図面 (/)

技術 未然形状推定装置、挿入/抜去作業システム、挿入/抜去作業支援システム、未然形状推定方法及び未然形状推定プログラム

出願人 オリンパス株式会社
発明者 伊藤毅羽根潤藤田浩正東條良
出願日 2015年1月30日 (5年11ヶ月経過) 出願番号 2016-571643
公開日 2017年10月12日 (3年2ヶ月経過) 公開番号 WO2016-121106
状態 特許登録済
技術分野 孔内観察装置 内視鏡
主要キーワード 接続座 作業者操作 後退領域 進行領域 湾曲変化 変化スピード 対ノイズ性 検出形状
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年10月12日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題・解決手段

未然形状推定装置は、挿入部(7)と、形状センサ(8)と、未然挿入部形状推定部(33)とを含む。前記挿入部(7)は、可撓性を有し、観察対象物の内部に挿入される。前記形状センサ(8)は、前記挿入部の湾曲状態を検出してその検出信号を出力する。前記未然挿入部形状推定部(33)は、前記形状センサから出力された前記検出信号から取得される情報に基づいて所定の時間経過後の前記挿入部の形状を未然に推定し、未然推定形状情報として出力する。

概要

背景

挿入部を細い管孔内に挿入して観察対象物の内部に挿入し、当該観察対象物内部で作業を行うための装置がある。例えば内視鏡では、観察対象物の内部に挿入部を挿入することにより当該観察対象物の内表面の観察作業を行う。このような内視鏡等の装置では、管孔内における挿入部の形状等を外部から直接見ることができない。

すなわち、内視鏡では、観察対象物の内部における挿入部の位置及び形状等の状態が観察対象物の外部から分からない。このため、作業者は、管孔内部に挿入された挿入部の状態について、現時点において挿入部が管孔内部中の何処に在って、何処を観察しているのかなどを想像しながら観察作業を行う必要がある。よって、作業者は、観察対象物内部における挿入部の状態を想像しながら、感を頼りに挿入部に対する操作を行う必要があった。

このような事から管孔の形状が複雑な場合、又は観察対象物が生体のように柔らかく変形するような場合には、観察対象物内部への挿入そのものが困難であったりする。管孔の形状が想像と異なる位置又は状態である場合には、最悪のケースとして観察対象物に影響を与えるおそれがある。このため作業者は、作業を行うための長時間の訓練や、実作業を行いながら感や経験を身に付けるなど、作業の技能を向上させる必要があった。言い換えると、高度に訓練された技能者又はエキスパートでなければ、観察対象物内部への挿入部の挿入、観察対象物内部での作業を行えない場合があった。

このような実情から管孔内での挿入部の状態を作業者に知らせるための技術が考案されている。例えば特許文献1は、内視鏡の挿入部の形状を検出し、表示するための内視鏡挿入形状プローブについて開示している。この内視鏡挿入形状検出プローブは、内視鏡装置に設けられている鉗子チャンネルに挿入して内視鏡挿入部の形状検出を行う。この内視鏡挿入形状検出プローブでは、光供給用ファイバにより供給された光をミラー照射し、このミラーで反射した光を複数の曲率検出光ファイバにより伝送する。これら曲率検出用光ファイバには、それぞれ曲率に応じて光損失が変化する光損失部が一つずつ設けられている。これにより、各曲率検出用光ファイバにより導光される光は、光損失部を経由してモジュールに到達するので、モジュールに導光される光の光量変化を検出することにより光損失部が設けられた位置における曲率検出用光ファイバの曲率を検出することができる。

又、特許文献1は、光損失部が設けられる位置を異ならせた複数の曲率検出用ファイバを用い、これら曲率検出用ファイバ毎にそれぞれ異なる光損失部の各位置での各曲率を検出することを開示している。これにより、各光損失部が設けられるポイントにおける曲げ角度と隣り合うポイントの距離とによって内視鏡挿入部の形状を検知することができる。

概要

未然形状推定装置は、挿入部(7)と、形状センサ(8)と、未然挿入部形状推定部(33)とを含む。前記挿入部(7)は、可撓性を有し、観察対象物の内部に挿入される。前記形状センサ(8)は、前記挿入部の湾曲状態を検出してその検出信号を出力する。前記未然挿入部形状推定部(33)は、前記形状センサから出力された前記検出信号から取得される情報に基づいて所定の時間経過後の前記挿入部の形状を未然に推定し、未然推定形状情報として出力する。

目的

本発明の目的は、形状センサにより検出したタイミングよりも後のタイミングにおける挿入部の形状を未然に推定し、未然推定形状情報として出力する未然形状推定装置、挿入/抜去作業システム、挿入/抜去作業支援システム、未然形状推定方法及び未然形状推定プログラムを提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

観察対象物の内部に挿入される可撓性を有する挿入部と、前記挿入部の湾曲状態を検出してその検出信号を出力する形状センサと、前記形状センサから出力された前記検出信号から取得される情報に基づいて所定の時間経過後の前記挿入部の形状を未然に推定し、未然推定形状情報として出力する未然挿入部形状推定部と、を具備することを特徴とする未然形状推定装置

請求項2

前記形状センサから出力された前記検出信号に基づいて前記挿入部の形状情報を算出し、当該挿入部形状情報を、前記検出信号から取得される前記情報として出力する挿入部形状算出部を含むことを特徴とする請求項1に記載の未然形状推定装置。

請求項3

前記挿入部は、前記観察対象物の内部の表面を観察するための内視鏡の挿入部を含むことを特徴とする請求項1に記載の未然形状推定装置。

請求項4

前記挿入部形状算出部によって互いに異なる各時刻に算出された前記各挿入部形状情報を比較し、当該比較結果に基づいて前記挿入部の形状変化を示す形状時間変化情報導出する形状時間変化導出部を含み、前記未然挿入部形状推定部は、前記形状時間変化導出部により導出された前記形状時間変化情報と前記挿入部形状算出部により算出された前記挿入部形状情報とに基づいて前記未然推定形状情報を出力する、ことを特徴とする請求項2に記載の未然形状推定装置。

請求項5

nを2以上の自然数とし、j、kをそれぞれ互いに異なるn以下の自然数とし、かつ当該jとkとの大小関係をj<kとし、前記形状センサに対して、前記挿入部の形状の検出タイミングを示す第1乃至第nのタイミング信号を出力する形状センサ制御部を含み、前記挿入部形状算出部は、前記形状センサ制御部から出力された前記第1乃至第nのタイミング信号に含まれる第jと第kとの各タイミング信号に対応して前記形状センサから出力される前記検出信号に基づいて第jの挿入部形状情報と第kの挿入部形状情報とを算出し、前記形状時間変化導出部は、前記挿入部形状算出部により算出された前記第jの挿入部形状情報と前記第kの挿入部形状情報とを比較し、前記第jのタイミング信号の出力時から前記第kのタイミング信号の出力時までの前記挿入部形状時間変化情報を求める、ことを特徴とする請求項4に記載の未然形状推定装置。

請求項6

前記形状時間変化導出部は、前記第jの挿入部形状情報と前記第kの挿入部形状情報とを比較して前記挿入部において形状が変化している形状変化領域を抽出し、かつ当該形状変化領域における前記挿入部の形状変化の種類、当該形状変化の方向、又は当該形状変化の量のうち少なくとも1つを導出し、前記挿入部形状時間変化情報として出力することを特徴とする請求項5に記載の未然形状推定装置。

請求項7

前記形状時間変化導出部は、前記第jの挿入部形状情報と前記第kの挿入部形状情報とを比較して前記挿入部において形状が殆ど変化していない形状不変化領域を抽出し、当該形状不変化領域が複数ある場合、当該各形状不変化領域の相対的な位置関係の変化に基づいて前記挿入部での形状変化の種類、当該形状変化の方向、又は当該形状変化の量のうち少なくとも1つを導出し、前記挿入部形状時間変化情報として出力することを特徴とする請求項5に記載の未然形状推定装置。

請求項8

前記挿入部形状時間変化情報に基づいて前記観察対象物の内部への前記挿入部の挿入操作を含む操作情報を推定する操作情報推定部を含み、前記未然挿入部形状推定部は、前記操作情報に基づいて前記未然推定形状情報を推定する、ことを特徴とする請求項4に記載の未然形状推定装置。

請求項9

nを2以上の自然数とし、j、kをそれぞれ互いに異なるn以下の自然数とし、かつ当該jとkとの大小関係をj<kとすると、前記形状センサに対して、前記挿入部の形状の検出タイミングを示す第1乃至第nのタイミング信号を出力する形状センサ制御部を含み、前記挿入部形状算出部は、前記形状センサ制御部から出力された前記第1乃至第nのタイミング信号に含まれる第jと第kとの各タイミング信号に対応して前記形状センサから出力される前記検出信号に基づいて第jの挿入部形状情報と第kの挿入部形状情報とを算出し、前記形状時間変化導出部は、前記挿入部形状算出部により算出された前記第jの挿入部形状情報と前記第kの挿入部形状情報とを比較し、前記第jのタイミング信号の出力時から前記第kのタイミング信号の出力時までの前記挿入部形状時間変化情報を求め、前記操作情報推定部は、前記挿入部の形状変化が前記挿入部の挿入操作を受けて為されたものと仮定し、前記第jのタイミング信号の発生時から前記第kのタイミング信号の発生時までの期間中における前記挿入部の前記形状変化の種類、当該形状変化の方向、又は当該形状変化の量のうち少なくとも1つを推定する、ことを特徴とする請求項8に記載の未然形状推定装置。

請求項10

前記形状時間変化情報に基づいて前記観察対象物の内表面の形状情報を示す内面プロファイル情報の少なくとも一部を推定する観察対象物内面プロファイル情報推定部を含み、前記未然挿入部形状推定部は、前記観察対象物の前記内面プロファイル情報に基づいて前記未然推定形状情報を推定する、ことを特徴とする請求項4に記載の未然形状推定装置。

請求項11

前記操作情報推定部は、前記操作情報に基づいて今後に行われる前記挿入部への操作情報を未然に推定する未然操作情報推定部を含み、前記未然挿入部形状推定部は、前記未然操作情報推定部により推定された前記操作情報が行われたときの前記挿入部の形状を未然に推定する、ことを特徴とする請求項8に記載の未然形状推定装置。

請求項12

前記形状センサは、前記挿入部に搭載され、光ファイバセンサ、又は磁気センサを含むことを特徴とする請求項1に記載の未然形状推定装置。

請求項13

前記形状センサは、X線カメラ、又は外部カメラを含むことを特徴とする請求項1に記載の未然形状推定装置。

請求項14

前記挿入部の形状を操作可能な操作ハンドルと、前記操作ハンドルの操作量を検出する操作量センサと、を含み、前記操作情報推定部は、前記操作量センサにより検出される前記操作ハンドルの操作量に基づいて前記挿入部に対する前記操作情報を推定する、ことを特徴とする請求項8に記載の未然形状推定装置。

請求項15

前記観察対象物の内部に前記挿入部を挿入するための入口部と、前記入口部に設けられ、前記観察対象物の内部への前記挿入部の挿入量を検出する挿入量センサと、を含み、前記操作情報推定部は、前記挿入量センサにより検出された前記挿入部の挿入量に基づいて前記挿入部に対する前記操作情報を推定する、ことを特徴とする請求項8に記載の未然形状推定装置。

請求項16

前記未然に推定される前記未然推定形状情報を記憶し、かつ必要に応じて前記未然推定形状情報を読み出し可能とする情報記憶部を含むことを特徴とする請求項1に記載の未然形状推定装置。

請求項17

観察対象物の内部に挿入される可撓性を有する挿入部と、前記挿入部の湾曲状態を検出してその検出信号を出力する形状センサと、前記挿入部の湾曲操作を行うための操作部と、前記形状センサから出力された前記検出信号から取得される情報に基づいて所定の時間経過後の前記挿入部の形状を未然に推定し、未然推定形状情報として出力する未然挿入部形状推定部と、を具備することを特徴とする挿入/抜去作業システム

請求項18

観察対象物の内部に挿入される可撓性を有する挿入部と、前記挿入部の湾曲状態を検出してその検出信号を出力する形状センサと、前記挿入部を湾曲させるための操作部と、前記形状センサから出力された前記検出信号から取得される情報に基づいて所定の時間経過後の前記挿入部の形状を未然に推定し、未然推定形状情報として出力する未然挿入部形状推定部と、前記未然挿入部形状推定部から出力された前記未然推定形状情報を報知し、前記挿入部の前記観察対象物の内部への挿入/抜去を支援する作業支援部と、を具備することを特徴とする挿入/抜去作業支援システム

請求項19

観察対象物の内部に挿入される可撓性を有する挿入部の湾曲状態を形状センサにより検出してその検出信号を出力し、前記形状センサから出力された前記検出信号から取得される情報に基づいて所定の時間経過後の前記挿入部の形状を未然に推定し、未然推定形状情報として出力する、ことを特徴とする未然形状推定方法。

請求項20

コンピュータに、観察対象物の内部に挿入される可撓性を有する挿入部の湾曲状態を検出する形状センサから出力される検出信号を入力する入力機能と、前記入力機能により入力した前記検出信号から取得される情報に基づいて所定の時間経過後の前記挿入部の形状を未然に推定し、未然推定形状情報として出力する未然挿入部形状推定機能と、を実現する未然形状推定プログラム

技術分野

0001

本発明は、観察対象物の内部に挿入する挿入部の形状を未然に推定する未然形状推定装置、挿入/抜去作業システム、挿入/抜去作業支援システム、未然形状推定方法及び未然形状推定プログラムに関する。

背景技術

0002

挿入部を細い管孔内に挿入して観察対象物の内部に挿入し、当該観察対象物内部で作業を行うための装置がある。例えば内視鏡では、観察対象物の内部に挿入部を挿入することにより当該観察対象物の内表面の観察作業を行う。このような内視鏡等の装置では、管孔内における挿入部の形状等を外部から直接見ることができない。

0003

すなわち、内視鏡では、観察対象物の内部における挿入部の位置及び形状等の状態が観察対象物の外部から分からない。このため、作業者は、管孔内部に挿入された挿入部の状態について、現時点において挿入部が管孔内部中の何処に在って、何処を観察しているのかなどを想像しながら観察作業を行う必要がある。よって、作業者は、観察対象物内部における挿入部の状態を想像しながら、感を頼りに挿入部に対する操作を行う必要があった。

0004

このような事から管孔の形状が複雑な場合、又は観察対象物が生体のように柔らかく変形するような場合には、観察対象物内部への挿入そのものが困難であったりする。管孔の形状が想像と異なる位置又は状態である場合には、最悪のケースとして観察対象物に影響を与えるおそれがある。このため作業者は、作業を行うための長時間の訓練や、実作業を行いながら感や経験を身に付けるなど、作業の技能を向上させる必要があった。言い換えると、高度に訓練された技能者又はエキスパートでなければ、観察対象物内部への挿入部の挿入、観察対象物内部での作業を行えない場合があった。

0005

このような実情から管孔内での挿入部の状態を作業者に知らせるための技術が考案されている。例えば特許文献1は、内視鏡の挿入部の形状を検出し、表示するための内視鏡挿入形状プローブについて開示している。この内視鏡挿入形状検出プローブは、内視鏡装置に設けられている鉗子チャンネルに挿入して内視鏡挿入部の形状検出を行う。この内視鏡挿入形状検出プローブでは、光供給用ファイバにより供給された光をミラー照射し、このミラーで反射した光を複数の曲率検出光ファイバにより伝送する。これら曲率検出用光ファイバには、それぞれ曲率に応じて光損失が変化する光損失部が一つずつ設けられている。これにより、各曲率検出用光ファイバにより導光される光は、光損失部を経由してモジュールに到達するので、モジュールに導光される光の光量変化を検出することにより光損失部が設けられた位置における曲率検出用光ファイバの曲率を検出することができる。

0006

又、特許文献1は、光損失部が設けられる位置を異ならせた複数の曲率検出用ファイバを用い、これら曲率検出用ファイバ毎にそれぞれ異なる光損失部の各位置での各曲率を検出することを開示している。これにより、各光損失部が設けられるポイントにおける曲げ角度と隣り合うポイントの距離とによって内視鏡挿入部の形状を検知することができる。

先行技術

0007

特開2007−044412号公報

発明が解決しようとする課題

0008

特許文献1によれば、挿入形状検出プローブが形状を検出した時点、すなわち過去における内視鏡挿入部の形状を検出することが可能であるが、これから後、内視鏡挿入部がどの様な形状になるのかを推測することはできない。すなわち、複雑な形状を有する観察対象物の内部に内視鏡挿入部を挿入していく過程で、“過去における内視鏡挿入部の形状”を検出することができるが、その後、内視鏡挿入部の形状がどうなっているのか、及びこのまま挿入部の操作を継続したときに“内視鏡挿入部の形状がどのような形状になるのか”の情報を得ることはできない。

0009

又、観察対象物が生体の場合、“過去において内視鏡挿入部の形状が生体内でどのような形状になっていたか”を検出することができるが、その後、内視鏡挿入部の形状がどうなっているのか、及びこのままの挿入部の操作を継続したときに“内視鏡挿入部の形状がどのような形になるか”の情報を得ることは出来ない。
本発明の目的は、形状センサにより検出したタイミングよりも後のタイミングにおける挿入部の形状を未然に推定し、未然推定形状情報として出力する未然形状推定装置、挿入/抜去作業システム、挿入/抜去作業支援システム、未然形状推定方法及び未然形状推定プログラムを提供することにある。

