図面 (/)

技術 標的細胞障害活性を有するiPS/ES細胞特異的抗体及びその用途

出願人 学校法人立命館国立研究開発法人医薬基盤・健康・栄養研究所
発明者 川嵜敏祐川嵜伸子古江美保川端健二豊田英尚
出願日 2013年12月20日 (6年11ヶ月経過) 出願番号 2014-553234
公開日 2017年1月12日 (3年10ヶ月経過) 公開番号 WO2014-098243
状態 特許登録済
技術分野 生物学的材料の調査,分析 ペプチド又は蛋白質 化合物または医薬の治療活性 微生物、その培養処理 抗原、抗体含有医薬:生体内診断剤 微生物による化合物の製造 動物,微生物物質含有医薬
主要キーワード アルミナプレート 長方形型 ガラス切り 展開槽 希釈用溶液 ネジ口 同一系統 スピッツ
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年1月12日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (13)

課題・解決手段

本発明は、iPS及びES細胞表面上の脂質性物質エピトープとして認識し、かつEC細胞を認識しないモノクローナル抗体標的細胞に対して細胞障害活性を有する該抗体、iPS又はES細胞から分化させた細胞集団を上記抗体と接触させ、生存する細胞回収することを含む、未分化細胞を含まない均一な分化細胞集団作製方法、該方法により得られる分化細胞集団を含有してなる、細胞移植療法剤等を提供する。

概要

背景

ヒト人工多能性幹細胞iPS細胞)の樹立により、多能性幹細胞を用いた細胞移植治療の実用化への扉が開かれた。例えば、パーキンソン病I型糖尿病のような慢性疾患の場合、患者本人からiPS細胞を樹立し、必要な細胞分化誘導した後に該患者自家移植することが可能になれば、ヒト胚性幹細胞ES細胞)の使用に伴う倫理的問題(即ち、生命萌芽ともいえる初期胚破壊)や移植時の拒絶反応の問題を回避することができる。一方で、iPS細胞の樹立から目的細胞への分化誘導まで最短でも2-3ヶ月を要することから、脊髄損傷劇症肝炎などの早期治療を必要とする疾患については、様々なHLAタイプのiPS細胞またはそれら由来分化細胞バンキングしておき、それらを用いて同種移植を行うことが考えられる。

しかし、ES細胞やiPS細胞などの多能性幹細胞を心筋や神経などの細胞に分化させる条件下で培養すると、分化した細胞集団の中に未分化細胞が残存し、腫瘍化奇形腫発癌)の原因となっており、さらにiPS細胞は、人工的に初期化された細胞であるがゆえの特有の安全性の問題(即ち、c-Myc等の原癌遺伝子の導入やウイルスベクターの使用による腫瘍化リスク、由来となる体細胞の種類に依存した分化抵抗性による腫瘍化リスク等)をも抱えている。
このように、多能性幹細胞を用いた再生移植治療の実用化には、腫瘍化の問題を克服することが不可欠である。これまでにiPS細胞由来の発癌の抑制に対しては、癌遺伝子を含まない初期化因子組合せの探索、非ウイルスベクターの使用、タンパク質導入によるiPS細胞の樹立といったより安全なiPS細胞樹立という観点からは様々な試みがなされてはいる。しかし、これらはiPS作製時の工夫による発癌リスクの多少の抑制という間接的なアプローチに過ぎず、完全に発癌を阻止できるレベルのものではない。
また、ES細胞にも共通する多能性幹細胞であるがゆえの未分化細胞の残存による腫瘍化(目的細胞以外の多種細胞が混在して腫瘤を形成する奇形腫)リスクに対しても、有効な解決策は提供されていない。

ところで、糖鎖認識抗体は、細胞表面糖鎖の変化を鋭敏に察知するプローブであり、ヒトiPS/ES細胞のマーカー抗体としても広く利用されている。すなわち、SSEA3、SSEA4のエピトープグロボシリーズ糖脂質であり、TRA-1-60、TRA-1-81のエピトープは一種ケラタン硫酸である。ところが、これら既存の抗体のほとんどが、実はEC細胞(embryonal carcinoma cell、胎児性がん細胞)を免疫原として得られたものであり、iPS/ES細胞の他にEC細胞(がん細胞)とも反応する(非特許文献1)。
そこで、幹細胞研究および再生医療研究においては、EC細胞と反応せず、iPS/ES細胞とのみ反応する抗体の出現が期待されていた。最近、Chooは、ヒトES細胞を免疫原として用い、EC細胞とは反応しない抗ヒトES細胞抗体(mAb84)を報告したが(特許文献1)、この抗体がヒトiPS細胞にも反応するか否かは記載されていない(特許文献2)。

本発明者らは、ヒトiPS細胞(Tic)を免疫原としてマウスを免疫し、得られたハイブリドーマについて、ヒトiPS細胞及びヒトEC細胞によるdifferential screeningを行なうことにより、iPS/ES細胞陽性かつEC細胞陰性の抗体(R-10G)を取得することに成功した(特許文献2)。この抗体は、iPS/ES細胞表面上のポドカリキシンタンパク質に結合した、TRA-1-60やTRA-1-81のエピトープとは異なるケラタン硫酸を認識する。
しかしながら、R-10GはヒトiPS/ES細胞に対して細胞障害活性を有していないので、当該抗体を、分化細胞集団中の残存ヒトiPS/ES細胞の除去に使用するには、フローサイトメトリーアフィニティー担体を用いた分離操作が必要となる。

概要

本発明は、iPS及びES細胞表面上の脂質性物質をエピトープとして認識し、かつEC細胞を認識しないモノクローナル抗体標的細胞に対して細胞障害活性を有する該抗体、iPS又はES細胞から分化させた細胞集団を上記抗体と接触させ、生存する細胞を回収することを含む、未分化細胞を含まない均一な分化細胞集団の作製方法、該方法により得られる分化細胞集団を含有してなる、細胞移植療法剤等を提供する。

目的

本発明の目的は、iPS/ES細胞から分化誘導された細胞集団内に残存し、移植後の腫瘍化の原因となる未分化細胞を標的化して殺傷することにより選択除去することが可能な、標的細胞に対して特異的に細胞障害活性を有する、新規な抗iPS/ES手段を提供する

効果

実績

技術文献被引用数
1件
牽制数
1件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

iPS及びES細胞表面上の脂質性物質エピトープとして認識し、かつEC細胞を認識しないモノクローナル抗体

請求項2

iPS及びES細胞がヒト由来である、請求項1記載の抗体。

請求項3

ハイブリドーマR-17F(受託番号:NITEBP-01425)により産生されるモノクローナル抗体、又は該モノクローナル抗体が認識する脂質性物質の領域と同一の領域をエピトープとして認識するモノクローナル抗体である、請求項1又は2記載の抗体。

請求項4

脂質性物質が糖脂質であり、前記領域が下記一般式:Fuc-Hex−HexNAc-Hex-Hex(式中、Fucはフコース、Hexはヘキソース、HexNAcはN-アセチルヘキソサミンを示す。)で表される糖鎖を含む、請求項1〜3のいずれか1項に記載の抗体。

請求項5

少なくとも糖脂質中の下記式:Fuc(α1-2)Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc(式中、Fucはフコース、Galはガラクトース、GlcNAcはN-アセチルグルコサミン、Glcはグルコースを示す。)で表される糖鎖を含む領域をエピトープとして認識する、請求項4記載の抗体。

請求項6

(a)配列番号:1で示されるアミノ酸配列を含むCDR、(b)配列番号:2で示されるアミノ酸配列を含むCDR、(c)配列番号:3で示されるアミノ酸配列を含むCDR、(d)配列番号:4で示されるアミノ酸配列を含むCDR、(e)配列番号:5で示されるアミノ酸配列を含むCDR、及び(f)配列番号:6で示されるアミノ酸配列を含むCDRを含む、請求項1〜5のいずれか1項に記載の抗体。

請求項7

(1)配列番号:8に示されるアミノ酸配列を含む重鎖可変領域、及び(2)配列番号:10に示されるアミノ酸配列を含む軽鎖可変領域を含む請求項6記載の抗体。

請求項8

標的細胞に対して細胞障害活性を有する、請求項1〜7のいずれか1項に記載の抗体。

請求項9

請求項1〜8のいずれか1項に記載の抗体を含有してなる、iPS又はES細胞検出用試薬

請求項10

細胞サンプルを請求項1〜8のいずれか1項に記載の抗体と接触させ、該抗体と結合した該サンプル中の細胞を検出することを含む、iPS又はES細胞の検出方法

請求項11

請求項1〜8のいずれか1項に記載の抗体を含有してなる、iPS又はES細胞除去剤

請求項12

前記抗体に対する二次抗体をさらに含有してなる、請求項11記載の剤。

請求項13

細胞集団を請求項1〜8のいずれかに記載の抗体と接触させることを含む、該細胞集団中のiPS又はES細胞の除去方法

請求項14

細胞集団を、さらに前記抗体に対する二次抗体に接触させることを含む、請求項13記載の方法。

請求項15

iPS又はES細胞から分化させた細胞集団を請求項1〜8のいずれか1項に記載の抗体と接触させ、生存する細胞を回収することを含む、未分化細胞を含まない均一な分化細胞集団作製方法

請求項16

前記iPS又はES細胞から分化させた細胞集団を、さらに前記抗体に対する二次抗体に接触させることを含む、請求項15記載の方法。

請求項17

iPS又はES細胞から分化させた細胞集団と、請求項1〜8のいずれか1項に記載の抗体とを組み合わせてなる、細胞移植療法剤

請求項18

請求項15又は16記載の方法により得られる分化細胞集団を含有してなる、細胞移植療法剤。

技術分野

0001

本発明は、人工多能性幹細胞iPS細胞)及び胚性幹細胞ES細胞)に特異的に結合し、かつ当該標的細胞に対して細胞障害活性を有するモノクローナル抗体、並びにその用途に関する。より詳細には、本発明は、既知の抗iPS/ES細胞抗体が認識するのとは異なる、iPS/ES細胞表面上の脂質性物質を認識するモノクローナル抗体、並びにヒトiPS/ES細胞のマーカー抗体及び当該細胞選択的除去のための殺細胞剤としての当該抗体の使用に関する。

背景技術

0002

ヒト人工多能性幹細胞(iPS細胞)の樹立により、多能性幹細胞を用いた細胞移植治療の実用化への扉が開かれた。例えば、パーキンソン病I型糖尿病のような慢性疾患の場合、患者本人からiPS細胞を樹立し、必要な細胞に分化誘導した後に該患者自家移植することが可能になれば、ヒト胚性幹細胞(ES細胞)の使用に伴う倫理的問題(即ち、生命萌芽ともいえる初期胚破壊)や移植時の拒絶反応の問題を回避することができる。一方で、iPS細胞の樹立から目的細胞への分化誘導まで最短でも2-3ヶ月を要することから、脊髄損傷劇症肝炎などの早期治療を必要とする疾患については、様々なHLAタイプのiPS細胞またはそれら由来分化細胞バンキングしておき、それらを用いて同種移植を行うことが考えられる。

