図面 (/)

技術 繊維強化樹脂歯車

出願人 株式会社エンプラス
発明者 近江憲仕村上徹塚本雅也
出願日 2014年4月15日 (5年7ヶ月経過) 出願番号 2015-512485
公開日 2017年2月23日 (2年9ヶ月経過) 公開番号 WO2014-171450
状態 特許登録済
技術分野 歯車・カム 強化プラスチック材料 プラスチック等の射出成形
主要キーワード Eガラス フェースギヤ Cガラス 最大摩耗量 動力伝達部品 やまば歯車 相手歯車 インボリュート
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年2月23日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (8)

課題・解決手段

高温使用下での耐久性を向上させた繊維強化樹脂歯車を提供する。 繊維強化樹脂歯車は、グラスウールを含有する樹脂材料金型キャビティ内に射出されることにより成形される。グラスウールは、繊維径が0.1〜15μmの範囲で広く分散し、且つ、繊維径の最頻値が2〜5μmの間で出現するように分布し、平均繊維径が3〜5μmのものが使用されている。本発明に係る繊維強化樹脂歯車によれば、高温下における耐久性及び耐摩耗性が従来の繊維強化樹脂歯車よりも向上する。

概要

背景

従来から、一定の繊維径ガラス繊維を含有する繊維強化樹脂歯車が開発されてきた。この繊維強化樹脂歯車は、樹脂材料のみで形作られた歯車よりも高強度で且つ金属製の歯車よりも軽量であるため、燃費向上を図る自動車や軽量化を図る各種機械動力伝達部品として広く使用されている(特許文献1参照)。

概要

高温使用下での耐久性を向上させた繊維強化樹脂歯車を提供する。 繊維強化樹脂歯車は、グラスウールを含有する樹脂材料が金型キャビティ内に射出されることにより成形される。グラスウールは、繊維径が0.1〜15μmの範囲で広く分散し、且つ、繊維径の最頻値が2〜5μmの間で出現するように分布し、平均繊維径が3〜5μmのものが使用されている。本発明に係る繊維強化樹脂歯車によれば、高温下における耐久性及び耐摩耗性が従来の繊維強化樹脂歯車よりも向上する。

目的

本発明は、高温使用下での耐摩耗性を向上させた繊維強化樹脂歯車を提供する

効果

実績

技術文献被引用数
0件
牽制数
1件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

グラスウールを含有する樹脂材料金型キャビティ内に射出されることにより成形された繊維強化樹脂歯車であって、前記グラスウールは、繊維径が0.1〜15μmの範囲で広く分散し、且つ、繊維径の最頻値が2〜5μmの間で出現するように分布し、平均繊維径が3〜5μmのものが使用された、ことを特徴とする繊維強化樹脂歯車。

技術分野

0001

この発明は、グラスウールを含有する繊維強化樹脂歯車に関するものである。

背景技術

0002

従来から、一定の繊維径ガラス繊維を含有する繊維強化樹脂歯車が開発されてきた。この繊維強化樹脂歯車は、樹脂材料のみで形作られた歯車よりも高強度で且つ金属製の歯車よりも軽量であるため、燃費向上を図る自動車や軽量化を図る各種機械動力伝達部品として広く使用されている(特許文献1参照)。

先行技術

0003

特開2008−8404号公報

発明が解決しようとする課題

0004

しかしながら、近年、繊維強化樹脂歯車が使用される自動車業界において、繊維強化樹脂歯車に対する高温使用下(130℃環境下)での耐摩耗性の向上が求められていた。

0005

そこで、本発明は、高温使用下での耐摩耗性を向上させた繊維強化樹脂歯車を提供することを目的とする。

課題を解決するための手段

0006

本発明は、グラスウールを含有する樹脂材料が金型キャビティ内に射出されることにより成形された繊維強化樹脂歯車に関するものである。この発明において、前記グラスウールは、繊維径が0.1〜15μmの範囲で広く分散し、且つ、繊維径の最頻値が2〜5μmの間で出現するように分布し、平均繊維径が3〜5μmのものが使用されている。

