図面 (/)

技術 情報処理装置、情報処理方法、及び、プログラム

出願人 日本電気株式会社
発明者 矢吹謙太郎
出願日 2016年3月9日 (4年9ヶ月経過) 出願番号 2017-504869
公開日 2018年2月8日 (2年10ヶ月経過) 公開番号 WO2016-143337
状態 特許登録済
技術分野 デバッグ/監視
主要キーワード 製鉄プラント 確率分布モデル 判定対象期間 被監視システム モデル組 相関モデル 的関係性 対象状態
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2018年2月8日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題・解決手段

ステムの状態の監視を、メトリック集合毎に関係性が変化するタイミングが異なる場合でも正確に行う。監視装置100は、モデル記憶部122、及び、判定部115を含む。モデル記憶部122は、システムにおける複数のメトリック集合の各々について、当該メトリック集合に含まれるメトリック間の関係性を表すモデルを記憶する。判定部115は、システムが一の状態にあるときの複数のメトリック集合がそれぞれ適合するモデルの組合せと、判定対象時の複数のメトリック集合がそれぞれ適合するモデルの組合せとを比較することにより、システムが当該一の状態にあるかどうかを判定し、出力する。

概要

背景

化学プラントや、石油精製プラント製鉄プラント等のプラントシステムでは、様々な処理の状態(工程)の遷移計画通りに行われているかを監視することが求められる。

ステムの状態の監視に係る技術として、例えば、特許文献1に記載されている不変関係分析が知られている。特許文献1に記載の不変関係分析では、システムが特定の状態を有する曜日時間帯等の期間毎に、システムのメトリック性能指標)の複数のペアの各々の統計的関係性を示す相関関数集合相関モデルとして設定される。そして、新たに取得したメトリックの値が、当該値を取得した期間に対応する相関モデルに適合するかどうかを判断することにより、システムの異常が検出される。

図20は、システムの状態毎のメトリック間の統計的関係性の例を示す図である。図20の例では、システムの状態(P1、P2、…)のそれぞれに対応する期間(T1、T2、…)毎に、メトリックの各ペア(「A,C」、「B,C」、「D,E」、「D,F」)の関係性(Rxy)が変化している。そして、期間毎に、メトリックの各ペアについて相関関数(Fxy)が検出され、それらの集合が、相関モデル(M1、M2、…)に設定されている。

なお、関連技術として、特許文献2には、不変関係分析において、システムのメトリックの複数のペアの各々について相関モデルを生成し、システムの異常を検出する技術が開示されている。また、特許文献3には、不変関係分析において、期間毎に生成された相関モデルを適用可能なより大きな期間を抽出し、上の属性と対応づけることで、相関モデルの適用スケジュールを決定する技術が開示されている。

概要

システムの状態の監視を、メトリック集合毎に関係性が変化するタイミングが異なる場合でも正確に行う。監視装置100は、モデル記憶部122、及び、判定部115を含む。モデル記憶部122は、システムにおける複数のメトリック集合の各々について、当該メトリック集合に含まれるメトリック間の関係性を表すモデルを記憶する。判定部115は、システムが一の状態にあるときの複数のメトリック集合がそれぞれ適合するモデルの組合せと、判定対象時の複数のメトリック集合がそれぞれ適合するモデルの組合せとを比較することにより、システムが当該一の状態にあるかどうかを判定し、出力する。

目的

本発明の目的は、上述した課題を解決し、システムの状態の監視を、メトリックの集合毎に関係性が変化するタイミングが異なる場合でも正確に行うことができる、情報処理装置情報処理方法、及び、記録媒体を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

ステムにおける複数のメトリック集合の各々について、当該メトリック集合に含まれるメトリック間の関係性を表すモデルを記憶する、モデル記憶手段と、前記システムが一の状態にあるときの前記複数のメトリック集合がそれぞれ適合する前記モデルの組合せと、判定対象時の前記複数のメトリック集合がそれぞれ適合する前記モデルの組合せとを比較することにより、前記システムが当該一の状態にあるかどうかを判定し、出力する、判定手段と、を備える情報処理装置

請求項2

さらに、前記システムが前記一の状態にあるときの前記複数のメトリック集合がそれぞれ適合する前記モデルの組合せを生成する、モデル組合せ生成手段、を備える、請求項1に記載の情報処理装置。

請求項3

前記判定手段は、前記システムが複数の状態の各々にあるときの前記複数のメトリック集合がそれぞれ適合する前記モデルの組合せと、前記判定対象時の前記複数のメトリック集合がそれぞれ適合する前記モデルの組合せと、を比較することにより、前記システムが当該複数の状態のいずれにあるかを判定する、請求項1または2に記載の情報処理装置。

請求項4

前記判定手段は、前記システムの前記複数の状態の各々に対する前記モデルの組合せの内、前記判定対象時の前記モデルの組合せとの類似度が、他の組合せよりも大きい組合せに対応する状態を、前記システムの状態と判定する、請求項3に記載の情報処理装置。