課題を解決するための手段

0010

本発明の未然形状推定装置は、観察対象物の内部に挿入される可撓性を有する挿入部と、前記挿入部の湾曲状態を検出してその検出信号を出力する形状センサと、前記形状センサから出力された前記検出信号から取得される情報に基づいて所定の時間経過後の前記挿入部の形状を未然に推定し、未然推定形状情報として出力する未然挿入部形状推定部とを具備する。

0011

本発明の挿入/抜去作業システムは、観察対象物の内部に挿入される可撓性を有する挿入部と、前記挿入部の湾曲状態を検出してその検出信号を出力する形状センサと、前記挿入部を湾曲させるための操作部と、前記形状センサから出力された前記検出信号から取得される情報に基づいて所定の時間経過後の前記挿入部の形状を未然に推定し、未然推定形状情報として出力する未然挿入部形状推定部とを具備する。

0012

本発明の挿入/抜去作業支援システムは、観察対象物の内部に挿入される可撓性を有する挿入部と、前記挿入部の湾曲状態を検出してその検出信号を出力する形状センサと、前記挿入部を湾曲させるための操作部と、前記形状センサから出力された前記検出信号から取得される情報に基づいて所定の時間経過後の前記挿入部の形状を未然に推定し、未然推定形状情報として出力する未然挿入部形状推定部と、前記未然挿入部形状推定部から出力された前記未然推定形状情報を報知し、前記挿入部の前記観察対象物の内部への挿入/抜去を支援する作業支援部とを具備する。

0013

本発明の未然形状推定方法は、観察対象物の内部に挿入される可撓性を有する挿入部の湾曲状態を形状センサにより検出してその検出信号を出力し、前記形状センサから出力された前記検出信号から取得される情報に基づいて所定の時間経過後の前記挿入部の形状を未然に推定し、未然推定形状情報として出力する。

0014

本発明の未然形状推定プログラムは、コンピュータに、観察対象物の内部に挿入される可撓性を有する挿入部の湾曲状態を検出する形状センサから出力される検出信号を入力する入力機能と、前記入力機能により入力した前記検出信号から取得される情報に基づいて所定の時間経過後の前記挿入部の形状を未然に推定し、未然推定形状情報として出力する未然挿入部形状推定機能とを実現する。

発明の効果

0015

本発明は、形状センサにより検出したタイミングよりも後のタイミングにおける挿入部の形状を未然に推定し、未然推定形状情報として出力する事前形状推定装置、挿入/抜去作業システム、挿入/抜去作業支援システム、未然形状推定方法及び未然形状推定プログラムを提供できる。

図面の簡単な説明

0016

図1は、本発明の挿入/抜去作業システムとしての内視鏡システムの第1の実施の形態を示す構成図である。
図2は、挿入部の先端部を示す構成図である。
図3Aは、光ファイバセンサ湾曲形状検出部が設けられた側に湾曲したときの光伝達量を示す図である。
図3Bは、光ファイバセンサを湾曲しないときの光伝達量を示す図である。
図3Cは、光ファイバセンサを湾曲形状検出部が設けられた側とは反対側に湾曲したときの光伝達量を示す図である。
図4は、支援情報ユニットを示す構成図である。
図5は、検出時挿入部形状算出部により算出された第jと第kとの各タイミング信号に対応した第jと第kとの各検出時挿入部形状を示す図である。
図6は、形状変化領域に対する解析の例を示す図である。
図7は、図6に示す形状変化領域における第jの操作部側中心軸Zjaと第kの操作部側中心軸Zkaとを重ね合わせたときの形状変化領域KE1を示す図である。
図8は、第jと第kとの各タイミング信号時における内視鏡挿入部の形状変化を示す図である。
図9は、時間経過に従ったタイミング信号Tの出力イメージを示す図である。
図10は、第j〜hのタイミング信号Tの発生時における形状変化領域KE1の未然推定形状情報KE1hを推定する過程を示す図である。
図11は、挿入部形状時間変化情報KAを用いて推定される第hのタイミング信号の発生時点における挿入部7の全体の未然挿入部形状情報時間変化)Jhを示す図である。
図12は、第jと第kと第hとの各タイミング信号の発生時点における作業者の操作が加わったときの内視鏡挿入部の各形状を示す図である。
図13は、本発明の第1の実施の形態の第1の変形例における挿入部形状時間変化導出部により取得される第jと第kとの各タイミング信号の発生時点における内視鏡挿入部の各形状変化領域の形状を示す図である。
図14は、第jと第kとのタイミング信号の各発生時点における内視鏡挿入部の形状変化領域の接続方向の変化を示す図である。
図15は、第jと第kとの各タイミング信号に対応した第jと第kとの各検出時挿入部形状情報を示す図である。
図16は、挿入部における挿入部形状非類似領域NLRと、挿入部進行領域7srと、挿入部後退領域との3つの領域を説明するための図である。
図17Aは、第jの検出時挿入部形状Fjを示す図である。
図17Bは、第kの検出時挿入部形状Fkを示す図である。
図17Cは、観察対象物の内部空間の形状等のおおよその情報を得ている場合の第hの検出時挿入部形状Fh1を示す図である。
図17Dは、観察対象物の内部空間の形状等のおおよその情報が無い場合の第hの検出時挿入部形状Fh2を示す図である。
図18は、本発明の第2の実施の形態の第1の変形例における第jと第kの検出時挿入部形状Fj、Fkにおける第1乃至第3の特徴部の例を示す図である。
図19は、本発明の第3の実施の形態における支援情報ユニットを示す構成図である。
図20は、第j、kの形状情報Fj、Fkに対応する観察対象物の内部空間の内面プロファイルを示す図である。
図21は、対象物内面プロファイル情報推定部による動作を説明するための図である。
図22は、対象物内面プロファイル情報推定部による動作を説明するための図である。
図23は、本発明の第3の実施の形態の第1の変形例における支援情報ユニットを示す構成図である。
図24は、観察対象物負荷推定部の動作を説明するための図である。
図25は、本発明の変形例の一例を示す図である。

実施例

0017

[第1の実施の形態]
以下、本発明の第1の実施の形態について図面を参照して説明する。
図1は挿入/抜去作業システムとしての内視鏡システム1の構成図を示す。本システム1は、作業者による作業によって、主に、観察対象物2の内部空間(空洞)3の内部に内視鏡挿入部(以下、挿入部と称する)7を挿入し、観察対象物2の内部空間3の内面を観察するために用いられる。
本システム1は、各構成要素として内視鏡本体部4と、内視鏡スコープ部5と、表示部6とを含む。内視鏡スコープ部5は、挿入部7を含む。挿入部7には、形状センサ8が搭載されている。

0018

本システム1の各構成要素について説明する。
[内視鏡スコープ部]
内視鏡スコープ部5は、挿入部7と、操作部9と、本体側ケーブル10とを含む。内視鏡スコープ部5は、作業者により把持されて操作される。この操作により内視鏡スコープ部5の挿入部7は、観察対象物2の入口部としての挿入開口2aから挿入可能な位置に移動され、さらに観察対象物2の内部空間3に挿入される。
本体側ケーブル10は、内視鏡スコープ部5と内視鏡本体部4との間を接続するもので、内視鏡本体部4に対しては着脱可能である。本体側ケーブル10は、1本又は複数本、内視鏡スコープ部5と内視鏡本体部4との間に接続される。

0019

挿入部7について具体的に説明する。挿入部7は、先端部7aと、この先端部7a以外の部分とで形成されている。先端部7aは、硬質に形成された領域(硬質部)を含む。先端部7a以外の領域は、可撓性を有するように形成されている。先端部7aの硬質部は、予め設定された領域(小領域)に形成される。挿入部7の可撓性を有する領域のうち先端部7a側の一部の領域は、能動的に湾曲可能な能動湾曲部7bに形成されている。この能動湾曲部7bは、操作部9に設けられた操作ハンドル11を作業者が操作することで上下方向および左右方向に能動的に湾曲可能である。その他の挿入部7の領域には、受動的に湾曲可能な受動湾曲部7cが形成されている。受動湾曲部7cは、観察対象物2の形状に倣うことで受動的に湾曲する。この受動湾曲部7cは、作業者の把持の仕方、又は観察対象物2の挿入開口2aと操作部9との位置関係等により受動的に湾曲する。

0020

操作部9は、操作ハンドル11を含む。操作ハンドル11は、作業者によって操作され、挿入部7の能動湾曲部7bを上下方向又は左右方向に湾曲させる。操作部9は、例えば作業者の一方の手によって把持され、この状態で操作ハンドル11が操作されることにより挿入部7の能動湾曲部7bを上下方向又は左右方向に湾曲させる。操作部9は、作業者による操作ハンドル11に対する操作を受けて挿入部7における能動湾曲部7bの湾曲量を変えることが可能である。

0021

挿入部7と操作ハンドル11との間には、一対の操作ワイヤが複数設けられている。これら操作ワイヤは、上下方向への湾曲と、左右方向への湾曲とに用いられる。これら操作ワイヤは、例えばループ状に形成されている。操作ハンドル11が回転すると、操作ワイヤが挿入部7と操作ハンドル11との間で移動し、操作ハンドル11の回転が挿入部7に伝達される。これにより、挿入部7の能動湾曲部7bは、操作ハンドル11の操作量に応じて上下方向又は左右方向に湾曲する。
図2は本システム1における挿入部7の先端部7aの構成図を示す。挿入部7の先端部7aには、撮像素子7dと、対物レンズ10と、鉗子チャンネル12と、照明部13と、を含む当該内視鏡の用途に応じて様々な部材が設けられている。対物レンズ10は、撮像素子7dと光学的に接続されている。鉗子チャンネル12は、観察対象物2の内部空間3内において様々な作業や処置を行うための鉗子等を挿入するための開口である。照明部13は、内視鏡本体部4の光源部20から射出された光を例えば観察対象物2の内部空間3に向けて射出する。

0022

本システム1では、挿入部7の照明部13から射出された光が観察対象物2の内部空間3に照射されると、当該観察対象物2の内部空間3から反射等した光が対物レンズ10に入射する。挿入部7の先端部7aには、撮像素子7dが設けられており、当該撮像素子7dは、対物レンズ10に入射した光を撮像して撮像信号を出力する。この撮像信号は、本体側ケーブル10を通ってビデオプロセッサ21に送られる。このビデオプロセッサ21は、撮像素子7dから出力される撮像信号を画像処理して観察対象物2の内面の観察画像を取得する。この観察画像は、表示部6に表示される。

0023

挿入部7は、操作ハンドル11の操作により湾曲する能動湾曲部7bと、受動的に湾曲する受動湾曲部7cとを含む。受動湾曲部7cは、観察対象物2の内部空間3の壁面に押し当てられることにより、当該内部空間3の壁面の形状に倣うように湾曲する。これにより、挿入部7は、観察対象物2の内部空間3に挿入されると、当該観察対象物2の内部空間3の壁面に押し当てられながら当該内部空間3を進行する。観察対象物2の内部空間3は、観察対象物2の種類等により様々な形状等の導入経路を含むものとなっている。このように挿入部7は、当該観察対象物2の内部空間3の内部を進行できる構造を有する。

0024

挿入部7の内部には、当該挿入部7の全体の形状を検出する形状センサ8が設けられている。形状センサ8は、例えば光ファイバセンサ(以下、光ファイバセンサ8として説明する)である。光ファイバセンサ8には、複数の検出ポイントが挿入部7の全体の形状検出が可能なように設けられている。

0025

これら検出ポイントは、例えば図3A乃至図3Cに示すように光ファイバセンサ8を形成する光ファイバ8aに設けられた光吸収体(以下、湾曲形状検出部と称する)8bから成る。これら検出ポイントは、挿入部7のほぼ全長渡り、光ファイバセンサ8の長手方向に分散して配置されている。光ファイバセンサ8の構成及び原理については後述する。
挿入部7と操作部9とは機械的に接続されている。操作部9と本体側ケーブル10も機械的に接続されている。

0026

[内視鏡本体部]
内視鏡本体部4は、図1に示すように光源部20と、ビデオプロセッサ21と、支援情報ユニット22と、本体メモリ40とを含む。光源部20は、キセノンハロゲン等のランプ類、又はLED、レーザなどの半導体光源を含む。又、本体側ケーブル10と操作部9と挿入部7の内部には、ライトガイド等、光を導光可能な部材が挿通して設けられている。これにより、光源部20から光を射出すると、この光は、ライトガイド等を経由して挿入部7の先端部7aに設けられた照明部13から照明光として射出される。この照明光は、観察対象物2の内部に入射し、当該観察対象物2の内部を照明する。

0027

ビデオプロセッサ21は、挿入部7の先端部7aに搭載された撮像素子7dから出力される撮像信号を画像処理して観察対象物2の内面の観察画像を取得する。撮像素子7dから出力される撮像信号は、挿入部7と、操作部9と、本体側ケーブル10の内部に設けられている信号線を通してビデオプロセッサ21に伝送される。ビデオプロセッサ21は、取得した観察画像を表示部6に表示可能な観察画像信号に変換して表示部6に送る。
本体メモリ40には、観察対象物2に関する情報と、観察対象物2を観察するときの観察作業の情報とが予め記憶されている。又、本体メモリ40には、支援情報ユニット22から出力される未然推定形状情報Mが記憶される。

0028

図4は支援情報ユニット22の構成図を示す。支援情報ユニット22は、形状センサユニット23の一部を含む。形状センサユニット23は、光ファイバセンサ8と、ファイバセンサ用光源24と、光検出器25とを含む。なお、ファイバセンサ用光源24と光検出器25とは、支援情報ユニット22に含まれ、光ファイバセンサ8は、支援情報ユニット22に含まれないものとなっている。形状センサユニット23は、挿入部7の湾曲形状に対応する光情報を示す検出信号Dを出力する。形状センサユニット23の構成及びその動作の詳細は、後述する。なお、挿入部7の湾曲形状に対応する光情報は、光ファイバセンサ8内に配設さている光ファイバの湾曲角に応じた光量を表す。

0029

支援情報ユニット22は、挿入部7の観察対象物2の内部への挿入/抜去を支援する作業支援部として機能する。すなわち、支援情報ユニット22は、形状センサユニット23から出力される検出信号Dを受信し、この検出信号Dを処理して作業者の作業及び操作を支援するための支援情報、すなわち挿入部7の形状を未然に推定した未然推定形状情報Mを出力する。この支援情報ユニット22は、検出時挿入部形状算出部(以下、形状算出部と称する)30と、形状センサ制御部31と、挿入部形状時間変化導出部(以下、変化導出部と称する)32と、未然挿入部形状推定部(以下、未然形状推定部と称する)33と、作業者操作情報推定部(以下、操作推定部と称する)34と、情報記憶部35とを含む。

0030

なお、形状センサユニット23の一部であるファイバセンサ用光源24と光検出器25とは、支援情報ユニット22内に含む。この形状センサユニット23は、光検出器25の出力信号を処理し、検出信号Dを出力するための図示しない信号処理回路を含む。
形状算出部30は、形状センサユニット23から出力される検出信号Dを演算処理して挿入部7が湾曲したときの湾曲の方向と大きさとを算出し、当該算出の結果を検出時挿入部形状情報(以下、挿入部形状情報と称する)Fとして出力する。ここでは、挿入部7は、先端部7a以外は可撓性を有するように形成されているので、湾曲している状態が多い。また、観察対象物2の内部空間3の形状も複雑に湾曲しているものが多いので、挿入部7は、直線状に配置されている状態が殆どない。従って、形状算出部30は、単に、挿入部7の形状を算出するのでなく、挿入部7が湾曲したときの湾曲の方向と大きさとを算出するものとして記載する。

0031

形状算出部30は、湾曲情報メモリ30aを含む。この湾曲情報メモリ30aには、挿入部7の湾曲角と、形状センサユニット23から出力される検出信号Dにより示される光情報の変化との関係を示す情報が保存されている。又、湾曲情報メモリ30aには、光ファイバセンサ8の複数の検出ポイントの数と、これら検出ポイントの配置位置と、これら検出ポイントで検出する湾曲の方向(X方向,Y方向)との情報が保存されている。従って、形状算出部30は、形状センサユニット23から出力される検出信号Dと、湾曲情報メモリ30aに保存されている当該各情報とに基づいて挿入部7が湾曲したときの湾曲の方向と大きさとを算出し、当該算出の結果を挿入部形状情報Fとして出力する。

0032

形状センサ制御部31は、形状センサユニット23が挿入部7の湾曲形状を検出するタイミングを取るためのタイミング信号Tを出力する。このタイミング信号Tは、例えば一定周期ハイレベルとなる矩形波である。ここで、nを2以上の自然数、j、kをそれぞれ互いに異なるn以下の自然数、j、kの大小関係をj<kとすると、形状センサ制御部31は、第1乃至第nのタイミングでハイレベルとなる矩形波のタイミング信号Tを出力する。この第1乃至第nのタイミング信号Tには、第jのタイミング信号T、第kのタイミング信号Tが含まれる。

0033

変化導出部32は、形状センサ制御部31から出力されるタイミング信号Tを受信し、第jのタイミング信号Tの発生時に形状算出部30から出力される挿入部形状情報F(以下、第jの挿入部形状情報Fjと称する)を受信し、第kのタイミング信号Tの発生時に形状算出部30から出力される挿入部形状情報F(以下、第kの挿入部形状情報Fkと称する)を受信する。
変化導出部32は、形状算出部30から受信した第jの挿入部形状情報Fjと第kの挿入部形状情報Fkとを比較する。なお、第jの挿入部形状情報Fjは、便宜上、第jの検出時挿入部形状も示すものとする。同様に、第kの挿入部形状情報Fkも便宜上、第kの検出時挿入部形状を示すものとする。