発明の効果

0007

本発明に係る繊維強化樹脂歯車によれば、高温下における耐摩耗性が従来の繊維強化樹脂歯車よりも向上する。

図面の簡単な説明

0008

本発明の実施形態に係る繊維強化樹脂歯車を示す図であり、図1(a)は繊維強化樹脂歯車の正面図、図1(b)は図1(a)のA−A線に沿って切断して示す繊維強化樹脂歯車の断面図である。
第1の試作品に使用されたグラスウールの繊維径の分布状態を示す図(ヒストグラム)である。
第2の試作品に使用されたグラスウールの繊維径の分布状態を示す図(ヒストグラム)である。
第3の試作品に使用されたグラスウールの繊維径の分布状態を示す図(ヒストグラム)である。
図5(a)は第1の試作品の歯の摩耗状態を示す図であり、図5(b)は第1の従来品の歯の摩耗状態を示す図である。
図6(a)は第2の試作品の歯の摩耗状態を示す図であり、図6(b)は第2の従来品の歯の摩耗状態を示す図である。
図7(a)は第3の試作品の歯の摩耗状態を示す図であり、図7(b)は第3の従来品の歯の摩耗状態を示す図である。

実施例

0009

以下、本発明の実施形態を図面に基づき詳述する。

0010

(本実施形態に係る繊維強化樹脂歯車の説明)
図1は、本実施形態に係る繊維強化樹脂歯車1を示す図である。この繊維強化樹脂歯車1は、グラスウールを含有する樹脂材料(例えば、ポリアミド(PA)、ポリアセタール(POM)、ポリフェニレンサルファイド(PPS)、ポリフタルアミド(PPA)、ポリエーテルイミドポリエーテルスルフォンポリケトンポリエーテルエーテルケトンポリスフォンポリフェニレンエーテルポリイミドポリアミドイミドフェノキシ等の熱可塑性樹脂、好ましくはPA、POM、PPS、PPA等)が金型のキャビティ内に射出されることにより成形されたものであり、円板状のウエブ2の外周側にリム3が形成されると共にリム3の外周側に複数の歯4(図1では一つのみ図示)が形成され、軸穴5を備えた軸嵌合部6がウエブ2の中心部に形成されている。

0011

グラスウールは、Cガラス又はEガラス遠心法および/または火炎法等によってガラス繊維化したものであり、繊維径が0.1〜15μm、好ましくは0.5〜11μmの範囲で広く分散し、且つ、繊維径の最頻値が2〜5μmの間で出現するように分布し、平均繊維径が3〜5μm、好ましくは4〜5μmのものが使用される。このグラスウールは、一般的に短繊維と呼ばれ、長繊維を加工したチョップドストランドミルドファイバー等とは異なる。

0012

(試作品と従来品の対比)
次に、本実施形態に係る繊維強化樹脂歯車1の試作品の耐久試験及び摩耗試験の結果を、従来品の耐久試験及び摩耗試験の結果と対比して説明する。

0013

A.試作品
(第1の試作品)
第1の試作品は、グラスウール(Cガラスを遠心法でガラス繊維化したもの)を33重量%含有するポリアミド(PA66)が金型のキャビティ内に射出されることにより成形された平歯車であり、図1に示した繊維強化樹脂歯車と同様の形状に形成されている。そして、この第1の試作品は、モジュール1、圧力角20°、歯数30枚の標準インボリュート平歯車である。

0014

図2は、第1の試作品に使用されたグラスウールの繊維径の分布状態を示す図(ヒストグラム)である。この図2において、横軸がグラスウールの繊維径(μm)の階級を表し、縦軸がグラスウールの全体量(1〜11の各階級に属するグラスウールの重量の総和)に対する各階級に属するグラスウール量の占める割合(%)を表している。なお、以下の表1は、図2の階級と繊維径(d)との関係を示すものである。

0015

0016

図2に示したように、試作品に使用したグラスウールは、繊維径が0.5〜11μmの範囲で広く分散するものであり、繊維径の最頻値が3〜4μmの間で出現し、平均繊維径が4.7μm(実測値)のものであった。

0017

(第2の試作品)
第2の試作品は、グラスウール(Cガラスを遠心法でガラス繊維化したもの)を43重量%含有するポリアミド(PA66)が金型のキャビティ内に射出されることにより成形された平歯車であり、図1に示した繊維強化樹脂歯車と同様の形状に形成されている。そして、この第2の試作品は、第1の試作品と同様に、モジュール1、圧力角20°、歯数30枚の標準インボリュート平歯車である。

