ電流を流して、電圧降下を生じさせる。このとき、RCフィルタ110の容量要素C11、C12、C13には電荷移動が生じない。そのため、端子電圧を測定できない期間を略ゼロとすることができる。

0048

図6は、本発明の第2の実施形態において測定される端子電圧の変動の様子を示す図である。なお、図6では、第1の実施形態で説明した図3と同様に、電流源G11およびG21を用いて電圧検出線L1に電流を流した場合の電池セル21の端子電圧の変化の様子を例として示した。しかし、他の電流源G12およびG22、またはG13およびG23を用いて電圧検出線L2またはL3に電流を流した場合にも、電池セル22の端子電圧は、図6に示したのと同様に変化する。

0049

電池管理装置10aの場合、時刻t1において電流源G11およびG21により電圧検出線L1に電流を流すと、図6に示すように、診断用抵抗R21での電圧降下により、電圧検出部140で端子電圧を測定して得られる測定電圧33がすぐに変化する。この点は、図3(a)で説明した第1の実施形態による電池管理装置10と同様である。このとき、RCフィルタ110には電流が流れないため、RCフィルタ110と電圧変動部120の間における電圧検出線L1の電圧は、非通電時の電圧から変化しない。

0050

通電時の端子電圧を測定した後、時刻t2で電流源G11およびG21をオフして電流を停止すると、電圧検出線L1の電圧は、時刻t1以前の状態へと戻る。このとき上記のように、時刻t1以降でも電圧検出線L1の電圧は変化しないため、図6に示すように、測定電圧32は即時に本来の電圧へと戻る。そのため、図3(a)で説明したような端子電圧を測定できない期間をなくして略ゼロとすることができる。

0051

以上説明した本発明の第2の実施形態によれば、第1の実施形態で説明した作用効果に加えて、さらに次の作用効果を奏する。すなわち、電池管理装置10aは、電圧変動部120を構成する診断用抵抗R21、R22、R23の両端にそれぞれ配置された電流源G11、G12、G13および電流源G21、G22、G23を用いて、これらの電流源から出力された電流を電圧検出線L1、L2、L3に流すことで、電圧検出線L1、L2、L3に対する電気的状態変化を発生する。このようにしたので、電池セル21、22の端子電圧を測定できない期間をなくして、さらに高機能な電池管理装置を提供することができる。

0052

−第3の実施形態−
次に本発明の第3の実施形態について説明する。図7は、本発明の第3の実施形態による電池管理装置10bの構成を示す図である。本実施形態の電池管理装置10bは、第1の実施形態で説明した図1の電池管理装置10と比べて、電圧変動部120が電池監視回路100b内に設けられている点が異なっている。この電池管理装置10bは、電池管理装置10と同様の動作を行う。

0053

以上説明した本発明の第3の実施形態によれば、電池監視回路100bは、電圧変動部120、状態変化発生部130および電圧検出部140を備える。この電池監視回路100bをRCフィルタ110およびマイコン150と共に用いることで、第1の実施形態と同様の作用効果を奏することができる。

0054

−第4の実施形態−
次に本発明の第4の実施形態について説明する。図8は、本発明の第4の実施形態による電池管理装置10cの構成を示す図である。本実施形態の電池管理装置10cは、第2の実施形態で説明した図5の電池管理装置10aと比べて、電圧変動部120および電流源G21、G22、G23が電池監視回路100c内に設けられている点が異なっている。この電池管理装置10cは、電池管理装置10aと同様の動作を行う。

0055

以上説明した本発明の第4の実施形態によれば、電池監視回路100cは、電圧変動部120、電流源G21、G22およびG23、状態変化発生部130、および電圧検出部140を備える。この電池監視回路100cをRCフィルタ110およびマイコン150と共に用いることで、第2の実施形態と同様の作用効果を奏することができる。

0056

−第5の実施形態−
次に本発明の第5の実施形態について説明する。本実施形態では、第1〜第4の実施形態で説明した電池管理装置を利用した制御システムについて説明する。