0034

変化導出部32は、当該比較の結果に基づいて第jのタイミング信号Tの発生時から第kのタイミング信号Tの発生時までの期間中において、挿入部7の形状変化を解析し、当該解析の結果を挿入部形状時間変化情報(以下、形状変化情報と称する)KAとして出力する。当該形状変化情報KAの詳細については後述する。
未然形状推定部33は、形状算出部30から出力される挿入部形状情報Fと、変化導出部32から出力される形状変化情報KAとを受信し、これら挿入部形状情報Fと形状変化情報KAとに基づいて現時点のタイミングから次のタイミング、例えば現時点の第jのタイミングから次の第kのタイミングにおける挿入部7の湾曲形状を未然に推定する。未然形状推定部33は、未然に推定した挿入部7の湾曲形状を未然推定形状情報Mとして出力する。

0035

挿入部7の形状を未然に推定したい場合、作業者による挿入部7の挿入操作を考慮したい状況下にある場合がある。このような状況では、未然形状推定部33は、上記挿入部形状情報Fと上記形状変化情報KAと共に、操作推定部34から出力される作業者操作情報Lを受信する。未然形状推定部33は、これら挿入部形状情報Fと形状変化情報KAと作業者操作情報Lとの組み合わせた情報に基づいて挿入部7の形状を未然に推定し、未然推定形状情報Mとして出力する。

0036

操作推定部34は、変化導出部32から出力される形状変化情報KAを受信し、この形状変化情報KAに基づいて作業者が第jのタイミング信号Tの発生時から第kのタイミング信号Tの発生時までの期間中に行った作業者の操作を推定し、当該推定した作業者の操作を作業者操作情報Lとして出力する。当該作業者操作情報Lについては後述する。操作推定部34は、操作ハンドル11を操作したときの挿入部7の形状変化の位置、湾曲形状などを示すハンドル操作情報が記憶される操作情報メモリ34aを含む。

0037

情報記憶部35には、形状センサユニット23から出力される検出信号Dと、支援情報ユニット22内で伝送される各種情報、例えば挿入部形状情報Fと、形状変化情報KAと、作業者操作情報Lと、未然推定形状情報Mとがタイミング信号Tに紐付けされて記憶されている。
情報記憶部35には、光ファイバセンサ8に設けられている複数の検出ポイント、すなわち光吸収体8aの各位置情報と、挿入部7の湾曲角と光ファイバセンサ8の湾曲角に応じた光量を示す検出信号Dとの対応情報が記憶されている。

0038

情報記憶部35は、支援情報ユニット22内の形状算出部30と、形状センサ制御部31と、変化導出部32と、未然形状推定部33と、操作推定部34との間で図示しない経路を通して情報の授受が可能になっている。この情報記憶部35に保存されている情報は、作業者により適宜読み出し可能である。情報記憶部35と、各本体メモリ40と、湾曲情報メモリ30aと、操作情報メモリ34aとは、同一のメモリデバイスの記憶領域をそれぞれに対応付けて用いることも可能である。また、共通する情報については、本体メモリ40、湾曲情報メモリ30a、操作情報メモリ34a又は情報記憶部35のうちいずれかの一箇所に記憶させておき、図示しない経路を通じて本体メモリ40、湾曲情報メモリ30a、操作情報メモリ34a、又は情報記憶部35から読み出し可能にすることが可能である。

0039

本実施の形態は、内視鏡本体部4として光源部20と、ビデオプロセッサ21と、支援情報ユニット22、本体部メモリ40との4つのユニットを含む例について示したが、これに限ることはない。内視鏡本体部4は、例えばプリンタを備えてもよい。内視鏡本体部4は、様々な処置や治療に必要な医療機器、さらには内視鏡システム1に接続可能なものの全てを備えてもよい。
光源部20と、ビデオプロセッサ21と、支援情報ユニット22とは、内視鏡本体部4の内部でそれぞれ別に機能しているが、これに限らない。光源部20と、ビデオプロセッサ21と、支援情報ユニット22とは、内視鏡本体部4の内部において1つの処理ユニットとして機能するようにしてもよい。光源部20とビデオプロセッサ21との一部の機能は、支援情報ユニット22内に組み込んでもよい。さらに、内視鏡本体部4は、光源部20、ビデオプロセッサ21、支援情報ユニット22の3つのユニット以外のユニットと一体化することもできる。内視鏡本体部4は、別のユニットと組み合わせるなど、ユーザの利便性や設計のし易さ、コストなど、様々な事情を考慮して自由に組み合わせることが可能である。

0040

支援情報ユニット22は、形状算出部30と、形状センサ制御部31と、変化導出部32と、未然形状推定部33と、操作推定部34との各機能を1つの処理ユニットとして纏めて構成することが可能である。
これに対して支援情報ユニット22は、形状算出部30と、形状センサ制御部31と、変化導出部32と、未然形状推定部33と、操作推定部34との各機能をそれぞれ独立したユニットとして構成することも可能である。
支援情報ユニット22は、別のユニットと組み合わせるなど、ユーザの利便性や設計のし易さ、コストなど、様々な事情を考慮して自由に組み合わせることが可能である。

0041

[表示部]
表示部6は、本システム1によって観察する観察対象物2の内部空間3と、内視鏡本体部4の本体メモリ40に予め記憶されている観察対象物2に関する情報と、観察対象物2を観察するときの観察作業の情報と、支援情報ユニット22から出力される未然推定形状情報Mとを表示可能である。表示部6は、例えば液晶ブラウン管、LED、又はプラズマから成るモニタ用のディスプレイを含む。表示部6は、図1において便宜上1つであるが、これに限らず、2つ以上を並べて配置する、或いは複数台をそれぞれ異なる場所に配置してもよい。

0042

表示部6は、モニタ用のディスプレイに画像及び文字情報を表示することのみに限るものでない。ここでの表示部6は、音声アラーム音等による聴覚で認識させるための出力、バイブレーション等による触覚で認識させるための出力なども含め、作業者に対して情報を報知させるための様々の情報伝達手法による出力デバイスを総称して表示部とする。

0043

[形状センサ8]
光ファイバセンサ(形状センサ)8には、図3A乃至図3Cに示すように長尺の光ファイバ8aの側面の一部に湾曲形状検出部8bが設けられている。本実施の形態において用いる光ファイバセンサ8は、湾曲形状検出部8bに吸収される光量が光ファイバ8aの湾曲角に応じて増減する現象を利用している。これにより、光ファイバセンサ8は、例えば光ファイバ8aの湾曲角に従って湾曲形状検出部8bに吸収される光量が大きくなると、光ファイバ8a内に透過する光量が減少する。従って、光ファイバセンサ8は、光ファイバ8aの湾曲角に応じた光量の光信号を射出するものとなる。

0044

光ファイバセンサ8は、上記の通り、例えば光ファイバ8aにより成るので、挿入部7が湾曲すると、この湾曲に応じて光ファイバ8aが湾曲し、これに伴って光ファイバ8a内を伝達する光の一部が湾曲形状検出部8bを通じて外部に漏れ出したり、湾曲形状検出部8bに吸収されるなどするので、光ファイバセンサ8を通る光量は減少する。湾曲形状検出部8bの構成は、光ファイバ8aのクラッドの一部を取り除き、当該クラッドを取り除いた部分に光吸収部材又は色素などを塗布したものとなっている。すなわち、湾曲形状検出部8bは、光ファイバ8aの一側面に設けられ、光ファイバ8aの湾曲に応じて伝達する光の一部を減少させる。つまり、湾曲形状検出部8bは、光ファイバ8aの湾曲に応じて光ファイバ8aの光学特性、例えば光伝達量を変化させるものである。

0045

図3Aは光ファイバ8aを湾曲形状検出部8bが設けられた側に湾曲したときの光伝達量を示し、図3Bは光ファイバ8aを湾曲しないときの光伝達量を示し、図3Cは光ファイバ8aを湾曲形状検出部8bが設けられた側とは反対側に湾曲したときの光伝達量を示すイメージ図である。これら図に示すように光ファイバ8aを湾曲形状検出部8bが設けられた側に湾曲したときの光伝達量が最も多く、次に光ファイバ8aを湾曲しないときの光伝達量、次に光ファイバ8aを湾曲形状検出部8bが設けられた側とは反対側に湾曲したときの光伝達量の順で光伝達量が減少する。

0046

光ファイバセンサ8は、1つの湾曲形状検出部8bを設けることにより曲げセンサとなる。光ファイバセンサ8は、複数の湾曲形状検出部8bを挿入部7の長手方向及び周方向に設けることにより、挿入部7の全体の3次元形状を検出できるものとなる。
光ファイバセンサ8は、湾曲形状検出部8bに色素を添付して光を波長別に分離するなどの光学的な手段を備えてもよい。これにより、光ファイバセンサ8は、一本の光ファイバに複数の湾曲形状検出部8bを設けることが可能である。
湾曲形状検出部8bが設けられた光ファイバを複数束ねれば、複数点曲げ角を検出することが実現可能である。光ファイバの1本当たりに設ける湾曲形状検出部8bの数を増加すれば、光ファイバ8aの本数を減少することが可能である。

0047

複数の光ファイバ8aを束ねれば、各光ファイバ8a毎の湾曲形状検出部8bによる光ファイバ8aの湾曲角の検出に対する独立性を高めることができる。これにより、湾曲形状検出部8bごとの検出精度が向上し、対ノイズ性を向上することができる。
挿入部7には、所定の間隔、例えば10cm毎の間隔で複数の湾曲形状検出部8bが設けられるように光ファイバセンサ8が搭載されている。このような間隔で複数の湾曲形状検出部8bを設ければ、挿入部7の全体の湾曲形状を精度高く検出することができる。各湾曲形状検出部8bの間隔を例えば10cmより長くすると、湾曲形状検出部8bの個数を減少してコストの軽減と、湾曲形状を検出するシステム構成を簡素化できる。

0048

なお、挿入部7は、例えば作業員により任意の方向に湾曲させることが可能である。挿入部7の湾曲形状を3次元で検出するためには、例えば、挿入部7のほぼ同一の場所の異なる周方向に2つ以上の湾曲形状検出部8bを設ければよい。
形状センサユニット23は、光ファイバセンサ8に導光される光の光量の変化を検出する機能を含むもので、ファイバセンサ用光源24と光検出器25とを含む。光ファイバセンサ8は、挿入部7に設けられている。ファイバセンサ用光源24と光検出器25とは、支援情報ユニット22内に設けられている。

0049

ファイバセンサ用光源24は、検出光を射出する。ファイバセンサ用光源24から射出された検出光は、光ファイバセンサ8に入射し、この光ファイバセンサ8により導光されて光検出器25に入射する。このとき検出光は、光ファイバセンサ8に設けられた湾曲形状検出部8bを通る。光検出器25は、入射した光を検出し、当該検出した光の光量を図示しない信号処理回路により検出信号Dに変換して出力する。この検出信号Dは、形状算出部30に伝送される。なお、湾曲形状検出部8bに色素を添付して光を波長別に分離するなどの光学的な手段を備えた光ファイバセンサ8がある。この光ファイバセンサ8を用いる場合、光検出器25は、入射した光を波長別に分離して検出し、当該検出した光の分光光量を図示しない信号処理回路により検出信号Dに変換して出力する。

0050

[本システムの動作]
次に、上記の通り構成された本システム1の動作について説明する。なお、既存の内視鏡システムが有する基本的な動作についてはその説明を省略する。
作業者による本システム1への電源投入によって形状センサユニット23及び支援情報ユニット22にも電源投入される。電源投入によって形状センサユニット23は、挿入部7の湾曲形状の検出が可能になる。これにより、形状センサユニット23は、挿入部7の形状が検出可能になったことを示す検出可能信号(Ready信号)を形状センサ制御部31に送る。

0051

形状センサ制御部31は、検出可能信号を受信することにより形状センサユニット23が検出可能な状態であることを認識すると、第1乃至第nのタイミング信号Tを順次出力する。この第1乃至第nのタイミング信号Tは、最初のハイレベル信号を第1のタイミング信号とし、次のハイレベル信号を第2のタイミング信号とし、以下同様に、第jのタイミング信号、第kのタイミング信号、・・・、第n(=自然数)のタイミング信号とする。この第1乃至第nのタイミング信号Tの発生間隔は、目的とする支援情報の内容、作業者からの要請、支援情報ユニット22及び形状センサユニット23の動作速度などにより適宜設定可能である。第1乃至第nのタイミング信号Tは、一定間隔で周期的な場合、又は第1乃至第nのタイミング信号の間隔が状況に応じて変更される場合もある。

0052

形状センサユニット23は、形状センサ制御部31から出力される第1乃至第nのタイミング信号Tを受信する。光検出器25は、当該第1乃至第nのタイミング信号Tに応じて光ファイバセンサ8から出力され、湾曲形状検出部8bを経由した光信号を検出し、当該光信号に応じた検出信号Dを出力する。光ファイバセンサ8そのものの動作については公知のものを利用可能であり、その説明は省略する。

0053

形状センサユニット23は、電源投入によりファイバセンサ用光源24を点灯させる。ファイバセンサ用光源24は、基本的に同じ明るさ、スペクトル連続発光する検出光を射出する。この検出光は、光ファイバセンサ8の光ファイバ8aの入射端に入射する。この光ファイバセンサ8は、光ファイバ8aの入射端から入射した検出光を導光し、当該検出光を同光ファイバセンサ8に設けられた湾曲形状検出部8bを経由して光ファイバ8aの射出端から射出させる。この光ファイバ8aの射出端から射出した光は、光検出器25に入射する。

0054

このとき光ファイバセンサ8は、挿入部7と共に湾曲すると、当該湾曲角に応じて湾曲形状検出部8bに吸収される光量が変化する。例えば図3Aに示すように、光ファイバ8aの湾曲角が、湾曲形状検出部8b側に大きくなるに従って湾曲形状検出部8bに吸収される光量が小さくなる。これにより、光ファイバ8a内を透過する光量は増加する。このように光ファイバセンサ8は、挿入部7の湾曲角に応じた光量の光信号を出力する。この光ファイバセンサ8から出力された光信号は、光検出器25に入射する。この光検出器25は、入射した光信号を受光して電気信号に変換し、この電気信号を信号処理回路によって光信号の光量に応じた検出信号Dとして出力する。

0055

形状センサユニット23は、光ファイバセンサ8に設けられた複数の湾曲形状検出部8bから射出される各光信号と第1乃至第nのタイミング信号Tとを対応させ、かつ複数の湾曲形状検出部8bから射出された各光信号の識別が付くように検出信号Dにフラグを付ける。この検出信号Dは、形状算出部30に送られる。
形状算出部30は、形状センサユニット23から出力されるフラグ付きの検出信号Dを受信し、情報記憶部35に記憶されている湾曲形状検出部8bの位置情報と、光ファイバの湾曲角と検出信号D(光量)との関係を示す湾曲角光量情報とを参照し、第1乃至第nのタイミング信号T毎における挿入部7が湾曲したときの湾曲の方向と大きさとを算出し、挿入部形状情報Fとして出力する。

0056

すなわち、形状算出部30は、第1乃至第nのタイミング信号T1〜Tnのうち例えば第jのタイミング信号Tjに紐付けられた検出信号Dに基づいて第jの挿入部形状情報Fjを算出する。以下、同様に、形状算出部30は、形状センサ制御部31から順次出力される第k、第l、・・・、第n(第k〜第n)のタイミング信号Tk、Tl、…、Tn毎に形状センサユニット23から順次出力される検出信号Dを受信し、これら第k〜第nのタイミング信号T毎に第k〜第nの挿入部形状情報Fk〜Fnを算出する。第k〜第nの挿入部形状情報Fk〜Fnは、支援情報ユニット22内の情報記憶部35に順次保存される。

0057

[変化導出部32の動作]
変化導出部32は、第1〜第nのタイミング信号T1〜Tnに基づいて形状算出部30から出力されるタイミングの異なる少なくとも2つの挿入部形状情報Fを受信し、これら挿入部形状情報Fを比較して形状変化情報KAを導出する。
変化導出部32は、例えば、図5に示すような形状算出部30により算出された第jの挿入部形状情報Fjと、第kの挿入部形状情報Fkとを比較する。
比較結果、変化導出部32は、挿入部7の湾曲形状が変化している領域を形状変化領域KE1として抽出し、挿入部7の湾曲形状が変化していない領域を第1と第2の形状不変化領域KE2a、KE2bとして抽出する。

0058

図5に示す第jの挿入部形状情報Fjと第kの挿入部形状情報Fkとを比較すると、挿入部7において操作部9側の第1の形状不変化領域KE2aの湾曲形状と、挿入部7の先端部7a側の第2の形状不変化領域KE2bの湾曲形状とは、それぞれ変化していない。
これら第1と第2の形状不変化領域KE2a、KE2bの間の形状変化領域KE1では、挿入部7の湾曲形状が変化している。

0059

第1と第2の形状不変化領域KE2a、KE2bでは、それぞれ挿入部7の湾曲形状が変化していないが、これら第1と第2の形状不変化領域KE2a、KE2b同士の相対的な位置関係が変化している。この相対的な位置関係は、挿入部7における形状変化領域KE1の形状が変化したためである。
変化導出部32は、抽出した形状変化領域KE1の湾曲形状の変化の種類の分類と、当該形状変化領域KE1における湾曲形状の変化量とを算出する。挿入部7は、断面が略円形で、かつ可撓性を有する細長い棒状に形成されている。これにより、挿入部7の部分的な湾曲形状の変化としては、例えば湾曲とねじれとの2つの形状変化が含むものと考えられる。さらに、挿入部7の部分的な湾曲形状の変化としては、湾曲とねじれとが複合して発生する場合、又は湾曲とねじれとが近接した各領域でそれぞれ連続的に発生する場合などが考えられる。