請求項5

前記判定手段は、前記システムの状態の判定を繰り返し、前記システムの前記複数の状態の各々に対する前記モデルの組合せの、前記判定対象時の前記モデルの組合せとの類似度の内、最も大きい類似度と2番目に大きい類似度との差が所定の閾値以上の場合、当該最も大きい類似度の組合せに対応する状態を、前記システムの状態と判定し、そうでない場合、前回判定した状態を、前記システムの状態と判定する、請求項4に記載の情報処理装置。

請求項6

前記システムにおける前記複数のメトリック集合の各々に含まれるメトリックの値を計測するセンサと、請求項1乃至5のいずれかに記載の前記情報処理装置と、を備える情報処理システム

請求項7

所定の処理を行うプラントと、前記プラントにおける前記複数のメトリック集合の各々に含まれるメトリックの値を計測するセンサと、請求項1乃至5のいずれかに記載の前記情報処理装置と、を備え、前記情報処理装置は、前記システムとして前記プラントの状態を判定する、プラントシステム

請求項8

システムにおける複数のメトリック集合の各々について、当該メトリック集合に含まれるメトリック間の関係性を表すモデルを記憶し、前記システムが一の状態にあるときの前記複数のメトリック集合がそれぞれ適合する前記モデルの組合せと、判定対象時の前記複数のメトリック集合がそれぞれ適合する前記モデルの組合せとを比較することにより、前記システムが当該一の状態にあるかどうかを判定し、出力する、情報処理方法

請求項9

コンピュータに、システムにおける複数のメトリック集合の各々について、当該メトリック集合に含まれるメトリック間の関係性を表すモデルを記憶し、前記システムが一の状態にあるときの前記複数のメトリック集合がそれぞれ適合する前記モデルの組合せと、判定対象時の前記複数のメトリック集合がそれぞれ適合する前記モデルの組合せとを比較することにより、前記システムが当該一の状態にあるかどうかを判定し、出力する、処理を実行させるプログラムを格納する、コンピュータが読み取り可能な記録媒体

技術分野

0001

本発明は、情報処理装置情報処理方法、及び、記録媒体に関する。

背景技術

0002

化学プラントや、石油精製プラント製鉄プラント等のプラントシステムでは、様々な処理の状態(工程)の遷移計画通りに行われているかを監視することが求められる。

0003

ステムの状態の監視に係る技術として、例えば、特許文献1に記載されている不変関係分析が知られている。特許文献1に記載の不変関係分析では、システムが特定の状態を有する曜日時間帯等の期間毎に、システムのメトリック性能指標)の複数のペアの各々の統計的関係性を示す相関関数集合相関モデルとして設定される。そして、新たに取得したメトリックの値が、当該値を取得した期間に対応する相関モデルに適合するかどうかを判断することにより、システムの異常が検出される。

0004

図20は、システムの状態毎のメトリック間の統計的関係性の例を示す図である。図20の例では、システムの状態(P1、P2、…)のそれぞれに対応する期間(T1、T2、…)毎に、メトリックの各ペア(「A,C」、「B,C」、「D,E」、「D,F」)の関係性(Rxy)が変化している。そして、期間毎に、メトリックの各ペアについて相関関数(Fxy)が検出され、それらの集合が、相関モデル(M1、M2、…)に設定されている。

0005

なお、関連技術として、特許文献2には、不変関係分析において、システムのメトリックの複数のペアの各々について相関モデルを生成し、システムの異常を検出する技術が開示されている。また、特許文献3には、不変関係分析において、期間毎に生成された相関モデルを適用可能なより大きな期間を抽出し、上の属性と対応づけることで、相関モデルの適用スケジュールを決定する技術が開示されている。

先行技術

0006

特許第5387779号公報
特許第4872944号公報
特許第5605476号公報

発明が解決しようとする課題

0007

しかしながら、上述のプラントシステムでは、メトリックのペア(または、メトリックの集合)毎に関係性が変化するタイミングは異なり、さらに、ペア(集合)によっては、同じ状態(工程)内で関係性が変化する可能性がある。

0008

図21は、システムの状態毎のメトリック間の関係性の他の例を示す図である。図21の例では、メトリックの各ペアの関係性は、状態(P1、P2、…)に対応する期間(T1、T2、…)とは異なるタイミングで変化し、各期間内でも変化している。

0009

この場合、図20のように、システムの状態(P1、P2、…)のそれぞれに対応する期間(T1、T2、…)毎に相関関数を検出し、相関モデルを生成しても、相関モデルの誤差が大きくなる。このため、システムの状態毎に生成した相関モデルでは、システムの異常の検出を正しく行うことができない。

0010

本発明の目的は、上述した課題を解決し、システムの状態の監視を、メトリックの集合毎に関係性が変化するタイミングが異なる場合でも正確に行うことができる、情報処理装置、情報処理方法、及び、記録媒体を提供することである。

課題を解決するための手段

0011

本発明の情報処理装置は、システムにおける複数のメトリック集合の各々について、当該メトリック集合に含まれるメトリック間の関係性を表すモデルを記憶する、モデル記憶手段と、前記システムが一の状態にあるときの前記複数のメトリック集合がそれぞれ適合する前記モデルの組合せと、判定対象時の前記複数のメトリック集合がそれぞれ適合する前記モデルの組合せとを比較することにより、前記システムが当該一の状態にあるかどうかを判定し、出力する、判定手段と、を備える。

