図面 (/)

技術 酸素濃縮装置

出願人 帝人ファーマ株式会社
発明者 北條真紀藤本勝志
出願日 2015年9月17日 (3年9ヶ月経過) 出願番号 2016-550432
公開日 2017年6月8日 (2年1ヶ月経過) 公開番号 WO2016-047805
状態 特許登録済
技術分野 治療用噴霧、吸入、呼吸装置 酸素;オゾン;酸化物一般
主要キーワード 円板中央 圧力制御部材 テーパー部位 加圧エネルギ 流路圧力損失 減圧パージ 空気取り込み口 均圧路
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年6月8日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (9)

課題・解決手段

酸素濃縮装置パージ工程や均圧工程時に、均圧路均圧弁を通って流れるガス流量差を低減させた酸素濃縮装置として、均圧路を流れるガスの一方の流れの圧力損失と逆方向の流れの圧力損失が同等になるように、均圧弁の少なくとも一端側に、流れ方向により圧力損失の差を有する圧力制御部材を備えたことを特徴とする酸素濃縮装置を提供する。

概要

背景

近年、喘息肺気腫症、慢性気管支炎等の呼吸器系器官の疾患に苦しむ患者が増加する傾向にあるが、その治療法として最も効果的なもののひとつに酸素吸入療法がある。かかる酸素吸入療法とは、酸素ガスあるいは酸素富化空気を患者に吸入させるものである。その酸素供給源として、酸素濃縮装置液体酸素、酸素ガスボンベ等が知られているが、使用時の便利さや保守管理の容易さから、在宅酸素療法には酸素濃縮装置が主流で用いられている。
酸素濃縮装置は、空気中に存在する約21%の酸素濃縮して使用者に供給する装置であり、それには酸素を選択的に透過する膜を用いた膜式酸素濃縮装置と、窒素または酸素を優先的に吸着しうる吸着材を用いた圧力変動吸着型酸素濃縮装置があるが、90%以上の高濃度の酸素が得られる点から圧力変動吸着型酸素濃縮装置が主流になっている。
圧力変動吸着型酸素濃縮装置は、酸素よりも窒素を選択的に吸着する吸着材として5A型や13X型、Li−X型などのモレキュラーシーブゼオライト充填した複数の吸着筒に、コンプレッサ圧縮された空気を供給することにより加圧条件下で窒素を吸着させ、未吸着の酸素濃縮ガスを得る吸着工程と、前記吸着筒内の圧力を大気圧またはそれ以下に減じて、吸着材に吸着された窒素を脱着させパージすることで吸着材の再生を行う脱着工程とを交互に繰り返し行うことで、高濃度酸素ガスを連続的に生成することができる。これら吸着工程、脱着工程に加え、吸着工程側吸着筒からの高濃度の酸素を脱着工程側吸着筒へ導入するパージ工程や、吸着工程終了の吸着筒と脱着工程終了の吸着筒を連通さて吸着筒間の圧力を均圧させ圧力エネルギー回収する均圧工程を併用することで、更に高濃度の酸素ガスを生成することが出来る。
酸素よりも窒素を選択的に吸着する吸着剤を充填した複数の吸着筒と、該吸着筒へ原料空気を供給するコンプレッサ、該コンプレッサおよび各吸着筒の間の流路を順次切り替え、各吸着筒へ加圧空気を供給し濃縮酸素を取り出す吸着工程、各吸着筒を減圧し吸着剤を再生する脱着工程、各吸着筒を連通させる均圧工程、吸着工程側吸着筒からの高濃度の酸素を脱着工程側吸着筒へ導入するパージ工程を所定タイミングで繰り返すための流路切換手段具備することで圧力変動吸着型酸素濃縮装置において該酸素濃度を高くすることができる。