0003

しかし、ES細胞やiPS細胞などの多能性幹細胞を心筋や神経などの細胞に分化させる条件下で培養すると、分化した細胞集団の中に未分化細胞が残存し、腫瘍化奇形腫発癌)の原因となっており、さらにiPS細胞は、人工的に初期化された細胞であるがゆえの特有の安全性の問題(即ち、c-Myc等の原癌遺伝子の導入やウイルスベクターの使用による腫瘍化リスク、由来となる体細胞の種類に依存した分化抵抗性による腫瘍化リスク等)をも抱えている。
このように、多能性幹細胞を用いた再生移植治療の実用化には、腫瘍化の問題を克服することが不可欠である。これまでにiPS細胞由来の発癌の抑制に対しては、癌遺伝子を含まない初期化因子組合せの探索、非ウイルスベクターの使用、タンパク質導入によるiPS細胞の樹立といったより安全なiPS細胞樹立という観点からは様々な試みがなされてはいる。しかし、これらはiPS作製時の工夫による発癌リスクの多少の抑制という間接的なアプローチに過ぎず、完全に発癌を阻止できるレベルのものではない。
また、ES細胞にも共通する多能性幹細胞であるがゆえの未分化細胞の残存による腫瘍化(目的細胞以外の多種細胞が混在して腫瘤を形成する奇形腫)リスクに対しても、有効な解決策は提供されていない。

0004

ところで、糖鎖認識抗体は、細胞表面糖鎖の変化を鋭敏に察知するプローブであり、ヒトiPS/ES細胞のマーカー抗体としても広く利用されている。すなわち、SSEA3、SSEA4のエピトープグロボシリーズ糖脂質であり、TRA-1-60、TRA-1-81のエピトープは一種ケラタン硫酸である。ところが、これら既存の抗体のほとんどが、実はEC細胞(embryonal carcinoma cell、胎児性がん細胞)を免疫原として得られたものであり、iPS/ES細胞の他にEC細胞(がん細胞)とも反応する(非特許文献1)。
そこで、幹細胞研究および再生医療研究においては、EC細胞と反応せず、iPS/ES細胞とのみ反応する抗体の出現が期待されていた。最近、Chooは、ヒトES細胞を免疫原として用い、EC細胞とは反応しない抗ヒトES細胞抗体(mAb84)を報告したが(特許文献1)、この抗体がヒトiPS細胞にも反応するか否かは記載されていない(特許文献2)。

0005

本発明者らは、ヒトiPS細胞(Tic)を免疫原としてマウスを免疫し、得られたハイブリドーマについて、ヒトiPS細胞及びヒトEC細胞によるdifferential screeningを行なうことにより、iPS/ES細胞陽性かつEC細胞陰性の抗体(R-10G)を取得することに成功した(特許文献2)。この抗体は、iPS/ES細胞表面上のポドカリキシンタンパク質に結合した、TRA-1-60やTRA-1-81のエピトープとは異なるケラタン硫酸を認識する。
しかしながら、R-10GはヒトiPS/ES細胞に対して細胞障害活性を有していないので、当該抗体を、分化細胞集団中の残存ヒトiPS/ES細胞の除去に使用するには、フローサイトメトリーアフィニティー担体を用いた分離操作が必要となる。

0006

国際公開第2007/102787号パンフレット
国際公開第2012/147992号パンフレット

先行技術

0007

Wright, A.J. and Andrews, P.W., Stem Cell Res., 3(1): 3-11 (2009)

発明が解決しようとする課題

0008

本発明の目的は、iPS/ES細胞から分化誘導された細胞集団内に残存し、移植後の腫瘍化の原因となる未分化細胞を標的化して殺傷することにより選択除去することが可能な、標的細胞に対して特異的に細胞障害活性を有する、新規な抗iPS/ES手段を提供することであり、それによって腫瘍化リスクのない安全な移植細胞薬効毒性評価系としての信頼性の高い分化細胞を提供し、幹細胞を用いた細胞移植治療の実用化、創薬開発の進展への途を開くことである。

課題を解決するための手段

0009

本発明者らは、上記の目的を達成すべく鋭意研究を重ねた結果、R-10G抗体の場合と同様の手法を用いて、脂質性物質を認識するとみられる別のヒトiPS/ES細胞陽性かつヒトEC細胞陰性のモノクローナル抗体(R-17Fと命名)を単離し、この抗体が、意外にもヒトiPS細胞に対して抗体濃度依存的に強い補体非依存的細胞障害作用を示すことを見出した。当該作用は微量の二次抗体の添加で著しく増強された。
本発明者らは、これらの知見に基づいてさらに研究を重ねた結果、本発明を完成するに至った。

0010

即ち、本発明は以下の通りである。
[1] iPS及びES細胞表面上の脂質性物質をエピトープとして認識し、かつEC細胞を認識しないモノクローナル抗体。
[2] iPS及びES細胞がヒト由来である、上記[1]記載の抗体。
[3]ハイブリドーマR-17F(受託番号:NITEBP-01425)により産生されるモノクローナル抗体、又は該モノクローナル抗体が認識する脂質性物質の領域と同一の領域をエピトープとして認識するモノクローナル抗体である、上記[1]又は[2]記載の抗体。
[4] 脂質性物質が糖脂質であり、前記領域が下記一般式
Fuc-Hex−HexNAc-Hex-Hex
(式中、Fucはフコース、Hexはヘキソース、HexNAcはN-アセチルヘキソサミンを示す。)で表される糖鎖を含む、上記[1]〜[3]のいずれかに記載の抗体。
[5] 少なくとも糖脂質中の下記式:
Fuc(α1-2)Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc
(式中、Fucはフコース、Galはガラクトース、GlcNAcはN-アセチルグルコサミン、Glcはグルコースを示す。)で表される糖鎖を含む領域をエピトープとして認識する、上記[4]記載の抗体。
[6] (a)配列番号:1で示されるアミノ酸配列を含むCDR
(b)配列番号:2で示されるアミノ酸配列を含むCDR、
(c)配列番号:3で示されるアミノ酸配列を含むCDR、
(d)配列番号:4で示されるアミノ酸配列を含むCDR、
(e)配列番号:5で示されるアミノ酸配列を含むCDR、及び
(f)配列番号:6で示されるアミノ酸配列を含むCDR
を含む、上記[1]〜[5]のいずれかに記載の抗体。
[7] (1)配列番号:8に示されるアミノ酸配列を含む重鎖可変領域、及び
(2)配列番号:10に示されるアミノ酸配列を含む軽鎖可変領域
を含む上記[6]記載の抗体。
[8]標的細胞に対して細胞障害活性を有する、上記[1]〜[7]のいずれかに記載の抗体。
[9] 上記[1]〜[8]のいずれかに記載の抗体を含有してなる、iPS又はES細胞検出用試薬
[10]細胞サンプルを上記[1]〜[8]のいずれかに記載の抗体と接触させ、該抗体と結合した該サンプル中の細胞を検出することを含む、iPS又はES細胞の検出方法
[11] 上記[1]〜[8]のいずれかに記載の抗体を含有してなる、iPS又はES細胞除去剤
[12] 前記抗体に対する二次抗体をさらに含有してなる、上記[11]記載の剤。
[13]細胞集団を上記[1]〜[8]のいずれかに記載の抗体と接触させることを含む、該細胞集団中のiPS又はES細胞の除去方法
[14] 細胞集団を、さらに前記抗体に対する二次抗体に接触させることを含む、上記[13]記載の方法。
[15] iPS又はES細胞から分化させた細胞集団を上記[1]〜[8]のいずれかに記載の抗体と接触させ、生存する細胞を回収することを含む、未分化細胞を含まない均一な分化細胞集団の作製方法
[16] 前記iPS又はES細胞から分化させた細胞集団を、さらに前記抗体に対する二次抗体に接触させることを含む、上記[15]記載の方法。
[17] iPS又はES細胞から分化させた細胞集団と、上記[1]〜[8]のいずれかに記載の抗体とを組み合わせてなる、細胞移植療法剤
[18] 上記[15]又は[16]記載の方法により得られる分化細胞集団を含有してなる、細胞移植療法剤。

発明の効果

0011

本発明の抗iPS/ES細胞抗体は、標的であるiPS/ES細胞に対して特異的な細胞障害活性を有するので、ヒトiPS/ES細胞から誘導された分化細胞集団中に残存する未分化細胞を選択的に殺傷除去することができ、発がんリスクのない安全な移植用細胞を提供することが可能となる。また、本発明の抗iPS/ES細胞抗体はEC細胞を認識しないので、該抗体を用いれば、多能性幹細胞における正常な増殖性異常増殖性とを区別することが可能となり得る。

図面の簡単な説明

0012

(A)Tic細胞抽出液タンパク質染色を示す図である。Tic細胞を完全RIPA緩衝液で処理した細胞溶解液(15 μgタンパク質)をSDS-PAGE用の緩衝液に溶解し、非還元条件下で4-15%のゲル板を用いて電気泳動した後、Gel code blue染色した。レーンM:分子量マーカー; Cell lysate: Tic細胞抽出液。(B)ハイブリドーマ上清ウエスタンブロット解析結果を示す図である。電気泳動後のゲルPVDF膜ブロットした後、それぞれのハイブリドーマの培養上清を抗体原として免疫染色した。レーン上部の数字はハイブリドーマ番号を示す。レーン M: 分子量マーカー。
レーザー共焦点顕微鏡によるiPS細胞表面におけるR-17F、SSEA-3、SSEA-4エピトープの局在性同定結果を示す図である。上パネルは各抗体でTic細胞を免疫染色した結果を示す。Nomarski:微分干渉顕微鏡像。下パネルはSSEA-4及びSSEA3(左)で二重染色した場合、SSEA-4、SSEA-3及びR-17Fで三重染色した場合(右)の拡大像(80倍)を示す。
R-17F抗体のヒトiPS細胞に対する濃度依存的細胞障害活性を示す図である。17F: R-17F抗体処理; α-MBP: 抗α-マンナン結合タンパク質抗体処理。抗体濃度は、反応液0.1 mLあたりの抗体量(μg)で示している。
R-17F抗体のヒトiPS細胞に対する細胞障害活性の温度依存性分析結果を示す図である。17F: R-17F抗体処理; α-MBP: 抗α-マンナン結合タンパク質抗体処理。
R-17F抗体のヒトiPS細胞に対する反応時間依存的細胞障害活性を示す図である。17F: R-17F抗体処理; α-MBP: 抗α-マンナン結合タンパク質抗体処理。
二次抗体によるR-17F抗体のヒトiPS細胞に対する細胞障害活性の増強作用を示す図である。17F: R-17F抗体処理; α-MBP: 抗α-マンナン結合タンパク質抗体処理。二次抗体濃度は、反応液 0.1 mLあたりの抗体量(μg)で示している。
R-17F抗体のiPS細胞障害活性における既知の抗iPS/ES細胞抗体との比較を示す図である。左パネルはR-10G抗体との比較を示す。棒グラフは左から抗α-マンナン結合タンパク質抗体処理(コントロール)、R-17F抗体処理、R-10G抗体処理の結果を示す。右パネルはTRA-1-60、TRA-1-81及びSSEA-4との比較を示す。棒グラフは左から抗α-マンナン結合タンパク質抗体処理(コントロール)、R-17F抗体処理、TRA-1-60処理、TRA-1-81処理、SSEA-4処理の結果を示す。
R-17F抗体によるiPS細胞障害活性は細胞がコロニーを形成し増殖している状態においても有効であることを示す図である。左側カラムは抗体無添加の状態での増殖時間経過位相差顕微鏡にて観察した。中央のカラムはR-10G抗体を添加、右側カラムはR-17F添加の状態で72時間培養した結果を示す。
R-17F抗体のiPS細胞(Tic & 201B7)およびES細胞(H9 & KhES-3)への結合を示す図である。それぞれの細胞は、R-17F抗体、ついで蛍光標識二次抗体と反応させたのち、細胞結合性フローサイトメーターで測定した。
R-17F抗体のiPS細胞(Tic & 201B7)およびES細胞(H9 & KhES-3)に対する細胞障害活性とその濃度依存性を示す図である。
R-17Fのエピトープが糖脂質性であることを示す図である。(A)R-17F抗体のTic細胞に対する反応性に及ぼす糖脂質合成阻害剤PDMP処理の効果を示す。(B)TLC-免疫染色による脂質性R-17Fエピトープの解析結果を示す。Tic細胞から全脂質成分を抽出し、TLCで分離した後、プリムリン染色(L)及びR-17Fで免疫染色した(R)結果を示す。(C) TLCで分離精製したバンド[A]をMALDI-TOF MSで解析した結果を示す。
R-17F抗体が、Lacto-N-fucopentaose I (LNFPI)に選択的に結合することを示す図である。
(A)R-17F抗体(上パネル)と既知抗体mAb84(下パネル)とのTic細胞に対する反応性の比較、及び(B)mAb84のTic細胞に対する細胞障害活性を示す図である。