0012

本発明の情報処理方法は、システムにおける複数のメトリック集合の各々について、当該メトリック集合に含まれるメトリック間の関係性を表すモデルを記憶し、前記システムが一の状態にあるときの前記複数のメトリック集合がそれぞれ適合する前記モデルの組合せと、判定対象時の前記複数のメトリック集合がそれぞれ適合する前記モデルの組合せとを比較することにより、前記システムが当該一の状態にあるかどうかを判定し、出力する。

0013

本発明のコンピュータ読み取り可能な記録媒体は、コンピュータに、システムにおける複数のメトリック集合の各々について、当該メトリック集合に含まれるメトリック間の関係性を表すモデルを記憶し、前記システムが一の状態にあるときの前記複数のメトリック集合がそれぞれ適合する前記モデルの組合せと、判定対象時の前記複数のメトリック集合がそれぞれ適合する前記モデルの組合せとを比較することにより、前記システムが当該一の状態にあるかどうかを判定し、出力する、処理を実行させるプログラムを格納する。

発明の効果

0014

本発明の効果は、システムの状態の監視を、メトリックの集合毎に関係性が変化するタイミングが異なる場合でも正確に行うことができることである。

図面の簡単な説明

0015

本発明の実施の形態の特徴的な構成を示すブロック図である。
本発明の実施の形態における、監視システム1の構成を示すブロック図である。
本発明の実施の形態における、コンピュータにより実現された監視装置100の構成を示すブロック図である。
本発明の実施の形態における、監視装置100のモデル生成処理を示すフローチャートである。
本発明の実施の形態における、監視装置100のモデル組合せ生成処理を示すフローチャートである。
本発明の実施の形態における、監視装置100の状態判定処理を示すフローチャートである。
本発明の実施の形態における、状態情報133を示す図である。
本発明の実施の形態における、相関モデル132の例を示す図である。
本発明の実施の形態における、システムの状態毎に抽出された相関モデル132の例を示す図である。
本発明の実施の形態における、モデル組合せ情報134の例を示す図である。
本発明の実施の形態における、判定対象期間に抽出された相関モデル132の組合せの例を示す図である。
本発明の実施の形態における、相関モデル132の組合せの比較結果の例を示す図である。
本発明の実施の形態における、判定結果画面136の例を示す図である。
本発明の実施の形態における、判定結果画面136の他の例を示す図である。
本発明の実施の形態における、状態判定処理の繰り返しの例を示す図である。
本発明の実施の形態における、システムの状態毎に抽出された相関モデル132の他の例を示す図である。
本発明の実施の形態における、モデル組合せ情報134の他の例を示す図である。
本発明の実施の形態における、判定対象期間に抽出された相関モデル132の組合せの他の例を示す図である。
本発明の実施の形態における、相関モデル132の組合せの比較結果の他の例を示す図である。
システムの状態毎のメトリック間の関係性の例を示す図である。
システムの状態毎のメトリック間の関係性の他の例を示す図である。

実施例

0016

本発明の実施の形態について説明する。

0017

はじめに、本発明の実施の形態の構成を説明する。図2は、本発明の実施の形態における、監視システム1の構成を示すブロック図である。

0018

図2を参照すると、監視システム1は、監視装置100、及び、被監視システム500(または、単にシステムとも記載する)を含む。監視装置100と被監視システム500は、ネットワーク等により接続される。監視システム1は、本発明の情報処理システムの一実施形態である。また、監視装置100は、本発明の情報処理装置の一実施形態である。

0019

監視システム1は、例えば、プラントシステムである。この場合、被監視システム500は、例えば、化学プラントや、石油精製プラント、製鉄プラント等、所定の処理を行うプラントである。

0020

被監視システム500は、センサ501を含む。センサ501は、被監視システム500における監視対象である、複数のメトリック(指標)の値を一定間隔毎に測定する。ここで、メトリックとして、例えば、被監視システム500の各部の温度や圧力、振動電力電圧電流等が用いられる。また、メトリックとして、被監視システム500の各部における、原料生産物の重さ、量、割合等が用いられてもよい。また、機械に係るメトリックとして、ISO(International Organization for Standardization)13380等で規定されるパラメータが用いられてもよい。以下、監視対象の複数のメトリックを監視データとも呼ぶ。

0021

監視装置100は、被監視システム500の状態を判定する。監視装置100は、データ収集部111、モデル生成部112、検査部113、モデル組合せ生成部114、判定部115、及び、出力部116を含む。監視装置100は、さらに、データ記憶部121、モデル記憶部122、状態情報記憶部123、及び、モデル組合せ記憶部124を含む。

