図面 (/)

技術 化学強化ガラス及びその製造方法

出願人 AGC株式会社
発明者 鹿島出藤原祐輔上村直己玉井喜芳
出願日 2015年1月14日 (5年11ヶ月経過) 出願番号 2015-557852
公開日 2017年3月23日 (3年9ヶ月経過) 公開番号 WO2015-108076
状態 特許登録済
技術分野 ガラスの表面処理
主要キーワード 押しつけ位置 除去厚み 間隔調整部材 中央領 表面エッチング処理 処理後重量 オンリング 測定スキャン
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年3月23日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (6)

課題・解決手段

表層イオン交換法により形成された圧縮応力層を有する化学強化ガラスであって、ガラスの最表面から深さXの領域における水素濃度Yが、X=0.1〜0.4(μm)において下記関係式(I)を満たし、かつ、ガラス表裏の主面間を接続する端面の算術平均粗さRaが300nm以下である化学強化ガラス。 Y=aX+b (I) 〔Y:水素濃度(H2O換算、mol/L)、X:ガラス最表面からの深さ(μm)、a:−0.255〜−0.005、b:0.020〜0.215〕

概要

背景

デジタルカメラ携帯電話または携帯情報端末PDA(Personal Digital Assistants)等のフラットパネルディスプレイ装置において、ディスプレイの保護および美観を高めるために、画像表示部分よりも広い領域となるように薄い板状のカバーガラスをディスプレイの前面に配置することが行われている。ガラス理論強度が高いものの、傷がつくことで強度が大幅に低下するため、強度が求められるカバーガラスには、イオン交換等によりガラス表面に圧縮応力層を形成した化学強化ガラスが用いられている。

フラットパネルディスプレイ装置に対する軽量化および薄型化の要求に伴い、カバーガラス自身も薄くすることが要求されている。したがってカバーガラスには、その目的を満たすために主面(表裏面)及び端面ともにさらなる強度が求められる。
ここで、ガラスの強度としては、ガラス主面の強度は例えば面強度指標とされ、ガラス端面の強度は例えば曲げ強度が指標とされる。

化学強化ガラスの面強度や曲げ強度を向上するために、従来、化学強化処理後に表面エッチング処理を施すことが知られている(特許文献1)。

ここで、ガラスの面強度に関し、ガラス中の水素(水分)の存在によってガラスの面強度が低下することが知られている(非特許文献1、2)。

また、特許文献2、3には、タッチセンサ一体型強化カバーガラスに好適な強化カバーガラスが提案されている。その内容は、ガラスの組成を特定するとともに、化学強化した強化カバーガラスの端面に、面取り加工、又はエッチング処理を施すことによって強化カバーガラスの曲げ強度を向上するものである。

概要

表層イオン交換法により形成された圧縮応力層を有する化学強化ガラスであって、ガラスの最表面から深さXの領域における水素濃度Yが、X=0.1〜0.4(μm)において下記関係式(I)を満たし、かつ、ガラス表裏の主面間を接続する端面の算術平均粗さRaが300nm以下である化学強化ガラス。 Y=aX+b (I) 〔Y:水素濃度(H2O換算、mol/L)、X:ガラス最表面からの深さ(μm)、a:−0.255〜−0.005、b:0.020〜0.215〕

目的

本発明は、化学強化を行なってもガラスの強度が低下するのを効果的に抑制した、面強度、曲げ強度ともに優れた化学強化ガラスを提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

表層イオン交換法により形成された圧縮応力層を有する化学強化ガラスであって、ガラスの最表面から深さXの領域における水素濃度Yが、X=0.1〜0.4(μm)において下記関係式(I)を満たし、ガラス表裏の主面間を接続する端面の算術平均粗さRaが300nm以下である、化学強化ガラス。Y=aX+b(I)〔式(I)における各記号の意味は下記の通りである。Y:水素濃度(H2O換算、mol/L)X:ガラス最表面からの深さ(μm)a:−0.255〜−0.005b:0.020〜0.215〕

請求項2

前記ガラスがアルミノシリケートガラスソーダライムガラス又はアルミノボロシリケートガラスである、請求項1に記載の化学強化ガラス。

請求項3

硝酸カリウムを含む無機塩にガラスを接触させることによって、ガラス中のNaと前記無機塩中のKとをイオン交換する工程を含む化学強化ガラスの製造方法であって、前記無機塩はK2CO3、Na2CO3、KHCO3、NaHCO3、K3PO4、Na3PO4、K2SO4、Na2SO4、KOH及びNaOHからなる群より選ばれる少なくとも一種の塩を含み、かつ前記イオン交換の前に、ガラス表裏の主面間を接続する端面を鏡面研磨する工程、前記イオン交換の後にガラスを洗浄する工程、前記洗浄の後にガラスを酸処理する工程、前記酸処理の後にガラスをアルカリ処理する工程を含む、化学強化ガラスの製造方法。

請求項4

前記鏡面研磨工程にて前記端面を研磨することにより、該端面の算術平均粗さRaを300nm以下にする、請求項3に記載の製造方法。

請求項5

請求項3または4に記載の製造方法により得られる化学強化ガラス。

技術分野

0001

本発明は化学強化ガラス及びその製造方法に関する。

背景技術

0002

デジタルカメラ携帯電話または携帯情報端末PDA(Personal Digital Assistants)等のフラットパネルディスプレイ装置において、ディスプレイの保護および美観を高めるために、画像表示部分よりも広い領域となるように薄い板状のカバーガラスをディスプレイの前面に配置することが行われている。ガラス理論強度が高いものの、傷がつくことで強度が大幅に低下するため、強度が求められるカバーガラスには、イオン交換等によりガラス表面に圧縮応力層を形成した化学強化ガラスが用いられている。

0003

フラットパネルディスプレイ装置に対する軽量化および薄型化の要求に伴い、カバーガラス自身も薄くすることが要求されている。したがってカバーガラスには、その目的を満たすために主面(表裏面)及び端面ともにさらなる強度が求められる。
ここで、ガラスの強度としては、ガラス主面の強度は例えば面強度指標とされ、ガラス端面の強度は例えば曲げ強度が指標とされる。

0004

化学強化ガラスの面強度や曲げ強度を向上するために、従来、化学強化処理後に表面エッチング処理を施すことが知られている(特許文献1)。

0005

ここで、ガラスの面強度に関し、ガラス中の水素(水分)の存在によってガラスの面強度が低下することが知られている(非特許文献1、2)。

0006

また、特許文献2、3には、タッチセンサ一体型強化カバーガラスに好適な強化カバーガラスが提案されている。その内容は、ガラスの組成を特定するとともに、化学強化した強化カバーガラスの端面に、面取り加工、又はエッチング処理を施すことによって強化カバーガラスの曲げ強度を向上するものである。