0018

図3は、第2の試作品に使用されたグラスウールの繊維径の分布状態を示す図(ヒストグラム)である。この図3において、横軸がグラスウールの繊維径(μm)の階級を表し、縦軸がグラスウールの全体量(1〜11の各階級に属するグラスウールの重量の総和)に対する各階級に属するグラスウール量の占める割合(%)を表している。

0019

図3に示したように、試作品に使用したグラスウールは、繊維径が1μm以下から9μmの範囲で広く分散するものであり、繊維径の最頻値が4〜5μmの間で出現し、平均繊維径が4.8μm(実測値)のものであった。

0020

(第3の試作品)
第3の試作品は、グラスウール(Cガラスを遠心法でガラス繊維化したもの)を33重量%含有するポリアミド(PA66)が金型のキャビティ内に射出されることにより成形された平歯車であり、図1に示した繊維強化樹脂歯車と同様の形状に形成されている。そして、この第3の試作品は、第1の試作品と同様に、モジュール1、圧力角20°、歯数30枚の標準インボリュート平歯車である。

0021

図4は、第3の試作品に使用されたグラスウールの繊維径の分布状態を示す図(ヒストグラム)である。この図4において、横軸がグラスウールの繊維径(μm)の階級を表し、縦軸がグラスウールの全体量(1〜11の各階級に属するグラスウールの重量の総和)に対する各階級に属するグラスウール量の占める割合(%)を表している。

0022

図4に示したように、第3の試作品に使用したグラスウールは、繊維径が1μm以下から11μmの範囲で広く分散し、繊維径の最頻値が2〜3μmの間で出現し、平均繊維径が4.3μm(実測値)のものであった。

0023

B.従来品
(第1の従来品)
第1の従来品は、ガラス長繊維を33重量%含有するポリアミド(PA66)が金型のキャビティ内に射出されることにより成形された平歯車であり、図1に示した繊維強化樹脂歯車1と同様の形状に形成されている。そして、この第1の従来品は、上記第1の試作品と同様に、モジュール1、圧力角20°、歯数30枚の標準インボリュート平歯車である。なお、この第1の従来品において、ガラス長繊維を33重量%含有するポリアミド(PA66)は、旭化成株式会社のレオナ(登録商標)1300Gに対応する。この第1の従来品に使用されるガラス長繊維の繊維径は、13μm(実測値)であった。

0024

(第2の従来品)
第2の従来品は、ガラス長繊維を43重量%含有するポリアミド(PA66)が金型のキャビティ内に射出されることにより成形された平歯車であり、図1に示した繊維強化樹脂歯車1と同様の形状に形成されている。そして、この第2の従来品は、上記第2の試作品と同様に、モジュール1、圧力角20°、歯数30枚の標準インボリュート平歯車である。なお、この第2の従来品において、ガラス長繊維を43重量%含有するポリアミド(PA66)は、旭化成株式会社のレオナ(登録商標)13G43に対応する。この第2の従来品に使用されるガラス長繊維の繊維径は、13μm(実測値)であった。

0025

(第3の従来品)
第3の従来品は、ガラス長繊維を33重量%含有するポリアミド(PA66)が金型のキャビティ内に射出されることにより成形された平歯車であり、図1に示した繊維強化樹脂歯車1と同様の形状に形成されている。そして、この第3の従来品は、上記第3の試作品と同様に、モジュール1、圧力角20°、歯数30枚の標準インボリュート平歯車である。なお、この第3の従来品において、ガラス長繊維を33重量%含有するポリアミド(PA66)は、デュポン株式会社のザイテル(登録商標)70G33Lに対応する。この第3の従来品に使用されるガラス長繊維の繊維径は、10μm(実測値)であった。

0026

C.耐久試験
(第1の耐久試験)
この第1の耐久試験は、一対の第1の試作品同士、一対の第1の従来品同士を噛み合わせた状態で行うようになっており、130℃の高温環境下で、250rpmの回転数で、且つ1.5Nmの試験トルク負荷し、歯面にグリース(東レ・ダウコーニング株式会社:EM−50L)を塗布した状態で、歯が破損(破壊)するまで行った。表2は、この第1の耐久試験の結果を示すものである。