0060

図6は、形状変化領域KE1に対する解析の例を示すもので、第jのタイミング信号Tjの発生時の形状変化領域KE1に対する解析の例と、第kのタイミング信号Tkの発生時の形状変化領域KE1に対する解析の例をと示す。
変化導出部32は、2つのタイミング信号発生時、例えば第jのタイミング信号Tjと第kのタイミング信号Tkとの各発生時における形状変化領域KE1の各湾曲形状を比較する。第jと第kの挿入部形状情報Fj、Fkとは、3次元情報であるので、形状変化領域KE1の形状情報も3次元情報である。

0061

変化導出部32は、図6に示すように第jと第kの挿入部形状情報Fj、Fkに基づいて形状変化領域KE1の両端部の各軸方向、すなわち第jの挿入部形状Fjの両端部の各軸方向Zja、Zjbと、第kの挿入部形状Fkの両端部の各軸方向Zka、Zkbとを設定する。なお、Zjaは第jの操作部側中心軸であり、Zjbは第jの先端側中心軸である。Zkaは第kの操作部側中心軸Zkaであり、Zkbは第kの先端側中心軸である。Zは、形状変化領域KE1における挿入部7の中心軸である。

0062

形状変化領域KE1のうち、最も操作部9に近いものの操作部9側は、形状不変化領域KE2に接続されているか、又は操作部9に直接接続されている。本実施の形態では、第1の形状不変化領域KE2aに接続されている。そこで、形状変化領域KE1における湾曲形状の変化の種類、当該湾曲形状の変化量、湾曲の変化の方向は、図7に示すように第jの操作部側中心軸Zjaと第kの操作部側中心軸Zkaとを互いに重ね合わせたときの第jの先端側中心軸Zjbと第kの先端側中心軸Zkbとの位置関係から算出される。
第jと第kの操作部側中心軸Zja、Zkaを重ね合わせると、第jと第kの先端側中心軸Zjb、Zkbは、挿入部7の湾曲により同じ平面内で移動していることが分かる。このとき形状変化領域KE1は、第jと第kの操作部側中心軸Zja、Zkaを重ねた部分を中心として角度(以下、湾曲角と称する)θだけ湾曲している。この角θは、第jから第kのタイミング信号Tまでの期間中において挿入部7が湾曲したときの湾曲の変化量となる。換言すると、第jと第kの先端側中心軸Zjb、Zkbは、同じ平面内でのみ変化しているので、挿入部7は、ねじれることなく、単純に湾曲変化したものであることが分かる。

0063

形状変化領域KE1の変化量及びその方向は、湾曲角の変化量及びその方向として算出することが可能となる。挿入部7の湾曲の場合、変化の種類は、湾曲角の変化である。湾曲角の変化量は、図7に示すように第jと第kの先端側中心軸Zjb、Zkbの成す角の大きさ、すなわち角θである。湾曲方向は、図中矢印により示す第jの先端側中心軸Zjbから第kの先端側中心軸Zkbへの移動方向(時計回り方向)である。

0064

変化導出部32は、挿入部7の湾曲角の変化量(角θ)及びその方向(時計回り方向)の情報を形状変化情報KAとして出力する。本実施の形態における形状変化情報KAは、変化の種類が平面内の湾曲であり、変化の量が角θであり、変化の方向が時計回りである。この形状変化情報KAは、未然形状推定部33と操作推定部34とにそれぞれ送られる。

0065

[操作推定部34の動作]
操作推定部34は、作業者が行った操作を推定し、この推定した作業者の操作を作業者操作情報Lとして出力する。操作推定部34は、挿入部7の湾曲形状の変化が作業者の操作により成された結果であるものと仮定し、形状変化情報KAに基づいて例えば第jのタイミング信号Tjと第kのタイミング信号Tkとの期間中に行われた作業者の操作を推定し、この推定した作業者の操作を作業者操作情報Lとして出力する。この推定では、作業者による操作の種類と、操作の方向と、操作量とを推定する。すなわち作業者操作情報は、作業者による操作の種類と、操作の方向と、操作量とを含んでいる。

0066

作業者の操作は、大きく分けて、操作ハンドル11を操作する操作ハンドル操作と、挿入部7を直接把持して操作する直接操作との2種類がある。
操作ハンドル操作は、操作ハンドル11を操作して挿入部7の能動湾曲部7bを湾曲させるものである。
直接操作は、観察対象物2の内部空間3内に挿入されていない挿入部7の部分(観察対象物2の内部空間3から出ている部分)を作業者が直接把持して押し込み、引き抜き、又はひねり等の操作を行うものである。

0067

操作ハンドル11を作業員が操作したときの操作方向及びその操作量に応じた挿入部7の湾曲角及びその湾曲方向は、ハンドル操作情報として内視鏡スコープ部5の種類ごとに決まっている。操作方向は、例えば上下方向と左右方向とである。操作量は、上下方向への操作量と、左右方向への操作量とである。このようなハンドル操作情報は、例えば操作推定部34内に設けられている操作情報メモリ34aに記憶されている。

0068

挿入部7において、湾曲する部分が能動湾曲部7bであり、かつ当該能動湾曲部7bの湾曲形状の変化が操作ハンドル11に対する作業者の操作によるものと想定される場合がある。すなわち、想定された能動湾曲部7bの湾曲形状の変化と、実際に操作された能動湾曲部7bの湾曲形状の変化とが一致する場合がある。この場合、能動湾曲部7bの湾曲変化は、操作ハンドル11に対する作業者の操作によるものであると判定することが可能である。

0069

形状変化領域KE1が能動湾曲部7bであると、当該能動湾曲部7bは、操作ハンドル11を作業者が操作することで上下方向又は左右方向に能動的に湾曲する。ところが、形状変化領域KE1の形状変化が操作ハンドル11の操作による形状変化と一致しない場合がある。この場合、操作推定部34は、作業者による直接操作によるか、又は作業者による直接操作と操作ハンドル11に対する操作との両方の操作が合わさった複合操作であると推定する。

0070

図5に示す挿入部7の湾曲形状の変化の例では、挿入部7の形状変化領域KE1が上記の通り受動湾曲部7cであるので、作業員による操作は、直接操作であると判定される。直接操作は、操作部9又は観察対象物2の内部空間3から出ている挿入部7の部分を直接把持して行うので、作業者による操作の力は、形状変化領域KE1における操作部9側の端部から加わる。
従って、操作推定部34は、形状変化領域KE1の湾曲形状の変化を引き起こし得る作業員による操作が操作部9側から加えられたものとして作業者の操作を推定する。
操作推定部34は、第1と第2の形状不変化領域KE2a、KE2bの形状に変形が無ければ、当該変形の無いことを考慮し、形状変化領域KE1の湾曲形状の変化が作業者による操作であることを推定する。

0071

図5に示す挿入部7の湾曲形状の変化の例では、第1の形状不変化領域KE2aの形状は、第jから第kのタイミング信号Tの発生時までの期間中に変形していない。作業者の操作による力は、第1の形状不変化領域KE2aの形状を変化させること無く当該操作の力を形状変化領域KE1の操作部9側の端部に伝達させるような操作であることが分かる。

0072

従って、操作推定部34は、図8に示すように挿入部7に対して操作部9側から挿入部7の軸方向に押し込むような操作Qが加わったと推定することができる。なお、図8は第jの挿入部形状情報Fjと、作業者により操作された第kの挿入部形状情報Fkとを示す。
又、操作推定部34は、情報記憶部35に記憶されている観察対象物2の硬さに関する情報及び挿入部7の構造に基づく湾曲に要する力などに基づいて作業者が行った操作の力量のおおよその値を推定する。挿入部7の構造に関する構造情報は、例えば情報記憶部35に記憶されている。この構造情報は、挿入部7の構造に基づく部分的或いは湾曲方向ごとの湾曲のし易さ、挿入部7の形状保持のし易さ、挿入部7を湾曲させるのに必要な力などの情報を含む。

0073

次に、作業員により挿入部7に対して操作が行われたときに形状変化領域KE1に湾曲変形が起こるのか否かについて検証が行われる。この検証では、操作推定部34は、情報記憶部35に記憶されている挿入部7の構造情報、その他、観察対象物2の物性情報及び形状情報などの情報を参照する。
検証の結果、作業員による挿入部7に対する操作により形状変化領域KE1に湾曲変形が起こることが検証されると、操作推定部34は、推定した作業者による操作の種類と、操作の方向と、操作の操作量とを、第jのタイミング信号Tjと第kのタイミング信号Tkとの期間中において作業者が行った操作の種類と、操作の方向と、操作の操作量とし、作業者操作情報Lとして未然形状推定部33に出力する。

0074

作業者による操作の種類は、例えば、挿入部7の観察対象物2の内部空間3への押し込みを含む。操作方向は、図8に示すように挿入開口2aから観察対象物2の内部空間3の外部に出ている挿入部7の部分の中心軸方向を含む。
操作量は、第jのタイミング信号Tjと第kのタイミング信号Tkとの各発生時における第1と第2の形状不変化領域KE2a、KE2bの位置関係から推定される。この操作量は、図8に示すように形状変化領域KE1の先端側KE1sと操作部9側の端部KE1eとの間における挿入部7の中心軸方向における操作変化量ΔP(=ΔPjk)として推定している。

0075

具体的に、操作推定部34は、図8に示すように第jの挿入部形状情報Fjにおける形状変化領域KE1の操作Qの方向の形状変化量ΔPjと、第kの挿入部形状情報Fkにおける形状変化領域KE1の操作Qの方向の形状変化量ΔPkとの差ΔPjk、
ΔPjk(=ΔPj—ΔPk)
操作者による操作変化量ΔPjkであると推定する。なお、本実施の形態における第jの挿入部形状情報Fjにおける形状変化量ΔPjは、挿入開口2aから観察対象物2の外部に出ている挿入部7の中心軸方向(図面上の縦方向)の変化を表す。第kの挿入部形状情報Fkにおける形状変化量ΔPkも同様に、挿入開口2aから観察対象物2の外部に出ている挿入部7の中心軸方向(図面上の縦方向)の変化を表す。

0076

[未然形状推定部33の動作]
未然形状推定部33は、形状算出部30から出力される挿入部形状情報F(Fj、Fkを含む)を受信し、かつ変化導出部32から出力される形状変化情報KA又は操作推定部34から出力される作業者操作情報Lのいずれか一方又は両方を受信する。
未然形状推定部33は、挿入部形状情報Fと、形状変化情報KA又は作業者操作情報Lのいずれか一方又は両方とに基づいて未然推定形状情報Mを算出する。

0077

ここで、挿入部形状情報Fと形状変化情報KAとに基づく未然推定形状情報Mの算出について説明する。
挿入部7において湾曲形状が変形する部分としては、例えば図5に示すように両端が第1の形状不変化領域KE2aと第2の形状不変化領域KE2bとに挟まれた形状変化領域KE1である。
変化導出部32は、図7に示すように形状変化情報KAとして挿入部7の形状変化領域KE1における湾曲角の変化量及び湾曲方向(時計回り方向)を出力する。

0078

未然形状推定部33は、変化導出部32から出力された形状変化情報KAを受信し、当該形状変化情報KAとしての挿入部7の形状変化領域の湾曲角の変化量及び湾曲方向(時計回り方向)に基づいて未然挿入部形状情報Mを推定する。
図9は過去、現在、未来の時間経過に従ったタイミング信号T(T1、Tj、Tk、Th、Tn)のイメージを示す。なお、hをkより大きな自然数とする。現在において、形状センサ制御部31は、既に、第jと第kのタイミング信号Tj、Tkを出力済であり、未来において第hのタイミング信号Thを出力しようとしている。ここでは、第jと第kのタイミング信号Tj、Tkの時間間隔Tjkと、第kと第hのタイミング信号Tk、Thの時間間隔Tkhとは等しいとする。

0079

未然形状推定部33は、第hのタイミング信号Thが出力されるまで、第1と第2の形状不変化領域KE2a、KE2bにおいて形状変化が生ぜず、かつ形状変化領域KE1において湾曲変形が同一速度で継続して行われるものと設定する。この設定に従って未然形状推定部33は、図10に示すように未来の第hのタイミング信号Thの発生時における未然挿入部形状情報M(=Mh)を推定する。

0080

具体的に、形状変化領域KE1の湾曲の推定では、形状変化情報KAに従って操作の種類が湾曲操作であり、操作方向が時計回りの方向であり、操作量が第jと第kのタイミング信号Tj、Tkの期間中における湾曲角である角θである。未然形状推定部33は、操作の種類である湾曲角と、操作方向である時計回り方向と、操作量である角θとに基づいて第hのタイミング信号Thの発生時における未然挿入部形状情報M(=Mh)を推定する。

0081

図10は第j〜hのタイミング信号Tj〜Thの発生時における形状変化領域KE1の未然推定形状情報KE1hを推定する過程を示す。同図は、第jのタイミング信号Tjの発生時における形状変化領域KE1の検出形状KE1jと、第kのタイミング信号Tkの発生時における形状変化領域KE1の検出形状KE1kと、第hのタイミング信号Thの発生時点における形状変化領域KE1の未然推定形状情報KE1hとを示す。同図に示すように形状変化領域KE1は、湾曲角が一定の変化スピードで継続して変化したものとして推定される。

0082

図11は、第hのタイミング信号Thの発生時における挿入部7の全体の未然挿入部形状情報(時間変化)Mhを示す。未然挿入部形状情報Mhは、形状変化領域KE1の未然推定形状情報KE1hと、形状変化領域KE1の両端側の第1と第2の形状不変化領域KE2a、KE2bとを含む。
次に、作業者操作情報Lを用いた場合の未然推定形状情報Mの算出について説明する。
図12は作業者の操作が加わったときの第j、k、hのタイミング信号Tj、Tk、Thの発生時における挿入部7の各形状の変化を示す。すなわち、第jの挿入部形状情報Fjと、第kの挿入部形状情報Fkと、第hの挿入部形状情報Fhとの変化を示す。

0083

作業者操作情報Lは、上記[作業者操作情報推定部の動作]の欄で説明した通り、例えば、操作の種類を押し込みとし、操作方向を挿入開口2aから観察対象物2の外部に出ている挿入部7の中心軸方向とし、操作量を操作者の操作による操作変化量ΔPjkとする。

0084

未然形状推定部33は、作業者操作情報Lに基づいて未来の第hのタイミング信号Thの発生時における挿入部7の形状を未然に推定する。推定の方法は、上述した挿入部形状情報Fと形状変化情報KAとに基づく未然推定形状情報Mの算出とほぼ同様である。

0085

未然挿入部形状情報Mの推定では、未然形状推定部33は、操作の種類と、操作方向と、操作量とを継続して推定したときの挿入部7の湾曲形状を未然挿入部形状情報Mとして算出する。
これと共に、未然形状推定部33は、推定された作業者の操作により形状変化領域KE1が湾曲し、かつ第1と第2の形状不変化領域KE2a、KE2bの形状が変化しないものと仮定して未然挿入部形状情報Mを推定する。

0086

具体的に、未然形状推定部33は、上記同様に、操作の種類を押し込みとし、操作方向を挿入開口2aから観察対象物2の外部に出ている挿入部7の中心軸方向とし、操作量を図8に示す操作者による操作変化量ΔPjkとして、第hのタイミング信号Thの発生時における未然挿入部形状情報M(=Mh)を推定する。
図9に示すように本実施の形態では、第jと第kのタイミング信号Tj、Tkの時間間隔Tjkと、第kと第hのタイミング信号Tk、Thの時間間隔Tkhとは等しい。
従って、未然形状推定部33は、第kと第hのタイミング信号Tk、Thの時間間隔Tkh内において作業者により操作されると予測される操作変化量ΔPjkが図12に示すように第jと第kのタイミング信号Tj、Tkの時間間隔Tjkにおける作業者の操作変化量ΔPkhと等しいと推定する(ΔPjk=ΔPkh)。

0087

このとき、図12に示すように第jのタイミング信号Tjの発生時の操作変化量をΔPjkとし、第kのタイミング信号Tkの発生時における形状変化量をΔPkとし、第hのタイミング信号Thの発生時の形状変化量ΔPhとすると、当該形状変化量ΔPhは、
ΔPh=ΔPk−ΔPkh(=ΔPk−ΔPjk) …(1)
により求められる。

0088

しかるに、未然形状推定部33は、第hのタイミング信号Thの発生時における形状変化量ΔPhに基づいて第hのタイミング信号Thの発生時における未然挿入部形状情報M(=Mh)を推定する。

0089

未然形状推定部33は、図12に示すように操作推定部34により推定された作業者操作情報Lを用い、挿入部7の形状変形領域KE1における形状変形量ΔPhが、上記式(1)に示す形状変化量ΔPhになるように、形状変化領域KE1における変形形状を推定する。本実施の形態では、形状変化領域KE1の変形形状の推定では、内視鏡構造を考慮している。
そして、未然形状推定部33は、未然挿入部形状情報(時間変化)Mと、未然挿入部形状情報(作業者操作)Mとを比較し、最終的な未然挿入部形状情報Mを推定する。

0090

このように未然挿入部形状情報(時間変化)Mと、未然挿入部形状情報(作業者操作)Mとの2つの未然挿入部形状情報Mから最終的な未然挿入部形状情報Mを推定する方法はいくつかある。例えば、内視鏡構造や観察対象物2の情報、観察作業の種類など別の情報を用いて2つの未然挿入部形状情報Mのうちいずれか一つを選択することは好適である。2つの未然挿入部形状情報Mの平均等を求める方法も好適である。この場合、単純に平均を求めることも好適であるし、上述した別の情報などと照らして重み付け平均を取ることも好適である。さらに、2つの未然挿入部形状情報Mの両方とも作業者に提示することも好適である。