0007

日本国特表2013−516387号公報
日本国特許第4888845号公報
日本国特開2011−178662号公報

先行技術

0008

S.ITO et.al., “Crack Blunting of High−Silica Glass”, Journal of the American Ceramic Society, Vol.65, No.8,(1982), 368−371
Won−Taek Han et. al., “Effect of residual water in silica glass on static fatigue”, Journal of Non−Crystalline Solids, 127, (1991) 97−104

発明が解決しようとする課題

0009

本発明者らは、化学強化後にガラスの面強度が低下することがあり、その主原因は雰囲気中の水分がガラス表層侵入することにより化学的欠陥が生成するためであることを見出した。また、この現象は化学強化に限らず、ガラスの製造工程において昇温工程を経ることにより発生することを見出した。

0010

ガラス表層の水分を除去する手法として、化学強化後のガラス表面を研磨したり、フッ酸等に浸漬してエッチング処理をする等の手法により、水分を含有する層を削り取ることも考えられる。しかしながら研磨によってガラス表面が傷つき、強度がかえって低下してしまうおそれがある。また、ガラス表面に潜傷がある場合、フッ酸等を用いたエッチング処理では、潜傷が拡大し、ピットによる外観不良が発生するおそれがある。さらに、フッ酸は安全面から取り扱いに注意を要する。

0011

また特許文献2、3の加工方法では、端面の曲げ強度が十分ではない。

0012

本発明は、化学強化を行なってもガラスの強度が低下するのを効果的に抑制した、面強度、曲げ強度ともに優れた化学強化ガラスを提供することを目的とする。

課題を解決するための手段

0013

本発明者らは、化学強化ガラスの表層における水素濃度プロファイルを特定の範囲とし、かつ、端面の表面粗さを特定範囲に小さくすることで、ガラスの面強度が飛躍的に向上することを見出し、本発明を完成させた。

0014

すなわち本発明は以下の通りである。
<1>
表層にイオン交換法により形成された圧縮応力層を有する化学強化ガラスであって、
ガラスの最表面から深さXの領域における水素濃度Yが、X=0.1〜0.4(μm)において下記関係式(I)を満たし、
ガラス表裏の主面間を接続する端面の算術平均粗さRaが300nm以下である、化学強化ガラス。
Y=aX+b (I)
〔式(I)における各記号の意味は下記の通りである。
Y:水素濃度(H2O換算、mol/L)
X:ガラス最表面からの深さ(μm)
a:−0.255〜−0.005
b:0.020〜0.215〕
<2>
前記ガラスがアルミノシリケートガラスソーダライムガラス又はアルミノボロシリケートである、上記<1>に記載の化学強化ガラス。
<3>
硝酸カリウムを含む無機塩にガラスを接触させることによって、ガラス中のNaと前記無機塩中のKとをイオン交換する工程を含む化学強化ガラスの製造方法であって、
前記無機塩はK2CO3、Na2CO3、KHCO3、NaHCO3、K3PO4、Na3PO4、K2SO4、Na2SO4、KOH及びNaOHからなる群より選ばれる少なくとも一種の塩を含み、かつ
前記イオン交換の前に、ガラス表裏の主面間を接続する端面を鏡面研磨する工程、
前記イオン交換の後にガラスを洗浄する工程、
前記洗浄の後にガラスを酸処理する工程、
前記酸処理の後にガラスをアルカリ処理する工程を含む、化学強化ガラスの製造方法。
<4>
前記鏡面研磨工程にて前記端面を研磨することにより、該端面の算術平均粗さRaを300nm以下にする、上記<3>に記載の製造方法。
<5>
上記<3>または<4>に記載の製造方法により得られる化学強化ガラス。

発明の効果

0015

本発明の化学強化ガラスによれば、ガラス表層における水素濃度プロファイルを特定の範囲とすること、及び端面の表面粗さを特定範囲に小さくすることにより、ガラスの面強度と曲げ強度とを共に大幅に向上させることができる。
また、本発明の化学強化ガラスの製造方法によれば、面強度と曲げ強度を共に向上させた化学強化ガラスを得ることができる。酸処理とアルカリ処理は溶液への浸漬により処理を進めることができるため、様々なガラス形状や大面積のガラスに対応しやすい点、ガラスの両面を同時に処理できる点でも効率的である。また、ガラス表面の潜傷の有無にかかわらず、ピットによる外観不良のない化学強化ガラスを得ることができる。さらに、端面の鏡面研磨、酸処理、アルカリ処理のいずれの工程も、フッ酸等を用いないため、エッチング処理に比べ安全性が高くまた低コストである。

図面の簡単な説明

0016

図1は、ボールオンリング試験の方法を説明するための概略図である。
図2は、ブラシ研磨装置の構成を示した側面図である。
図3(a)〜(e)は、本発明に係る化学強化ガラスの製造工程を表す模式図である。
図4は実施例1で得られた化学強化ガラスの表層の水素濃度プロファイルをプロットしたグラフから関係式(I)を導くための説明図である。
図5は比較例1で得られた化学強化ガラスの表層の水素濃度プロファイルをプロットしたグラフから関係式(I)を導くための説明図である。

0017

以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。

0018

<化学強化ガラス>
本発明に係る化学強化ガラスは、表層にイオン交換法により形成された圧縮応力層を有する化学強化ガラスであって、ガラスの最表面からの一定の深さ領域における水素濃度が後述する関係式(I)を満たし、かつ、ガラス端面の算術平均粗さRaが300nm以下であることを特徴とする。

0019

圧縮応力層とは、原料であるガラスを硝酸カリウム等の無機塩に接触させることによって、ガラス表面のNaイオンと無機塩中のKイオンとがイオン交換されることで形成される高密度層である。

0020

本発明の化学強化ガラスは、ガラス表層における水素濃度プロファイルが特定の範囲にある。具体的には、ガラスの最表面からの深さXの領域における水素濃度Yが、X=0.1〜0.4(μm)において下記関係式(I)を満たす。
Y=aX+b (I)
〔式(I)における各記号の意味は下記の通りである。
Y:水素濃度(H2O換算、mol/L)
X:ガラスの最表面からの深さ(μm)
a:−0.255〜−0.005
b:0.020〜0.215〕

0021

ガラスの強度に関し、ガラス中の水素(水分)の存在によってガラスの強度が低下することは知られているが、本発明者らは、化学強化処理後に強度が低下することがあり、その主原因は雰囲気中の水分がガラスに侵入することにより化学的欠陥が生成するためであることを見出した。また、この現象は化学強化に限らず、ガラスの製造工程において昇温工程を経ることにより発生することも見出されている。
ガラス中の水素濃度が高いと、ガラスのSi−O−Siの結合ネットワークの中に水素がSi−OHの形で入り、Si−O−Siの結合が切れる。ガラス中の水素濃度が高いとSi−O−Siの結合が切れる部分が多くなり、化学的欠陥が生成され易くなり、強度が低下すると考えられる。