0013

[I] 本発明の抗体
本発明は、iPS及びES細胞を特異的に認識し得るモノクローナル抗体(以下、「本発明の抗iPS/ES細胞抗体」、あるいは単に「本発明の抗体」という場合がある。)を提供する。本抗体は、さらに(a)EC細胞を認識しないこと、及び(b) iPS及びES細胞の表面上に存在する脂質性物質、より具体的には糖脂質を認識することを特徴とする。SSEA-3やSSEA-4等の糖脂質を認識する既知の抗iPS/ES細胞抗体は、EC細胞をも認識するので、本発明の抗iPS/ES細胞抗体は、これら既知抗体が認識する糖脂質とは異なる脂質性分子の構造を認識すると考えられた。実際、R-17F抗体及びSSEA-4抗体を用いたヒトiPS細胞の全脂質成分のFar-eastern blottingは、両抗体が異なる脂質性物質を認識した(図11B参照、SSEA-4抗体に関するデータ省略)。また、R-17F抗体のヒトiPS細胞に対する反応性は、セラミドを、ガングリオシド系列グロボシド系列の糖脂質生合成出発物質であるグルコシルセラミドに変換する酵素反応阻害することにより低減することから(図11A参照)、該抗体が認識する脂質性分子はグルコシルセラミドを出発物質とする糖脂質であることが示唆された。

0014

抗iPS/ES細胞抗体がiPS及びES細胞の表面上の脂質性物質を認識することは、例えば、iPS又はES細胞の細胞膜から有機溶媒等により脂質成分を抽出し、例えば薄層クロマトグラフィー(TLC)等により該脂質を分離し、抗iPS/ES細胞抗体で免疫染色(Far-eastern blotting)することにより、確認することができる。該抗体と反応した脂質を単離し、質量分析NMR分析を行うことにより、該抗体が認識する脂質性物質を同定することもできる。
前記Far-eastern blotting(図11B)において、R-17F抗体と結合したTLCバンドをMALDI-TOF MS(図11C参照)及びタンデムMSで解析した結果、R-17F抗体は、Fuc-Hex-HexNAc-Hex-Hex-セラミド(Fuc:フコース、Hex:ヘキソース、HexNAc: N-アセチルヘキソサミン)を認識して結合することが示された。さらに、該構造解析結果に基づき、ラクト系及びネオラクト系糖鎖を含む合成脂質とR-17F抗体との結合活性を調べたところ、R-17F抗体はLacto-N-fucopentaose I(Fuc(α1-2)Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc; Fuc: フコース、Gal:ガラクトサミン、GlcNAc:N-アセチルグルコサミン、Glc:グルコース)(本明細書中「LNFPI」と略記する場合もある)を含む脂質とは結合したが、末端にフコースを含まないLacto-N-tetraoseやLacto-N-neotetraose、あるいは分岐を有するルイスaもしくはルイスb糖鎖を含む脂質には結合しなかった(図12)。
従って、好ましい実施態様において、本発明の抗体は、フコースを末端とする直鎖状ペンタオース、即ち、Fuc-Hex-HexNAc-Hex-Hexを含む糖脂質、好ましくはLNFP Iもしくはそれと対応するネオラクト系糖鎖であるFuc(α1-2)Gal(β1-4)GlcNAc(β1-3)Gal(β1-4)Glcを含むスフィンゴ糖脂質をエピトープとして認識することにより特徴づけられる。

0015

本発明の抗体は、標的であるiPS/ES細胞に対して細胞障害活性を有していても、有していなくてもよいが、好ましい実施態様においては、本発明の抗体は、少なくともiPS細胞に対して細胞障害活性を有し、より好ましくは、ES細胞に対しても細胞障害活性を有する。該細胞障害活性はいかなる機序によるものであってよく、例えば、抗体依存性細胞障害活性ADCC)、補体依存性細胞障害活性(CDC)、抗体依存性ファゴサイトーシスADCP)、ADCC/CDC非依存的アポトーシス/ネクローシス誘導作用などが挙げられるが、これらに限定されない。後述の実施例に記載される抗iPS/ES細胞抗体R-17Fは、温度非依存的に進行し、補体成分を含まない培養条件で細胞障害活性を示すことから、補体非依存的な細胞障害活性を有することが示されている。また、R-17F抗体による細胞死はネクローシス様である。
抗iPS/ES細胞抗体が標的細胞に対して細胞障害活性を有するか否かは、自体公知の方法(例えば、WO 2007/102787参照)により調べることができる。当業者は、抗体の使用目的に応じて、細胞障害性抗体又は非細胞障害性抗体のいずれかを選択することができる。

0016

好ましい一実施態様において、本発明の抗体は、R-17F抗体もしくはそれと同じ相補性決定領域(CDR)を有する抗体である。
抗体分子基本構造は、各クラス共通で、分子量5-7万の重鎖と2-3万の軽鎖から構成される(免疫学イラストレイテッド(I. Roitt, J. Brostoff, D. Male編))。重鎖は、通常約440個のアミノ酸を含むポリペプチド鎖からなり、クラスごとに特徴的な構造をもち、IgGIgMIgAIgDIgEに対応してγ、μ、α、δ、ε鎖とよばれる。さらにIgGには、IgG1、IgG2、IgG3、IgG4が存在し、それぞれγ1、γ2、γ3、γ4とよばれている。軽鎖は、通常約220個のアミノ酸を含むポリペプチド鎖からなり、L型とK型の2種が知られており、それぞれλ、κ鎖とよばれる。抗体分子の基本構造のペプチド構成は、それぞれ相同な2本の重鎖及び2本の軽鎖が、ジスルフィド結合(S-S結合)及び非共有結合によって結合され、分子量15-19万である。2種の軽鎖は、どの重鎖とも対をなすことができる。個々の抗体分子は、常に同一の軽鎖2本と同一の重鎖2本からできている。

0017

鎖内S-S結合は、重鎖に4つ(μ、ε鎖には5つ)、軽鎖には2つあって、アミノ酸100-110残基ごとに1つのループを形成し、この立体構造は各ループ間で類似していて、構造単位あるいはドメインとよばれる。重鎖、軽鎖ともにN末端に位置するドメインは、同種動物の同一クラス(サブクラス)からの標品であっても、そのアミノ酸配列が一定せず、可変領域(V領域)とよばれている(重鎖可変領域ドメインはVH、軽鎖可変領域ドメインはVLと表される)。これよりC末端側のアミノ酸配列は、各クラスあるいはサブクラスごとにほぼ一定で定常領域(C領域)とよばれている(各ドメインは、それぞれ、CH1、CH2、CH3あるいはCLと表される)。

0018

抗体の抗原決定部位はVH及びVLによって構成され、結合の特異性はこの部位のアミノ酸配列によっている。一方、補体や各種細胞との結合といった生物学的活性は各クラスIgのC領域の構造の差を反映している。軽鎖と重鎖の可変領域の可変性は、どちらの鎖にも存在する3つの小さな超可変領域にほぼ限られることが分かっており、これらの領域を相補性決定領域(CDR)と呼んでいる。可変領域のうち、CDRを除く部分はフレームワーク領域(FR)とよばれ、比較的一定である。フレームワーク領域は、βシートコンフォメーションを採用しておりそしてCDRはβシート構造を接続するループを形成することができる。各鎖におけるCDRは、フレームワーク領域によりそれらの三次元構造に保持されそして他の鎖からのCDRと共に抗原結合部位を形成する。

0019

CDRを同定するためのいくつかのナンバリングシステムが一般に使用されている。Kabat定義は、配列変化性に基づき、Chothia定義は、構造ループ領域の位置に基づく。AbM定義は、Kabat及びChothiaアプローチの間の折衷である。軽鎖・重鎖の可変領域のCDRは、Kabat、Chothia又はAbMアルゴリズムにしたがって、境界を示される(Martin et al. (1989) Proc. Natl. Acad. Sci. USA 86: 9268-9272; Martin et al. (1991) MethodsEnzymol. 203: 121-153; Pedersen et al. (1992) Immunomethods 1: 126; 及びRees et al. (1996) In Sternberg M.J.E. (ed.), Protein Structure Prediction, Oxford University Press, Oxford, pp. 141-172)。

0020

本発明の抗体のCDRは、該抗体の重鎖及び軽鎖遺伝子の可変領域(VH及びVL)のヌクレオチド配列を、モンペリエ第2大学から提供される、免疫グロブリン及びT細胞レセプター再構成されたヌクレオチド配列の標準化解析のための統合システムであるIMGT/V-QUEST (http://www.imgt.org/IMGT_vquest/share/textes/) を用いて解析することにより同定されるCDRであると定義づけられる。
R-17F抗体の場合、重鎖可変領域のCDRは、配列番号:8で表されるアミノ酸配列中アミノ酸番号26〜33(CDR1-H)、51〜60(CDR2-H)及び99〜103(CDR3-H)であり、軽鎖可変領域のCDRは、配列番号:10で表されるアミノ酸配列中アミノ酸番号27〜32(CDR1-L)、50〜52(CDR2-L)及び89〜97(CDR3-L)である。