0027

0028

この第1の耐久試験の結果によれば、第1の試作品は、高温(130℃)環境下における耐久性が第1の従来品よりも向上している。この第1の耐久試験の結果は、第1の試作品のグラスウールの繊維径が0.5〜11μmと広く分散すると共に、第1の試作品のグラスウールが平均繊維径4.7μmよりも小さい繊維径範囲(0.5〜4.7μm)に多く分散して存在し、第1の試作品のグラスウールの繊維径(0.5〜11μm)が第1の従来品のガラス長繊維の繊維径(13μm)よりも細いため、第1の試作品と第1の従来品の繊維含有量同量であれば、第1の試作品のグラスウールとベース樹脂(PA66)との接触面積が第1の従来品のガラス長繊維とベース樹脂(PA66)との接触面積よりも大きくなり、第1の試作品の繊維(グラスウール)による補強効果が第1の従来品の繊維(ガラス長繊維)による補強効果よりも大きくなることに起因すると考えられる。

0029

(第2の耐久試験)
この第2の耐久試験は、一対の第2の試作品同士、一対の第2の従来品同士を噛み合わせた状態で行うようになっており、130℃の高温環境下で、1000rpmの回転数で、且つ0.4Nmの試験トルクを負荷し、歯面にグリース(東レ・ダウコーニング株式会社:EM−50L)を塗布した状態で、歯が破損(破壊)するまで行った。表3は、この第2の耐久試験の結果を示すものである。

0030

0031

この第2の耐久試験の結果によれば、第2の試作品は、高温(130℃)環境下における耐久性が第2の従来品よりも向上している。この第2の耐久試験の結果は、第2の試作品のグラスウールの繊維径が1μm以下から9μmと広く分散すると共に、第2の試作品のグラスウールが平均繊維径4.8μmよりも小さい繊維径範囲に多く分散して存在し、第2の試作品のグラスウールの繊維径(1μm以下から9μm)が第2の従来品のガラス長繊維の繊維径(13μm)よりも細いため、第2の試作品と第2の従来品の繊維含有量が同量であれば、第2の試作品のグラスウールとベース樹脂(PA66)との接触面積が第2の従来品のガラス長繊維とベース樹脂(PA66)との接触面積よりも大きくなり、第2の試作品の繊維(グラスウール)による補強効果が第2の従来品の繊維(ガラス長繊維)による補強効果よりも大きくなることに起因すると考えられる。

0032

D.摩耗試験
(第1の摩耗試験)
この第1の摩耗試験は、上記第1の耐久試験と同様の一対の第1の試作品同士、一対の第1の従来品同士を噛み合わせた状態で行うようになっており、130℃の高温環境下で、250rpmの回転数で、且つ1Nmの試験トルクを負荷し、歯面にグリース(東レ・ダウコーニング株式会社:EM−50L)を塗布した状態で、48時間(噛み合い回数:7.2×105回)連続して行った。

0033

図5(a)は、第1の試作品の歯の摩耗状態を示す図である。また、図5(b)は、第1の従来品の歯の摩耗状態を示す図である。この図5(a),(b)に示すように、第1の試作品の歯面の最大摩耗量が0.03mmであったのに対し、第1の従来品の歯面の最大摩耗量が0.12mmであり、第1の試作品の歯が第1の従来品の歯よりも摩耗量が少なかった。

0034

また、一対の第1の試作品の摩耗に伴う重量変化は、駆動側の第1の試作品が0.011gだけ重量が減少し、被動側の第1の試作品が0.014gだけ重量が減少した。これに対し、一対の第1の従来品の摩耗に伴う重量変化は、駆動側の第1の従来品が0.042gだけ重量が減少し、被動側の第1の従来品が0.045gだけ重量が減少した。このように、一対の第1の試作品の摩耗に伴う重量変化は、一対の第1の従来品の摩耗に伴う重量変化よりも小さかった。