0091

なお、本実施の形態では、図9に示すように第jと第kのタイミング信号Tj、Tkの時間間隔Tjkと、第kと第hのタイミング信号Tk、Thの時間間隔Tkhとが等しいものと仮定したが、これら時間間隔Tjk、Tkhとが等しくない場合でももちろん予測は可能である。
前述の通り、未然形状推定部33は、第jと第kのタイミング信号Tj、Tkの期間中における挿入部7の形状変形領域KE1での変形及び作業員による操作は、等速で行われたと仮定しているので、例えば時間間隔Tjk、Tkhが半分となる場合には、挿入部7の湾曲角の変化量θをθ/2、操作量をΔPjk/2として未然挿入部形状情報Mを推定すればよい。他のタイミングについても同様に経過時間の比を求めることで未然挿入部形状情報Mを推定することができる。

0092

[作用・効果]
このように第1の実施の形態によれば、観察対象物2の内部空間3に挿入される挿入部7の形状を形状センサユニット23により検出し、当該検出した挿入部形状情報Fに基づいて例えば第kのタイミング信号Tkから第hのタイミング信号Thまでの経過時間Tkh後の挿入部7の形状を未然に推定し、未然推定形状情報Mとして出力するので、作業者が挿入部7を観察対象物2の内部空間3に挿入する際に、これから形成されるであろう挿入部7の形状を未然に推定できる。推定した挿入部7の形状は、作業者に対して挿入部7の挿入操作時の支援情報として表示部6等に表示することができる。この結果、従来の内視鏡システムと比較して訓練や技能向上に要する時間を短縮することができる。経験や技能レベルの低い作業者であっても比較的容易に挿入部7を観察対象物2の内部空間3に挿入、抜去することが可能となる。

0093

言い換えると、挿入部7の推定形状が作業者の所望の形状で有った場合、作業者は、挿入部7の挿入・抜去作業を進めてよいと判断できる。一方、挿入部7の推定形状が所望の形状で無かった場合、作業者は、挿入・抜去作業を変更した方がよいと判断できる。これにより、上記第1の実施の形態であれば、既存システムと比較して、訓練や技能向上に要する時間を短縮できる。作業者の経験や技能レベルが低い場合であっても、比較的容易に挿入部7の挿入・抜去を行うことができる。

0094

なお、上記第1の実施の形態において、変化導出部32は、2つの挿入部形状情報F、すなわち第jの挿入部形状情報Fjと第kの挿入部形状情報Fkとを比較する例を示したが、これに限るものでない。変化導出部32は、3つ以上の挿入部形状情報Fを比較することも可能である。例えば、第jの挿入部形状情報Fjと、第kの挿入部形状情報Fkと、第1のタイミング信号Tに対応した第1の挿入部形状情報Flとである。

0095

このように3つ以上の挿入部形状情報F(Fj、Fk、F1等)を比較することで、上記第1の実施の形態で説明した作用、効果に加え、挿入部7の形状の変化の状態、すなわち低速で安定に変化を続けているのか、加速度を持って変化しているのか、又は繰り返しの操作が行われているのかなどの情報を得ることが可能となる。
このような3つ以上の挿入部形状情報F(Fj、Fk、F1等)を用いることを考慮して操作推定部34は、作業者操作情報Lを推定することができる。これによって未然形状推定部33は、より確度の高い未然挿入部形状情報Mを推定することができる。
[第1の実施の形態の第1の変形例]
次に、本発明の第1の実施の形態における第1の変形例について図面を参照して説明する。なお、本変形例では、上記第1の実施の形態と同一部分についてはその説明を省略し、上記第1の実施の形態とは相違する部分について詳細に説明する。

0096

[第1の変形例における挿入部形状時間変化導出部の動作]
本変形例は、変化導出部32の動作を上記第1の実施の形態と相違させたものである。
上記第1の実施の形態では、変化導出部32は、図5に示すような形状算出部30により算出された第jの挿入部形状情報Fjと、第kの挿入部形状情報Fkとを比較し、この比較の結果に基づいて挿入部7の形状が変化している領域を形状変化領域KE1として抽出し、かつ挿入部7の形状が変化していない領域を第1と第2の形状不変化領域KE2a、KE2bとして抽出する。

0097

これに対して本変形例では、変化導出部32は、挿入部7の湾曲形状が変化していない領域として抽出した第1と第2の形状不変化領域KE2a、KE2bに着目し、これら形状不変化領域KE2a、KE2bの相対的な位置関係に基づいて形状変化情報KAを導出する。
本変形例において、形状算出部30により挿入部形状情報Fを算出する動作と、変化導出部32により形状変化領域KE1及び第1と第2の形状不変化領域KE2a、KE2bを抽出する動作とは、上記第1の実施の形態と同一である。

0098

次に、本変形例における変化導出部32の動作のうち上記第1の実施の形態と相違する部分について説明する。
図13は変化導出部32の動作を説明するための図を示す。同図は、変化導出部32により取得される第jのタイミング信号Tjの発生時点における挿入部7の形状と、同変化導出部32により取得される第kのタイミング信号Tkの発生時点における挿入部7の形状とを示す。

0099

変化導出部32は、検出部挿入部形状算出部30により算出された第jの挿入部形状情報Fjと、第kの挿入部形状情報Fkとを比較し、挿入部7において形状が変化している形状変化領域KE1と、挿入部7において形状が変化していない第1と第2の形状不変化領域KE2a、KE2bとを抽出する。
挿入部7には、図13に示すように第1の形状不変化領域KE2aと形状変化領域KE1とを接続している第1の接続部C1と、形状変化領域KE1と第2の形状不変化領域KE2bとを接続している第2の接続部C2とがある。

0100

変化導出部32は、第jのタイミング信号Tjの発生時点と、第kのタイミング信号Tkの発生時点とにおける第1の接続部C1の座標(接続部座標)と、当該第1の接続部C1における挿入部7の中心軸の接線方向である接続方向CD1とを算出する。
これと共に変化導出部32は、第jのタイミング信号Tjの発生時点と、第kのタイミング信号Tkの発生時点とにおける第2の接続部C2の座標(接続部座標)と、当該第2の接続部C2における挿入部7の中心軸の接線方向である接続方向CD2とを算出する。
ここで、第1と第2の接続部C1、C2の各接続部座標を表す座標系は、第jの挿入部形状情報Fjと、第kの挿入部形状情報Fkとが比較可能であれば、どのような座標系であってもよい。

0101

本変形例では、支援情報ユニット22は、第jの挿入部形状情報Fjと第kの挿入部形状情報Fkとの最も操作部9側の位置を原点座標(0,0,0)としている。すなわち、原点座標(0,0,0)は、第1の形状不変化領域KE2aの操作部9側の端部に位置している。
又、本変形例では、支援情報ユニット22は、原点座標(0,0,0)と、第jの挿入部形状情報Fjと、第kの挿入部形状情報Fkとに基づいて第1の接続部C1の接続部座標と、第2の接続部C2の接続部座標との各座標を算出する。

0102

次に、第j、kの各タイミング信号Tj、Tkの発生時点における第1の形状不変化領域KE2aの各座標について説明する。
第jのタイミング信号Tjの発生時点における第1の形状不変化領域KE2aの先端側の接続部座標C1は、図13に示すように(x1j、y1j、z1j)により表される。
第kのタイミング信号Tkの発生時点における第1の形状不変化領域KE2aの先端側の接続部座標C1は、(x1k、y1k、z1k)により表される。
本変形例では、原点座標(0,0,0)の部分と接続部座標C1の部分との間には、第1の形状不変化領域KE2aが存在するので、接続部座標C1(x1j、y1j、z1j)と、接続部座標C1(x1k、y1k、z1k)とは、等しい。

0103

接続方向CD1は、第1の形状不変化領域KE2aと形状変化領域KE1との接続方向を示すベクトルとして算出される。
接続方向CD2は、形状変化領域KE1と第2の形状不変化領域KE2bとの接続方向を示すベクトルとして算出される。
なお、本変形例では、各接続方向CD1、CD2のベクトルの方向の情報だけが必要であり、ベクトルの長さの情報は用いない。このため本変形例では、各接続方向CD1、CD2の各ベクトルは、長さ「1」の単位ベクトルとして求めている。

0104

第jのタイミング信号Tjの発生時点における接続方向CD1のベクトルは、図13に示すように(a1j,b1j,c1j)により表される。
第kのタイミング信号Tkの発生時点における接続方向CD2のベクトルは、(a1k,b1k,c1k)により表される。
原点座標(0,0,0)に接続されているのは第1の形状不変化領域KE2aであるので、第1の変形例において第jのタイミング信号Tjの発生時点における接続方向CD1のベクトル(a1j,b1j,c1j)と、第kのタイミング信号Tkの発生時点における接続方向CD1のベクトル(a1k,b1k,c1k)とは等しい。

0105

次に、第j、kの各タイミング信号Tj、Tkの発生時点における第2の形状不変化領域KE2bの各座標についても上記第1の形状不変化領域KE2aの各座標と同様に求められる。
第jのタイミング信号Tjの発生時点における第2の形状不変化領域KE2bの基端側の接続部座標C2は、図13に示すように(x2j、y2j、z2j)により表される。
第kのタイミング信号Tkの発生時点における第2の形状不変化領域KE2bの基端側の接続部座標C2は、(x2k、y2k、z2k)により表される。
第jのタイミング信号Tjの発生時点における接続方向CD1のベクトルは、(a2j,b2j,c2j)により表される。
第kのタイミング信号Tkの発生時点における接続方向CD2のベクトルは、(a2k,b2k,c2k)により表される。

0106

このように変化導出部32は、挿入部7の形状変化の情報を第1と第2の形状不変化領域KE2a、KE2bの位置と方向とにより表すことができる。すなわち、第1と第2の形状不変化領域KE2a、KE2bの間には、形状変化領域KE1が存在する。挿入部7の形状変化の情報は、第1の形状不変化領域KE2aと形状変化領域KE1との第1の接続部C1の座標(x1j、y1j、z1j)と、第2の形状不変化領域KE2bと形状変化領域KE1との第2の接続部C2の座標(x2j、y2j、z2j)と、これら座標における挿入部7の接線方向の各ベクトルCD1、CD2の情報のみで書き表すことが可能である。

0107

なお、図13は、挿入部7の形状変化をイメージし易くすることを目的として記載されている。同図では、第1と第2の形状不変化領域KE2a、KE2bを点線四角形により表し、形状変化領域KE1を湾曲形状に応じた実線により表している。変化導出部32では、点線の四角形及び実線により表すための情報を生成したり、当該情報を用いたりする必要はない。

0108

本変形例では、説明の便宜上、第1と第2の形状不変化領域KE2a、KE2bの間に形状変化領域KE1が存在するようなシンプルな例を示した。実際には、形状変化領域KE1と、第1又は第2の形状不変化領域KE2a、KE2bとが交互に繰り返して配置される場合がある。このような場合、第1と第2の形状不変化領域KE2a、KE2bは、挿入部7側の接続部座標と、先端部側の接続部座標との2つの位置座標を含むものとなる。但し、第1と第2の形状不変化領域KE2a、KE2b内では、挿入部7の形状が変化しない。このように形状変化領域KE1と、第1又は第2の形状不変化領域KE2a、KE2bとが交互に繰り返して配置される場合であっても、以下の3つの情報があれば挿入部7の形状全体を全てのタイミングで求めることができる。すなわち、あるタイミングである形状不変化領域において、当該領域における操作部9側の座標(第1の情報)と、同領域における挿入部7の先端側の座標(第2の情報)と、同先端側の接続方向のベクトル(第3の情報)とが分かっていれば、別のタイミングにおいては、上記第1乃至第3の情報のいずれか2つの情報が分かれば、残りの1つの情報を計算により求めることができる。

0109

次に、変化導出部32は、第jと第kのタイミング信号Tj、Tkの各発生時点における操作部9側の各接続部座標C1及び各接続方向CD1の情報を用いて形状変化領域KE1の形状変化の種類と、形状変化の方向と、形状変化の変化量とを算出する。具体的に変化導出部32は、形状変化領域KE1と、第1及び第2の形状不変化領域KE2a、KE2bとの相対的な配置関係から形状変化の種類と、形状変化の方向と、形状変化の変化量とを算出する。すなわち、第jのタイミング信号Tjの発生時点と第kのタイミング信号Tkの発生時点とにおける第1の形状不変化領域KE2aの各接続部座標C1、各接続方向CD1同士が互いに等しい場合、変化導出部32は、第2の形状不変化領域KE2bの各接続部座標C2、各接続方向CD2の変化を求めることにより、形状変化領域KE1と、第1及び第2の形状不変化領域KE2a、KE2bとの相対的な配置関係を求めることができる。

0110

本変形例では、第1の形状不変化領域KE2aが移動していないので、当該第1の形状不変化領域KE2aの接続部座標C1及び当該接続部C1の接続方向CD1も変化せず等しい値となっている。
操作部9側に形状変化領域KE1が有る場合でも、本変形例では、当該注目する形状変化領域KE1を挟むように設けられた第1及び第2の形状不変化領域KE2a、KE2bの挿入部7側の接続座標C2、接続方向CD2は、等しいものとして変化の種類、方向、量を算出する。

0111

本変形例では、第2の形状不変化領域KE2bの接続方向CD2は、第jのタイミング信号Tjの発生時点から第kのタイミング信号Tkの発生時点までの期間中に、図14に示すように平面内で湾曲角が角θだけ回転している。各接続部座標C2も同一平面内において湾曲角が角θだけ変化している。又、挿入部7には、ねじれなどが発生していないことが分かる。

0112

このように本変形例における挿入部7の形状変化領域KE1における形状変化について、形状変化の種類と、形状変化の方向と、形状変化の変化量とを算出することができる。すなわち図14に示すように変化の種類は湾曲変化であり、変化の量は角θの変化である。形状変化の方向は、同図に示すように時計回り方向である。

0113

変化導出部32は、挿入部7の変化の種類、変化の量、変化の方向を、湾曲、角θ、時計回り方向の情報である形状変化情報KAとして未然形状推定部33と操作推定部34とにそれぞれ出力する。
これ以降、内視鏡システム1の動作は、上記第1の実施の形態と同様である。
なお、形状変化領域KE1と、第1及び第2の形状不変化領域KE2a、KE2bとの抽出では、形状算出部30により算出される挿入部形状情報Fから挿入部7が最も大きな変化、又は挿入部7の形状変化を決定付ける明確な変化をしている領域と比較して十分に小さな形状変化が発生している領域を抽出することがある。当該領域については、第1及び第2の形状不変化領域KE2a、KE2bと同等の形状不変化領域と見做してもよい。

0114

このように微小な形状変化の領域を形状不変化領域と見做すことで、挿入部7において大きな形状変化をしている領域についてのみ、形状変化の種類と、形状変化の方向と、形状変化の変化量との変化の情報を適切に算出することが可能となる。

0115

変化導出部32は、必ずしも挿入部7の全体に亘って形状変化の情報を導出する必要がない。変化導出部32では、作業者の操作において着目している部位、又は予め登録した部位などについてのみ形状変化情報KAを導出するようにしてもよい。これにより、変化導出部32の動作を簡素化することができる。

0116

[作用・効果]
このように第1の変形例によれば、変化導出部32によって第1と第2の形状不変化領域KE2a、KE2bと、形状変化領域KE1とを算出し、これら形状変化領域KE1と、第1及び第2の形状不変化領域KE2a、KE2bとの相対的な配置関係から挿入部7の形状変化の種類と、形状変化の方向と、形状変化の変化量とを算出することが可能になる。具体的には、第jのタイミング信号Tjの発生時点と第kのタイミング信号Tkの発生時点とにおいて、第1と第2の形状不変化領域KE2a、KE2bの間に存在する形状変化領域KE1との第1の接続部C1の座標と、第2の接続部C2の座標と、これら座標における挿入部7の接線方向のベクトルCD1、CD2の情報を算出するが可能になる。

0117

これにより、上記第1の実施の形態と同様に、作業者が現在の操作を継続しているときに、次のタイミングで起こり得る挿入部7の形状を事前(未然)に推定できる。この挿入部7の形状を作業者に対して挿入部7の挿入操作時の支援情報として表示部6等に表示することが可能となる。この結果、従来の内視鏡システムと比較して訓練や技能向上に要する時間を短縮することができる。経験や技能レベルの低い作業者であっても比較的容易に挿入部7を観察対象物2の内部空間3に挿入、抜去することが可能となる。

0118

この第1の変形例であれば、上記第1の実施の形態と比較して、形状変化情報KAの算出を、第1の接続部C1の座標と、第2の接続部C2の座標と、ベクトルCD1、CD2という数学的に扱い易いパラメータで算出することが可能となるので、変化導出部32を実現するプログラム、又は本システム1の全体を実現するためのプログラムをシンプルにすることができる。又、当該プログラムをシンプルにするので、処理の高速化に好適である。
[第2の実施の形態]
次に、本発明の第2の実施の形態について図面を参照して説明する。なお、本実施の形態では、上記第1の実施の形態と同一部分についてはその説明を省略し、相違する部分について説明する。
第2の実施の形態は、変化導出部32の動作と、操作推定部34の動作と、未然形状推定部33の動作とを上記第1の実施の形態と相違させたものである。