0022

データ収集部111は、被監視システム500から監視データの値の時系列収集する。

0023

データ記憶部121は、収集した監視データの時系列を記憶する。

0024

モデル生成部112は、監視データのモデル化期間の時系列をもとに、メトリック間の統計的関係性(以下、単に関係性とも記載する)を表すモデルを生成する。

0025

本発明の実施の形態では、メトリック間の統計的関係性を表すモデルとして、メトリックの各ペアの相関モデル132を用いる。

0026

モデル生成部112は、メトリックの各ペアに対して、例えば、特許文献2に記載されているような相関モデル132を生成する。相関モデル132は、メトリックのペアの相関関係を示す相関関数(または、変換関数)を含む。相関関数は、メトリックのペアの内の一方のメトリック(入力メトリック)の時刻t、及び、tより前の値と、他方のメトリック(出力メトリック)の時刻tより前の値を用いて、時刻tにおける出力メトリックの値を予測する関数である。

0027

モデル記憶部122は、モデル生成部112が生成した相関モデル132を記憶する。

0028

状態情報記憶部123は、検出対象の状態(対象状態)を示す、状態情報133を記憶する。

0029

図7は、本発明の実施の形態における、状態情報133を示す図である。図7の例では、状態情報133は、対象状態(「状態」欄)、システムが対象状態にあった期間である状態期間(「期間」欄)、及び、対象状態に係る説明等のコメント(「コメント」欄)を含む。対象状態、状態期間、及び、コメントは、例えば、ユーザ等により予め設定される。

0030

検査部113は、データ記憶部121に記憶された、各状態期間、或いは、判定対象期間の監視データをもとに、メトリックの各ペアについて、適合する相関モデル132を抽出する。

0031

モデル組合せ生成部114は、各対象状態と、メトリックの各ペアについて抽出された相関モデル132の組合せと、を関連付けたモデル組合せ情報134を生成する。

0032

モデル組合せ記憶部124は、モデル組合せ生成部114が生成したモデル組合せ情報134を記憶する。

0033

判定部115は、判定対象期間においてメトリックの各ペアについて抽出された相関モデル132の組合せと、モデル組合せ情報134により示される相関モデル132の組合せとを比較することにより、被監視システム500の状態を判定する。

0034

出力部116は、被監視システム500の状態の判定結果を示す判定結果画面136を、ユーザ等に出力(表示)する。

0035

なお、監視装置100は、CPU(Central Processing Unit)とプログラムを記憶した記憶媒体を含み、プログラムに基づく制御によって動作するコンピュータであってもよい。

0036

図3は、本発明の実施の形態における、コンピュータにより実現された監視装置100の構成を示すブロック図である。監視装置100は、CPU101、ハードディスクメモリ等の記憶デバイス102(記憶媒体)、他の装置等とデータ通信を行う通信デバイス103、キーボード等の入力デバイス104、及び、ディスプレイ等の出力デバイス105を含む。

0037

CPU101は、データ収集部111、モデル生成部112、検査部113、モデル組合せ生成部114、判定部115、及び、出力部116の機能を実現するためのコンピュータプログラムを実行する。記憶デバイス102は、データ記憶部121、モデル記憶部122、状態情報記憶部123、及び、モデル組合せ記憶部124に格納される情報を記憶する。通信デバイス103は、被監視システム500から、監視データを受信する。入力デバイス104は、ユーザ等から、後述するモデル生成や、モデル組合せ生成、状態判定の指示を受け付ける。出力デバイス105は、ユーザ等へ、判定結果画面136を出力(表示)する。

0038

また、監視装置100の各構成要素は、独立した論理回路でもよい。また、監視装置100の各構成要素は、有線または無線で接続された複数の物理的な装置に分散的に配置されていてもよい。

0039

次に、本発明の実施の形態の動作をモデル生成処理、モデル組合せ生成処理、及び、状態判定処理の順番に説明する。

0040

<モデル生成処理>
はじめに、本発明の実施の形態のモデル生成処理について説明する。

0041

モデル生成処理は、例えば、ユーザ等から、モデル化期間の指定とともに、モデル生成が指示されたときに実行される。

0042

図4は、本発明の実施の形態における、監視装置100のモデル生成処理を示すフローチャートである。

0043

ここでは、データ収集部111が、被監視システム500において測定された監視データの値を、例えば、定期的に取得し、データ記憶部121に保存していると仮定する。また、相関モデル132を生成する対象であるメトリックのペア(対象メトリックペア)は、ユーザ等により、監視対象のメトリックから、予め選択、設定されていると仮定する。この場合、対象メトリックペアとして、所定の確からしさ基準を満たすような関係性を有しうるペアが選択される。

0044

モデル生成部112は、対象メトリックペアから、ペアを1つ選択する(ステップS101)。

0045

モデル生成部112は、選択したペアについて、モデル化期間の監視データをもとに、モデル化期間に存在する異なる関係性の各々を表す相関モデル132を、1以上生成する(ステップS102)。モデル生成部112は、生成した相関モデル132をモデル記憶部122に保存する。

0046

ここで、モデル生成部112は、例えば、特許文献1に記載された技術と同様に、モデル化期間を複数の単位期間に分割し、単位期間毎に、当該単位期間の監視データをもとに相関モデル132を生成する。そして、モデル生成部112は、例えば、単位期間毎に生成した相関モデル132の中から、モデル化期間全体に対する適合度をもとに、1以上の相関モデル132を抽出してもよい。また、モデル生成部112は、例えば、特許文献3に記載された技術と同様に、単位期間毎に生成した相関モデル132をもとに、1以上の単位期間に適用可能な相関モデル132を抽出してもよい。