0057

図9は、本発明の第5の実施形態による制御システムの構成を示す図である。図9の制御システムは、車両に搭載されており、電池管理装置10、組電池20、車両コントローラ30、エアコン用インバータ40、DC/DCコンバータ50および走行用インバータ60を備える。電池管理装置10および組電池20は、第1の実施形態で説明したものと同じである。なお、図9では電池管理装置10としたが、これを第2〜第4の実施形態でそれぞれ説明した電池管理装置10a、10b、10cのいずれかと置き換えて、本実施形態の制御システムを構成してもよい。

0058

車両コントローラ30は、エアコン用インバータ40、DC/DCコンバータ50および走行用インバータ60と接続されており、これらを含む様々な車両搭載機器の制御を行う。車両コントローラ30は、電池管理装置10とも接続されており、電池管理装置10の上位コントローラとして機能する。

0059

エアコン用インバータ40は、車両コントローラ30の制御により、組電池20から供給される直流電力交流電力に変換してエアコン41に出力する。エアコン41は、エアコン用インバータ40から出力された交流電力を利用して不図示のコンプレッサを動作させることで、車両内空調制御を行う。

0060

DC/DCコンバータ50は、車両コントローラ30の制御により、組電池20から供給される直流電力の電圧を所望の電圧に変換して蓄電池51に出力する。蓄電池51は、DC/DCコンバータ50から出力された直流電力を蓄積し、必要に応じて車両の各種電装品に供給する。また、これとは反対に、蓄電池51からの出力電力をDC/DCコンバータ50により電圧変換し、組電池20に出力してもよい。

0061

走行用インバータ60は、車両コントローラ30の制御により、組電池20から供給される直流電力を交流電力に変換して走行用モータ61に出力することで、走行用モータ61の駆動制御を行う。走行用モータ61は、走行用インバータ60から出力された交流電力を利用して駆動することで、車両の駆動輪駆動力を供給し、車両を走行させる。

0062

なお、組電池20と、エアコン用インバータ40、DC/DCコンバータ50および走行用インバータ60との間には、XコンデンサCxおよびYコンデンサCy1、Cy2が設けられている。XコンデンサCxは、主にノーマルモードノイズを除去するためのものであり、YコンデンサCy1、Cy2は、主にコモンモードノイズを除去するためのものである。

0063

本実施形態の制御システムにおいて、電池管理装置10は、第1の実施形態で説明したように組電池20の監視および管理を行う。このとき電池管理装置10は、組電池20を構成する電池セル21、22の端子電圧をそれぞれ測定し、その測定結果に基づいて、電池セル21、22と電圧検出部140のそれぞれについて異常であるか否かを診断する。その結果、電池セル21、22および電圧検出部140のいずれか少なくとも一つが異常であると診断した場合は、その診断結果を示す信号を、当該異常に関する異常情報として車両コントローラ30に出力する。

0064

車両コントローラ30は、上記のようにして電池管理装置10から出力された異常情報を受信すると、その異常情報に基づいて、走行用インバータ60に出力するトルク指令を変更する。これにより、組電池20からの電力供給を制限するための制御を走行用インバータ60に対して行う。このとき、異常情報が表す異常の内容に応じて、以下のように出力するトルク指令を切り替える。

0065

電池管理装置10において電池セル21、22のいずれか少なくとも一つが異常であると診断され、この診断結果を示す異常情報を電池管理装置10から受信した場合、車両コントローラ30は、走行用モータ61の出力トルクをゼロとするトルク指令を走行用インバータ60に出力する。これにより、車両コントローラ30は、組電池20から走行用インバータ60への電力供給を全て遮断するように制限して、走行用モータ61の駆動が停止されるように、走行用インバータ60を制御する。すなわち、この場合は組電池20に異常があり、そのまま車両の走行を続けると危険な状態に至る可能性があるため、走行用モータ61を即時に停止させるように、走行用インバータ60を制御する。