0119

[変化導出部32の動作]
上記第1の実施の形態では、変化導出部32は、図5に示すような形状算出部30により算出された第jの挿入部形状情報Fjと、第kの挿入部形状情報Fkとを比較し、挿入部7の形状が変化している形状変化領域KE1と挿入部7の形状が変化していない第1及び第2の形状不変化領域KE2a、KE2bとを抽出し、これら領域KE1、KE2a、KE2bに基づいて形状変化領域KE1の形状変化の種類と、形状変化の方向と、形状変化の変化量とを算出する構成を例に説明した。

0120

これに対して第2の実施の形態では、変化導出部32によって第jの挿入部形状情報Fjと、第kの挿入部形状情報Fkとを比較して類似形状領域を抽出し、当該類似形状領域に基づいて挿入部7の形状変化の種類と、形状変化の方向と、形状変化の変化量とを算出する構成である点が第1の実施の形態と相違している。

0121

図15は第jの挿入部形状情報Fjと第kの挿入部形状情報Fkとを示す。第jの挿入部形状情報Fjと第kの挿入部形状情報Fkとでは、それぞれ互いに形状が類似した各類似形状領域LRを含む。第kの挿入部形状情報Fkによる挿入部7の先端部7aを含む部分には、挿入部進行領域7srが存在する。挿入部進行領域7srは、第jのタイミング信号Tjの発生時点から第kのタイミング信号Tkの発生時点までの期間中に挿入部7が進行した部分である。

0122

すなわち、挿入部7は、第jのタイミング信号Tjの発生時点から第kのタイミング信号Tkの発生時点までの期間中に、作業者による操作を受けて挿入部進行領域7srだけ観察対象物2の内部空間3内に進行している。当該期間中に、挿入部7の類似形状領域LRの形状は、図15に示すように変化がない。
類似形状領域LRの形状に変化がないのは、次の理由による。挿入部7は、作業者による挿入操作により形状が観察対象物2の内部空間3の内面に倣いながら当該観察対象物2の内部空間3内に進行する。挿入部7の進行により当該挿入部7の形状は、第jのタイミング信号Tjの発生時点から第kのタイミング信号Tkの発生時点までの期間中においても観察対象物2の内部空間3内に倣うものとなる。従って、挿入部7の形状は、第jのタイミング信号Tの発生時点での類似形状領域LRと、第kのタイミング信号Tの発生時点での類似形状領域LRとにおいて変化することがない。

0123

ここで着目する点として、第jの挿入部形状情報Fjと第kの挿入部形状情報Fkとでは、類似形状領域LRの各位置に対応する挿入部7の位置が変化していることである。すなわち、第jの挿入部形状情報Fjと第kの挿入部形状情報Fkとでは、挿入部7が挿入により移動しているので、形状センサ8の各検出ポイントの各湾曲形状検出部8bから出力される各検出信号がそれぞれ異なるが、形状算出部30により算出される第jの挿入部形状情報Fjと第kの挿入部形状情報Fkとにおいては、形状が互いに略等しい各類似形状領域LRが存在しているものとなっている。

0124

変化導出部32は、第jの挿入部形状情報Fjと第kの挿入部形状情報Fkとを比較する。比較の結果、変化導出部32は、形状が互いに略等しい各類似形状領域LRと、当該各類似形状領域LR以外の領域を区分し、このうち各類似形状領域LRを抽出する。
当該各類似形状領域LR以外の領域には、例えば図16に示すような挿入部形状非類似領域NLRと、挿入部進行領域7srと、挿入部後退領域(図示せず)との3つの領域が存在する。挿入部後退領域については、後述する。
挿入部形状非類似領域NLRは、単純に形状が明らかに異なる領域である。挿入部進行領域7srは、例えば第jのタイミング信号Tjの発生時点では存在していなかった領域に第kのタイミング信号Tkの発生時点で新たに現れた領域である。

0125

挿入部後退領域は、例えば第jのタイミング信号Tjの発生時点では存在していた領域で第kのタイミング信号Tkの発生時点で消滅した領域である。すなわち、挿入部進行領域7srとは逆に、挿入部7が後退することにより、例えば挿入部形状類似領域LRの一部が欠落した領域である。
図15に示す例では、変化導出部32は、形状が互いに略等しい各挿入部類形状領域LRと、第kのタイミング信号Tkの発生時点に現れる挿入部進行領域7srとを算出している。すなわち、作業者の操作により挿入部7は、観察対象物2の内部空間3内において挿入部進行領域7srの分だけ進行している。この進行があったにも拘わらず挿入部7の操作部9側は、当該挿入部7の進行にも拘わらず略同一形状になっている。

0126

この理由は、挿入部7が観察対象物2の内部空間3の形状に倣って進行するためであると推定できる。すなわち、挿入部7が観察対象物2の内部空間3を進行しても同じ形状を維持している領域は、観察対象物2に対して同一位置となる領域、すなわち挿入部類似形状領域LRとなると推定できる。

0127

従って、図15に示す例の場合、変化導出部32は、挿入部7の移動方向が観察対象物2の内部空間3に向かう挿入方向であり、挿入部7の移動量が挿入部進行領域7srの長さと略等しい量であると推定する。
変化導出部32は、挿入部7の挿入方向と、挿入部進行領域7srの長さと略等しい量とを形状変化情報KAとして未然形状推定部33と操作推定部34とに送出する。

0128

なお、本実施の形態で用いている形状センサユニット23は、挿入部7の湾曲方向を検出することが可能なように構成されている。これにより、第jと第kのタイミング信号Tj、Tkの各発生時点において、形状センサユニット23から出力される検出信号Dから挿入部7の操作の状態の一つとして、X方向、Y方向等の湾曲方向が判定できる。例えば、形状センサユニット23から出力される検出信号DからX方向とY方向とに対して変化が無ければ、変化導出部32は、挿入部7の形状に変化が無いとする形状変化情報KAを出力する。操作推定部34は、挿入部7の形状に変化が無いとする形状変化情報KAを受信すると、挿入部7が単に挿入されているもの推定する。
同検出信号DからX方向とY方向とに対して変化が有れば、変化導出部32は、挿入部7の形状においてX方向とY方向とに変化が有るとする形状変化情報KAを出力する。操作推定部34は、挿入部7の形状に変化が有るとする形状変化情報KAを受信すると、挿入部7のX方向とY方向とにおける形状の変化に基づいて例えば挿入部7に対してひねり方向にも操作されているものと推定する。

0129

なお、挿入部7における挿入部類似形状領域RLの先端側には、挿入部進行領域7sr、挿入部後退領域(不図示)、又は挿入部形状非類似領域NLRのいずれもが存在しない場合がある。この場合、挿入部7の先端が停止していることを示す。
挿入部類似形状領域LRよりも操作部9側には、挿入部非類似形状領域NLRが存在する場合がある。挿入部非類似形状領域NLRは、作業者の操作によって生じたものである。

0130

図16は、作業者の操作により挿入部7の先端部が挿入部進行領域7srの分だけ進行し、さらに操作部9側に挿入部形状類似領域LRが発生している例を示す。これにより、作業者の操作の方向は、挿入部7の挿入方向となる。操作の量は、挿入部進行領域7srの長さに挿入部非類似形状領域NLRを生じるのに必要な挿入量を合わせた長さと略等しい量となる。

0131

[操作推定部34の動作]
操作推定部34は、作業者が行った作業者の操作を推定し、当該作業者操作情報Lとして出力する。操作推定部34は、挿入部7の形状変化が作業者による操作の結果であるものと仮定し、第jのタイミング信号Tjの発生時点から第kのタイミング信号Tkの発生時点までの期間中に行った操作を形状変化情報KAに基づいて推定し、作業者操作情報Lとして出力する。
本実施の形態では、作業者による操作の推定については、作業者の直接操作のみを対象として説明しているが、操作推定部34が操作ハンドル11に対して行った操作も推定可能なことも言うまでもない。

0132

第jの挿入部形状Fjは、第kの挿入部形状Fkと比較することにより、図15に示すように挿入開口2aより観察対象物2の内部空間3側において、ほぼ全体が挿入部類似形状領域LRになっている。なお、第kの挿入部形状Fkでは、作業者の操作により挿入部進行領域7srの分だけ観察対象物2の内部空間3の奥に進行している。
従って、操作推定部34は、作業者が挿入方向の押し込み操作を行い、挿入部進行領域7srの分だけ挿入部7が観察対象物2の内部空間3に進行したと推測する。
操作推定部34は、操作の種類が押し込みであり、操作方向が挿入開口2aから露出している挿入部7の中心軸方向であることを推測する。挿入部7の挿入量は、挿入部進行領域7srの長さであることを推定する。

0133

挿入部進行領域7srの長さは、例えば図15及び図16に示すように挿入部7の形状の各特徴部Crj、Crkに基づいて推定することができる。挿入部7の形状の各特徴部Crj、Crkは、形状センサユニット23の光ファイバセンサ8に設けられた各湾曲形状検出部8bの挿入部7上の位置と、検出時挿入部形状算出部30からの情報と、変化導出部32の情報などから推定することが出来る。
本実施形態における各特徴部Crj、Crkは、それぞれ挿入部7が湾曲して特定の形状、例えば凸部が他の領域と比較して、より鋭角になった形状、凸状の形状等の滑らかな形状でない形状部分として設定している。なお、特徴部Crjは、第jのタイミング信号Tの発生時点に現れた形状部分であり、特徴部Crkは、第kのタイミング信号Tの発生時点に現れた形状部分である。

0134

ここで、第jのタイミング信号Tjの発生時において、挿入部7の先端部7aから例えば20cmの位置に配置された湾曲形状検出部8bが丁度特徴部Crjの頂点と一致していると、当該特徴部Crjの位置は、挿入部7の先端から20cmの位置であると分かる。
第kの挿入部形状Fkの発生時において、挿入部7の先端部7aから例えば30cmの位置に配置された別の湾曲形状検出部8bと、同先端部7aから例えば40cmの位置に配置された別の湾曲形状検出部8bとの中間の位置が丁度特徴部Crkの頂点と一致していると、当該特徴部Crkの位置は、挿入部7の先端から35cmの位置であると分かる。

0135

これにより、観察対象物2の内部空間3への挿入部7の挿入量、すなわち挿入部進行領域GRの長さは、第kのタイミング信号Tkの発生時の特徴部Crkの位置(35cm)と、第jのタイミング信号Tjの発生時の特徴部Crjの位置(20cm)との差で35cm−20cm=15cmとなる。
図16に示すように、挿入部7に非類似形状領域NLRが存在する場合、挿入部7の挿入量は、さらに挿入部7における非類似形状領域NLRの長さの変化も考慮する必要がある。この場合では、挿入部7における非類似形状領域NLRが挿入部7の操作部9側にあるので、特徴部Crj、Crkの位置を用いての挿入部進行領域GRの長さの算出が出来ない。
このような場合、操作推定部34は、形状センサユニット23から出力される検出信号Dから挿入部7の長さを算出することができる。すなわち、形状センサユニット23は、挿入部7の形状情報を、相対的な位置情報として検出可能であるので、様々な数学的な手法により挿入部7の長さを求めることが可能となっている。

0136

例えば、図16に示すように第jのタイミング信号Tjの発生時点での挿入部7の非類似形状領域NLRの長さと、第kのタイミング信号Tkの発生時点での挿入部7の非類似形状領域NLRの長さとの差が、例えば5cmであったとすると、操作推定部34は、挿入部7の挿入量を先に求めた15cmに5cmを加えた量である20cmとして算出する。当該挿入部7の挿入量である20cmは、作業者操作情報Lとして未然形状推定部33に送出される。
なお、言うまでもないが、図15は特徴部Crj、Crkを用いて挿入部7の挿入量を求める例について示すが、この例に対しても形状センサユニット23により検出した情報に基づいて算出された挿入部7の長さの差を挿入部7の挿入量として算出することももちろん可能である。

0137

[未然形状推定部33の動作]
未然形状推定部33は、変化導出部32から出力された形状変化情報KAと、操作推定部34から出力された作業者操作情報Lのいずれか一方又は両方を受信し、形状変化情報KA又は作業者操作情報Lのいずれか一方又は両方に基づいて挿入部7の形状を未然に推定する。
本実施の形態では、図15を参照して作業者操作情報Lを用いた例について説明する。
前述の通り、操作の種類は、押し込みであり、操作方向は、挿入開口2aから外部に露出している挿入部7の中心軸の方向であり、操作量は、挿入部進行領域7srの長さ、例えば15cmである。
未然形状推定部33は、操作の種類である押し込みと、操作方向である挿入部7の中心軸の方向と、操作量である挿入部進行領域7srの長さとに基づいて未然挿入部形状情報Mを推定する。

0138

自然数hは、kより大きな自然数とする。
形状センサ制御部31は、既に第jと第kのタイミング信号Tj、Tkを出力しているが、第hのタイミング信号Thを未だ出力しておらず、未来に出力する状態にあるものとする。ここでは、第jと第kのタイミング信号Tj、Tkの時間間隔は、第kと第hのタイミング信号Tk、Thの時間間隔と等しいものとする。タイミング信号Tは、図9に示す時間経過に従った出力イメージに示す通りである。

0139

未然形状推定部33は、挿入開口2aから露出している挿入部7の中心軸方向に向けた押し込み操作が例えば15cmだけ行われた後、さらに同じ方向に同じ操作が同じ操作量だけ行われると仮定して未然挿入部形状情報Mを推定する。
図15に示す通り第jのタイミング信号Tjから第kのタイミング信号Tkの発生までの期間中における作業員による操作により挿入部7は、観察対象物2の内部空間3に挿入されている。

0140

従って、未然形状推定部33は、上記同様に、挿入部7がさらに15cmの押し込み操作されたものとして挿入部7の未然挿入部形状情報Mを推定する。
このとき、本実施の形態では、挿入部7の先端部7aは、これから先、観察対象物2の内部空間3における当該先端部7aが未だ到達していない領域まで進行することが予測されるので、当該領域、すなわち図16に示すような挿入部進行領域7srのさらに先端側の情報を推定する必要がある。

0141

図17Aは第jの挿入部形状Fjを示し、図17Bは第kの挿入部形状Fkを示す。第kの挿入部形状Fkは、推定された挿入部進行領域7srを含む。

0142

図17Cは、観察対象物2の内部空間3の例えば形状等のおおよその情報を得ている場合における第hのタイミング信号Thの発生時に形状算出部30から出力される挿入部形状情報Fh1を示す。挿入部形状情報Fh1には、推定された挿入部進行領域7sr(a)が含まれる。すなわち、未然形状推定部33は、観察対象物2の内部空間3のおおよその形状情報に基づいて挿入部進行領域7sr(a)がこれに倣うように挿入部7が進行するものとして、未然形状推定情報Mを推定している。
一方、観察対象物2の内部空間3のおおよその形状等の情報が無い場合、未然形状推定部33は、挿入部7の仮の形状、例えば直線形状等の予め設定された形状を仮の形状として想定し、当該仮の形状の情報に基づいて挿入部7の未然挿入部形状情報Mを推定する。

0143

図17Dは、観察対象物2の内部空間3の例えば形状等のおおよその情報が無い場合における第hのタイミング信号Tの発生時に形状算出部30から出力される挿入部形状情報Fh2を示す。挿入部形状情報Fh2には、推定された挿入部進行領域7sr(b)が含まれる。挿入部進行領域7sr(b)は、上記挿入部進行領域7sr(a)と比較して直線形状になっている。
未然形状推定部33は、挿入部7における類似形状領域LRの形状が変化しないまま挿入部7が作業者の挿入操作による挿入操作量だけさらに進行するものと想定して挿入部7の形状を未然に推定する。

0144

このように上記第2の実施の形態によれば、変化導出部32によって互いに異なるタイミングの挿入部7の形状情報を比較して類似形状領域LRを抽出し、当該類似形状領域LRに基づいて挿入部7の形状変化の種類と、形状変化の方向と、形状変化の変化量とを算出し、操作推定部34によって作業者が押し込み操作を行ったときの挿入部進行領域7srの分だけ挿入部7が観察対象物2の内部空間3に進行したと推測し、未然形状推定部33によって操作の種類である押し込みと、操作方向である挿入部7の中心軸の方向と、操作量である挿入部進行領域7srの長さとに基づいて未然挿入部形状情報Mを推定する。

0145

これにより、作業者が現在の操作を継続したときに、次のタイミングで起こり得る挿入部7の形状を未然に推定し、この推定した形状を作業者に挿入操作支援情報として表示部6等に表示して作業者に提供できる。この結果、従来の内視鏡システムと比較して訓練や技能向上に要する時間を短縮することができる。経験や技能レベルの低い作業者であっても比較的容易に挿入部7を観察対象物2の内部空間3に挿入、抜去することが可能となる。
特に、本実施の形態では、挿入部7の全体の形状が変化した場合であっても、挿入部7の形状が類似している類似形状領域LRを検出するので、次のタイミングで起こり得る挿入部7の形状を未然に推定することができる。
[第2の実施の形態の第1の変形例]
次に、第2の実施の形態の第1の変形例について図を参照して説明する。なお、本変形例では、上記第2の実施の形態と同一部分についてはその説明を省略し、それとは相違する部分について説明する。
本変形例は、変化導出部32の動作が上記第2の実施の形態と相違する。上記第2の実施の形態では、挿入部類似形状領域LRを用いて形状変化情報KAとしての挿入部7の移動方向と移動の量とを算出する例を示したが、本変形例では、挿入部類似形状領域LRに代えて挿入部7の湾曲部の頂点の間隔である頂点部間距離同一領域を用いる。