0021

従って、好ましい一実施態様において、本発明の抗体は、
(1)(a)Gly Phe Thr Phe Ser Tyr Tyr Trp(配列番号:1)で示されるアミノ酸配列を含むCDR、
(b)Ile Arg Leu Lys Ser Asp Asn Tyr Ala Thr(配列番号:2)で示されるアミノ酸配列を含むCDR、
(c)Glu Gly Phe Gly Tyr(配列番号:3)で示されるアミノ酸配列を含むCDR、
(d)Gln Asp Val Ser Thr Ala(配列番号:4)で示されるアミノ酸配列を含むCDR、
(e)Trp Ala Ser(配列番号:5)で示されるアミノ酸配列を含むCDR、及び
(f)Gln Gln His Tyr Ser Thr Pro Arg Thr(配列番号:6)で示されるアミノ酸配列を含むCDRを含む抗体、あるいは
(2)配列番号:1〜6に示されるアミノ酸配列より選択される1以上(例、1、2、3、4、5もしくは6)のアミノ酸配列の各々において、1もしくは2個のアミノ酸残基置換及び/又は欠失及び/又は付加及び/又は挿入された、上記(a)〜(f)のCDRを含む抗体であって、iPS及びES細胞を特異的に認識するが、EC細胞を認識しないものである。

0022

より好ましくは、
(1)上記(a)〜(c)のCDRを含む軽鎖可変領域と、上記(d)〜(f)のCDRを含む重鎖可変領域とを含む抗体、又は
(2) 配列番号:1〜6に示されるアミノ酸配列より選択される1以上(例、1、2、3、4、5もしくは6)のアミノ酸配列の各々において、1もしくは2個のアミノ酸残基が置換及び/又は欠失及び/又は付加及び/又は挿入された、上記(1)の軽鎖及び重鎖可変領域を含む抗体であって、iPS及びES細胞を特異的に認識するが、EC細胞を認識しないものである。

0023

より好ましくは、上記の抗体において、(a)、(b)及び(c)のCDRは、軽鎖のN末端からこの順に配置される。即ち、(a)、(b)及び(c)のCDRは、それぞれ重鎖のCDR1、CDR2及びCDR3に相当する。同様に、(d)、(e)及び(f)のCDRは、重鎖のN末端からこの順に配置される。即ち、(d)、(e)及び(f)のCDRは、それぞれ軽鎖のCDR1、CDR2及びCDR3に相当する。

0024

本発明の抗体のより一層好ましい例は、
(1)配列番号:8に示されるアミノ酸配列を含む重鎖可変領域と、配列番号:10に示されるアミノ酸配列を含む軽鎖可変領域とを含む抗体、又は
(2)配列番号:8及び10のいずれか一方もしくは両方において、1以上、好ましくは1〜20個、より好ましくは1〜10個、いっそう好ましくは1〜数(例、1、2、3、4もしくは5)個のアミノ酸残基が置換及び/又は欠失及び/又は付加及び/又は挿入された、上記(1)の軽鎖及び重鎖可変領域を含む抗体であって、iPS及びES細胞を特異的に認識するが、EC細胞を認識しないものである。

0025

抗体のアイソタイプは特に限定されないが、好ましくはIgG、IgMまたはIgA、特に好ましくはIgGが挙げられる。
本発明の抗体は、抗原決定基(エピトープ)を特異的に認識し、結合するための相補性決定領域 (CDR) を少なくとも有するものであれば、分子の形態に特に制限はなく、完全抗体分子の他、例えばFab、Fab'、F(ab’)2等のフラグメント、scFv、scFv-Fc、ミニボディーダイアボディー等の遺伝子工学的に作製されたコンジュゲート分子、あるいはポリエチレングリコール(PEG) 等の蛋白質安定化作用を有する分子などで修飾されたそれらの誘導体などであってもよい。

0026

[II] 本発明の抗体の作製
本発明の抗体は自体公知の抗体製造法によって作製することができる。以下に、本発明の抗体作製のための免疫原(iPS/ES細胞)の調製方法、並びに該抗体の製造方法について説明する。

0027

(1)免疫原の調製
本発明の抗体の作製に用いられる抗原としては、iPS細胞、ES細胞又は細胞表面の脂質性物質を含有するその画分(例、膜画分)などを使用することができる。

0028

iPS細胞は、任意の方法により哺乳動物から採取した体細胞を初期化することによって作製することができる [例えば、Cell 2007;131:861-72, Science 2007;318:1917-20 (human); Cell 2006;126:663-76 (mouse); Cell Stem Cell 2008;3 (6) :587-90 (Rhesus monkey); Cell Stem Cell 2008; (1) : 11-5, Cell Stem Cell 2008; 4 (1) : 16-9 (rat); J Mol Cell Biol 2009; 1 (1) : 6-54 (pig); Mol Reprod Dev 2010; 77(1): 2 (dog); Stem Cell Res 2010; 4 (3) : 180-8, Genes Cells 2010; 15 (9) : 959-69 (marmoset); J Biol Chem 2010;285 (41) : 31362-9 (rabbit)を参照]。
また、iPS細胞は、様々な公的もしくは私的寄託機関から入手することもでき、また市販されている。例えば、ヒトiPS細胞株201B7及び235G1は理研バイオリソースセンターセルバンクから入手することができ、また、Tic(JCRB1331)は独立行政法人医薬基盤研究所から入手可能である。

0029

ES細胞は任意の公知の方法で作製することができる。例えば、利用可能なES細胞の作製方法として、胚盤胞期哺乳動物胚から内部細胞塊解離して培養する方法 [例えば、Manipulating the Mouse Embryo: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1994)参照] や、体細胞核移植により作製された初期胚を培養する方法 (Nature 1997; 385 : 810, Science 1998;280: 1256, Protein Nucleic Acid and Enzyme 1999; 4 : 892, Nat Biotechnol 1999; 17: 456, Nature 1998 ; 394 : 369, Nat Genet 1999;22:127, Proc Natl Acad Sci USA 1999; 96: 14984, Nat Genet 2000 ; 24 : 109) 等が挙げられるが、これらに限定されない。
また、ES細胞は、様々な公的もしくは私的寄託機関から入手することもでき、また市販されている。例えば、ヒトES細胞株H1及びH9はウィスコシン大学のWiCell研究所細胞バンクより、KhES-1、-2及び-3は京都大学再生医科学研究所あるいは理研バイオリソースセンターのセルバンクより、それぞれ入手することができる。

0030

無傷のiPS又はES細胞を免疫のために用いてもよいし、凍結融解放射線照射もしくはグルタルアルデヒド処理したiPS又はES細胞を用いることもできる。
あるいは、本発明の抗体の作製のための免疫原として、iPS又はES細胞の細胞膜画分を用いることもできる。該細胞膜画分は、iPS又はES細胞をホモジナイズし、低速遠心により細胞デブリスを除去した後、上清を高速遠心して細胞膜含有画分沈殿させる(必要に応じて、さらに密度勾配遠心等により細胞膜画分を精製する)ことにより、調製することができる。

0031

(2)モノクローナル抗体の作製
(a) モノクローナル抗体産生細胞の作製
上記のようにして調製された免疫原は、温血動物に対して、例えば腹腔注入静脈注入皮下注射皮内注射などの投与方法によって、抗体産生が可能な部位にそれ自体単独であるいは担体希釈剤と共に投与される。投与に際して抗体産生能を高めるため、完全フロイントアジュバント不完全フロイントアジュバントを投与してもよい。投与は、通常1〜6週毎に1回ずつ、計2〜10回程度行われる。温血動物としては、例えばマウス、ラットウサギヤギサルイヌモルモットヒツジロバニワトリ等が用いられるが、マウス、ラット及びウサギが好ましい。

0032

あるいは、免疫原を体外免疫法に供することもできる。体外免疫法に用いられる動物細胞としては、ヒトおよび上記した温血動物(好ましくはマウス、ラット)の末梢血脾臓リンパ節などから単離されるリンパ球、好ましくはBリンパ球等が挙げられる。例えば、マウスやラット細胞の場合、4〜12週齢程度の動物から脾臓を摘出脾細胞を分離し、適当な培地(例:ダルベッコ改変イーグル培地(DMEM)、RPMI1640培地、ハムF12培地等)で洗浄した後、抗原を含む胎仔ウシ血清FCS;5〜20%程度)添加培地に浮遊させて4〜10日間程度CO2インキュベーターなどを用いて培養する。抗原濃度としては、例えば0.05〜5μgが挙げられるがこれに限定されない。同一系統の動物(1〜2週齢程度が好ましい)の胸腺細胞培養上清を常法に従って調製し、培地に添加することが好ましい。

0033

ヒト細胞の体外免疫では、胸腺細胞培養上清を得ることは困難なので、IL-2、IL-4、IL-5、IL-6等数種のサイトカインおよび必要に応じてアジュバント物質(例:ムラミルジペプチド等)を抗原とともに培地に添加して免疫感作を行うことが好ましい。

0034

モノクローナル抗体の作製に際しては、抗原を免疫された温血動物(例:マウス、ラット)もしくは動物細胞(例:ヒト、マウス、ラット)から抗体価の上昇が認められた個体もしくは細胞集団を選択し、最終免疫の2〜5日後に脾臓またはリンパ節を採取もしくは体外免疫後4〜10日間培養した後に細胞を回収して抗体産生細胞を単離し、これと骨髄腫細胞とを融合させることにより抗体産生ハイブリドーマを調製することができる。血清中の抗体価の測定は、例えば標識化抗原抗血清とを反応させた後、抗体に結合した標識剤の活性を測定することにより行うことができる。

0035

骨髄腫細胞は多量の抗体を分泌するハイブリドーマを産生し得るものであれば特に制限はないが、自身は抗体を産生もしくは分泌しないものが好ましく、また、細胞融合効率が高いものがより好ましい。また、ハイブリドーマの選択を容易にするために、HAT(ヒポキサンチンアミノプテリンチミジン感受性の株を用いることが好ましい。例えばマウス骨髄腫細胞としてはNS-1、P3U1、SP2/0、AP-1等が、ラット骨髄腫細胞としてはR210.RCY3、Y3-Ag 1.2.3等が、ヒト骨髄腫細胞としてはSKO-007、GM1500-6TG-2、LICR-LON-HMy2、UC729-6等が挙げられる。

0036

融合操作は既知の方法、例えばケーラーミルスタインの方法[ネイチャー(Nature)、256巻、495頁(1975年)]に従って実施することができる。融合促進剤としては、ポリエチレングリコール(PEG)やセンダイウィルスなどが挙げられるが、好ましくはPEGなどが用いられる。PEGの分子量は特に制限はないが、低毒性で且つ粘性が比較的低いPEG1000〜PEG6000が好ましい。PEG濃度としては例えば10〜80%程度、好ましくは30〜50%程度が例示される。PEGの希釈用溶液としては無血清培地(例:RPMI1640)、5〜20%程度の血清を含む完全培地リン酸緩衝生理食塩水PBS)、トリス緩衝液等の各種緩衝液を用いることができる。所望によりDMSO(例:10〜20%程度)を添加することもできる。融合液のpHとしては、例えば4〜10程度、好ましくは6〜8程度が挙げられる。

0037

抗体産生細胞(脾細胞)数と骨髄腫細胞数との好ましい比率は、通常1:1〜20:1程度であり、通常20〜40℃、好ましくは30〜37℃で通常1〜10分間インキュベートすることにより効率よく細胞融合を実施できる。