0066

一方、電池管理装置10において電圧検出部140が異常であると診断され、この診断結果を示す異常情報を電池管理装置10から受信した場合、車両コントローラ30は、走行用モータ61の出力トルクを所定の制限値以下とするトルク指令を走行用インバータ60に出力する。これにより、車両コントローラ30は、組電池20から走行用インバータ60への電力供給を制限しつつも、走行用モータ61を駆動させて車両の走行をある程度継続できるように、走行用インバータ60を制御する。すなわち、この場合は組電池20には異常がないため、上記のように組電池20に異常がある場合と比べて、組電池20からの電力供給に対する制限を緩和する。これにより、危険な状態に至らない程度に走行用モータ61の出力を絞りつつ、ユーザが修理工場等まで車両を自走させて移動できるように、走行用インバータ60を制御する。

0067

以上説明した本発明の第5の実施形態による制御システムは、電池管理装置10と、組電池20から供給される電力を用いて車両を走行させるための走行用モータ61の駆動制御を行う走行用インバータ60と、走行用インバータ60を制御する車両コントローラ30とを備える。この制御システムにおいて、電池管理装置10は、電池セル21、22のいずれか少なくとも一つまたは電圧検出部140が異常と診断した場合に、当該異常に関する異常情報を車両コントローラ30に出力する。こうして電池管理装置10から出力された異常情報に基づいて、車両コントローラ30は、組電池20からの電力供給を制限するための制御を走行用インバータ60に対して行う。この制御において、車両コントローラ30は、電池セル21、22のいずれか少なくとも一つが異常である場合と比べて、電圧検出部140が異常である場合には、組電池20からの電力供給に対する制限を緩和する。このようにしたので、電池管理装置10を利用して、安全で使いやすい制御システムを提供することができる。

0068

−第6の実施形態−
次に本発明の第6の実施形態について説明する。本実施形態では、第5の実施形態で説明したのと同様の制御システムにおいて、耐ノイズ性を考慮した制御を行う例について説明する。

0069

図10は、本発明の第6の実施形態による制御システムの構成を示す図である。図10の制御システムは、図9に示した第5の実施形態による制御システムと同様に、車両に搭載されており、電池管理装置10、組電池20、車両コントローラ30、エアコン用インバータ40、DC/DCコンバータ50および走行用インバータ60を備える。なお、図10では電池管理装置10としたが、これを第2〜第4の実施形態でそれぞれ説明した電池管理装置10a、10b、10cのいずれかと置き換えて、本実施形態の制御システムを構成してもよい。

0070

図10において、エアコン用インバータ40、DC/DCコンバータ50および走行用インバータ60は、各々の動作状態に応じたノイズを組電池20に対してそれぞれ出力する。そのため、これらの各機器から組電池20に入力されるノイズが過大であると、電池管理装置10が電池セル21、22の端子電圧を測定しても、正しい測定値が得られないことがある。このような場合に、端子電圧の測定値に基づいて前述のような異常診断を行うと、誤った診断結果が導かれる可能性がある。そこで、本実施形態の制御システムでは、車両コントローラ30から出力されるノイズ情報に基づいて、組電池20に過大なノイズが入力されるような状況では、電池管理装置10による異常診断や電池セル21、22の端子電圧検出を無効化する。この点について、以下に詳しく説明する。