概要

酸素濃縮装置のパージ工程や均圧工程時に、均圧路均圧弁を通って流れるガス流量差を低減させた酸素濃縮装置として、均圧路を流れるガスの一方の流れの圧力損失と逆方向の流れの圧力損失が同等になるように、均圧弁の少なくとも一端側に、流れ方向により圧力損失の差を有する圧力制御部材を備えたことを特徴とする酸素濃縮装置を提供する。

目的

本願発明は、酸素濃縮装置に搭載するオリフィス配管の圧力損失差を調整することにより、電磁弁と組み合わせた時のガスの流れ方向の違いによる圧力損失差を低減させ、パージ工程や均圧工程時に均圧路を通って吸着筒間を流れるガス流量差を低減させる酸素濃縮装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

酸素よりも窒素優先的に吸着する吸着材充填した吸着筒と、該吸着筒に加圧空気を供給するコンプレッサと、該吸着筒に加圧空気を供給し加圧空気中の窒素を吸着し未吸着の酸素を生成する吸着工程と、該吸着筒を減圧パージし窒素を脱着し吸着材を再生する脱着工程、吸着工程終了後の吸着筒と脱着工程終了後の吸着筒同士を接続し両筒を均圧する均圧工程とを一定タイミングで繰り返すため、該コンプレッサと該吸着筒、該吸着筒と脱着ガスを系外に排気する排気管との間の流路切り換える流路切換弁、該吸着筒間をつなぐ均圧路に備えた均圧弁を備え、酸素濃縮ガスを生成する酸素濃縮装置において、該均圧路を流れるガスの一方の流れの圧力損失と逆方向の流れの圧力損失が同等になるように、該均圧弁の少なくとも一端側に、流れ方向により圧力損失の差を有する圧力制御部材を備えたことを特徴とする酸素濃縮装置。

請求項2

該圧力制御部材が、流れ方向によって圧損差を有するオリフィス構造体、或いは配管部材である、請求項1に記載の酸素濃縮装置。

請求項3

該均圧弁の両端に均圧弁側に接続するオリフィス板および配管接続部を備えた円筒部材を有するオリフィス構造体を備え、該均圧弁の入側のオリフィス構造体が、オリフィス板の円筒部材側がオリフィスを凹部とする円錐形状のテーパー部位を備え、均圧弁の出側のオリフィス構造体が、オリフィス板の円筒部材側が平面形状部材である構造体の組み合わせからなる、請求項1または2の何れかに記載の酸素濃縮装置。

請求項4

該均圧路を流れるガスの一方の流れの圧力損失と逆方向の流れの圧力損失の差が5kPa以下である、請求項1〜3の何れかに記載の酸素濃縮装置。

技術分野

0001

本発明は、呼吸器疾患患者等の使用者酸素濃縮空気を供給する医療用酸素濃縮装置に関し、圧力変動吸着法により酸素を生成する際に特に問題となる均圧路の流れ方向に違いによる流路圧力損失差を解消する均圧オリフィスに関する。