0047

モデル生成部112は、対象メトリックペアの全てついて、ステップS101からの処理を繰り返す(ステップS103)。

0048

図8は、本発明の実施の形態における、相関モデル132の例を示す図である。図8において、Mxy(n)は、入力メトリックx、出力メトリックyのペアに対する、n番目の相関モデル132である。Fxy(n)は、相関モデルMxy(n)の相関関数である。

0049

例えば、モデル生成部112は、図8に示すように、入力、出力メトリックのペア「A,B」について、モデル化期間の監視データをもとに、相関モデルMab(1)、及び、相関モデルMab(2)の2つの相関モデル132を生成する。同様に、モデル生成部112は、入力、出力メトリックのペア「A,C」、「B,C」、「D,E」、「D,F」について、図8に示すように、相関モデル132を生成する。

0050

<モデル組合せ生成処理>
次に、本発明の実施の形態のモデル組合せ生成処理について説明する。

0051

モデル組合せ生成処理は、例えば、ユーザ等から、状態情報133が設定された後で、モデル組合せ生成が指示されたときに実行される。

0052

ここでは、図21に示すような、システムの正常な状態P1、P2、…を対象状態として、モデル組合せ情報134を生成すると仮定する。また、状態P1、P2、…について、図7のような状態情報133が、状態情報記憶部123に設定されていると仮定する。

0053

図5は、本発明の実施の形態における、監視装置100のモデル組合せ生成処理を示すフローチャートである。

0054

検査部113は、システムの対象状態から状態を1つ選択する(ステップS201)。

0055

検査部113は、対象メトリックペアから、ペアを1つ選択する(ステップS202)。

0056

検査部113は、選択したペアについて生成されている1以上の相関モデル132から、選択した状態に対する状態期間の監視データが適合する相関モデル132を抽出する(ステップS203)。ここで、検査部113は、監視データが適合する相関モデル132として、例えば、状態期間全体で、当該期間のメトリックのペアの値に対する、相関関数による予測誤差が最小(適合度が最大)となる相関モデル132を抽出する。

0057

検査部113は、対象メトリックペアの全てついて、ステップS202からの処理を繰り返す(ステップS204)。

0058

モデル組合せ生成部114は、各ペアについて抽出された相関モデル132の組合せを、選択した状態と関連付けて、モデル組合せ情報134に設定する(ステップS205)。

0059

図9は、本発明の実施の形態における、システムの状態毎に抽出された相関モデル132の例を示す図である。また、図10は、本発明の実施の形態における、モデル組合せ情報134の例を示す図である。

0060

例えば、検査部113は、状態P1に対応する状態期間T1の監視データが適合する、入力、出力メトリックのペア「A,B」の相関モデル132として、図9に示すように、相関モデルMab(1)を抽出する。同様に、検査部113は、入力、出力メトリックのペア「A,C」、「B,C」、「D,E」、及び、「D,F」の各々について、相関モデルMac(1)、Mbc(1)、Mde(1)、及び、Mdf(1)を抽出する。そして、検査部113は、抽出された相関モデル132の組合せを、状態P1に関連付けて、図10のようにモデル組合せ情報134に設定する。

0061

以下、対象状態の全てついて、ステップS201からの処理が繰り返される(ステップS206)。

0062

例えば、システムの状態P2、P3、…、P6についても同様に、メトリックのペアの各々について、適合する相関モデル132が抽出され、図10のようなモデル組合せ情報134が生成される。

0063

<状態判定処理>
次に、本発明の実施の形態の状態判定処理について説明する。

0064

状態判定処理は、例えば、ユーザ等から、判定対象期間とともに、状態判定が指示されたときに実行される。

0065

図6は、本発明の実施の形態における、監視装置100の状態判定処理を示すフローチャートである。

0066

検査部113は、対象メトリックペアから、ペアを1つ選択する(ステップS301)。

0067

検査部113は、選択したメトリックのペアについて、生成されている1以上の相関モデル132から、判定対象期間の監視データが適合する相関モデル132を抽出する(ステップS302)。ここで、検査部113は、例えば、判定対象期間全体で、当該判定対象期間のメトリックの値に対する予測誤差が最小(適合度が最大)となる相関モデル132を抽出する。

0068

検査部113は、相関モデル132が生成されているメトリックの全ペアについて、ステップS301からの処理を繰り返す(ステップS303)。

0069

図11は、本発明の実施の形態における、判定対象期間に抽出された相関モデル132の組合せの例を示す図である。

0070

例えば、検査部113は、判定対象期間「2015/02/01 10:00-11:00」について、図11のような相関モデル132の組合せを抽出する。

0071

判定部115は、判定対象期間について抽出された相関モデル132の組合せと、モデル組合せ情報134に設定されている各状態の相関モデル132の組合せとを比較し、類似度を算出する(ステップS304)。ここで、判定部115は、例えば、数1式により類似度Sを算出する。