0022

上記関係式(I)は、最表面からの深さX=0.1〜0.4μmの領域において成り立つものである。イオン交換により形成される圧縮応力層の厚さは、化学強化の程度によるが、5〜50μmの範囲で形成される。そして、ガラスへの水素の侵入深さは、拡散係数、温度および時間に従い、水素の侵入量はこれらに加えて雰囲気中の水分量が影響する。
化学強化後の水素濃度は、最表面が最も高く、圧縮応力層が形成されていない深部バルク)にかけて徐々に低下する。上記関係式(I)はその低下具合を規定したものであるが、最表面(X=0μm)では、経時変質により水分濃度が変化する可能性があるため、その影響がないと考えられる近表面(X=0.1〜0.4μm)の領域において成り立つものとした。

0023

式(I)において、aは水素濃度の低下具合を規定する傾きである。aの範囲は−0.255〜−0.005であり、好ましくは−0.255〜−0.010であり、より好ましくは−0.255〜−0.020である。
式(I)において、bは最表面(X=0μm)における水素濃度に相当する。bの範囲は0.020〜0.215であり、好ましくは0.030〜0.215であり、より好ましくは0.040〜0.215である。

0024

一般的に、ガラスの強度低下は、外部からの機械的な圧力によりガラス表面に存在する微小クラック伸展することが原因と考えられている。非特許文献2によれば、クラックの先端のガラス構造がSi−OHリッチな状態であるほど、クラックが伸展しやすいと考察されている。クラックの先端が雰囲気中に暴露されていると仮定すれば、クラックの先端のSi−OH量は、ガラス最表面の水素濃度と正の相関を示すと推測される。従って、最表面の水素濃度に相当するbは上記に示す程度の低い範囲が好ましい。
図4及び図5に示す通り、化学強化工程を経たガラスについては、水素の侵入深さに顕著な違いが認められなかった。水素の侵入深さは化学強化工程条件に依存して変化する可能性が高いが、仮に変化しないとすれば、最表面の水素濃度に相当するbと水素濃度の低下具合を規定する傾きに相当するaには負の相関が現れる。従って、aは上記に示す程度の高い範囲が好ましい。

0025

このように、本発明では、表層の水素濃度そのもののみを規定するのではなく、水素濃度プロファイルに着目し、表層水素濃度とその低下具合を特定の範囲に規定することで、化学強化ガラスの強度を大幅に向上できることを見出したものである。

0026

〔水素濃度プロファイル測定方法
ここで、ガラスの水素濃度プロファイル(H2O濃度、mol/L)とは以下の分析条件下で測定したプロファイルである。
ガラス基板の水素濃度プロファイルの測定には二次イオン質量分析法(Secondary Ion Mass Spectrometory:SIMS)を用いた。SIMSにて定量的な水素濃度プロファイルを得る場合には、水素濃度既知標準試料が必要である。標準試料の作製方法および水素濃度定量方法を以下に記す。
1)測定対象のガラス基板の一部を切り出す。
2)切り出したガラス基板の表面から50μm以上の領域を研磨あるいはケミカルエッチングによって除去する。除去処理両面とも行う。すなわち、両面での除去厚みは100μm以上となる。この除去処理済みガラス基板を標準試料とする。
3)標準試料について赤外分光法(Infrared spectroscopy:IR)を実施し、IRスペクトルの3550cm−1付近ピークトップ吸光度高さA3550および4000cm−1の吸光度高さA4000(ベースライン)を求める。
4)標準試料の板厚d(cm)をマイクロメーターなどの板厚測定器を用いて測定する。
5)文献Aを参考に、ガラスのH2Oの赤外実用吸光係数εpract(L/(mol・cm))を75とし、式IIを用いて標準試料の水素濃度(H2O換算、mol/L)を求める。 標準試料の水素濃度 = (A3550−A4000)/(εpract・d)・・・式II
文献A)S. Ilievski et al., Glastech. Ber. Glass Sci. Technol., 73 (2000) 39.

0027

測定対象のガラス基板と上記の方法によって得られた水素濃度既知の標準試料を同時にSIMS装置内へ搬送し、順番に測定を行い、1H−および30Si−の強度の深さ方向プロファイルを取得する。その後、1H−プロファイルから30Si−プロファイルを除して、1H−/30Si−強度比の深さ方向プロファイルを得る。標準試料の1H−/30Si−強度比の深さ方向プロファイルより、深さ1μmから2μmまでの領域における平均1H−/30Si−強度比を算出し、この値と水素濃度との検量線を、原点を通過するように作成する(1水準の標準試料での検量線)。この検量線を用い、測定対象のガラス基板のプロファイルの縦軸の1H−/30Si−強度比を水素濃度へ変換する。これにより、測定対象のガラス基板の水素濃度プロファイルを得る。なお、SIMSおよびIRの測定条件は以下の通りである。

0028

〔SIMSの測定条件〕
装置:アルバックファイ社製 ADEPT1010
一次イオン種:Cs+
一次イオンの加速電圧:5kV一次イオンの電流値:500nA
一次イオンの入射角試料面の法線に対して60°
一次イオンのラスターサイズ:300×300μm2
二次イオン極性マイナス
二次イオンの検出領域:60×60μm2(一次イオンのラスターサイズの4%)
ESA Input Lens:0
中和の使用:有
横軸スパッタ時間から深さへ変換する方法:分析クレータの深さを触針表面形状測定器(Veeco社製Dektak150)によって測定し、一次イオンのスパッタレートを求める。このスパッタレートを用いて、横軸をスパッタ時間から深さへ変換する。
1H−検出時のField Axis Potential:装置ごとに最適値が変化する可能性がある。バックグラウンドが十分にカットされるように測定者が注意しながら値を設定する。

0029

〔IRの測定条件〕
装置:Thermo Fisher Scientific社製Nic−plan/ Nicolet 6700
分解能:4cm−1
積算:16検出器TGS検出器

0030

上記分析条件により測定したガラスの水素濃度プロファイル(H2O濃度、mol/L)から関係式(I)を導くには、以下の手順による。図4及び図5に示す通り、0.1から0.4μmの深さ領域の水素濃度プロファイルに対して線形近似を行う。得られた近似直線の式を関係式(I)とする。
また、a及びbを制御する手段としては、例えば、化学強化工程における融剤濃度、ナトリウム濃度、温度、時間等を変更することが挙げられる。

0031

(ガラス面強度)
本発明の化学強化ガラスの面強度は、ボールオンリング試験により評価することができる。

0032

(ボールオンリング試験)
本発明の化学強化ガラスは、ガラス板を直径30mm、接触部が曲率半径2.5mmの丸みを持つステンレスからなるリング上に配置し、該ガラス板に直径10mmの鋼からなる球体を接触させた状態で、該球体を静的荷重条件下で該リングの中心に荷重するボールオンリング(Ball on Ring;BOR)試験により測定したBOR強度F(N)で評価する。
本発明の化学強化ガラスは、F≧1500×t2を満たすことが好ましく、F≧2000×t2であることがより好ましい[式中、Fはボールオンリング試験により測定したBOR強度(N)であり、tはガラス基板の板厚(mm)である。]。BOR強度F(N)がかかる範囲であることにより、薄板化した場合にも優れた強度を示す。