0038

抗体産生細胞株はまた、リンパ球をトランスフォームし得るウイルスに抗体産生細胞を感染させて該細胞を不死化することによっても得ることができる。そのようなウイルスとしては、例えばエプスタイン−バー(EB)ウイルス等が挙げられる。大多数の人は伝染性単核球症無症状感染としてこのウイルスに感染した経験があるので免疫を有しているが、通常のEBウイルスを用いた場合にはウイルス粒子も産生されるので、適切な精製を行うべきである。ウイルス混入の可能性のないEBシステムとして、Bリンパ球を不死化する能力を保持するがウイルス粒子の複製能力欠損した組換えEBウイルス(例えば、潜伏感染状態から溶解感染状態への移行スイッチ遺伝子における欠損など)を用いることもまた好ましい。

0039

マーモセット由来のB95-8細胞はEBウイルスを分泌しているので、その培養上清を用いれば容易にBリンパ球をトランスフォームすることができる。この細胞を例えば血清及びペニシリンストレプトマイシン(P/S)添加培地(例:RPMI1640)もしくは細胞増殖因子を添加した無血清培地で培養した後、濾過もしくは遠心分離等により培養上清を分離し、これに抗体産生Bリンパ球を適当な濃度(例:約107細胞/mL)で浮遊させて、通常20〜40℃、好ましくは30〜37℃で通常0.5〜2時間程度インキュベートすることにより抗体産生B細胞株を得ることができる。ヒトの抗体産生細胞が混合リンパ球として提供される場合、大部分の人はEBウイルス感染細胞に対して傷害性を示すTリンパ球を有しているので、トランスフォーメーション頻度を高めるためには、例えばヒツジ赤血球等とEロゼットを形成させることによってTリンパ球を予め除去しておくことが好ましい。また、可溶性抗原を結合したヒツジ赤血球を抗体産生Bリンパ球と混合し、パーコール等の密度勾配を用いてロゼットを分離することにより標的抗原に特異的なリンパ球を選別することができる。さらに、大過剰の抗原を添加することにより抗原特異的なBリンパ球はキャップされて表面にIgGを提示しなくなるので、抗IgG抗体を結合したヒツジ赤血球と混合すると抗原非特異的なBリンパ球のみがロゼットを形成する。従って、この混合物からパーコール等の密度勾配を用いてロゼット非形成層を採取することにより、抗原特異的Bリンパ球を選別することができる。

0040

トランスフォーメーションによって無限増殖能を獲得したヒト抗体分泌細胞は、抗体分泌能を安定に持続させるためにマウスもしくはヒトの骨髄腫細胞と戻し融合させることができる。骨髄腫細胞としては上記と同様のものが用いられ得る。

0041

ハイブリドーマのスクリーニング育種は通常HAT(ヒポキサンチン、アミノプテリン、チミジン)を添加して、5〜20%FCSを含む動物細胞用培地(例:RPMI1640)もしくは細胞増殖因子を添加した無血清培地で行われる。ヒポキサンチン、アミノプテリンおよびチミジンの濃度としては、例えばそれぞれ約0.1mM、約0.4μMおよび約0.016mM等が挙げられる。ヒト−マウスハイブリドーマの選択にはウワバイン耐性を用いることができる。ヒト細胞株はマウス細胞株に比べてウワバインに対する感受性が高いので、10-7〜10-3M程度で培地に添加することにより未融合のヒト細胞を排除することができる。

0042

ハイブリドーマの選択にはフィーダー細胞やある種の細胞培養上清を用いることが好ましい。フィーダー細胞としては、ハイブリドーマの出現を助けて自身は死滅するように生存期間が限られた異系の細胞種、ハイブリドーマの出現に有用な増殖因子を大量に産生し得る細胞を放射線照射等して増殖力を低減させたもの等が用いられる。例えば、マウスのフィーダー細胞としては、脾細胞、マクロファージ、血液、胸腺細胞等が、ヒトのフィーダー細胞としては、末梢血単核細胞等が挙げられる。細胞培養上清としては、例えば上記の各種細胞の初代培養上清や種々の株化細胞の培養上清が挙げられる。

0043

また、ハイブリドーマは、抗原を蛍光標識して融合細胞と反応させた後、蛍光活性化セルソータFACS)を用いて抗原と結合する細胞を分離することによっても選択することができる。この場合、標的抗原に対する抗体を産生するハイブリドーマを直接選択することができるので、クローニングの労力を大いに軽減することが可能である。

0044

標的抗原に対するモノクローナル抗体を産生するハイブリドーマのクローニングには種々の方法が使用できる。

0045

アミノプテリンは多くの細胞機能を阻害するので、できるだけ早く培地から除去することが好ましい。マウスやラットの場合、ほとんどの骨髄腫細胞は10〜14日以内に死滅するので、融合2週間後からはアミノプテリンを除去することができる。但し、ヒトハイブリドーマについては通常融合後4〜6週間程度はアミノプテリン添加培地で維持される。ヒポキサンチン、チミジンはアミノプテリン除去後1週間以上後に除去するのが望ましい。即ち、マウス細胞の場合、例えば融合7〜10日後にヒポキサンチンおよびチミジン(HT)添加完全培地(例:10%FCS添加RPMI1640)の添加または交換を行う。融合後8〜14日程度で目視可能なクローンが出現する。クローンの直径が1mm程度になれば培養上清中の抗体量の測定が可能となる。

0046

抗体量の測定は、例えば標的抗原またはその誘導体あるいはその部分ペプチド(抗原決定基として用いた部分アミノ酸配列を含む)を直接あるいは担体とともに吸着させた固相(例:マイクロプレート)にハイブリドーマ培養上清を添加し、次に放射性物質(例:125I、131I、3H、14C)、酵素(例:β−ガラクトシダーゼβ−グルコシダーゼアルカリフォスファターゼパーオキシダーゼリンゴ酸脱水素酵素)、蛍光物質(例:フルオレスカミン、フルオレッセンイソチオシアネート)、発光物質(例:ルミノールルミノール誘導体ルシフェリンルシゲニン)などで標識した抗免疫グロブリン(IgG)抗体(もとの抗体産生細胞が由来する動物と同一種の動物由来のIgGに対する抗体が用いられる)またはプロテインAを加え、固相に結合した標的抗原(抗原決定基)に対する抗体を検出する方法、抗IgG抗体またはプロテインAを吸着させた固相にハイブリドーマ培養上清を添加し、上記と同様の標識剤で標識した標的抗原またはその誘導体あるいはその部分ペプチドを加え、固相に結合した標的抗原(抗原決定基)に対する抗体を検出する方法などによって行うことができる。

0047

クローニング方法としては限界希釈法通常用いられるが、軟寒天を用いたクローニングやFACSを用いたクローニング(上述)も可能である。限界希釈法によるクローニングは、例えば以下の手順で行うことができるがこれに限定されない。

0048

上記のようにして抗体量を測定して陽性ウェルを選択する。適当なフィーダー細胞を選択して96ウェルプレートに添加しておく。抗体陽性ウェルから細胞を吸い出し、完全培地(例:10%FCSおよびP/S添加RMPI1640)中に30細胞/mLの密度となるように浮遊させ、フィーダー細胞を添加したウェルプレートに0.1mL(3細胞/ウェル)加え、残りの細胞懸濁液を10細胞/mLに希釈して別のウェルに同様にまき(1細胞/ウェル)、さらに残りの細胞懸濁液を3細胞/mLに希釈して別のウェルにまく(0.3細胞/ウェル)。目視可能なクローンが出現するまで2〜3週間程度培養し、抗体量を測定・陽性ウェルを選択し、再度クローニングする。ヒト細胞の場合はクローニングが比較的困難なので、10細胞/ウェルのプレートも調製しておく。通常2回のサブクローニングでモノクローナル抗体産生ハイブリドーマを得ることができるが、その安定性を確認するためにさらに数ヶ月間定期的に再クローニングを行うことが望ましい。

0049

(b)ディファレンシャル・スクリーニング
上記のようにして得られたiPS又はES細胞に対するモノクローナル抗体を産生するハイブリドーマは、次いで2次スクリーニングに供される。2次スクリーニングでは、免疫原として使用されたiPS又はES細胞だけでなく、ES又はiPS細胞、EC細胞、EG細胞、mGS細胞等の多能性幹細胞もプローブとして使用される。2次スクリーニングの結果、iPS及びES細胞とは反応するが、ES細胞等のiPS及びES細胞以外の多能性幹細胞並びに体細胞とは反応しなかったモノクローナル抗体を産生するハイブリドーマを、本発明の抗iPS/ES細胞抗体を産生するハイブリドーマとして選択することができる。

0050

こうして得られたハイブリドーマはin vitro又はin vivoで培養することができる。in vitroでの培養法としては、上記のようにして得られるモノクローナル抗体産生ハイブリドーマを、細胞密度を例えば105〜106細胞/mL程度に保ちながら、また、FCS濃度を徐々に減らしながら、ウェルプレートから徐々にスケールアップしていく方法が挙げられる。in vivoでの培養法としては、例えば、腹腔内にミネラルオイルを注入して形質細胞腫(MOPC)を誘導したマウス(ハイブリドーマの親株組織適合性のマウス)に、5〜10日後に106〜107細胞程度のハイブリドーマを腹腔内注射し、2〜5週間後に麻酔下で腹水を採取する方法が挙げられる。

0051

(c)モノクローナル抗体の精製
モノクローナル抗体の分離精製は、自体公知の方法、例えば、免疫グロブリンの分離精製法[例:塩析法アルコール沈殿法等電点沈殿法、電気泳動法イオン交換体(例:DEAE、QEAE)による吸脱着法、超遠心法ゲルろ過法、抗原結合固相あるいはプロテインAあるいはプロテインGなどの活性吸着剤により抗体のみを採取し、結合を解離させて抗体を得る特異的精製法など]に従って行うことができる。
以上のようにして、ハイブリドーマを温血動物の生体内又は生体外で培養し、その体液または培養物から抗体を採取することによって、モノクローナル抗体を製造することができる。

0052

上記のようにして得られる本発明の抗iPS/ES細胞抗体の例として、後述の実施例に記載されるマウス抗ヒトiPS/ES細胞抗体mAb R-17Fが挙げられる。この抗体を産生するハイブリドーマ(R-17F)は、2012年10月11日付で、独立行政法人製品評価技術基盤機構特許微生物寄託センター(日本国千葉県木更津市かずさ足2-5-8)に、受託番号NITEP-1425として寄託され、2013年10月8日付で、受託番号NITE BP-01425として、ブダペスト条約に基づく国際寄託に移管されている。

0053

(d)組換え抗体の作製
別の実施態様において、こうして得られた抗iPS/ES細胞抗体の重鎖及び軽鎖をコードするcDNAを、該抗体を産生するハイブリドーマのcDNAライブラリーから単離し、常法に従って、目的の宿主細胞で機能的な適当な発現ベクターにクローニングすることができる。次いで、こうして得られた重鎖及び軽鎖発現ベクターを宿主細胞に導入する。有用な宿主細胞としては、動物細胞、例えば上記したマウス骨髄腫細胞の他、チャイニーズハムスター卵巣(CHO)細胞、サル由来のCOS-7細胞、Vero細胞ラット由来GHS細胞などが挙げられる。遺伝子導入は動物細胞に適用可能ないかなる方法を用いてもよいが、好ましくはエレクトロポレーション法又はカチオン性脂質を用いた方法などが挙げられる。宿主細胞に適した培地中で一定期間培養後、培養上清を回収して抗体タンパク質を常法により精製することにより、本発明の抗体を単離することができる。あるいは、宿主細胞としてウシ、ヤギ、ニワトリ等のトランスジェニック技術が確立し、且つ家畜家禽)として大量繁殖ノウハウ蓄積されている動物の生殖系列細胞を用い、常法によってトランスジェニック動物を作製することにより、得られる動物の乳汁もしくはから容易に且つ大量に本発明の抗体を得ることもできる。さらに、トウモロコシ、イネ、コムギダイズタバコなどのトランスジェニック技術が確立し、且つ主要作物として大量に栽培されている植物細胞を宿主細胞として、プロトプラストへのマイクロインジェクションエレクトロポレーション無傷細胞へのパーティクルガン法やTiベクター法などを用いてトランスジェニック植物を作製し、得られる種子や葉などから大量に本発明の抗体を得ることも可能である。