0146

[変化導出部32の動作]
図18は第jと第kの挿入部形状Fj、Fkの例を示す。本変形例は、上記第1の実施の形態のように挿入部7の形状が第1と第2の形状不変化領域KE2a、KE2bと、形状変化領域KE1とに分類することが出来ず、かつ上記第2の実施の形態のように挿入部類似形状領域LRを抽出すること出来ない場合であって、一方、複数の湾曲部が存在し、これら湾曲部の各頂点間の距離が互いに等しくなっている場合に適用される。

0147

すなわち、例えば、第jと第kの挿入部形状Fj、Fkには、それぞれ3つの湾曲部が存在する。これら湾曲部は、第jの挿入部形状Fjにおいて、第1の特徴部jw1、第2の特徴部jw2、第3の特徴部jw3と称し、第kの挿入部形状Fkにおいて、第1の特徴部kw1、第2の特徴部kw2、第3の特徴部kw3と称する。
第1の特徴部jw1、第2の特徴部jw2、・・・、第3の特徴部kw3は、それぞれ湾曲部の頂点を有する。
第jの挿入部形状Fj等における第1乃至の第3特徴部jw1〜jw3と第1乃至の第3特徴部kw1〜kw3とは、互いに各頂点の間隔が等しく、かつ湾曲している各方向が等しい関係となっている。第1乃至の第3特徴部jw1〜jw3と第1乃至の第3特徴部kw1〜kw3とにおいて、互いに各頂点の間隔が等しく、かつ湾曲している各方向が等しいのは、第1乃至の第3特徴部jw1〜jw3と第1乃至の第3特徴部kw1〜kw3との位置関係を比較することにより認識される。図18中におけるG1は、第1乃至の第3特徴部kw1〜kw3に挟まれていない領域を示す。なお、当該領域G1は、複数存在するが、図18では全ての領域G1を図示することが困難であるので、一例として1つの領域G1を示す。

0148

はじめに、変化導出部32は、挿入部7における湾曲部の各頂点の座標を算出する。湾曲部の各頂点の座標は、第jと第kの挿入部形状情報Fj、Fkから容易に求められる。

0149

変化導出部32は、挿入部7における湾曲部の各頂点の座標から当該各頂点間の距離と、湾曲している各方向とを算出する。湾曲している各方向は、湾曲部の各頂点の相対的な方向となる。
すなわち、第jの挿入部形状情報Fjにおいて、第1の特徴部jw1と、第2の特徴部jw2と、第3の特徴部jw3との相対的な位置関係及び間隔が求められる。同様に第kの挿入部形状情報Fkにおいて、第1の特徴部kw1と、第2の特徴部kw2と、第3の特徴部kw3との相対的な位置関係及び間隔が求められる。

0150

これら第jの挿入部形状情報Fjにおける第1の特徴部jw1と、第2の特徴部jw2と、第3の特徴部jw3との相対的な位置関係及び間隔、及び第kの挿入部形状情報Fkにおける第1の特徴部kw1と、第2の特徴部kw2と、第3の特徴部kw3との相対的な位置関係及び間隔は、それぞれ各座標の情報を共通の座標軸上において算出するようにしてもよい。
これら第1の特徴部jw1と、第2の特徴部jw2と、第3の特徴部jw3との頂点の間隔、及び第1の特徴部kw1と、第2の特徴部kw2と、第3の特徴部kw3との頂点の間隔は、それぞれスカラー量の情報として求めてもよいし、湾曲している各方向をベクトルとしての方向情報も含めて求めてもよい。

0151

これら位置関係及び間隔を求める場合、第1乃至の第3特徴部jw1〜jw3と第1乃至の第3特徴部kw1〜kw3とを比較するのは、如何なる技術・手法であってもよい。
変化導出部32は、第jの挿入部形状情報Fj間における第1の特徴部jw1と第2の特徴部jw2と第3の特徴部jw3との相対的な位置関係及び間隔と、第kの挿入部形状情報Fkにおける第1の特徴部kw1と第2の特徴部kw2と第3の特徴部kw3との相対的な位置関係及び間隔とを比較し、略同一となる位置関係及び間隔を第jの挿入部形状情報Fjにおける第1の特徴部jw1と第2の特徴部jw2と第3の特徴部jw3として抽出すると共に、第kの挿入部形状情報Fkにおける第1の特徴部kw1と第2の特徴部kw2と第3の特徴部kw3として抽出する。

0152

第1の特徴部jw1と、第2の特徴部jw2と、第3の特徴部jw3と、第1の特徴部kw1と、第2の特徴部kw2と、第3の特徴部kw3とにおける各頂点は、当該頂点の周囲に何もない状態であれば、直線上に存在するはずである。ところが、観察対象物2の内部空間3に挿入されることにより挿入部7は、観察対象物2の内部空間3の構造により湾曲させられている可能性が高い。
さらに、第j、kの挿入部形状情報Fj、Fk間における第1の特徴部jw1と、第2の特徴部jw2と、・・・、第3の特徴部kw3の各頂点は凸部であることから、挿入部7の凸側が観察対象物2の内部空間3に接触している部分である可能性が高い。

0153

又、観察対象物2の内部空間3では、当該内部空間3の管孔形状の特徴によって湾曲して挿入部7と接触し易い場所がある程度決まっている。これらのことから、第j、kの挿入部形状情報Fj、Fk間における第1の特徴部jw1と、第2の特徴部jw2と、・・・、第3の特徴部kw3の各頂点の相対的な位置関係、間隔が略等しい場合、挿入部7は、観察対象物2の内部空間3における同じ内壁面に接触している可能性が高い。すなわち、挿入部7は、同じ場所に存在していると推定することができる。

0154

しかるに、変化導出部32は、第jの挿入部形状Fjにおける第1乃至第3の特徴部jw1〜jw3の相対的な位置関係と、第kの挿入部形状Fkにおける第1乃至第3の特徴部kw1〜kw3の相対的な位置関係とが略等しい場合、第1の特徴部jw1と第1の特徴部kw1とが同一位置に存在し、第2の特徴部jw2と第2の特徴部kw2とが同一位置に存在し、第3の特徴部jw3と第3の特徴部kw3とも同一位置に存在するものと判定する。

0155

さらに、変化導出部32は、第1乃至の第3特徴部jw1〜jw3と第1乃至の第3特徴部kw1〜kw3との各頂点の間隔と、湾曲している各方向との情報に基づいて挿入部7の移動方向と、移動量とを求める。すなわち、移動方向については、第jの挿入部形状情報Fjと第kの挿入部形状情報Fkとを比較すると、挿入部7は、図18に示すように挿入部進行領域GRの分だけ観察対象物2の内部空間3に伸びていることが分かる。これにより、移動方向は、挿入部7の挿入方向となる。挿入部7の移動の量は、挿入部進行領域GRの長さと略等しい長さに対して第1乃至の第3特徴部kw1〜kw3までの長さの差を加えた長さとなる。なお、挿入部7の移動量の求め方については、上記第2の実施の形態における挿入部7の移動量の求め方と同様に求めることが可能である。さらに、上記第2の実施の形態における挿入部7の形状を未然に推定する手法と同じ手法を用いて未然形状情報Mを推定できる

0156

これにより、作業者が現在の操作を継続したときに、次のタイミングで起こり得る挿入部7の形状を未然に推定し、この推定した形状を作業者に挿入操作支援情報として表示部6等に表示して作業者に提供できる。この結果、従来の内視鏡システムと比較して訓練や技能向上に要する時間を短縮することができる。経験や技能レベルの低い作業者であっても比較的容易に挿入部7を観察対象物2の内部空間3に挿入、抜去することが可能となる。
特に、本実施の形態では、挿入部7の全体の形状が変化した場合であっても、挿入部7の形状が類似している類似形状領域LRを検出するので、次のタイミングで起こり得る挿入部7の形状を未然に推定することができる。
[第3の実施の形態]
次に、本発明の第3の実施の形態について図面を参照して説明する。なお、第1及び第2の実施の形態と同一部分には同一符号を付してその詳しい説明は省略する。
本実施の形態の上記第1及び第2の実施の形態と相違する点は、観察対象物2の内部空間3における内面プロファイルの少なくとも一部を推定する内面プロファイル情報推定部(以下、プロファイル推定部と称する)50を含むところである。

0157

内面プロファイルは、観察対象物2の内部空間3の内表面の形状情報を示す。内視鏡をはじめとする挿入/抜去作業システムは、作業を行う観察対象物2が狭い内部空間3を含む場合が多い。挿入部7は、当該観察対象物2が狭い内部空間3の形状に沿って観察対象物2における内部空間3の奥方向に向かって進行し、作業を行う。
このため、挿入/抜去作業システムの挿入部7は、その一部が観察対象物2の内部空間3の内面と接触しながら作業者の操作によって奥方向に進行する。従って、挿入部7が観察対象物2の内面に接触しているところが推定できれば、観察対象物2の内面プロファイルをおおよそ推定することが出来る。観察対象物2の内面プロファイルが推定できれば、挿入部7の形状の未然の推定に活用することができる。これにより、作業者に内面プロファイル情報を提供することが可能となり、より容易に挿入/抜去作業システムが実現できる。

0158

図19は支援情報ユニット22の構成図を示す。支援情報ユニット22の基本的な構成は、上記第1の実施の形態と同一である。本実施の形態における支援情報ユニット22は、観察対象物2のプロファイル推定部50を含む。すなわち、支援情報ユニット22は、形状算出部30と、形状センサ制御部31と、変化導出部32と、未然形状推定部33と、操作推定部34とに加え、観察対象物2のプロファイル推定部50を含む。
プロファイル推定部50は、変化導出部32からの情報を受けて観察対象物2の内面プロファイル情報FDを推定し、当該内面プロファイル情報FDを未然形状推定部33に送る。内面プロファイル情報FDは、支援情報として表示部6を経由して作業者に情報提供されることも可能である。

0159

次に、上記の如く構成された支援情報ユニット22の動作について説明する。
支援情報ユニット22の基本的な動作は、上記第1と第2の実施の形態と同一であり、相違する部分について説明する。
プロファイル推定部50は、変化導出部32からの情報に基づいて観察対象物2の内面プロファイルを推定する。プロファイル推定部50は、未然プロファイル情報メモリ50aを含む。未然プロファイル情報メモリ50aには、観察対象物2の内面プロファイルに関する未然情報が予め記憶されている。

0160

プロファイル推定部50は、未然プロファイル情報メモリ50aに予め記憶されている観察対象物2の内面プロファイルに関する事前情報を用いて観察対象物2の内面プロファイルを推定する。

0161

[プロファイル推定部50の動作]
プロファイル推定部50は、変化導出部32からの情報について下記第1〜第5の機能のように観察対象物2の内面プロファイルを推定する。
(第1の機能)
挿入部7の全体の形状は時間的に変化しているにも拘わらず、部分的に同じ形状の領域が存在する場合がある。この場合、挿入部7の同じ形状の領域は、観察対象物2の内部空間3の内面形状に倣った形状となっているためであると仮説を立て、内面プロファイルとほぼ近い形状を現していると推定する。
(第2の機能)
特徴部の位置関係、例えば、第jの挿入部形状Fjにおける第1乃至第3の特徴部jw1〜jw3の相対的な位置関係と、第kの挿入部形状Fkにおける第1乃至第3の特徴部kw1〜kw3の相対的な位置関係とが等しい場合、挿入部7は、観察対象物2内部空間3における同じ位置にあり、例えば各特徴部jw1〜jw3である頂点(外側)は、観察対象物2の内部空間3の内面に接していると推定する。
(第3の機能)
上記第2の機能と同様に、各特徴部の位置関係が等しい場合であって、各特徴部jw1〜jw3の間の領域が凸状になっている場合は、当該領域も観察対象物2の内部空間3の内面と接していると推定する。
(第4の機能)
複数の不連続な内面プロファイル領域について、滑らかに接続することが可能な場合にはこれを根拠として内面プロファイルを推定する。
(第5の機能)
推定した複数の内面プロファイルが滑らかにつながらない場合は、優先順位を第1の機能、第2の機能、第3の機能、第4の機能の順とし、下位のものについては内面プロファイルを推定できない場合としてこの推定による情報を削除する。

0162

次に、プロファイル推定部50の動作について説明する。この動作の説明では、上記第1と第2の実施の形態で説明した例について内面プロファイルを推定する一例について上記図5に示す第1の実施の形態の例を用いて説明する。なお、事前情報として、観察対象物2は、生体の臓器であることが与えられているとする。観察対象とする臓器は、挿入部7の押圧力により観察対象物2内をある程度移動可能であることが与えられているとする。これらの事前情報は、プロファイル推定部50の未然プロファイル情報メモリ50aに記憶されているものとする。さらに、臓器は、例えば大腸のように筒状の臓器であることが未然プロファイル情報メモリ50aに記憶されているものとする。

0163

このような場合のプロファイル推定部50による内面プロファイル推定のプロセスについて説明する。
プロファイル推定部50は、第1の機能により形状不変化領域KE2a、KE2bの周囲に内面プロファイルを推定する。
次に、プロファイル推定部50は、第3の機能により形状変化領域KE1の湾曲の頂点(外側)の内面プロファイルを推定する。
最後に、プロファイル推定部50は、観察対象物2が筒状であるという情報から湾曲の頂点の内側のプロファイルを推定する。この例の場合、プロファイル推定部50は、挿入部7が存在している領域の全体について内面プロファイルを推定することが可能である。なお、挿入部7の先端側の形状不変化領域KE2bでは、観察対象物2の内壁が移動しており、これに伴って内面プロファイルも変化している。

0164

次に、上記図15に示す第2の実施の形態の例を用いて説明する。この例では、観察対象物2の内面プロファイルに関する情報は、未然プロファイル情報メモリ50aに記憶されていないものと仮定する。この場合、図21に示すように挿入部7の全体の内面プロファイルを推定することは出来ない。
プロファイル推定部50は、第2の機能により3箇所の凸部について、観察対象物2の内面に接しているものと仮定して内面プロファイルを推定する。
これと共に、プロファイル推定部50は、第3の機能により挿入部7における挿入部類似形状領域LRの凸方向の側面について、挿入部7が観察対象物2の内面に接触しているものと仮定し、内面プロファイルを推定する。

0165

さらにプロファイル推定部50は、第4の機能によって、第1の機能による推定と第3の機能による推定とにより不連続な部分が滑らかに繋がりそうな領域(例えば、図21上部に点線により示す内面プロファイルPN)を接続して内面プロファイルの推定可能な領域を拡大する。なお、この例では、内面プロファイルを挿入部7の全体に亘って推定することは出来ていないが、筒状を仮定したりすることで、推定できない部分についても情報提供、表示等行うことも可能である。推定した対象物内面プロファイル情報FDは、情報記憶部35に記憶される。又、対象物内面プロファイル情報FDは、表示部6に出力されることも可能である。

0166

さらに、上記図18に示す第2の実施の形態の例を用いて説明する。この例についても観察対象物2の内面プロファイルに関する情報は未然プロファイル情報メモリ50aに記憶されていないものと仮定する。この場合、図15に示す例と同様に全体の内面プロファイルを推定することは出来ず、第2の機能により特徴部の相対的な位置関係が略等しいことを利用し、観察対象物2に対し同じ領域にあると推定できる。このとき、第1の特徴部jw1と第2の特徴部jw2の間、及び第2の特徴部jw2と第3の特徴部jw3との間の領域は、同図右側に若干凸形状となっている。これにより、第3の機能により当該領域についても図22に示すように内面プロファイルを推定できる。

0167

さらに、第jの挿入部形状Fjでは、第2の特徴部jw1と第3の特徴部jw3との間の領域は図右下側に凸であるが、第kの挿入部形状Fkでは、第2の特徴部kw1と第3の特徴部kw3若干左上側に凸形状となっている。従って、当該領域の左上側のプロファイルについては、第jの検出時挿入部形状Fjでは内面プロファイルを推定できないが、第kの挿入部形状Fkを用いることで第3の機能により内面プロファイルを推定できる。

0168

なお、一旦、内面プロファイルが推定できた領域であっても、その後、挿入部7の形状変化により推定できない領域に変化することがある。このような場合、観察対象物2の内面が出現したり消滅したりするとは考えにくいので、内面プロファイルは存在するものとしてプロファイル推定部50は、動作を継続する。

0169

さらに、本実施の形態では、挿入/抜去作業システムは内視鏡装置としている。プロファイル推定部50は、当然内視鏡装置に含まれる撮像素子7dから出力される撮像信号を画像処理することによって観察画像を取得し、この観察画像などを用いて内面プロファイル情報を推定することが可能である。例えば、プロファイル推定部50は、観察画像から観察対象物2の内面が広い空間であるのか、筒状であるのかを知ることが可能である。プロファイル推定部50は、これらの情報を元に自動または作業者からの入力により内面プロファイル情報の信頼度を向上することができる。
プロファイル推定部50は、上述のプロセスにより推定した内面プロファイル情報FDを情報記憶部35に記憶し、かつ未然形状推定部33に出力する。また、表示部6に出力することも可能である。

0170

[未然形状推定部33の動作]
未然形状推定部33の動作について、上記図5図20に示した第1の実施の形態で用いた例を用いて説明する。
図20は、第j、kの挿入部形状情報Fj、Fkに対応する観察対象物2の内部空間3の内面プロファイルG2j、G2kを示す。
前述の通り、観察対象物2は、例えば大腸のような筒状の内面プロファイルを有している。観察対象物2の内部を移動可能であることの情報が未然プロファイル情報メモリ50aに記憶されている。