背景技術

0002

近年、喘息肺気腫症、慢性気管支炎等の呼吸器系器官の疾患に苦しむ患者が増加する傾向にあるが、その治療法として最も効果的なもののひとつに酸素吸入療法がある。かかる酸素吸入療法とは、酸素ガスあるいは酸素富化空気を患者に吸入させるものである。その酸素供給源として、酸素濃縮装置液体酸素、酸素ガスボンベ等が知られているが、使用時の便利さや保守管理の容易さから、在宅酸素療法には酸素濃縮装置が主流で用いられている。
酸素濃縮装置は、空気中に存在する約21%の酸素を濃縮して使用者に供給する装置であり、それには酸素を選択的に透過する膜を用いた膜式酸素濃縮装置と、窒素または酸素を優先的に吸着しうる吸着材を用いた圧力変動吸着型酸素濃縮装置があるが、90%以上の高濃度の酸素が得られる点から圧力変動吸着型酸素濃縮装置が主流になっている。
圧力変動吸着型酸素濃縮装置は、酸素よりも窒素を選択的に吸着する吸着材として5A型や13X型、Li−X型などのモレキュラーシーブゼオライト充填した複数の吸着筒に、コンプレッサ圧縮された空気を供給することにより加圧条件下で窒素を吸着させ、未吸着の酸素濃縮ガスを得る吸着工程と、前記吸着筒内の圧力を大気圧またはそれ以下に減じて、吸着材に吸着された窒素を脱着させパージすることで吸着材の再生を行う脱着工程とを交互に繰り返し行うことで、高濃度酸素ガスを連続的に生成することができる。これら吸着工程、脱着工程に加え、吸着工程側吸着筒からの高濃度の酸素を脱着工程側吸着筒へ導入するパージ工程や、吸着工程終了の吸着筒と脱着工程終了の吸着筒を連通さて吸着筒間の圧力を均圧させ圧力エネルギー回収する均圧工程を併用することで、更に高濃度の酸素ガスを生成することが出来る。
酸素よりも窒素を選択的に吸着する吸着剤を充填した複数の吸着筒と、該吸着筒へ原料空気を供給するコンプレッサ、該コンプレッサおよび各吸着筒の間の流路を順次切り替え、各吸着筒へ加圧空気を供給し濃縮酸素を取り出す吸着工程、各吸着筒を減圧し吸着剤を再生する脱着工程、各吸着筒を連通させる均圧工程、吸着工程側吸着筒からの高濃度の酸素を脱着工程側吸着筒へ導入するパージ工程を所定タイミングで繰り返すための流路切換手段具備することで圧力変動吸着型酸素濃縮装置において該酸素濃度を高くすることができる。

先行技術

0003

特開2008−214151号公報

発明が解決しようとする課題

0004

複数の吸着筒間をつなぐ流路には、工程の切替えタイミングを制御する電磁弁と流量を制御するためのオリフィスを備え、所定タイミングで吸着筒間にガスを流すことによりパージ及び均圧工程を行う。この際、複数の吸着筒間を流れるガスの流量は、流れる方向によらず同程度であることが求められる。しかし、かかる流路(以下均圧路という)に備わっている電磁弁には方向性があり、ガス流れの方向によって圧力損失の値が異なっているため、コンプレッサから吸着筒に供給される空気量が複数の吸着筒間で同じであったとしても、吸着筒間を流れる流量は、流れる方向によって異なる。均圧路には流量を調節するためにオリフィスを備えているが、そのオリフィスを構成するオリフィス板やそれを構成要素に含む配管との接続部を兼ね備えたオリフィス構造体自体にも方向性があり、均圧路の流れる方向により圧力損失の値が異なり、流れるガス流量が向きによって異なる構造を有している。
本願発明は、酸素濃縮装置に搭載するオリフィスや配管の圧力損失差を調整することにより、電磁弁と組み合わせた時のガスの流れ方向の違いによる圧力損失差を低減させ、パージ工程や均圧工程時に均圧路を通って吸着筒間を流れるガス流量差を低減させる酸素濃縮装置を提供する。