0054

本発明の抗体を、iPS/ES細胞から誘導した分化細胞集団中に残存する未分化iPS/ES細胞を除去する目的で使用する場合は、in vitroで分化細胞集団と該抗体とを接触させてiPS/ES細胞を死滅させた、生存細胞から該抗体を除去した後に分化細胞集団を細胞移植等に利用する。従って、本発明の抗体は必ずしもヒト化する必要はない。しかし、iPS/ES細胞から誘導した分化細胞集団をヒトに移植するとともに、本発明の抗体を投与することにより、該分化細胞集団中に残存するおそれのある未分化iPS/ES細胞が移植後に腫瘍を形成するリスクを低減することもできるので、本発明の抗体は、ヒトへの投与に適したキメラ抗体もしくはヒト化抗体とすることもできる。

0055

(e)キメラ抗体の作製
本明細書において「キメラ抗体」とは、重鎖及び軽鎖の可変領域(VH及びVL)の配列が非ヒト動物種に由来し、定常領域(CH及びCL)の配列がヒトに由来する抗体を意味する。可変領域の配列は、例えばマウス、ラット、ウサギ等の容易にハイブリドーマを作製することができる動物種由来であることが好ましく、定常領域の配列は投与対象となる動物種由来であることが好ましい。

0056

キメラ抗体の作製法としては、例えば米国特許第6,331,415号明細書に記載される方法あるいはそれを一部改変した方法などが挙げられる。

0057

得られたキメラ重鎖及びキメラ軽鎖発現ベクターで宿主細胞を形質転換する。宿主細胞、形質転換法等は、上記(d)組換え抗体の作製において例示したものが、同様に好ましく用いられ得る。

0058

(f)ヒト化抗体
本明細書において「ヒト化抗体」とは、可変領域に存在する相補性決定領域(CDR)以外のすべての領域(即ち、定常領域及び可変領域中のフレームワーク領域(FR))の配列がヒト由来であり、CDRの配列のみが他の哺乳動物種由来である抗体を意味する。他の哺乳動物種としては、例えばマウス、ラット、ウサギ等の容易にハイブリドーマを作製することができる動物種が好ましい。

0059

ヒト化抗体の作製法としては、例えば米国特許第5,225,539号、第5,585,089号、第5,693,761号、第5,693,762号、欧州特許出願公開第239400号、国際公開第92/19759号に記載される方法あるいはそれらを一部改変した方法などが挙げられる。具体的には、上記キメラ抗体の場合と同様にして、ヒト以外の哺乳動物種(例、マウス)由来のVH及びVLをコードするDNAを単離した後、常法により自動DNAシークエンサー(例、Applied Biosystems社製等)を用いてシークエンスを行い、得られる塩基配列もしくはそこから推定されるアミノ酸配列を公知の抗体配列データベース[例えば、Kabat database (Kabatら,「Sequences of Proteins of Immunological Interest」,US Department of Health and Human Services, Public Health Service, NIH編, 第5版, 1991参照) 等]を用いて解析し、両鎖のCDR及びFRを決定する。決定されたFR配列に類似したFR配列を有するヒト抗体の軽鎖及び重鎖をコードする塩基配列のCDRコード領域を、決定された異種CDRをコードする塩基配列で置換した塩基配列を設計し、該塩基配列を20〜40塩基程度のフラグメントに区分し、さらに該塩基配列に相補的な配列を、前記フラグメントと交互にオーバーラップするように20〜40塩基程度のフラグメントに区分する。各フラグメントをDNAシンセサイザーを用いて合成し、常法に従ってこれらをハイブリダイズ及びライゲートさせることにより、ヒト由来のFRと他の哺乳動物種由来のCDRを有するVH及びVLをコードするDNAを構築することができる。より迅速かつ効率的に他の哺乳動物種由来CDRをヒト由来VH及びVLに移植するには、PCRによる部位特異的変異誘発を用いることが好ましい。そのような方法としては、例えば特開平5-227970号公報に記載の逐次CDR移植法等が挙げられる。

0060

なお、上記のような方法によるヒト化抗体の作製において、CDRのアミノ酸配列のみを鋳型のヒト抗体FRに移植しただけでは、オリジナル非ヒト抗体よりも抗原結合活性が低下することがある。このような場合、CDRの周辺のFRアミノ酸のいくつかを併せて移植することが効果的である。移植される非ヒト抗体FRアミノ酸としては、各CDRの立体構造を維持するのに重要なアミノ酸残基が挙げられ、そのようなアミノ酸残基はコンピュータを用いた立体構造予測により推定することができる。

0061

このようにして得られるVH及びVLをコードするDNAを、ヒト由来のCH及びCLをコードするDNAとそれぞれ連結して適当な宿主細胞に導入することにより、ヒト化抗体を産生する細胞あるいはトランスジェニック動植物を得ることができる。

0062

マウスCDRをヒト抗体の可変領域に移植するCDRグラフティングを用いずにヒト化抗体を作製する代替的方法として、例えば、抗体間での保存された構造−機能相関に基づいて、非ヒト可変領域内のどのアミノ酸残基が置換し得る候補であるかを決定する方法が挙げられる。この方法は、例えば欧州特許第 0571613号、米国特許第5,766,886号、米国特許第5,770,196号、米国特許5,821,123号、米国特許第5,869,619号等の記載に従って実施することができる。また、当該方法を用いたヒト化抗体作製は、もととなる非ヒト抗体のVH及びVLの各アミノ酸配列情報が得られれば、例えば、Xoma社が提供する受託抗体作製サービスを利用することにより容易に行うことができる。

0063

ヒト化抗体もキメラ抗体と同様に遺伝子工学的手法を用いてscFv、scFv-Fc、minibody、dsFv、Fvなどに改変することができ、適当なプロモーターを用いることで大腸菌酵母などの微生物でも生産させることができる。

0064

[III] 本発明の抗体の用途
本発明の抗体はiPS及びES細胞を特異的に認識することができるので、被検細胞サンプル中のiPS細胞又はES細胞の検出及び定量、特に免疫細胞化学的な検出及び定量に用いることができる。これらの目的には、抗体分子そのものを用いてもよく、また、抗体分子のF(ab')2、Fab'、あるいはFab画分などいかなるフラグメントを用いてもよい。iPS/ES細胞に対する抗体を用いる測定法は特に制限されるべきものではなく、いかなる測定法を用いてもよい。

0065

標識物質を用いる測定法に用いられる標識剤としては、例えば、放射性同位元素、酵素、蛍光物質、発光物質などが用いられる。放射性同位元素としては、例えば、[125I]、[131I]、[3H]、[14C]などが用いられる。上記酵素としては、安定で比活性の大きなものが好ましく、例えば、β-ガラクトシダーゼ、β-グルコシダーゼ、アルカリフォスファターゼ、パーオキシダーゼ、リンゴ酸脱水素酵素などが用いられる。蛍光物質としては、例えば、フルオレスカミン、フルオレッセンイソチオシアネート(FITC)、フィコエリスリン(PE)などが用いられる。発光物質としては、例えば、ルミノール、ルミノール誘導体、ルシフェリン、ルシゲニンなどが用いられる。

0066

本発明の抗体を直接標識物質で標識してもよいし、間接的に標識してもよい。好ましい態様においては、抗iPS/ES細胞抗体は非標識抗体とし、該抗iPS/ES細胞抗体を作製した動物に対する抗血清や抗Ig抗体等の標識された二次抗体により、iPS/ES細胞を検出することができる。あるいは、ビオチン化した二次抗体を用いて、iPS又はES細胞-本発明の抗体-二次抗体の複合体を形成させ、これを標識したストレプトアビジンを用いて可視化することもできる。

0067

例えば、被検細胞サンプルをグルタルアルデヒドパラホルムアルデヒド等で固定・透過処理しPBS等の緩衝液で洗浄、BSA等でブロッキングした後、本発明の抗iPS/ES細胞抗体とインキュベートする。PBS等の緩衝液で洗浄して未反応の抗体を除去した後、抗iPS/ES細胞抗体と反応した細胞を標識した二次抗体で可視化し、共焦点レーザー走査型顕微鏡や、IN Cell Analyzer(Amarsham/GE)等の自動化された生細胞画像解析装置等を用いて解析することができる。

0068

別の実施態様では、本発明の抗体を用いて、iPS又はES細胞を含むサンプルから、当該細胞を単離(除去)することができる。ここでiPS又はES細胞を含む(含み得る)サンプルとしては、例えば、iPS又はES細胞を分化誘導して得られた任意の分化細胞集団や、iPS又はES細胞の継代培養サンプル等が挙げられる。
この目的のためには、例えば、本発明の抗体をアガロースアクリルアミドセファロースセファデックス等の任意の適切なマトリクスを含む固相上に固定化することができる。該固相は、マイクロタイタープレート等の任意の適切な培養器であってもよい。サンプルを該固相と接触させると、サンプル中のiPS又はES細胞は該固相上に固定される。該細胞は適当な溶出バッファーを用いて固相から遊離させることができる。

0069

好ましい実施態様においては、本発明の抗体を磁性ビーズ上に固定化し、磁場を与えるとiPS又はES細胞がサンプルから分離(即ち、磁気活性化細胞分離(MACS))するようにすることができる。別の好ましい態様においては、本発明の抗体を、上述のような任意の適切な蛍光分子で直接もしくは間接的に標識し、蛍光活性化セルソーター(FACS)を用いてiPS又はES細胞を単離することができる。

0070

上述のように、本発明の抗iPS/ES細胞抗体は、好ましくは標的細胞に対して特異的な細胞障害活性を有する。従って、当該抗体を用いる場合には、上記のような分離操作を必要とすることなく、単に該抗体を含有する培地中で細胞サンプルを一定時間インキュベートするだけで、該サンプル中に存在する不要なiPS又はES細胞を殺傷除去することができ、生存した細胞を回収すれば、未分化細胞の混入のない均一な分化細胞集団を取得することができる。
また、後述の実施例に記載される抗iPS/ES細胞抗体R-17Fの場合、該抗体に対する二次抗体を微量添加することにより、標的細胞に対する細胞障害活性が顕著に増強される。従って、好ましい実施態様においては、本発明の標的細胞障害性抗iPS/ES細胞抗体及び該抗体に対する二次抗体の存在下に、細胞サンプルをインキュベートすることができる。