0072

0073

ここで、Nは対象メトリックペアの数である。

0074

図12は、本発明の実施の形態における、相関モデル132の組合せの比較結果の例を示す図である。

0075

例えば、判定部115は、図11の相関モデル132の組合せと、図10のモデル組合せ情報134に設定されている各状態の相関モデル132の組合せとをもとに、数1式を用いて、図12のように類似度を算出する。

0076

判定部115は、モデル組合せ情報134に設定されている相関モデル132の組合せの内、類似度が所定の閾値以上の組合せを抽出する。そして、判定部115は、抽出した組合せの各々に対応する状態を、判定対象期間におけるシステムの状態(状態の候補)と判定し、出力部116を介して出力する(ステップS305)。

0077

例えば、類似度の閾値が60%の場合、判定部115は、図12において、類似度が60%以上である、状態P1、P2、及び、P6を、システムの状態(状態の候補)と判定する。

0078

図13は、本発明の実施の形態における、判定結果画面136の例を示す図である。図13の例では、判定結果画面136において、判定結果である状態の候補の各々(「状態」欄)、及び、当該候補の類似度(「類似度」欄)が、類似度の大きい順に表示されている。さらに、状態情報133に設定されている、当該候補に対する状態期間(「期間」欄)、及び、コメント(「コメント」欄)も表示されている。

0079

例えば、出力部116は、図13のような判定結果画面136を表示する。

0080

なお、判定部115は、類似度が閾値以上の組合せに対応する状態をシステムの状態(状態の候補)と判定する代わりに、類似度が閾値以上で最も高い、或いは、類似度が最も高い組合せに対応する状態をシステムの状態と判定してもよい。

0081

例えば、判定部115は、図12において、類似度60%以上で最も高い状態P1を、システムの状態と判定する。

0082

図14は、本発明の実施の形態における、判定結果画面136の他の例を示す図である。図14の例では、判定結果画面136において、判定結果である状態(「状態」欄)、及び、当該候補の類似度(「類似度」欄)が表示されている。

0083

例えば、出力部116は、図14のような判定結果画面136を表示する。

0084

また、状態判定処理は、例えば、所定長の判定対象期間毎に、繰り返し実行されてもよい。

0085

状態判定処理を繰り返し実行する場合、判定部115は、監視データの一時的なノイズ等の判定結果への影響を避けるために、以下のような処理を行ってもよい。

0086

例えば、判定部115は、判定対象期間に対して算出された最も大きい類似度と、2番目に大きい類似度との差が所定の閾値以上の場合、最も大きい類似度の組合せに対応する状態を、システムの新たな状態と判定してもよい。そうでない場合、判定部115は、前回の判定対象期間において判定されたシステムの状態を、システムの状態と判定する(前回の判定結果を維持する)。

0087

図15は、本発明の実施の形態における、状態判定処理の繰り返しの例を示す図である。

0088

ここで、類似度の差の閾値が20ポイントであると仮定する。

0089

判定対象期間「2015/02/01 11:00-12:00」において、最も大きい類似度は、状態P2に対する80%、2番目に大きい類似度は、状態P1に対する70%である。判定部115は、類似度の差が閾値未満であるため、図15に示すように、前回の判定結果P1を維持する。

0090

さらに、判定対象期間「2015/02/01 12:00-13:00」において、最も大きい類似度は、状態P2に対する80%、2番目に大きい類似度は、状態P1に対する60%である。判定部115は、類似度の差が閾値以上であるため、図15に示すように、当該判定対象期間のシステムの状態を、新たな状態P2と判定する。

0091

また、例えば、判定部115は、ある組合せの類似度が、所定回数連続して最大であった場合、当該組合せに対応する状態を、システムの新たな状態と判定してもよい。そうでない場合、判定部115は、前回の判定対象期間において判定されたシステムの状態を、システムの状態と判定する(前回の判定を維持する)。

0092

また、上述の説明では、類似度の算出時に、状態期間、及び、判定対象期間のそれぞれにおいて予測誤差が最小となる相関モデル132が比較された。しかしながら、これに限らず、類似度の算出時に、状態期間、及び、判定対象期間のそれぞれにおいて占有率(予測誤差が最小となる期間の割合)が最も大きい相関モデル132が比較されてもよい。

0093

この場合、モデル組合せ生成処理において、検査部113は、メトリックの各ペアについて生成されている1以上の相関モデル132の各々の、各状態期間における占有率を算出する。そして、検査部113は、メトリックの各ペアについて、占有率が最も大きい相関モデル132を抽出する。

0094

図16は、本発明の実施の形態における、システムの状態毎に抽出された相関モデル132の他の例を示す図である。

0095

例えば、検査部113は、図16に示すように、メトリックのペア「A,B」に対して、状態P1に対する状態期間T1における、相関モデルMab(1)の占有率1.0を算出する。検査部113は、当該ペアについて、相関モデルMab(1)を抽出する。検査部113は、メトリックのペア「A,C」に対して、状態期間T1における、相関モデルMac(1)の占有率0.75、相関モデルMac(2)の占有率0.25を算出する。検査部113は、当該ペアについて、占有率が大きい相関モデルMac(1)を抽出する。検査部113は、メトリックの他のペアの各々についても、状態期間T1における各相関モデル132の占有率を算出し、占有率が大きい相関モデルを抽出132する。さらに、検査部113は、他の状態についても、占有率をもとに、相関モデル132を抽出する。そして、モデル組合せ生成部114は、図10のようなモデル組合せ情報134を生成する。