課題を解決するための手段

0005

本発明者らは、かかる問題の解決する方法として、以下の発明を見出した。
1.酸素よりも窒素を優先的に吸着する吸着材を充填した吸着筒と、該吸着筒に加圧空気を供給するコンプレッサと、該吸着筒に加圧空気を供給し加圧空気中の窒素を吸着し未吸着の酸素を生成する吸着工程と、該吸着筒を減圧パージし窒素を脱着し吸着材を再生する脱着工程、吸着工程終了後の吸着筒と脱着工程終了後の吸着筒同士を接続し両筒を均圧する均圧工程とを一定タイミンクで繰り返すため、該コンプレッサと該吸着筒、該吸着筒と脱着ガスを系外に排気する排気管との間の流路を切り換える流路切換弁、該吸着筒間をつなぐ均圧路に備えた均圧弁を備え、酸素濃縮ガスを生成する酸素濃縮装置において、
該均圧路を流れるガスの一方の流れの圧力損失と逆方向の流れの圧力損失が同等になるように、該均圧弁の少なくとも一端側に、流れ方向により圧力損失の差を有する圧力制御部材を備えたことを特徴とする酸素濃縮装置。
2.該圧力制御部材が、流れ方向によって圧損差を有するオリフィス構造体、或いは配管部材である、上記1に記載の酸素濃縮装置。
3.該均圧弁の両端に均圧弁側に接続するオリフィス板および配管接続部を備えた円筒部材を有するオリフィス構造体を備え、該均圧弁の入側のオリフィス構造体が、オリフィス板の円筒部材側がオリフィスを凹部とする円錐形状のテーパー部位を備え、均圧弁の出側のオリフィス構造体が、オリフィス板の円筒部材側が平面形状部材である構造体の組み合わせからなる、上記1または2の何れかに記載の酸素濃縮装置。
4.該均圧路を流れるガスの一方の流れの圧力損失と逆方向の流れの圧力損失の差が5kPa以下である、上記1〜3の何れかに記載の酸素濃縮装置。

発明の効果

0006

本発明によると、パージ工程・均圧工程時に複数の吸着筒間に設けられた均圧路を流れるガス流量を、流れ方向に関係なく同程度に維持することができ、高濃度の酸素を安定して連続生成する酸素濃縮器を提供することができる。

図面の簡単な説明

0007

図1は、本発明の実施態様例である圧力変動吸着型酸素濃縮装置の概略構成図を示す。図2は均圧弁単体の圧力損失差を示す。図3はオリフィス構造体の概形を、図4はオリフィス構造体の断面図概形を、図5は均圧弁構造体の断面図概形を示す。図6は、同一オリフィスを備えた均圧路の圧力損失差を、図7は、異なる形状のオリフィスを備えた均圧路の圧力損失差を示す。図8は、均圧弁である直動式ポペット弁の断面概略図を示す。

0008

1:酸素濃縮装置、3:使用者(患者)、701:電源プラグ、101:HEPAフィルタ、102:吸気消音器、103:コンプレッサ、104:流路切換弁、105:吸着筒、106:均圧弁、107:オリフィス、108:逆止弁、109:製品タンク、110:調圧弁、111:流量設定手段、112:パーティクルフィルタ、201:加湿器、301:酸素濃度センサ、302:流量センサ、303:圧力センサ、401:制御手段、501:コンプレッサボックス、502:冷却ファン、503:排気消音器、801:スリーブ、802:コイル、803:プランジャー、804:弁体、805:弁座