0035

この第1の摩耗試験の結果によれば、第1の試作品は、高温(130℃)環境下における耐摩耗性が第1の従来品よりも優れている。この第1の摩耗試験の結果は、第1の耐久試験の結果の説明で詳述したように、第1の試作品と第1の従来品の繊維含有量が同量であれば、第1の試作品のグラスウールとベース樹脂(PA66)との接触面積が第1の従来品のガラス長繊維とベース樹脂(PA66)との接触面積よりも大きくなり、第1の試作品の繊維(グラスウール)による補強効果が第1の従来品の繊維(ガラス長繊維)による補強効果よりも大きくなることに起因すると考えられる。また、この第1の摩耗試験の結果は、第1の試作品の平均繊維径(4.7μm)が第1の従来品のガラス長繊維の繊維径(13μm)よりも細く、第1の試作品のグラスウールが平均繊維径4.7μmよりも小さい繊維径範囲(0.5〜4.7μm)に多く分散して存在するため、噛み合う相手歯車の歯への攻撃性が第1の従来品よりも第1の試作品の方が小さいことに起因すると考えられる。

0036

(第2の摩耗試験)
この第2の摩耗試験は、上記第2の耐久試験と同様の一対の第2の試作品同士、一対の第2の従来品同士を噛み合わせた状態で行うようになっており、130℃の高温環境下で、250rpmの回転数で、且つ0.8Nmの試験トルクを負荷し、歯面にグリース(東レ・ダウコーニング株式会社:EM−50L)を塗布した状態で、48時間(噛み合い回数:7.2×105回)連続して行った。

0037

図6(a)は、第2の試作品の歯の摩耗状態を示す図である。また、図6(b)は、第2の従来品の歯の摩耗状態を示す図である。この図6(a),(b)に示すように、第2の試作品の歯面の最大摩耗量が0.02mmであったのに対し、第2の従来品の歯面の最大摩耗量が0.14mmであり、第2の試作品の歯が第2の従来品の歯よりも摩耗量が少なかった。

0038

また、一対の第2の試作品の摩耗に伴う重量変化は、駆動側の第2の試作品が0.006gだけ重量が減少し、被動側の第2の試作品が0.009gだけ重量が減少した。これに対し、一対の第2の従来品の摩耗に伴う重量変化は、駆動側の第2の従来品が0.107gだけ重量が減少し、被動側の第2の従来品が0.110gだけ重量が減少した。このように、一対の第2の試作品の摩耗に伴う重量変化は、一対の第2の従来品の摩耗に伴う重量変化よりも小さかった。

0039

この第2の摩耗試験の結果によれば、第2の試作品は、高温(130℃)環境下における耐摩耗性が第2の従来品よりも優れている。この第2の摩耗試験の結果は、第2の耐久試験の結果の説明で詳述したように、第2の試作品と第2の従来品の繊維含有量が同量であれば、第2の試作品のグラスウールとベース樹脂(PA66)との接触面積が第2の従来品のガラス長繊維とベース樹脂(PA66)との接触面積よりも大きくなり、第2の試作品の繊維(グラスウール)による補強効果が第2の従来品の繊維(ガラス長繊維)による補強効果よりも大きくなることに起因すると考えられる。また、この第2の摩耗試験の結果は、第2の試作品の平均繊維径(4.8μm)が第2の従来品のガラス長繊維の繊維径(13μm)よりも細く、第2の試作品のグラスウールが平均繊維径4.8μmよりも小さい繊維径範囲に多く分散して存在するため、噛み合う相手歯車の歯への攻撃性が第2の従来品よりも第2の試作品の方が小さいことに起因すると考えられる。

0040

(第3の摩耗試験)
この第3の摩耗試験は、一対の第3の試作品同士、一対の第3の従来品同士を噛み合わせた状態で行うようになっており、130℃の高温環境下で、250rpmの回転数で、且つ1Nmの試験トルクを負荷し、歯面にグリース(東レ・ダウコーニング株式会社:EM−50L)を塗布した状態で、48時間(噛み合い回数:7.2×105回)連続して行った。

0041

図7(a)は、第3の試作品の歯の摩耗状態を示す図である。また、図7(b)は、第3の従来品の歯の摩耗状態を示す図である。この図7(a),(b)に示すように、第3の試作品の歯面の最大摩耗量が0.03mmであったのに対し、第3の従来品の歯面の最大摩耗量が0.18mmであり、第3の試作品の歯が第3の従来品の歯よりも摩耗量が少なかった。