0071

本発明の均一な分化細胞集団の作製に供される分化細胞は、iPS又はES細胞を自体公知の分化誘導法を用いて所望の体細胞に分化させることにより提供される。
例えば、ヒトES細胞を放射線照射したC3H10T1/2細胞株と共培養して嚢状構造体(ES-sac)を誘導することにより造血前駆細胞に分化させることができる(Blood, 111: 5298-306, 2008)。ES細胞からの神経幹細胞神経細胞の分化誘導法としては、胚様体形成法(Mech Div 59(1) 89-102, 1996)、レチノイン酸法(Dev Biol 168(2) 342-57, 1995)、SDIA法(Neuron 28(1) 31-40, 2000)、NSS法(Neurosci Res 46(2) 241-9, 2003)など様々な方法が知られている。ES細胞から心筋細胞への誘導方法としては、これまでにレチノイン酸、TGFβ1、FGF、dynorphin B、アスコルビン酸一酸化窒素、FGF2とBMP2、Wnt11、PP2、Wnt3a/Wnt阻害剤などの因子を培地に添加する方法や、Nogginによる心筋分化誘導法(Nat Biotechnol 23(5) 611, 2005)などが報告されている。さらに、SDIA法およびSFEB法によるES/iPS細胞からの網膜細胞の分化誘導法(Nat Neurosci 8 288-96, 2005)なども知られているが、これらに限定されない。

0072

上記のようにして得られるiPS/ES細胞から分化誘導された細胞集団と、本発明の抗体との接触は、分化細胞の培養に適した培地中に適当な濃度の本発明の抗体(及び二次抗体)を添加し、該分化細胞集団を一定時間インキュベートすることにより行うことができる。本発明の抗体の添加濃度は、抗体の種類、細胞密度、反応温度、反応時間等によって異なるが、例えば0.1〜1000μg/mL、好ましくは1〜100μg/mLの範囲内で適宜選択することができる。反応温度は分化細胞の生存に適した温度であれば特に制限はなく、0〜40℃、好ましくは20〜40℃、より好ましくは30〜40℃の範囲内で適宜選択することができる。反応時間は、iPS又はES細胞に対して細胞死を誘導するのに十分な時間であり、かつ分化細胞の生存に悪影響を与えない時間であれば特に制限はないが、例えば3時間以内、好ましくは1分〜2時間、より好ましくは15分〜1時間である。二次抗体をさらに添加する場合、その濃度は本発明の抗体の細胞障害活性を増強し、かつそれ自体が分化細胞に対して細胞毒性を示さない範囲であれば特に制限されないが、例えば0.01〜10μg/mL、好ましくは0.1〜1.0μg/mL、より好ましくは0.2〜0.5μg/mLの範囲内で適宜選択することができる。
反応終了後、培地を除去し、新鮮な培地もしくはPBS等の適当な緩衝液で細胞を洗浄した後、常法により生細胞を回収することにより、未分化細胞が殺傷除去された均一な分化細胞集団を得ることができる。

0073

上記のようにして得られる、均一な分化細胞集団は、常套手段にしたがって医薬上許容される担体と混合するなどして、注射剤懸濁剤点滴剤等の細胞移植用の非経口製剤として製造される。当該非経口製剤に含まれ得る医薬上許容される担体としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液(例えば、D-ソルビトール、D-マンニトール塩化ナトリウムなど)などの注射用水性液を挙げることができる。本発明の移植療法剤は、例えば、緩衝剤(例えば、リン酸塩緩衝液酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩化ベンザルコニウム塩酸プロカインなど)、安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコールなど)、保存剤酸化防止剤などと配合しても良い。本発明の移植療法剤を水性懸濁液剤として製剤化する場合、上記水性液に約1×106〜約1×108細胞/mLとなるように、分化細胞を懸濁させればよい。
本発明の移植療法剤は、細胞の凍結保存に通常使用される条件で凍結保存された状態で提供され、用時融解して用いることもできる。その場合、血清もしくはその代替物有機溶剤(例、DMSO)等をさらに含んでいてもよい。この場合、血清もしくはその代替物の濃度は、特に限定されるものではないが約1〜約30% (v/v)、好ましくは約5〜約20% (v/v) であり得る。有機溶剤の濃度は、特に限定されるものではないが0〜約50% (v/v)、好ましくは約5〜約20% (v/v) であり得る。

0074

上述のように、本発明の抗体は、iPS/ES細胞から分化誘導された細胞集団と組み合わせて、細胞移植を必要とする患者に投与することもできる。
本発明の抗体を有効成分として含有する薬剤は、公知の製剤学的方法により製剤化して投与することができる。例えば、水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、又は懸濁液剤の注射剤の形で使用できる。また、例えば、薬理学上許容される担体もしくは媒体、具体的には、滅菌水や生理食塩水、乳化剤、懸濁剤、界面活性剤、安定剤、ビークル防腐剤などと適宜組み合わせて、一般に認められた製薬実施に要求される単位用量形態混和することによって製剤化することが考えられる。これら製剤における有効成分量は指示された範囲の適当な容量が得られるようにするものである。

0075

注射のための無菌組成物注射用蒸留水のようなビークルを用いて通常の製剤実施に従って処方することができる。注射用の水溶液としては、例えば生理食塩水、ブドウ糖やその他の補助薬を含む等張液、例えばD-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウムが挙げられ、適当な溶解補助剤、例えばアルコール、具体的にはエタノールポリアルコール、例えばプロピレングリコール、ポリエチレングリコール、非イオン性界面活性剤、例えばポリソルベート80TM、HCO-50と併用してもよい。

0076

油性液としてはゴマ油大豆油があげられ、溶解補助剤として安息香酸ベンジルベンジルアルコールと併用してもよい。また、緩衝剤、例えばリン酸塩緩衝液、酢酸ナトリウム緩衝液、無痛化剤、例えば、塩酸プロカイン、安定剤、例えばベンジルアルコール、フェノール、酸化防止剤と配合してもよい。調製された注射液は通常、適当なアンプル充填させる。

0077

本発明の抗体を有効成分として含有する薬剤は、経口、非経口投与のいずれでも可能であるが、好ましくは非経口投与であり、具体的には、注射剤型、経鼻投与剤型、経肺投与剤型経皮投与型などが挙げられる。注射剤型の例としては、例えば、静脈内注射筋肉内注射、腹腔内注射、皮下注射などにより全身又は局部的に投与することができる。

0078

投与量は、患者の年齢及び症状によって適正に選択することができる。例えば、投与量は、1回投与量として、0.0001 mg〜1,000 mg/kg体重の範囲内で選択することができる。あるいは、患者あたり、0.001〜100,000 mgの範囲内で選択することもできる。投与時期は、iPS/ES細胞から分化誘導された細胞集団の移植前、移植と同時又は移植後から、適宜選択することができる。投与回数及び投与間隔も特に制限はなく、1回、もしくは2〜6回を、例えば2〜8週間隔で投与することができる。

0079

以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。

0080

[材料及び方法]
1) 抗体
抗ヒトTRA-1-60モノクローナル抗体(Clone # TRA-1-60,マウスIgM)、抗ヒトTRA-1-81モノクローナル抗体 (Clone # TRA-1-81, マウスIgM) 及び抗ヒト/マウスSSEA-4モノクローナル抗体(clone# MC813, マウスIgG3) はSanta Cruz Biotechnology, Inc. (Santa Cruz, CA) から購入した。抗ヒト/マウスSSEA-1抗体 (clone#MC480, マウスIgM)、抗ヒト/マウスSSEA-3モノクローナル抗体 (clone#MC631,ラットIgM) 及び抗ヒトポドカリキシンモノクローナル抗体 (clone# 222328, mouse IgG2A) はR & D Systems, Inc. (Minneapolis, MN) から購入した。抗ヒトポドカリキシン様タンパク質I (clone mAb 84, マウスIgM) は Millipore (Billerica, Hercules, CA) から購入した。抗ヒトNanogモノクローナル抗体及び抗ヒトOct4モノクローナル抗体は、リプセル(神奈川県) 及びAbcum (Cambridge, UK) から、それぞれ購入した。

0081

2)細胞及び細胞培養
ヒトiPS細胞株Tic (JCRB1331)およびヒトEC細胞株NCR-G3(JCRB1168)は、独立行政法人医薬基盤研究所(大阪府)のJCRB細胞バンクから、201B2及び201B7は、京都大学iPS細胞研究所 (CiRA)から、ヒトES細胞株KhES-3は、京都大学再生医科学研究所から、H9細胞はWisconsin International Stem Cell Bank, WiCell(Madison, WI)から、それぞれ供与された。これらの細胞は、ベントキャップつき長方形型カントネック細胞培養フラスコ(25 cm2, Corning, NY) 中、マイトマイシンC処理したフィーダー細胞(マウス胎児線維芽細胞(MEF), 5 x l03 cells/cm2) 上で、37 ℃、5% CO2の条件下で培養した。ヒト胚性がん細胞株2102Epは、シェフィールド大学のピーターアンドリュース教授から供与された。14週のヒト胎児雄性肺組織由来の線維芽細胞様細胞MRC-5 (JCRB9008) はJCRB細胞バンクより入手した。

0082

3)免疫及びスクリーニング用ヒトiPS細胞の作製
ヒト胎児線維芽細胞MRC-5に、4初期化遺伝子Oct3/4, Sox2, Klf4, およびc-Myc (Takahashi et al., 2007) を導入して作製したヒトiPS細胞株Tic(Toyoda et al., 2011)を、免疫原及びスクリーニング用プローブとして用いた。無血清培地であるES培地(KNOCKOUTDMEM/F-12 (400 mL, Invitrogen-Life technologies, Carlsbad, CA),MEM非必須アミノ酸溶液(4.0 mL, Invitrogen-Life technologies, Carlsbad, CA), 200 mM L-グルタミン(5.0 mL), KNOCKOUT Serum Replacement (100 mL, Invitrogen-Life technologies, Carlsbad, CA), 及び55 mM2-メルカプトエタノール(0.925 mL)、10 μg/ml FGF-Basic human (Sigma)を1000倍希釈になるように加えたもの(以下 iPS培養培地))で維持したTic細胞を、hESF9培地((Furue et al., 2008)HEPES不含ESF基本培地 (株式会社細胞科学研究所, 仙台, Furue et al., 2005) にアスコルビン酸2-リン酸エステル、6因子(ヒト組換えインスリンヒトトランスフェリン、2-メルカプトエタノール、2-エタノールアミン亜セレン酸ナトリウムオレイン酸-脂肪酸不含ウシ血清アルブミン(FAF-BSA)コンジュゲートからなる)、ウシヘパラン硫酸ナトリウム塩及びヒト組換えFGF-2 (片山化学工業, 大阪) を添加) に、以前に記載した方法により移した (Furue et al., 2008)。37℃で4〜5日間インキュベートした後、1群のフラスコ内の細胞 (3 x 105〜1 x 106細胞/25 cm2フラスコ) を、0.1%EDTA-4NaPBS溶液(1 mL/フラスコ) で処理して回収し、1,000 rpmで2分間遠心して細胞を集め、PBSで洗浄した後、免疫原として使用する直前まで-80℃で保存した。別の群のフラスコ内の細胞を用いて、細胞スクリーニングプレートを調製した。これらのフラスコに、解離した細胞が生存するようにROCK阻害剤(10 μM Y27632,和光純薬工業, 大阪) を添加した (Watanabe et al., 2007)。37℃で1時間インキュベートした後、細胞をアキュターゼ(1 mL, Millipore, Billerica, MA) を用いて回収、遠心して集め、S培地で洗浄後、hESF9培地に懸濁して、フィブロネクチンコーティングした96-ウェルプレートに播種した (5 x 103細胞/ウェル, BD, Franklin Lakes, NJ)。細胞を1%酢酸/エタノール(100 μL/ウェル) で15〜30分間固定した後、PBSで洗浄し、プレートを使用直前まで‐80℃にて保存した。