実施例

0009

本発明の構成を、図面を用いて説明する。
図1は、本発明の一実施形態である圧力変動吸着型酸素濃縮装置を例示した概略装置構成図である。この図1において、1は酸素濃縮装置、3は加湿された酸素富化空気を吸入する使用者(患者)を示す。圧力変動吸着型酸素濃縮装置1は、外部空気取り込みフィルタ101、吸気消音器102、コンプレッサ103、流路切換弁104、吸着筒105、均圧弁106、オリフィス107、逆止弁108、製品タンク109、調圧弁110、流量設定手段111、パーティクルフィルタ112を備える。これにより外部から取り込んだ原料空気から酸素ガスを濃縮した酸素富化空気を製造することができる。また、酸素濃縮装置の筐体内には、生成された酸素富化空気を加湿するための加湿器201、前記流量設定手段111の設定値と、酸素濃度センサ301、流量センサ302圧力センサ303の測定値を用いて、コンプレッサや流路切換弁を制御する制御手段401、コンプレッサの騒音防音するためのコンプレッサボックス501、コンプレッサを冷却するための冷却ファン502が内蔵されている。
まず外部から取り込まれる原料空気は、塵埃などの異物を取り除くための外部空気取り込みフィルタ101、吸気消音器102を備えた空気取り込み口から取り込まれる。このとき、通常の空気中には、約21%の酸素ガス、約77%の窒素ガス、0.8%のアルゴンガス水蒸気ほかのガスが1.2%含まれている。かかる装置では、呼吸用ガスとして必要な酸素ガスのみを濃縮して取り出す。
この酸素ガスの取り出しは、原料空気を酸素分子よりも窒素分子を選択的に吸着するゼオライトなどからなる吸着材が充填された吸着筒105に対して、流路切換弁104によって対象とする吸着筒を順次切り換えながら、原料空気をコンプレッサ103により加圧して供給し、吸着筒内で原料空気中に含まれる約77%の窒素ガスを選択的に吸着除去する。
前記の吸着筒としては、前記吸着材を充填した円筒状容器で形成され、通常、1筒式、や図1に示す吸着筒A、吸着筒Bを用いた2筒式の他に3筒以上の多筒式が用いられるが、連続的かつ効率的に原料空気から酸素富化空気を製造するためには、2筒以上の吸着筒を使用することが好ましい。また、前記のコンプレッサ103としては、揺動型空気圧縮機が用いられるほか、スクリュー式ロータリー式スクロール式などの回転型空気圧縮機が用いられる場合もある。また、このコンプレッサを駆動する電動機の電源は、交流であっても直流であってもよい。
前記吸着筒105で吸着されなかった酸素ガスを主成分とする酸素富化空気は、吸着筒へ逆流しないように設けられた逆止弁108を介して、製品タンク109に流入する。
また、吸着筒内に充填された吸着材に吸着された窒素ガスは、新たに導入される原料空気から再度窒素ガスを吸着するために吸着材から脱着させる必要がある。このために、コンプレッサによって実現される加圧状態から、流路切換弁によって減圧状態(例えば大気圧状態又は負圧状態)に切り換え、吸着されていた窒素ガスを脱着させて吸着材を再生させる。
加圧エネルギーを回収するために、吸着工程終了直後の吸着筒と脱着工程終了直後の吸着筒との製品端同士を、均圧弁106の開閉により接続することで両筒の圧力を均圧させ圧力エネルギーを回収する。また脱着工程において、その脱着効率を高めるため、吸着工程中の吸着筒の製品端側から酸素富化空気をパージガスとして逆流させるパージ工程を設けてもよい。この際、均圧弁を介して流れるガスの流量を一定になるように調整するために均圧弁106の両端にはオリフィス構造体107を備える。
通常、窒素を脱着させるときには大きな気流音が発生するため、一般的には窒素排気消音器503が用いられる。
原料空気から生成された酸素富化空気は、製品タンク109へ蓄えられる。この製品タンク109に蓄えられた酸素富化空気は、例えば95%といった高濃度の酸素ガスを含んでおり、調圧弁110や流量設定手段111などによってその供給流量と圧力とが制御されながら、加湿器201へ供給され、加湿された酸素富化空気が患者に供給される。かかる加湿器には、水分透過膜を有する水分透過膜モジュールによって、外部空気から水分を取り込んで乾燥状態の酸素富化空気へ供給する無給水式加湿器や、水を用いたバブリング式加湿器、或いは表面蒸発式加湿器を用いることが出来る。
また、流量設定手段111の設定値を検知し、制御手段401によりコンプレッサの電動機の回転数を制御することで吸着筒への供給風量を制御する。設定流量が低流量の場合には回転数を落とすことで生成酸素量を抑え、且つ消費電力の低減を図ることができる。
2筒式の場合、パージ工程及び均圧工程の時には、均圧弁106を開けることで吸着筒Aから吸着筒Bへ、または吸着筒Bから吸着筒Aにガスを流す。均圧弁106と吸着筒A及び均圧弁と吸着筒Bの間には流量を調整するためオリフィスを備える。
2筒式の酸素濃縮装置の吸着筒間の圧力を調整する均圧流路の開閉を制御する均圧弁106には、図8に示すような小型の直動式ポペット弁が多用される。図8−2に示すように弁部の流路構造ガス流路の入側と出側では異なり、均圧弁106は入側から出側へ流れる流路と、出側から入側に流れる流路の構造は非対称となる。このため、均圧弁の入側を吸着筒A側に、均圧弁の出側を吸着筒B側となるように均圧弁を取り付けた場合、図2に示すように流れる方向によって圧力損失の値が異なる。通常、かかる電磁弁は、一方向に流れるガス流路の開閉制御に使用することを前提に作られており、電磁弁の正逆両方向にガスを流した場合には、圧力損失差に違いが生じ、仮に電磁弁の両端に同じ圧力がかかったとしても、均圧路を流れるガス流れ方向によってガス流量に違いが生じる。