0042

また、一対の第3の試作品の摩耗に伴う重量変化は、駆動側の第3の試作品が0.022gだけ重量が減少し、被動側の第3の試作品が0.022gだけ重量が減少した。これに対し、一対の第3の従来品の摩耗に伴う重量変化は、駆動側の第3の従来品が0.038gだけ重量が減少し、被動側の第3の従来品が0.037gだけ重量が減少した。このように、一対の第3の試作品の摩耗に伴う重量変化は、一対の第3の従来品の摩耗に伴う重量変化よりも小さかった。

0043

この第3の摩耗試験の結果によれば、第3の試作品は、高温(130℃)環境下における耐摩耗性が第3の従来品よりも優れている。この第3の摩耗試験の結果は、第3の試作品と第3の従来品の繊維含有量が同量であれば、第3の試作品のグラスウールとベース樹脂(PA66)との接触面積が第3の従来品のガラス長繊維とベース樹脂(PA66)との接触面積よりも大きくなり、第3の試作品の繊維(グラスウール)による補強効果が第3の従来品の繊維(ガラス長繊維)による補強効果よりも大きくなることに起因すると考えられる。また、この第3の摩耗試験の結果は、第3の試作品の平均繊維径(4.3μm)が第3の従来品のガラス長繊維の繊維径(10μm)よりも細く、第3の試作品のグラスウールが平均繊維径4.3μmよりも小さい繊維径範囲に多く分散して存在するため、噛み合う相手歯車の歯への攻撃性が第3の従来品よりも第3の試作品の方が小さいことに起因すると考えられる。

0044

なお、本発明の繊維強化樹脂歯車1は、上記実施形態において例示した平歯車に限定されるものではなく、はすば歯車やまば歯車ウォームホイールかさ歯車フェースギヤ、ラック等に適用できる。

0045

また、本発明の繊維強化樹脂歯車1は、図1の平歯車の形状に限定されるものでなく、様々な形状の平歯車に適用できる。

0046

また、本発明の繊維強化樹脂歯車1は、Cガラス又はEガラスを遠心法によってガラス繊維化したグラスウールが使用されているが、Cガラスを遠心法によってガラス繊維化したグラスウールを使用するのが好ましい。Cガラスを遠心法によってガラス繊維化したグラスウールは、Eガラスを遠心法によってガラス繊維化したグラスウールよりも弾性率が低く、噛み合う相手歯車(繊維強化樹脂歯車1)への攻撃性がEガラスを遠心法によってガラス繊維化したグラスウールよりも低いことによる。

0047

また、本発明の繊維強化樹脂歯車1は、ベース樹脂に対するグラスウールの含有率が10〜50重量%の範囲で、使用条件に応じた最適のグラスウールの含有割合が決定される。また、本発明の繊維強化樹脂歯車1は、ベース樹脂に対するグラスウールの含有率が20〜50重量%、30〜50重量%の範囲で選択されると、さらに好ましい。

0048

1……繊維強化樹脂歯車

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 株式会社アドウェルズの「 含浸装置および含浸方法並びに加工装置」が 公開されました。( 2019/09/19)

    【課題】簡単な構成の装置により、強化繊維束に均一に樹脂を含浸できるようにする。【解決手段】溶融槽2のほぼ中央に超音波印加手段を構成するホーン8を配置し、ホーン8により、強化繊維束であるCF(炭素繊維束... 詳細

  • 冨士ベークライト株式会社の「 カバーパネル及びその製造方法」が 公開されました。( 2019/09/12)

    【課題】偏光サングラス等の偏光板を通して液晶表示パネルを見た場合であっても、ブラックアウトや虹ムラの発生が抑制され良好な視認性を確保することができるカバーパネルを提供する。【解決手段】自動車に搭載され... 詳細

  • 株式会社豊田中央研究所の「 有機繊維強化樹脂組成物及びその製造方法」が 公開されました。( 2019/09/12)

    【課題】引張荷重下において延性的な挙動を示し、成形体の破断が防止されたオレフィン系樹脂組成物を提供すること。【解決手段】メルトマスフローレートが10〜200g/10minの第一のオレフィン系樹脂と、メ... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