0071

本実施形態において、車両コントローラ30は、エアコン用インバータ40、DC/DCコンバータ50および走行用インバータ60の動作状態に応じて、それぞれの出力ノイズを推定する。たとえば走行用インバータ60の場合は、車両のアクセル操作量が変化したとき、低温時、インバータ制御におけるキャリア周波数の変更時、低速走行中トルク変動が大きいときなどに、走行用インバータ60から組電池20への出力ノイズが増大すると推定できる。また、たとえばDC/DCコンバータ50の場合は、低温時、蓄電池51の充放電電流が0A近辺のときなどに、DC/DCコンバータ50から組電池20への出力ノイズが増大すると推定できる。これ以外にも様々な判断条件を用いて、エアコン用インバータ40、DC/DCコンバータ50、走行用インバータ60の各機器から組電池20への出力ノイズの大きさをそれぞれ推定することができる。こうして出力ノイズを推定したら、車両コントローラ30は、その推定結果に関するノイズ情報を電池管理装置10に出力する。

0072

電池管理装置10は、第1の実施形態で説明したように組電池20の監視および管理を行う。このとき電池管理装置10は、車両コントローラ30から出力されたノイズ情報に基づいて、マイコン150による電圧検出部140の診断や、電圧検出部140による電池セル21、22の端子電圧の検出を無効化する。具体的には、ノイズ情報が表すノイズの大きさが所定値以上である場合や、複数の機器からのノイズが重畳される場合などは、電池管理装置10は、電圧検出部140の診断や、電池セル21、22の端子電圧の検出を行わないようにする。なお、これらの一方のみを無効化してもよいし、両方を無効化してもよい。

0073

以上説明した本発明の第6の実施形態による制御システムは、電池管理装置10と、組電池20から供給される電力を利用するエアコン用インバータ40、DC/DCコンバータ50および走行用インバータ60の各機器の制御を行う車両コントローラ30とを備える。この制御システムにおいて、車両コントローラ30は、各機器から組電池20に出力されるノイズに関するノイズ情報を電池管理装置10に出力する。このノイズ情報に基づいて、電池管理装置10は、マイコン150による電圧検出部140の診断および/または電圧検出部140による電池セル21、22の端子電圧の検出を無効化する。このようにしたので、電池管理装置10を利用して、耐ノイズ性に優れる制御システムを提供することができる。

0074

なお、以上説明した本発明の第6の実施形態において、電圧検出部140の診断および/または電圧検出部140による電池セル21、22の端子電圧の検出結果を無効化する処理を、車両コントローラ30側で行うようにしてもよい。すなわち、車両コントローラ30は、エアコン用インバータ40、DC/DCコンバータ50および走行用インバータ60の各機器から組電池20に出力されるノイズを推定し、その推定結果に基づいて、電池管理装置10から出力される電圧検出部140の診断結果および/または電池セル21、22の端子電圧の検出結果を無効化することができる。このようにしても、上記の作用効果を奏することができる。この場合、車両コントローラ30は、ノイズ情報を電池管理装置10に出力しなくてよい。

0075

また、第5、第6の実施形態でそれぞれ説明した制御システムは、車両に搭載された制御システム以外に適用してもよい。

0076

以上説明した第1〜第6の各実施形態では、診断用抵抗R21、R22、R23を用いて電圧変動部120を構成し、電流源G11、G12、G13を用いて状態変化発生部130を構成するようにした。しかし、これらを別のものでそれぞれ構成してもよい。たとえば、ダイオードを用いて電圧変動部120を構成したり、電圧源を用いて状態変化発生部130を構成したりすることもできる。各電圧検出線に対する電気的状態変化を発生するものであれば、どのようなものを状態変化発生部130として用いてもよい。また、状態変化発生部130が発生した電気的状態変化を受けて、各電圧検出線を介して測定される電池セルの端子電圧を変動させるものであれば、どのようなものを電圧変動部120として用いてもよい。

0077

以上説明した実施形態や変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。

0078

10,10a,10b,10c,10h電池管理装置
20組電池
21,22電池セル
30車両コントローラ
40エアコン用インバータ
50 DC/DCコンバータ
60走行用インバータ
100,100b,100c電池監視回路
101マルチプレクサ
102AD変換器
103 第1バッファメモリ
104 第2バッファメモリ
110RCフィルタ
120電圧変動部
130状態変化発生部
140,140h電圧検出部
150 マイコン

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