図2に示すように、酸素濃縮装置の均圧路の最大流速で均圧弁にガスを流した場合には、吸着筒Aから吸着筒Bに流した時の圧力損失差を100%としたときに吸着筒Bから吸着筒Aに流した時の圧力損失差は152%にもなり、吸着筒Aから吸着筒Bに流す方が圧力損失が小さい。このため、圧力変動吸着法により吸着筒間の圧力を切替え、酸素を連続生成する際に、各々吸着筒に対してコンプレッサから同量の原料空気を供給し、吸着筒間に同じ圧力差が生じたとしても、吸着筒Bから吸着筒Aの方向よりも吸着筒Aから吸着筒Bの方向の方がガスが流れやすく、単位時間におけるガス流量が異なる特徴を有している。このため、均圧弁の両端にオリフィスを設け、流れるガス流量を制御する対策が取られている。
均圧弁の両端に備えるオリフィス構造体は、例えば図3のような円筒状の外観をしており、一端はオリフィスを備えたオリフィス板、他端は配管との接続部位を備え、内面が円筒状の部材で構成されるオリフィス構造体を形成する。オリフィス構造体は均圧弁と吸着筒間の配管内に圧入するのが好ましいが、均圧弁とオリフィス構造体との接続はオリフィス側の端部外表面ネジ溝を備えることで接続可能とし、配管接続部位はワンタッチ継手等の接続部位を備える構造であってもよい。
オリフィス構造体は、図4のような断面形状で示す、円板中央に円筒状のオリフィスを備えたオリフィス板(図4−1)、円板中央のオリフィスを中心とする円錐状の凹部を有するオリフィス板(図4−2)を備えた構造を有しており、オリフィスの前後での配管径や形状、オリフィス自体の形状の違いなど、オリフィス構造体の形状も非対称なことからガス流れの方向の違いにより圧力損失差が生じる。
図4−1のオリフィス構造体の場合は、オリフィス前後の口径差の違いにより、AからB方向の圧力損失の方が逆方向に比べて大きいため、A−B間に同じ圧力差がある場合、BからAにガスを流す方が逆に流すよりも流量が大きくなる。図4−2のオリフィス構造体も同様に非対称であることから、圧力損失差が生じ、DからCの方向にガスを流す方がCからDの方向に流すよりも流量が大きくなる。両者を比較した場合、図4−2のオリフィス構造体でDからCの方向にガスを流す方が、図4−1のオリフィスのBからAの方向に流すときよりも、圧力損失が小さくなり、より多くの流量が流れる。
同一のオリフィス構造体を均圧弁両端につけると、流れ方向によるオリフィスにおける圧損差が打ち消され、結果的に均圧弁の圧損差を解消することはできない。例えば、図4−2のオリフィス構造体を均圧弁両端に用いた場合、電磁弁の流量の差を打ち消すことができないため、図1の示す酸素濃縮装置の均圧弁106およびオリフィス107に搭載した場合の圧力損失差は、図6に示すように吸着筒Aから吸着筒Bに流れる際の圧力損失100%に対して、吸着筒Bから吸着筒Aは102.1%となり、酸素の供給をガスの流れる方向によって流量が異なったままとなる。オリフィスを付けたことにより均圧路を流れる最大流速を流した時の圧力損失は絶対的に高くなり、酸素濃度の低下、酸素濃度不安定化を招く。圧損差をゼロにもっていくことが生成酸素濃度の上昇、供給酸素濃度の安定化に重要である。
同一形状のオリフィスよりも、異なる形状のオリフィスを組み合わせる方が、オリフィスの組合せによる圧損差のバラツキが小さく制御することができる。生成する製品ガスの酸素濃度を90%以上に制御するためには均圧弁構造体の圧損差を5kPa以内に、93%以上を維持するには1kPa以下、可能であればゼロに近づけるように制御するのが好ましい。
本願発明の酸素濃縮装置の実施態様例では、図4−1、図4−2のような異なる形状のオリフィス構造体を図5のように電磁弁の端にそれぞれ備え、均圧弁の流れにくい方向に向かってオリフィスの流れやすいようにオリフィスの向きを配置することにより、オリフィス構造体を流れるガス方向の圧力損失差が均圧弁の圧力損失差を打ち消しあう構成となる。
図7に示すように、均圧路を流れる方向による圧力損失の差は、吸着筒Aから吸着筒Bに流れる際の圧力損失100%に対して、吸着筒Bから吸着筒Aは99.4%と、1%以下の同等レベルに低減する設計となっており、吸着筒Aから吸着筒Bに流すときと、吸着筒Bから吸着筒Aに流すときと、同じ量の流量が流れる。
上記実施態様例では、均圧路を流れるガスの一方の流れの圧力損失と逆方向の流れの圧力損失が同等になるように、該均圧弁の少なくとも一端側に、流れ方向により圧力損失の差を有する圧力制御部材として、オリフィス構造体を備える酸素濃縮装置を例示したが、圧損差を制御可能であれば、均圧路等の配管部材の配管形状の違いによる制御でも可能である。
[均圧弁構造体の圧損差と酸素濃度の関係]
均圧弁106の両端にオリフィス107を備えた均圧弁構造体について、均圧路の流れ方向により異なる圧損差を有する均圧弁構造体4水準を用意し、図1に記載の酸素濃縮装置の均圧路に順方向および逆方向に組み込み、合計8水準の圧損差を有する装置について、製品ガスとして生成される酸素濃縮ガスの酸素濃度を測定した。