0033

図1に、本発明で用いたボールオンリング試験を説明するための概略図を示す。ボールオンリング(Ball on Ring;BOR)試験では、ガラス板1を水平に載置した状態で、SUS304製の加圧治具2(焼入れ鋼、直径10mm、鏡面仕上げ)を用いてガラス板1を加圧し、ガラス板1の強度を測定する。

0034

図1において、SUS304製の受け治具3(直径30mm、接触部の曲率R2.5mm、接触部は焼入れ鋼、鏡面仕上げ)の上に、サンプルとなるガラス板1が水平に設置されている。ガラス板1の上方には、ガラス板1を加圧するための、加圧治具2が設置されている。

0035

本実施の形態においては、実施例及び比較例後に得られたガラス板1の上方から、ガラス板1の中央領域を加圧する。なお、試験条件は下記の通りである。
サンプルの厚み:0.56(mm)
加圧治具2の下降速度:1.0(mm/min)
この時、ガラスが破壊された際の、破壊荷重(単位N)をBOR強度とし、20回の測定の平均値をBOR平均強度とする。ただし、ガラス板の破壊起点がボール押しつけ位置より2mm以上離れている場合は、平均値算出のためのデータより除外する。

0036

(端面の表面粗さ)
本発明に係る化学強化ガラスは、ガラス端面の算術平均粗さRaが300nm以下であり、好ましくは50nm以下、より好ましくは20nm以下である。端面の算術平均粗さRaをかかる範囲とすることで、曲げ強度が高いガラスとすることができる。
なお、端面の算術平均粗さはJIS B0601(2001年)に基づいて測定することができる。測定装置としては、例えば、Mitsutoyo社製SurfestSV−600を使用することができる。測定サンプルを所定の位置にセット後、上記JIS B0601で定められた基準長さ区間数、ピッチを設定し測定を実施する。測定スキャン速度は0.5mm/secとする。

0037

(ガラス曲げ強度(端面強度))
本発明における曲げ強度は、JIS R1601(2008年)に定める試験方法で測定される4点曲げ強度を指標とする。本発明に係る化学強化ガラスは、かかる方法で測定される曲げ強度が300MPa以上、好ましくは500MPa以上、より好ましくは900MPa以上である。

0038

本発明の化学強化ガラスは、さらに、下記物性を有する。
AFM表面観察によって測定される測定範囲10μm×5μmにおける主面の表面粗さが、好ましくは0.21nm〜0.5nmである。なお、従来の化学強化ガラス板の表面粗さは0.15nm〜0.2nmである。

0039

<化学強化ガラスの製造方法>
本発明に係る化学強化ガラスを製造する方法の一態様を以下に説明するが、本発明はこれに限定されない。

0040

ガラス組成
本発明で使用されるガラスはナトリウムを含んでいればよく、成形、化学強化処理による強化が可能な組成を有するものである限り、種々の組成のものを使用することができる。具体的には、例えば、アルミノシリケートガラス、ソーダライムガラス、ボロシリケートガラスホウ珪酸ガラス)、鉛ガラスアルカリバリウムガラス、アルミノボロシリケートガラス(アルミノホウ珪酸ガラス)等が挙げられる。

0041

ガラスの製造方法は特に限定されず、所望のガラス原料連続溶融炉投入し、ガラス原料を好ましくは1500〜1600℃で加熱溶融し、清澄した後、成形装置に供給した上で溶融ガラスを板状に成形し、徐冷することにより製造することができる。

0042

なお、ガラスの成形には種々の方法を採用することができる。例えば、ダウンドロー法(例えば、オーバーフローダウンドロー法スロットダウン法およびリドロー法等)、フロート法ロールアウト法およびプレス法等の様々な成形方法を採用することができる。

0043

ガラスの厚みは、特に制限されるものではないが、化学強化処理を効果的に行うために、通常5mm以下であることが好ましく、3mm以下であることがより好ましい。

0044

本発明の化学強化用ガラスの組成としては特に限定されないが、例えば、以下のガラスの組成が挙げられる。
(i)モル%で表示した組成で、SiO2を50〜80%、Al2O3を2〜25%、Li2Oを0〜10%、Na2Oを0〜18%、K2Oを0〜10%、MgOを0〜15%、CaOを0〜5%およびZrO2を0〜5%を含むガラス
(ii)モル%で表示した組成が、SiO2を50〜74%、Al2O3を1〜10%、Na2Oを6〜14%、K2Oを3〜11%、MgOを2〜15%、CaOを0〜6%およびZrO2を0〜5%含有し、SiO2およびAl2O3の含有量の合計が75%以下、Na2OおよびK2Oの含有量の合計が12〜25%、MgOおよびCaOの含有量の合計が7〜15%であるガラス
(iii)モル%で表示した組成が、SiO2を68〜80%、Al2O3を4〜10%、Na2Oを5〜15%、K2Oを0〜1%、MgOを4〜15%およびZrO2を0〜1%含有するガラス
(iv)モル%で表示した組成が、SiO2を67〜75%、Al2O3を0〜4%、Na2Oを7〜15%、K2Oを1〜9%、MgOを6〜14%およびZrO2を0〜1.5%含有し、SiO2およびAl2O3の含有量の合計が71〜75%、Na2OおよびK2Oの含有量の合計が12〜20%であり、CaOを含有する場合その含有量が1%未満であるガラス

0045

(鏡面研磨)
本発明の製造方法では、ガラス表面に圧縮応力層を有するために行なう後述のイオン交換工程の前に、ガラス端面を鏡面研磨する。これによりガラスの曲げ強度を高めることができる。図3(a)に鏡面研磨後のガラスを示す。ガラス端面とは、図3(a)に示すように、一方のガラス主面(表面)1aと他方のガラス主面(裏面)1bとを接続する面2a,2bを指す。ガラス端面とは例えば、ガラス板の素板を切り出したときの切断面を指し、また、必要に応じて切断後に面取り加工を施した場合は面取り面を含む。鏡面研磨とは、研磨後の端面の算術平均粗さRaが300nm以下、好ましくは50nm以下、より好ましくは20nm以下、となるような研磨工程であることが好ましい。なお、本発明の製造方法では、鏡面研磨後に、イオン交換、洗浄、酸処理、アルカリ処理の各工程を行なうが、これらの工程によって端面の算術平均粗さが影響されることは少ない。したがって、鏡面研磨後の端面の表面粗さは、全工程を経て得られる本発明の化学強化ガラスの端面の表面粗さとほぼ同等となる。