0171

図20に示す通り、第jの挿入部形状Fjと第kの挿入部形状Fkとの間に挿入部7の先端側において観察対象物2の内面プロファイルG2j、G2kは大きく変形している。この内面プロファイルG2j、G2kの変形は、挿入部7からの押圧力によるものである。又、生体内で臓器が移動可能であっても、臓器には移動の限界がある。これにより、挿入部7に同じ押圧力を加えたとき、挿入部7は、同じだけ変形することはなく、徐々に変形量は小さくなることが予想される。なお、GF1は、第1の機能により推定された内面プロファイルを示し、GF2は、第3の機能により推定された内面プロファイルを示す。

0172

これらの情報を考慮し、未然形状推定部33は、上記第1の実施の形態の上記図10図11及び図12に示した第hのタイミング信号Thの発生時の未然挿入部形状情報Mと比較してその変形例は小さいものと推定する。
このとき、観察対象物2の内面が移動できる距離や移動に必要な応力などの情報が予め未然プロファイル情報メモリ50aに記憶されている場合、未然形状推定部33は、当該情報を用いて適切な物理的な演算を行って未然挿入部形状情報Mを推定する。推定した未然挿入部形状情報Mは、情報記憶部35に記憶される。

0173

なお、上記説明では観察対象物2の内面プロファイルG2j、G2kが移動可能である例を示したが、例えば工業配管などのように移動不可能であることが未然プロファイル情報メモリ50aに記憶されている場合、未然形状推定部33は、観察対象物2の内面プロファイルG2j、G2kが移動しないものとして推定された内面プロファイルの内部にのみ挿入部7が存在しえるものとして未然挿入部形状情報Mを推定する。

0174

このように第3の実施の形態のように構成することで、作業者が現在の操作を継続したときに、次のタイミングで起こり得る挿入部7の形状を未然に推定し、これを作業者に挿入操作支援情報として表示・提供することが可能となる。この結果、本実施の形態は、従来の内視鏡システムと比較して訓練や技能向上に要する時間を短縮したり、経験や技能レベルの低い作業者であっても比較的容易に内視鏡を挿入、抜去することが可能となるなどの効果が期待できる。

0175

特に、本実施の形態のように観察対象物2の内面プロファイルG2j、G2kを推定可能とすることで、観察対象物2の内部空間3の構造情報や、観察対象物2と挿入部7との位置関係などを情報提供可能となるため、作業者はその時々の情報を直感的に把握し易いなどの効果を奏する。
[第3の実施の形態の第1の変形例]
次に、第3の実施の形態の第1の変形例について説明する。
図23は本変形例の支援情報ユニット22の構成図を示す。上記実施の形態では、プロファイル推定部50を含む例について示したが、本変形例における支援情報ユニット22は、図23に示すように観察対象物2の負荷推定情報を推定する観察対象物負荷推定部(以下、負荷推定部と称する)60を含むところが上記第3の実施の形態と相違する。
負荷推定部60は、プロファイル推定部50からの内面プロファイル情報FDと、検出時挿入部形状推定部30からの挿入部形状情報Fと、操作推定部34からの作業者操作情報Lと、および/または未然形状推定部33からの未然挿入部形状情報Mとを組み合わせて観察対象物2に加わる負荷を観察対象物負荷推定情報KGとして推定する。

0176

内面プロファイル情報FDと挿入部形状情報Fとを組み合わせた例について説明する。この例では、観察対象物2は、挿入部7に対して十分に硬く、観察対象物2の内面プロファイルは変形しないものとする。
先ず、図24に示すように第jの挿入部形状Fjであったものが第kの挿入部形状Fkに変形したものとする。挿入部7は、外部から負荷が掛かっていない場合、おおよそ直線形状を維持する。第jの挿入部形状Fjの場合、図24左図に示すように、挿入部7の先端部7aは、観察対象物2に接触することで押圧力FOが加わり、湾曲した形状となっている。

0177

次に、作業者がさらに挿入部7に対して押し込み方向の操作を行った結果、挿入部7は、第kの挿入部形状Fkとなった。このとき挿入部7は、少なくとも3箇所で観察対象物2に接触することでこの形状となっている。
負荷推定部60は、支援情報ユニット22内の情報記憶部35に記憶されている挿入部7のたわみ易さやその形状となるために必要な押圧力などの情報を用いて適切な演算を行い、求められた押圧力の反力として、挿入部7が観察対象物2に掛けている押圧力を推定する。負荷推定部60が推定した観察対象物負荷情報KGは、情報記憶部35に記憶される。

0178

さらに、観察対象物2が生体のように内面プロファイルが変形したり移動したりする場合であっても、観察対象物2の変形のしやすさや変形に必要な押圧力の情報などを情報記憶部35に記憶させることで、負荷推定部60は、同様の手法により観察対象物2に掛かる押圧力を推定することが可能となる。
このとき、負荷推定部60は、操作推定部34からの作業者操作の情報である操作の種類、方向、量の情報を活用することで押圧力FOに影響を及ぼす直接的な操作を推定することが可能である。これにより、より押圧力FOの値やその影響などについての精度を向上することが出来る。

0179

又、さらに負荷推定部60は、未然挿入部形状情報Mを組み合わせることも可能である。未然挿入部形状情報Mを用いた場合でも、プロファイル推定部50の基本的な動作は変わらないが、この情報を用いることで、未来のタイミングで観察対象物2に負荷される押圧力を未然に知ることが可能となる。

0180

本実施の形態の第1の変形例のように、観察対象物2に掛かる負荷(押圧力FO)を推定することで、観察対象物2に掛かっている押圧力FO等を推定することが可能となる。これにより、過去、現在または未来において観察対象物2への負荷を定性的、あるいは定量的に評価することが可能となる。さらに、観察対象物2が生体の場合、患者の受ける痛みや、臓器の破損の恐れなどを推定することが可能となり、医療用内視鏡などでは、患者の負荷軽減や臓器破損等のリスクを軽減することが可能となる。
なお、上記第1の実施の形態と同様に、従来の内視鏡システムと比較して訓練や技能向上に要する時間を短縮したり、経験や技能レベルの低い作業者であっても比較的容易に内視鏡を挿入、抜去することが可能となるなどの効果が期待できることは言うまでもない。

0181

[第4の実施の形態]
次に、本発明の第4の実施の形態について図面を参照して説明する。なお、本実施の形態では、上記第1乃至第3の実施の形態と共通の部分についてはその説明を省略し、それとは相違する部分についてのみ詳細に説明する。
本実施の形態において操作推定部34は、未然作業者操作情報を推定する未然操作推定部34として機能するところが上記第1乃至第3の実施の形態とは相違する。以下、操作推定部34を未然操作推定部34として読み替えて説明する。

0182

上記第1及び第2の実施の形態では、操作推定部34は、挿入部形状情報Fに基づいて過去又は現在までに行われた作業者の操作を推定した。未然形状推定部33は、過去又は現在までに行われた作業者の操作がそのまま継続した場合のみを想定して事前(未然)挿入部形状情報Mを推定していた。

0183

これに対し本実施の形態の未然操作推定部34は、未来に作業者が行う可能性のある作業者操作を未然に推定し、それを未然形状推定部33に向けて出力する。なお、未然操作推定部34以外の構成・機能は、基本的に上記第1乃至第3の実施の形態と共通である。

0184

[未然操作推定部34の動作]
作業者操作情報推定部34は、上記第1の実施の形態で説明した動作により作業者操作情報Lを推定する。この作業者操作情報Lは、過去又は現在までに行われた作業者操作に関する情報である。作業者操作情報Lは、操作の種類、操作の方向、操作の量の情報を含む。
未然操作推定部34は、これらの作業者操作情報Lを入力し、未来の作業者操作である未然作業者操作情報L(=LF)を推定する。未然操作推定部34は、作業者操作情報推定部34が含む形状変化情報KAも受信し、当該情報KAを用いて未然作業者操作情報LFを推定する。

0185

作業者による操作は、第1に挿入/抜去のように挿入部7を観察対象部3の部内に対して挿入/抜去する操作、第2に回転/ひねり操作のように挿入部7を当該挿入部7の軸周りに回転させる操作、第3に湾曲操作のように操作ハンドル11による湾曲部の操作の3つの基本操作がある。すなわち、操作の種類は、第1の挿入/抜去に関する操作、第2の回転/ひねりに関する操作、第3の湾曲に関する操作の3つが存在する。また、これらの操作は、独立または同時に行うことが出来る。

0186

あるタイミングにおける作業者の操作と、次のタイミングにおける作業者の操作との関係は、操作の種類、方向の観点でみると、操作の継続、停止、反転(同じ操作であって操作の方向が逆の操作)の3つがある。
未然操作推定部34は、操作推定部34から入力した作業者操作Lの種類、方向について、継続、停止、反転の3つの可能性を考慮して推定する。
また、未然操作推定部34は、操作の量についても同様に、継続(同じ量を継続する)、減量、増量の3つの可能性を考慮して推定する。ここで操作の量でも「操作量ゼロ=停止」もある。当該操作量ゼロ=停止は、操作の種類、方向で考慮する停止と同じであるので、操作の量はゼロとして考慮する。

0187

未然操作推定部34は、これらを踏まえて、操作の種類、方向については以下の3つのパターンを想定して未然に作業者の操作を推定する。なお、作業者操作は単純な操作とそれらの組み合わせの操作が考えられる。例えば挿入しながらひねりを加えるなどのような複合的な操作の場合、挿入とひねりとのそれぞれの操作ごとに、下記第1から第4の未然作業者操作を候補として推定する。
(1)第1の未然作業者操作
この操作では、過去又は現在までに行われた操作の種類、方向、量をそのまま継続するとして推定する。未然操作推定部34は、操作推定部34から受け取った作業者操作情報Lをそのまま未然形状推定部33に向けて出力する。
(2)第2の未然作業者操作
この操作では、過去又は現在までに行われた操作を停止するものとして推定する。
(3)第3の未然作業者操作
この操作では、操作の種類は維持したまま方向を反転させる操作を行うものとして推定する。
(4)第4の未然作業者操作
この操作では、現在行っていない操作を新たに開始するとして推定を行うものである。
操作の量について、第2の未然作業者操作では「停止」のために、操作量の情報は常にゼロとなる。第4の未然作業者操作では常に増量となる。さらに、第3の未然作業者操作では方向が反転するということは、一旦減量し、その後反転方向、すなわちマイナス方向に増量することになるため、常に減量ということになる。

0188

このように第1から第4の未然作業者操作に対応して操作量の選択肢絞り込むことが出来る。
未然操作推定部34は、これらについて、過去および現在までの最新の作業者操作を含む1つ又は複数の作業者操作情報に基づいて未然作業者操作情報L(=LF)を推定する。

0189

未然操作推定部34は、第1乃至第4のいずれの未然作業者操作を行うかを推定する。
先ず、作業者が同じ操作を連続的に行っており、かつ形状変化情報KAより観察対象物2への挿入/抜去の操作が順調に進行していると判断できる場合、すなわち作業者操作の方向と量が挿入部7の移動方向、量と略等しいような場合、未然操作推定部34は、同様の作業が継続する可能性が高いと判断する。すなわち、未然操作推定部34は、第1の未然作業者操作が行われる可能性が高いと推定する。

0190

一方、作業者が頻繁に操作を変更しており、かつ形状変化情報KAより観察対象物2への挿入/抜去の操作が順調には進行していないと判断できる場合、例えば作業者操作の方向、量と比べ挿入部7、特に先端部付近の移動方向、量が異なるかほとんど移動していない場合、未然操作推定部34は、同様の作業が継続する可能性が低く、一旦停止し、次に異なる方向の操作が行われる可能性が高いと推定する。すなわち、未然操作推定部34は、第2の未然作業者操作が行われた後、第3、第4の未然作業者操作が行われるものと推定する。

0191

さらに、同じ作業者操作が一定時間以上長時間にわたって連続している場合、特に操作量が徐々に減量しているようなはその操作の目的が達成できたと考えられる。これにより、未然操作推定部34は、第2の未然作業者操作が行われた後、第3、第4の未然作業者操作が行われるものと推定する。
操作の量について未然操作推定部34は、同じ操作を継続する場合、その操作が始められた後、所定時間以下の場合は増量する可能性が高いと推定する。未然操作推定部34は、所定時間以上継続されている場合、維持か又は減量する可能性が高いと推定する。また、同様に、第3又は第4の未然作業者操作の場合、未然操作推定部34は、必ず増量することになるが、その量の大きさ事態は急激に大きな値になる可能性は小さいと推定する。

0192

さらに、作業者の作業時間そのものが長時間となっている場合(内視鏡システムは当然時計を持っていて、作業している時間は管理可能なため、この情報を用いることは通常可能である。)、未然操作推定部34は、抜去方向の操作を行う可能性が高いなど、状況的な情報も活用して未然作業者操作を推定する。

0193

さらに、未然操作推定部34は、同様の観察対象物2を観察した場合の過去の支援情報ログ分析結果などから、ある操作に対し次に行われる可能性の高い操作などを、観察対象物2、作業者、内視鏡装置等ごとに分析し、当該分析結果を用いて未然作業者操作情報を推定する。ここで言う支援情報ログとは、支援情報ユニット22を用いた挿入抜去作業システムの作業において、各部が受信、生成した様々な情報を情報記憶部に記憶させ、どのような作業、操作が行われたかを後から振り返ることが出来るシステムである。
支援情報ログは、目的に応じて必要なログのみを抽出可能で、挿入操作の手順と、挿入/抜去の成否などを解析可能となっている。支援情報ログは、支援情報ユニット22内に設けられ、各部と信号接続されたメモリとそれを呼び出すためのデータ処理プログラムを有している。また、支援情報ユニット22は支援情報ログを表示部に表示させることが可能となっている。

0194

なお、未然作業者操作の場合、操作量を正確に推定することは困難である。このため、その操作における標準的な操作量をデフォルト値として保持し、それを出力するように構成することも好適である。デフォルト値についても、支援情報ログの値を参照して設定したり、その値から適宜補正することも可能である。

0195

ここで、上記については、挿入/抜去操作、回転/ひねり操作、湾曲操作の3つの基本操作をそれぞれ独立に未然作業者操作を推定する例を示したが、これらを複合的に行う組み合わせ操作ももちろん存在する。例えば、ひねりながら挿入/抜去を行ったりする場合がある。このような組み合わせは理論的には全て可能であるが、実際の作業では、挿入しながらひねりを加え、さらに湾曲操作を行うなどの操作は極まれである。

0196

また、組み合わせ操作よりも単独で操作を行うほうが一般的である。このため、未然操作推定部34は、作業者の支援情報ログからの情報や、特定の医学的な手技などを行うと推定される場合など、組み合わせ操作が行われる可能性が高いと判断される場合に、組み合わせ操作についても考慮して推定を行う。推定した未然作業者情報は情報記憶部に記憶される。
又、未然操作推定部34は、未然形状推定部33に対し、複数の未然作業者操作情報L(=LF)を並行して出力する機能を有している。これは、未然作業者操作情報L(=LF)は、実際の作業者の操作ではないため、作業者が当然異なる操作を行う可能性がある。そこで、起こり得る可能性の高い順に複数の未然作業者操作情報L(=LF)を未然形状推定部33に出力することで、起こりそうな複数の未然挿入部形状を未然形状推定部33が推定可能にする。このとき、未然操作推定部34は、上述したような様々な情報、状況を考慮し、起こりそうな順に未然作業者操作情報L(=LF)を順位付けし、その順に沿って未然形状推定部33に出力する。順位付けが難しい場合や情報が不足する場合は、上述の第1の未然作業者操作情報から第2、第3、第4の未然作業者操作情報L(=LF)の順に出力する。

0197

これを受け、未然形状推定部33は、入力した全ての未然作業者操作情報L(=LF)に基づいて未然挿入部7形状を推定する。未然作業者操作情報L(=LF)は、作業者操作情報Lと同じ種類の情報となっている。このため、未然形状推定部33は、未然作業者操作情報L(=LF)に対し、作業者操作情報Lと同じ動作を行う。
本実施の形態のように構成することで次のタイミングで起こり得る挿入部7の形状を未然に推定し、これを作業者に挿入操作支援情報として表示・提供することが可能となる。この結果、従来の内視鏡システムと比較して訓練や技能向上に要する時間を短縮したり、経験や技能レベルの低い作業者であっても比較的容易に内視鏡を挿入、抜去することが可能となるなどの効果が期待できる。

0198

特に、本実施の形態のように作業者がこれから行うであろう操作を未然作業者操作情報L(=LF)として推定し、この情報L(=LF)に基づいて未然挿入部形状を推定可能とすることが可能となり、未然挿入部7形状の起こり得る形状バリエーションを導出、作業者に提供することが可能となる。また、個々の未然挿入部形状の推定を、現在の操作の継続以外についても実施可能となるなど、作業者にとってより有効な情報提供が可能となる。

0199

なお、本発明は、上記各実施の形態に限定されるものでない。
形状センサ8は、光ファイバセンサを用いてきたが、これに限らない。
観察対象物2の内部での挿入部7の形状を検出可能なものであれば、どのようなものでもかまわない。例えば、複数の磁気コイルを挿入部7内に配置し、外部に磁気アンテナを配置したものでもかまわない。この場合、アンテナとの絶対的な位置が確認できるため、後述するように挿入量センサを用いる必要がない。

0200

X線カメラを用いてもかまわない。医療用内視鏡の場合、X線カメラで生体内部での挿入部7の形状、生体との相対位置を確認する手技は古くから知られている。この場合、生体内の臓器の位置、形状などもおおよそ確認できるため、観察対象物2の内面プロファイルの精度や確度の向上にもつなげることが出来る。なお、X線カメラの場合、1台のみを用いると2次元データしか得られない。この場合、上述した構成、動作を2次元的に処理することで対応することが出来る。3次元情報の場合と比較して情報量は減るが、一定程度の効果を奏することが期待できる。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