0096

同様に、状態判定処理において、検査部113は、メトリックの各ペアに対して、判定対象期間における占有率が最も大きい相関モデル132を抽出する。

0097

例えば、検査部113は、占有率をもとに、図11のような相関モデル132の組合せを抽出する。

0098

そして、判定部115は、上述の説明と同様に、数1式を用いて、図12のように類似度を算出し、状態P1、P2、及び、P6を、システムの状態(状態の候補)と判定する。

0099

また、類似度の算出時に、状態期間、及び、判定対象期間のそれぞれにおける、メトリックの各ペアについて算出された各相関モデル132の占有率が比較されてもよい。

0100

この場合、モデル組合せ生成処理において、モデル組合せ生成部114は、モデル組合せ情報134に、メトリックの各ペアに対して算出された各相関モデル132の占有率を設定する。

0101

図17は、本発明の実施の形態における、モデル組合せ情報134の他の例を示す図である。

0102

例えば、モデル組合せ生成処理において、モデル組合せ生成部114は、検査部113により算出された図16の占有率をもとに、図17のようなモデル組合せ情報134を生成する。

0103

同様に、状態判定処理において、検査部113は、メトリックの各ペアに対して、判定対象期間における各相関モデル132の占有率を算出する。

0104

図18は、本発明の実施の形態における、判定対象期間に抽出された相関モデル132の組合せの他の例を示す図である。

0105

例えば、検査部113は、メトリックの各ペアに対して、図18のように、各相関モデル132の占有率を算出する。

0106

判定部115は、メトリックの各ペアについて算出された各相関モデル132の占有率と、モデル組合せ情報134に設定されている各状態における、メトリックの各ペアについて算出された各相関モデル132の占有率とを比較し、類似度を算出する。ここで、判定部115は、例えば、数2式により類似度Sを算出する。

0107

0108

ここで、Miは、ペアiに対して生成された相関モデル132の数、g(i,j)は、判定対象期間における、ペアiの相関モデルjの占有率、r(i,j)は、状態期間における、ペアiの相関モデルjの占有率である。また、min(x,y)は、x、yの内の小さい方を得るための関数である。

0109

図19は、本発明の実施の形態における、相関モデル132の組合せの比較結果の他の例を示す図である。

0110

例えば、判定部115は、図18の占有率と、図17のモデル組合せ情報134に設定されている占有率とをもとに、数2式を用いて、図19のように類似度を算出する。そして、判定部115は、状態P1を、システムの状態(状態の候補)と判定する。

0111

以上により、本発明の実施の形態の動作が完了する。

0112

なお、本発明の実施の形態では、モデルとして相関モデル132を用いた。しかしながら、これに限らず、メトリック間の統計的関係性を表すことができれば、統計処理の分野でよく知られた手法に基づく他のモデルを用いてもよい。例えば、モデルとして、自己回帰モデルロジスティック回帰モデル等の線形非線形モデルや、確率分布モデルを用いてもよい。

0113

また、本発明の実施の形態では、予め選択された対象メトリックペアの各々に対して、モデルを生成した。しかしながら、これに限らず、監視対象のメトリックの網羅的なペアに対して、モデルを生成してもよい。また、メトリックとして用いられる監視対象の構造や構成、或いは、監視対象に係る経験(ヒューリスティック)をもとに選択されたメトリックのペアに対して、モデルを生成してもよい。また、監視データに対する計算の結果、統計的関係性を有しうると判定されたメトリックのペアに対して、モデルを生成してもよい。

0114

また、メトリック集合の選択方法によって、統計的関係性の表現形式も適切に選択されることは言うまでもない。例えば、メトリックの網羅的、或いは、選択的なペアを用いる場合、2つのメトリックx、yの時系列が、統計的にy=f(x)を満たすことが導出されている、または、知られているならば、関数f(x)が、メトリックx、y間の統計的関係性である。関数f(x)は、上述の、線形、非線形モデルや、確率分布モデルなど様々な形態をとりうる。

0115

また、本発明の実施の形態では、メトリックの「ペア」に対してモデルが生成された。しかしながら、これに限らず、統計的関係性が変化するタイミングが類似していれば、2以上のメトリックを含むメトリックの「集合」に対して、モデルを生成してもよい。この場合、検査部113は、各状態期間、或いは、判定対象期間の監視データをもとに、メトリックの各集合について、適合するモデルを抽出する。モデル組合せ生成部114は、各対象状態と、メトリックの各集合について抽出されたモデルの組合せと、を関連付けたモデル組合せ情報134を生成する。判定部115は、判定対象期間においてメトリックの各集合について抽出されたモデルの組合せと、モデル組合せ情報134により示されるモデルの組合せとを比較することにより、被監視システム500の状態を判定する。