0046

鏡面研磨の方法としては、研磨後の端面の算術平均粗さRaが上記範囲を達成できれば特に限定されない。具体的には、研磨砥粒を含有する研磨剤を供給しながら連続的に運動するブラシをガラス端面に接触させる方法、いわゆる遊離砥粒によって研磨する方法、番手の大きい砥粒を固着した固定砥粒砥石)によって研磨する方法等が挙げられる。これらの方法を適宜選択し、研磨時間等を調整することにより、研磨後の端面の算術平均粗さRaが上記範囲となるように鏡面研磨を行なう。

0047

研磨砥粒を含有する研磨剤を供給しながら連続的に運動するブラシをガラス端面に接触させる方法を具体的に説明する。
図2は、ガラス板10の端面10Cを研磨するブラシ研磨装置30の側面図である。

0048

同図に示すブラシ研磨装置30は、複数枚のガラス板10を積層して積層体20を構成し、その積層体20の外周部を回転する研磨ブラシ34によって研磨して、個々のガラス板10の端面10Cを一括して研磨する装置である。積層体20を構成する際には、ガラス板10が間隔調整部材22を介在させて積層され、積層方向の間隔が所定の値に調整される。

0049

ブラシ研磨装置30は積層体保持部32、研磨ブラシ34、研磨ブラシ34を駆動する駆動部(不図示)、及び研磨液38を供給する研磨液供給部36を備えている。

0050

積層体保持部32は、積層体20を着脱可能に保持する。同図に示す例では、積層体20を積層方向の両側から挟んで保持している。

0051

研磨ブラシ34は、軸34Aと、軸34Aの外周に放射状に設けられた多数のブラシ毛34Bとによって構成される。軸34Aは、所定の外径を有する円筒状に形成される。ブラシ毛34Bは、帯状体植設されたものを軸34Aの外周に螺旋状に巻き付けることによって、軸34Aの外周に設けられる。ブラシ毛34Bは、例えば、ポリアミド樹脂等からなる可撓性の線材で構成される。この線材には、アルミナ(Al2O3)、炭化ケイ素(SiC)、ダイヤモンド等の粒子が含まれていてもよい。

0052

研磨液供給部36は、研磨ブラシ34と積層体20との接触部に研磨液を供給する。研磨液38は、研磨材分散媒とを含有し、所定の比重に調整される。研磨材としては、例えば、酸化セリウムジルコニア等が使用される。研磨材の平均粒径(D50)は、例えば、5μm以下であり、好ましくは2μm以下である。研磨液の比重は、1.1〜1.4とすることが好ましい。

0053

次に、ブラシ研磨装置30の作用について説明する。

0054

まず、研磨ブラシ34を一定の回転速度で回転させる。

0055

次に、研磨ブラシ34を積層体20に向けて水平に移動させ、研磨ブラシ34を積層体20の外周部に押圧当接させる。この際、所定の押し込み量で当接するように、研磨ブラシ34を水平に移動させる。

0056

次に、研磨ブラシ34と積層体20との接触部に研磨液供給部36から研磨液を所定の供給量で供給する。

0057

次に、研磨ブラシ34を軸方向(ガラス板10の積層方向)に所定速度で往復移動させる。これにより、複数枚のガラス板10の端面10Cを一括して研磨処理することができ、端面10Cの算術平均粗さRaが300nm以下のガラス板10を得ることができる。

0058

(化学強化)
本発明に係る化学強化ガラスは、ガラス表面に、イオン交換された圧縮応力層を有する。イオン交換法では、ガラスの表面をイオン交換し、圧縮応力残留する表面層を形成させる。具体的には、ガラス転移点以下の温度でイオン交換によりガラス板表面イオン半径が小さなアルカリ金属イオン(典型的には、Liイオン、Naイオン)をイオン半径のより大きいアルカリイオン(典型的には、Liイオンに対してはNaイオンまたはKイオンであり、Naイオンに対してはKイオン)に置換する。これにより、ガラスの表面に圧縮応力が残留し、ガラスの強度が向上する。

0059

本発明の製造方法において、化学強化は、硝酸カリウム(KNO3)を含有する無機塩にガラスを接触させることにより行なわれる。これによりガラス表面のNaイオンと無機塩中のKイオンとがイオン交換されることで高密度な圧縮応力層が形成される。無機塩にガラスを接触させる方法としては、ペースト状の無機塩を塗布する方法、無機塩の水溶液をガラスに噴射する方法、融点以上に加熱した溶融塩塩浴にガラスを浸漬させる方法などが可能であるが、これらの中では、溶融塩に浸漬させる方法が望ましい。

0060

無機塩としては化学強化を行うガラスの歪点(通常500〜600℃)以下に融点を有するものが好ましく、本発明においては硝酸カリウム(融点330℃)を含有する塩が好ましい。硝酸カリウムを含有することでガラスの歪点以下で溶融状態であり、かつ使用温度領域においてハンドリングが容易となることから好ましい。無機塩における硝酸カリウムの含有量は50質量%以上であることが好ましい。

0061

無機塩はさらに、K2CO3、Na2CO3、KHCO3、NaHCO3、K3PO4、Na3PO4、K2SO4、Na2SO4、KOH及びNaOHからなる群より選ばれる少なくとも一種の塩を含有することが好ましく、中でもK2CO3、Na2CO3、KHCO3及びNaHCO3からなる群より選ばれる少なくとも一種の塩を含有することがより好ましい。

0062

上記塩(以下、「融剤」と称することもある。)は、Si−O−Si結合に代表されるガラスのネットワークを切断する性質を有する。化学強化処理を行う温度は数百℃と高いので、その温度下でガラスのSi−O間の共有結合は適度に切断され、後述する低密度化処理が進行しやすくなる。

0063

なお、共有結合を切断する度合いはガラス組成や用いる塩(融剤)の種類、ガラスを無機塩に接触させる温度、時間等の化学強化処理条件によっても異なるが、Siから伸びている4本の共有結合のうち、1〜2本の結合が切れる程度の条件を選択することが好ましいものと考えられる。

0064

例えば融剤としてK2CO3を用いる場合には、無機塩における融剤の含有量を0.1重量%以上とし、化学強化処理温度を350〜500℃とすると、化学強化処理時間は1分〜10時間が好ましく、5分〜8時間がより好ましく、10分〜4時間がさらに好ましい。

0065

融剤の添加量表面水素濃度制御の点から0.5mol%以上が好ましく、また生産性の観点から各塩の溶解度以下が好ましい。また、過剰に添加するとガラスの腐食につながるおそれがある。

0066

無機塩は、硝酸カリウム及び融剤の他に、本発明の効果を阻害しない範囲で他の化学種を含んでいてもよく、例えば、塩化ナトリウム塩化カリウムホウ酸ナトリウムホウ酸カリウム等のアルカリ塩化塩やアルカリホウ酸塩などが挙げられる。これらは単独で添加しても、複数種を組み合わせて添加してもよい。
以下、ガラスを溶融塩に浸漬させる方法により化学強化を行う態様を例に、本発明の製造方法を説明する。