均圧弁構造体の流れ方向による圧力損失が同じ、すなわち圧損差が0で製品ガスの酸素濃度が最大にとなり、圧損差が5kPaよりも小さくなるようにオリフィスを選択することにより、90%以上の酸素濃度を維持することが出来る。

0010

本発明の酸素濃縮装置では、オリフィス構造体と均圧弁とを組み合わせる事により、吸着筒間の圧力損失差をなくすように設定し、流量の差を低減する均圧路を備えることで安定した酸素生成を実現することが出来る。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • シンクランド株式会社の「 麻酔シリンジ本体用のキャップ、インジェクタ及び表面麻酔薬剤の塗布方法」が 公開されました。( 2019/05/09)

    【課題】 皮膚検体を採取する際、患者の皮膚の損傷を抑えることができる。【解決手段】本発明の麻酔シリンジ用キャップは、麻酔薬剤の入ったカートリッジをシリンジで押し出すことにより前記麻酔薬剤を押し出す麻... 詳細

  • 三菱電機株式会社の「 廃水処理システム」が 公開されました。( 2019/05/09)

    【課題】電源供給停止時に濃縮オゾンガスを無駄に廃棄せず、有効に消費することができる廃水処理システムを得ること。【解決手段】原料供給装置から供給される原料ガスからオゾン化酸素ガスを生成するオゾン発生器と... 詳細

  • 桑野光明の「 眼科用薬液投与器」が 公開されました。( 2019/05/09)

    【課題】本発明は、眼球の表面に微量の薬液を正確に投与できる眼科用薬液投与器を提供する。【解決手段】薬液100を貯蔵する薬液貯蔵部と、薬液貯蔵部から薬液100を吐出する薬液吐出口20と、発光部50を有し... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