0116

また、本発明の実施の形態では、判定結果として、システムの状態を出力しているが、予め定められた状態遷移と異なる状態遷移を検出したときに、異常を通知してもよい。

0117

また、本発明の実施の形態では、モデル組合せ情報134に、正常な状態における相関モデル132の組合せを設定することにより、システムの「正常」な状態を検出している。しかしながら、これに限らず、モデル組合せ情報134に、異常な状態における相関モデル132の組合せを設定することにより、システムの「異常」な状態を検出してもよい。

0118

また、監視装置100は、モデル組合せ生成部114を含まず、他の装置により生成されたモデル組合せ情報134を用いて、システムの状態を判定してもよい。

0119

また、本発明の実施の形態では、被監視システム500がプラントの場合を例に説明した。しかしながら、これに限らず、特定の状態が定義され、状態に係るメトリックの値を取得できれば、被監視システム500は、1以上のコンピュータを含むIT(Information Technology)システムでもよい。この場合、メトリックとして、CPU使用率メモリ使用率ディスクアクセス頻度等、コンピュータリソースネットワークリソース使用率、使用量等が用いられてもよい。また、被監視システム500は、発電所のシステムや、キャリア通信設備自動車鉄道航空機船舶等の移動体でもよい。また、被監視システム500は、建物橋梁等の構造物であってもよい。

0120

次に、本発明の実施の形態の特徴的な構成を説明する。図1は、本発明の実施の形態の特徴的な構成を示すブロック図である。

0121

監視装置100(情報処理装置)は、モデル記憶部122、及び、判定部115を含む。モデル記憶部122は、システムにおける複数のメトリック集合の各々について、当該メトリック集合に含まれるメトリック間の関係性を表すモデルを記憶する。判定部115は、システムが一の状態にあるときの複数のメトリック集合がそれぞれ適合するモデルの組合せと、判定対象時の複数のメトリック集合がそれぞれ適合するモデルの組合せとを比較し、システムが当該一の状態にあるかどうかを判定し、出力する。

0122

次に、本発明の実施の形態の効果を説明する。

0123

本発明の実施の形態によれば、システムの状態の監視を、メトリック集合毎に関係性が変化するタイミングが異なる場合でも正確に行うことができる。その理由は、判定部115が、システムが一の状態にあるときと、判定対象時とで、複数のメトリック集合がそれぞれ適合するモデルの組合せを比較することにより、システムが当該一の状態にあるかどうかを判定するためである。

0124

これにより、ユーザ等は、システムの状態の遷移が計画通りに行われているかどうかを、正確に判断できる。

0125

なお、複雑な構成を有するプラントや、施設設備等では、一般に、システムの状態の特定に高いスキルを必要とするという課題があった。

0126

例えば、水槽で材料を混合反応させて目的の液体を生成するだけの単純なプラントでは、反応フェーズ標準時間で完了したか否かを、単一の温度センサの値が所定の温度に達するのに要する時間により判断できる。ところが、石油精製プラント等の複雑なプラントでは、パイプの圧力、モーター回転数、原料の品質運転モード等の、明示または暗示されている指標を複合して判断することが求められる。このため、システムの状態を正確に特定できるかどうかは、プラント技術者のスキルに依存する。

0127

本発明の実施の形態によれば、このような複雑なシステムであっても、システムの状態を容易に特定できる。その理由は、モデル組合せ生成部114が、システムが一の状態にあるときの複数のメトリック集合が適合するモデルの組合せを生成し、判定部115が、当該モデルの組合せを用いて、システムが当該一の状態にあるかどうかを判定するためである。

0128

以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。

0129

本発明は、特定の状態が定義され、状態に係る各種データが取得できるシステムに広く適用できる。

0130

この出願は、2015年3月11日に出願された日本出願特願2015−048474を基礎とする優先権を主張し、その開示の全てをここに取り込む。

0131

1監視システム
100監視装置
101 CPU
102記憶デバイス
103通信デバイス
104入力デバイス
105出力デバイス
111データ収集部
112モデル生成部
113検査部
114モデル組合せ生成部
115 判定部
116 出力部
121データ記憶部
122モデル記憶部
123状態情報記憶部
124 モデル組合せ記憶部
132相関モデル
133 状態情報
134 モデル組合せ情報
136 判定結果画面
500被監視システム
501 センサ

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 富士通株式会社の「 情報管理装置及び情報管理プログラム」が 公開されました。( 2020/10/29)

    【課題】ログの保管に用いられるディスクサイズの見積もりの労力を削減する情報管理装置及び情報管理プログラムを提供する。【解決手段】ログ情報収集部11は、収集設定にしたがって動作履歴が取得される管理対象装... 詳細

  • ローム株式会社の「 ウォッチドッグタイマ」が 公開されました。( 2020/10/29)

    【課題】適切に周波数異常を検出する。【解決手段】ウォッチドッグタイマ173は、トリガ型の第1周波数異常検出部173aと、通信断絶検知型の第2周波数異常検出部173bと、Q&A型の第3周波数異常検出部1... 詳細

  • ローム株式会社の「 監視装置」が 公開されました。( 2020/10/29)

    【課題】故障検出率の高い監視装置を提供する。【解決手段】監視装置100は、監視対象(例えばDIN1〜DIN4)の異常検出を行う監視部(例えばコンパレータ152〜159)と、監視部が正常であるか否かを診... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