0067

(溶融塩の製造1)
溶融塩は下記に示す工程により製造することができる。
工程1a:硝酸カリウム溶融塩の調製
工程2a:硝酸カリウム溶融塩への融剤の添加

0068

(工程1a−硝酸カリウム溶融塩の調製−)
工程1aでは、硝酸カリウムを容器に投入し、融点以上の温度に加熱して溶融することで、溶融塩を調製する。溶融は硝酸カリウムの融点(330℃)と沸点(500℃)の範囲内の温度で行う。特に溶融温度を350〜470℃とすることが、ガラスに付与できる表面圧縮応力(CS)と圧縮応力層深さ(DOL)のバランスおよび強化時間の点からより好ましい。

0069

硝酸カリウムを溶融する容器は、金属、石英セラミックスなどを用いることができる。中でも、耐久性の観点から金属材質が望ましく、耐食性の観点からはステンレススチール(SUS)材質が好ましい。

0070

(工程2a−硝酸カリウム溶融塩への融剤の添加−)
工程2aでは、工程1aで調製した硝酸カリウム溶融塩中に、先述した融剤を添加し、温度を一定範囲に保ちながら、攪拌翼などにより、全体が均一になるように混合する。複数の融剤を併用する場合、添加順序は限定されず、同時に添加してもよい。
温度は硝酸カリウムの融点以上、すなわち330℃以上が好ましく、350〜500℃がより好ましい。また、攪拌時間は1分〜10時間が好ましく、10分〜2時間がより好ましい。

0071

(溶融塩の製造2)
上記の溶融塩の製造1では、硝酸カリウムの溶融塩の調製後に融剤を加える方法を例示したが、溶融塩はまた、下記に示す工程により製造することができる。
工程1b:硝酸カリウムと融剤の混合
工程2b:硝酸カリウムと融剤との混合塩の溶融

0072

(工程1b—硝酸カリウムと融剤の混合—)
工程1bでは、硝酸カリウムと融剤とを容器に投入して、攪拌翼などにより混合する。複数の融剤を併用する場合、添加順序は限定されず、同時に添加してもよい。容器は上記工程1aで用いるものと同様のものを用いることができる。

0073

(工程2b—硝酸カリウムと融剤との混合塩の溶融—)
工程2bでは、工程1bにより得られる混合塩を加熱して溶融する。溶融は硝酸カリウムの融点(330℃)と沸点(500℃)の範囲内の温度で行う。特に溶融温度を350〜470℃とすることが、ガラスに付与できる表面圧縮応力(CS)と圧縮応力層深さ(DOL)のバランスおよび強化時間の点からより好ましい。攪拌時間は1分〜10時間が好ましく、10分〜2時間がより好ましい。

0074

上記工程1a及び2a又は工程1b及び工程2bを経て得られる溶融塩において、融剤の添加により析出物が発生する場合には、ガラスの化学強化処理を行う前に、当該析出物が容器の底に沈殿するまで静置する。この析出物には、飽和溶解度を超えた分の融剤や、融剤のカチオンが溶融塩中で交換された塩が含まれる。

0075

本願発明の製造方法で用いる溶融塩は、Na濃度が好ましくは500重量ppm以上であり、より好ましくは1000重量ppm以上である。溶融塩におけるNa濃度が500重量ppm以上であることで、後述する酸処理工程により、低密度層が深化しやすくなるため好ましい。
なお、化学強化処理を1回以上行なった溶融塩にはガラスから溶出したナトリウムが含まれている。したがって、Na濃度が既に上記範囲内であれば、ガラス由来のナトリウムをそのままNa源として用いてもよいし、Na濃度が満たない場合や、化学強化未使用の溶融塩を用いる場合には、硝酸ナトリウム等の無機ナトリウム塩を添加することにより調整することができる。
以上、上記工程1a及び工程2a又は工程1b及び工程2bにより、溶融塩を調製することができる。

0076

(イオン交換)
次に、調製した溶融塩を用いて化学強化処理を行う。化学強化処理は、ガラスを溶融塩に浸漬し、ガラス中の金属イオン(Naイオン)を、溶融塩中のイオン半径の大きな金属イオン(Kイオン)と置換することで行われる。このイオン交換によってガラス表面の組成を変化させ、ガラス表面が高密度化した圧縮応力層50を形成することができる[図3(b)〜(c)]。このガラス表面の高密度化によって圧縮応力が発生することから、ガラスを強化することができる。

0077

なお実際には、化学強化ガラスの密度は、ガラスの中心に存在する中間層60(バルク)の外縁から圧縮応力層表面に向かって徐々に高密度化してくるため、中間層60と圧縮応力層50との間には、密度が急激に変化する明確な境界はない。ここで中間層とは、ガラス中心部に存在し、圧縮応力層に挟まれる層を表す。この中間層は圧縮応力層とは異なり、イオン交換がされていない層である。

0078

本発明における化学強化処理は、具体的には、下記工程3により行うことができる。
工程3:ガラスの化学強化処理

0079

(工程3−ガラスの化学強化処理−)
工程3では、ガラスを予熱し、上記工程1a及び工程2a又は工程1b及び工程2bで調製した溶融塩を、化学強化を行う温度に調整する。次いで予熱したガラスを溶融塩中に所定の時間浸漬したのち、ガラスを溶融塩中から引き上げ放冷する。なお、ガラスには、化学強化処理の前に、用途に応じた形状加工、例えば、切断、端面加工および穴あけ加工などの機械的加工を行うことが好ましい。

0080

ガラスの予熱温度は、溶融塩に浸漬する温度に依存するが、一般に100℃以上であることが好ましい。

0081

化学強化温度は、被強化ガラスの歪点(通常500〜600℃)以下が好ましく、より高い圧縮応力層深さを得るためには特に350℃以上が好ましい。

0082

ガラスの溶融塩への浸漬時間は1分〜10時間が好ましく、5分〜8時間がより好ましく、10分〜4時間がさらに好ましい。かかる範囲にあれば、強度と圧縮応力層の深さのバランスに優れた化学強化ガラスを得ることができる。

0083

本発明の製造方法では続いて、化学強化処理後に下記工程を行う。
工程4:ガラスの洗浄
工程5:工程4を経た後のガラスの酸処理
上記工程5まで経た時点で、ガラス表面には圧縮応力層の表層が変質した、具体的には低密度化された、低密度層40をさらに有することとなる[図3(c)〜(d)]。低密度層とは、圧縮応力層の最表面からNaやKが抜け(リーチングし)、代わりにHが入り込む(置換する)ことによって形成される。
以下、工程4及び工程5について詳述する。

0084

(工程4−ガラスの洗浄−)
工程4では工水イオン交換水等を用いてガラスの洗浄を行う。中でもイオン交換水が好ましい。洗浄の条件は用いる洗浄液によっても異なるが、イオン交換水を用いる場合には0〜100℃で洗浄することが付着した塩を完全に除去させる点から好ましい。

0085

(工程5−酸処理−)
工程5では、工程4で洗浄したガラスに対して、さらに酸処理を行う。
ガラスの酸処理とは、酸性の溶液中に、化学強化ガラスを浸漬させることによって行い、これにより化学強化ガラス表面のNa及び/又はKをHに置換することができる。
溶液は酸性であれば特に制限されずpH7未満であればよく、用いられる酸が弱酸であっても強酸であってもよい。具体的には塩酸硝酸硫酸リン酸酢酸シュウ酸炭酸及びクエン酸等の酸が好ましい。これらの酸は単独で用いても、複数を組み合わせて用いてもよい。

0086

酸処理を行う温度は、用いる酸の種類や濃度、時間によっても異なるが、100℃以下で行うことが好ましい。
酸処理を行う時間は、用いる酸の種類や濃度、温度によっても異なるものの、10秒〜5時間が生産性の点から好ましく、1分〜2時間がより好ましい。
酸処理を行う溶液の濃度は、用いる酸の種類や時間、温度によって異なるものの、容器腐食の懸念が少ない濃度が好ましく、具体的には1wt%〜20wt%が好ましい。

0087

低密度層は、後述するアルカリ処理により除去されるため、低密度層が厚いほどガラス表面が除去されやすい。したがって低密度層の厚みはガラス表面除去量の観点から5nm以上が好ましく、20nm以上がより好ましい。低密度層の厚みは化学強化工程における融剤濃度、ナトリウム濃度、温度、時間等により制御することができる。

0088

低密度層の密度はガラス表面除去性の観点から、イオン交換された圧縮応力層よりも深い領域(バルク)の密度に比べて低いことが好ましい。

0089

低密度層の厚みはX線反射率法(X−ray−Reflectometry:XRR)によって測定した周期(Δθ)から求めることができる。
低密度層の密度はXRRによって測定した臨界角(θc)により求めることができる。
なお、簡易的には走査型電子顕微鏡(SEM)でガラスの断面を観察することによって、低密度層の形成と層の厚みを確認することも可能である。

0090

本発明の製造方法では続いて、酸処理後に下記工程を行う。
工程6:アルカリ処理
上記工程6により、工程5までに形成された低密度層の一部又は全部を除去することができる[図3(d)〜(e)]。
以下、工程6について詳述する。

0091

(工程6−アルカリ処理−)
工程6では、工程5で酸処理したガラスに対して、さらにアルカリ処理を行う。
アルカリ処理とは、塩基性の溶液中に、化学強化ガラスを浸漬させることによって行い、これにより低密度層の一部又は全部を除去することができる。
溶液は塩基性であれば特に制限されずpH7超過であればよく、弱塩基を用いても強塩基を用いてもよい。具体的には水酸化ナトリウム水酸化カリウム炭酸カリウム炭酸ナトリウム等の塩基が好ましい。これらの塩基は単独で用いても、複数を組み合わせて用いてもよい。

0092

アルカリ処理を行う温度は、用いる塩基の種類や濃度、時間によっても異なるが、0〜100℃が好ましく、10〜80℃がより好ましく、20〜60℃が特に好ましい。かかる温度範囲であればガラスが腐食するおそれがなく好ましい。
アルカリ処理を行う時間は、用いる塩基の種類や濃度、温度によっても異なるものの、10秒間〜5時間が生産性の点から好ましく、1分間〜2時間がより好ましい。
アルカリ処理を行う溶液の濃度は、用いる塩基の種類や時間、温度によって異なるものの、ガラス表面除去性の観点から1wt%〜20wt%が好ましい。

0093

上記アルカリ処理により、Hが侵入した低密度層の一部又は全部が除去され、水素濃度プロファイルが先述した特定の関係式(I)を満たす表層が露出する。これにより面強度が向上した化学強化ガラスを得ることができる。さらに、低密度層が除去されることでガラス表面に存在していた傷も同時に除去されるので、この点も強度向上に寄与すると考えられる。

0094

本発明の製造方法によれば取り扱う薬液の安全性が高いため特別な設備を必要としない。したがって、面強度及び曲げ強度が格段に向上した化学強化ガラスを安全かつ効率的に得ることができる。

0095

なお、除去される低密度層の量は、アルカリ処理の条件による。図3(e)には、低密度層40が全て除去された態様を示すが、低密度層40の一部が除去され一部が残存していてもよい。強度向上の観点からは、低密度層の全部が取り除かれずとも効果を得ることができるが、ガラスの透過率を安定的に確保する観点から低密度層の全部を取り除くことが好ましい。

0096

以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されない。

0097

評価方法
本実施例における各種評価は以下に示す分析方法により行った。
(ガラスの評価:表面応力
本発明の化学強化ガラスの圧縮応力層の圧縮応力値および圧縮応力層の深さは、EPMA(electron probe micro analyzer)または表面応力計(例えば、折原製作所製FSM−6000)等を用いて測定することができる。実施例では、表面圧縮応力値(CS、単位はMPa)および圧縮応力層の深さ(DOL、単位はμm)は折原製作所社製表応力計(FSM−6000)を用いて測定した。

0098

(ガラスの評価:除去量)
ガラスの除去量厚みは、薬液処理前後の重量を分析用電子天秤(HR−202i;AND製)により測定し、次の式を用いて厚み換算することにより求めた。
(片面あたりの除去量厚み)=((処理前重量)−(処理後重量))/(ガラス比重)/処理面積/2
このとき、ガラス比重を2.48(g/cm3)として計算した。

0099

(ガラスの評価:面強度)
ガラス面強度はボールオンリング(Ball on Ring;BOR)試験により測定した。図1に、本発明で用いたボールオンリング試験を説明するための概略図を示す。
ガラス板1を水平に載置した状態で、SUS304製の加圧治具2(焼入れ鋼、直径10mm、鏡面仕上げ)を用いてガラス板1を加圧し、ガラス板1の強度を測定した。

0100

図1において、SUS304製の受け治具3(直径30mm、接触部の曲率R2.5mm、接触部は焼入れ鋼、鏡面仕上げ)の上に、サンプルとなるガラス板1が水平に設置されている。ガラス板1の上方には、ガラス板1を加圧するための、加圧治具2が設置されている。

0101

本実施の形態においては、実施例及び比較例後に得られたガラス板1の上方から、ガラス板1の中央領域を加圧した。なお、試験条件は下記の通りである。
サンプルの厚み:0.56(mm)
加圧治具2の下降速度:1.0(mm/min)
この時、ガラスが破壊された際の、破壊荷重(単位N)をBOR強度とし、20回の測定の平均値をBOR平均強度とした。ただし、ガラス板の破壊起点がボール押しつけ位置より2mm以上離れていた場合は、平均値算出のためのデータより除外した。

0102

(ガラスの評価:水素濃度)
前述の〔水素濃度プロファイル測定方法〕にて記載した方法に従い、水素濃度プロファイルを測定し、関係式(I)を導出した。

0103

(ガラスの評価:曲げ強度)
JIS R1601(2008年)に定める試験方法に基づき4点曲げ強度を測定した。測定は20回行い、平均値を算出した。

0104

(ガラスの評価:ガラス主面の表面粗さ)
ガラス主面の表面粗さはAFM測定により測定した。
AFM測定条件:Atomic Force Microscope(XE−HDM;Park systems社製)、スキャンサイズ:10×5μm、カラースケール:±1nm、スキャン速度:1Hz。

0105

(ガラスの評価:ガラス端面の表面粗さ)
ガラス端面の表面粗さはJIS B0601(2001年)に基づいて測定した。
装置はMitsutoyo社製SurfestSV−600を使用し、測定サンプルを所定の位置にセット後、上記JIS B0601で定められた基準長さ、区間数、ピッチを設定し測定を実施した。測定スキャン速度は0.5mm/secとした。

0106

<実施例1>
端面研磨工程)
50mm×50mm×0.56mmのアルミノシリケートガラスAを100枚用意し、図2に示すブラシ研磨装置30を用いて端面を研磨した。研磨液は、分散体を水として、平均粒径(D50)1.5μmの酸化セリウムからなる研磨材を分散させたものを使用した。

0107

(化学強化工程)
SUS製のカップに硝酸カリウム5100g、炭酸カリウム270g、硝酸ナトリウム210gを加え、マントルヒーターで450℃まで加熱して炭酸カリウム6mol%、ナトリウム10000重量ppmの溶融塩を調製した。上記端面研磨工程後のアルミノシリケートガラスAを200〜400℃に予熱した後、450℃の溶融塩に2時間浸漬し、イオン交換処理した後、室温付近まで冷却することにより化学強化処理を行った。得られた化学強化ガラスは水洗いし、次の工程に供した。
アルミノシリケートガラスA組成(モル%表示):SiO2 64.4%、Al2O3 8.0%、Na2O3 12.5%、K2O 4.0%、MgO 10.5%、CaO 0.1%、SrO 0.1%、BaO 0.1%、ZrO2 0.5%

0108

(酸処理工程)
13.4重量%の塩酸(HCl;関東化学社製)をビーカーに用意し、ウォーターバスを用いて40℃に温度調整を行った。前記化学強化工程で得られたガラスを、調製した塩酸中に120秒間浸漬させ、酸処理を行い、その後純水で数回洗浄した後、エアブローにより乾燥した。こうして得られたガラスを次の工程に供した。

0109

(アルカリ処理工程)
4.0重量%の水酸化ナトリウム水溶液をビーカーに用意し、ウォーターバスを用いて40℃に温度調整を行った。酸処理工程で得られたガラスを、調製した水酸化ナトリウム水溶液中に120秒間浸漬させ、アルカリ処理を行い、その後純水で数回洗浄した後、エアブローにより乾燥した。
上より、実施例1の化学強化ガラスを得た。

0110

<実施例2>
端面の研磨工程を下記条件とした以外は実施例1と同様に化学強化ガラスを製造した。
端面研磨工程条件:粒子番手#600の砥粒を固着した固定砥粒(砥石)を用いて端面を研磨した。

0111

<実施例3>
端面の研磨工程を下記条件とした以外は実施例1と同様に化学強化ガラスを製造した。
端面研磨工程条件:砥石の粒子をより細かくするため、粒子番手#3000の砥粒を固着した固定砥粒(砥石)を用いて端面を研磨した。

0112

<比較例1>
酸処理工程及びアルカリ処理工程を実施していないこと以外は実施例1と同様に化学強化ガラスを製造した。

0113

<比較例2>
酸処理工程及びアルカリ処理工程を実施していないこと以外は実施例2と同様に化学強化ガラスを製造した。

0114

<比較例3>
酸処理工程及びアルカリ処理工程を実施していないこと以外は実施例3と同様に化学強化ガラスを製造した。

0115

こうして得られた化学強化ガラスについて各種評価を行なった。結果を表1に示す。
また、図4図5に、実施例1及び比較例1で得られた各化学強化ガラスの表層の水素濃度プロファイルをプロットしたグラフを示す。なお、図示しないが、実施例2及び実施例3は、実施例1と同様の水素濃度プロファイルを示し、比較例2及び比較例3は、比較例1と同様の水素濃度プロファイルを示した。

0116

0117

表1の結果から、関係式(I)を満たす実施例1〜3の化学強化ガラスは、関係式(I)を満たさない比較例1〜3よりも面強度が大幅に向上した。

0118

また、端面の算術表面粗さが300nm以下であり、かつ、関係式(I)を満たす実施例1の化学強化ガラスは、端面の算術表面粗さが同程度であっても、関係式(I)を満たさない比較例1の化学強化ガラスよりも、曲げ強度が大幅に向上した。実施例2と比較例2、実施例3と比較例3との対比においても同様であった。

実施例

0119

本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2014年1月16日出願の日本特許出願(特願2014−6170)に基づくものであり、その内容はここに参照として取り込まれる。

0120

本発明によれば、面強度及び曲げ強度が大幅に向上した化学強化ガラスを安全かつ低コストで得ることができる。本発明に係る化学強化ガラスは、携帯電話、デジタルカメラまたはタッチパネルディスプレイ等のディスプレイ用カバーガラスに用いることができる。

0121

1aガラス主面(表面)
1b ガラス主面(裏面)
2a 端面
2b 端面
40低密度層
50圧縮応力層
60 中間層

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 日本電気硝子株式会社の「 透明物品」が 公開されました。( 2020/10/29)

    【課題・解決手段】本発明は、解像度の低下を抑制しつつ、指の滑りを良くすることのできる透明物品を提供することを課題とする。透明物品(10)は、透明基材(11)を備えている。透明基材(11)の主面には、粗... 詳細

  • AGC株式会社の「 カバー部材および携帯情報端末」が 公開されました。( 2020/10/29)

    【課題・解決手段】本発明は、保護対象を保護する化学強化ガラスからなるカバー部材(1)であって、カバー部材(1)の第1の主面(3)または第2の主面(5)の少なくとも一方には、少なくとも一つの凹部(7)が... 詳細

  • イビデン株式会社の「 ガラスパッケージの製造方法およびガラスパッケージ」が 公開されました。( 2020/10/29)

    【課題】ガラスパッケージの信頼性を高くする。【解決手段】ガラス基板の表面に樹脂層を形成したガラスパッケージの製造方法であって、ガラス基板母材1を準備し、ガラス基板母材1の切断ライン周辺を粗面化して粗面... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