0083

4)免疫
2つの異なるプロトコルを用いて、マウスをヒトiPS細胞で免疫した。プロトコルAでは、凍結融解したTic細胞(0.5 mLPBS中1.5 x 107細胞) を等容のフロイント完全アジュバント(CFA, Thermo Fisher Scientific, Rockford,IL) で乳化し、8週齢の雌性C57BL/6マウスに、0日目に腹腔内注射した (200 μL/マウス)。その後、25日目に追加免疫を行い、28日目にマウスを安楽死させた。プロトコルBでは、Tic細胞のFCAエマルジョンをマウスに皮下注射し (200 μL/マウス)、2週間後にマウスを安楽死させた。

0084

5)細胞融合及びクローニング
プロトコルAで処理したマウスの脾臓から採取したリンパ球と、プロトコルBで処理したマウスから採取したリンパ節とを混合し、ポリエチレングリコールを用いてP3U1ミエローマ細胞と融合させた。融合細胞を96-ウェル組織培養プレートに播種し、ハイブリドーマ培地(ヒポキサンチン、アミノプテリン及びチミジン(HAT) を含むS-クローンクローニング培地CM-B, 三光純薬, 東京) を添加して選択を行った。播種後7日目にTic細胞固定プレートを用いて1次スクリーニングを行った。各ハイブリドーマの培養上清を、0.1% H2O2 (Blocker Casein, Pierce-Thermo Fisher Scientific, Rockford,IL) を含むブロッキング液で一晩前処理したTic細胞固定プレートに添加した。該細胞プレート中でハイブリドーマ培養上清を、室温で2時間インキュベートした後、PBSでプレートを洗浄し、2000倍希釈した西ワサビパーオキシダーゼ(HRP)標識した抗マウスIgG(宝バイオ, 滋賀)を各ウェルに加え、1時間インキュベートした。洗浄後、発色基質DAB (金属増感型DAB基質キット, Pierce-Thermo Fisher Scientific, Rockford, IL) をプレートに加え、10〜15分間発色させた後、染色したプレートを光学顕微鏡(オリンパスIX 7, オリンパス, 東京) 下で観察した。
ヒトiPS細胞陽性抗体を産生するハイブリドーマを2次スクリーニングに供した。2次スクリーニングでは、ヒトiPS細胞(Tic)の他、ヒトEC細胞(2102Ep)、元のヒト線維芽細胞(MRC-5)及びマウス胎児線維芽細胞(MEF)をプローブとして用いた。モノクローナル抗体のアイソタイプはマウスモノクローナル抗体アイタイピングテストキット(AbD Serotec, Kidlington, UK) を用いて解析した。

0085

6)免疫細胞化学
24-ウェルプレートに播種した細胞を、4%パラホルムアルデヒド(PFA)中、室温で15分間固定し、3% FBS/PBSで1時間ブロッキングした後、種々のモノクローナル抗体(R-10G, TRA-1-60, TRA-1-81,SSEA-4, SSEA-3, SSEA-1, mAb84, Nanog, Oct4及び抗PODXL抗体) とともに、4℃で一晩インキュベートした。0.1% FBS/PBSで3回(各5分間)洗浄後、二次抗体としてAlexa Fluor 647で標識したニワトリ抗マウスIgG抗体(Invitrogen-Life technologies, Carlsbad, CA) を用い、室温で1時間インキュベートした後、Hoechst 33342 (PBSで5000倍希釈,同仁研究所, 熊本) で染色することにより、抗体の局在性を可視化した。次いで、細胞をIN Cell Analyzer 2000 (GE Healthcare, Buckinghamshire, UK) 及びDeveloper Toolbox ver 1.8を用いて解析した。

0086

7)共焦点レーザー走査型顕微鏡観察
ゼラチンでコーティングし、B6マウス由来MEFを播種したMillipore EZスライド(Millipore, Billerica, MA) に、Tic細胞を播種した。2日間培養後、細胞を4% PFAにて、室温で10分間固定し、3%BSA/PBSで1時間ブロッキングした。次に、細胞をR-17Fモノクローナル抗体(第1の一次抗体)と4℃で一晩インキュベートした。0.1% BSA/PBSで3回洗浄後、細胞をAlexa Fluor 488で標識したヤギ抗マウスIgG1抗体(二次抗体)と、1% BSA/PBS中、室温で30〜60分間インキュベートした。
第1〜第3の一次抗体による二重(および三重)染色のために、細胞を上記と同様にして洗浄、ブロッキングした後、第1〜第3の一次抗体(R-17F,SSEA-3及びSSEA-4)と、4℃で一晩インキュベートした。次いで、細胞を、Alexa Fluor 488で標識したヤギ抗マウスIgG1抗体(R-17Fに対する二次抗体)、Alexa Fluor 594標識ラット抗マウスIgM抗体(SSEA-3に対する二次抗体)及びAlexa Fluor 594標識ヤギ抗マウスIgG3抗体(SSEA-4に対する二次抗体)と、上記と同様にインキュベートした。0.1% BSA/PBSで3回洗浄後、0.1% Triton X-100/4% PFAを用い、細胞を室温で10分間固定し、次いでTO-PRO3 (PBSで500倍希釈, Invitrogen-Life technologies, Carlsbad, CA) で染色し、共焦点レーザー走査型顕微鏡FV1000 (オリンパス, 東京) を用いてモニタリングした。

0087

8)マウス腹水からのR-17Fモノクローナル抗体の精製
ハイブリドーマ細胞株R-17Fをプリスタン処理したSCIDマウス (CB-17/Icr-scid Jcl) に腹腔内注射した。2週間後、該マウスから腹水(2.5 mL)を採取し、プロテインA-セファロースカラム(1 x 6.0 cm)(GE Healthcare, Buckinghamshire, UK) に通した。R-17Fモノクローナル抗体は、1.5 Mグリシン-NaOH緩衝液(pH 8.9)/3M NaClで該カラムに吸着し、0.1 Mクエン酸-リン酸緩衝液(pH 4.0) で溶出した。R-17Fモノクローナル抗体を含む溶出液に、3 M Tris-HCl緩衝液(pH 9.0) 加えて、直ちにpH 7〜8に中和した。

0088

9)SDS-PAGE及びウェスタンブロッティング
SDS-PAGE及びウェスタンブロッティングは、それぞれLaemmli (1970) 及びTowbin et al. (1992) の方法に従って実施した。簡単にいうと、サンプルを、非還元条件下、4-15%グラジエントのSDS-アクリルアミドゲル(Mini-PROTEAN TGX-gel, BioRad Laboratories, Hercules, CA) 上の電気泳動により分離した後、ウェスタンブロッティング又はタンパク質染色のいずれかを行った。ウェスタンブロッティングについては、分離したタンパク質をImmobilion Transferメンブレン(Millipore, Billerica, MA) 上に転写した後、特異的抗体を用いてイムノブロット検出を行った。可視化には、化学発光基質キット(Pierce-Thermo Scientific, Rockford,IL) とHRP標識ウサギ抗マウスイムノグロブリン(DAKO Cytomation, Denmark A/S) を用い、LuminoImage Analyzer, Las 4000 mini (GE Healthcare, Buckinghamshire, UK) により解析した。タンパク質染色は、クーマシーブリリアント・ブルーG-250 (GelCode Blue, Invitrogen-Life technologies, Carlsbad, CA) を用いて行った。

0089

10)フローサイトメトリー
細胞調製
ヒトiPS細胞株Ticの培養フラスコより、培養液を除去し、Dispase (1 mg/mL) を1〜2 mL添加し、37℃で約2分間インキュベーターした。顕微鏡でコロニーの周りカールすることを確認した後、Dispaseを除いた。洗浄用培地(使用期限切れたKO-DM/F12)を添加し、セルスクリーパーで細胞を掻き取った。得られた細胞懸濁液を、20 ℃にて、300 rpmで2分間遠心し、上清を除いた。次に、PBSを10 mL添加し、再度、20 ℃にて、300 rpmで2分間遠心し、上清を除いた。沈殿に0.25% Trypsin/EDTAを500 μL添加し、37 ℃でインキュベートした。15分後、インキュベーターから取り出し、ピペティングにより単一細胞懸濁液とした。FACS緩衝液(1%BSA/Dulbecco's Phosphate-Buffered Saline (D-PBS)溶液、4 ℃)、9.5 mLを添加した。次に、4 ℃にて、1500 rpmで3分間遠心し、上清を除去した。沈殿を指で軽くタッピングし、FACS緩衝液(0.5〜1.0 mL)に懸濁し、細胞数計数した (トリパンブルー染色)。以後の操作は全て4 ℃又は中にて行った。

0090

免疫蛍光染色:
1サンプル当り1×105細胞を1.5 mLチューブへ移し、4 ℃にて6000 rpmで3分間遠心し、上清を除いた。沈殿にFACS緩衝液(1%BSA、0.1% NaN3を含むPBS) 100 μLを加え、次に、一次抗体5 μL (抗体により100倍-1000倍に希釈して使用) を加えて懸濁し、氷中に30〜45分間静置した。反応後、FACS緩衝液1 mLを加えた後、4 ℃にて6000 rpmで3分間遠心し、上清を除去した。この洗浄操作を2回繰り返した。次に、沈殿にFACS緩衝液100 μL及び2次抗体5 μL (約100倍に希釈して使用) を加えて懸濁した。以後の操作は全て遮光で行った。氷中に30分静置し反応させた後、FACS緩衝液1 mLを加え、4 ℃にて6000 rpmで3分間遠心し、上清を除去した。同様の洗浄を2回繰り返した後、FACS緩衝液1 mLに懸濁し、セルストレイナー付きFACSチューブへ移しFACS解析した。

0091

11)細胞障害活性の測定
1サンプル当り1×105細胞を1.5 mLチューブへ移し、4 ℃にて6000 rpmで3分間遠心し、上清を除去した。沈殿にFACS緩衝液100 μLを加えた後、一次抗体5 μL (抗体により100倍-1000倍に希釈して使用) を加え、氷中にて30〜45分間反応させた。反応後、FACS緩衝液1 mLを加え、4℃にて6000 rpmで3分間遠心し、上清を除去した。この洗浄操作を2回繰り返した後、沈殿にFACS緩衝液100 μLを加えた。次に、7-AAD(7-amino-actinomycin D, eBioscience,Inc. San Diego, CA) 5 μL (0.25 μg) を添加し、懸濁した。以後の操作は全て遮光で行った。試料をセルストレイナー付きFACSチューブへ移し、常温にて5分間静置した後、FACSで解析した。

0092

12)R-17F抗体のエピトープ発現に対する糖脂質合成阻害剤の影響
継代4日目のTic細胞の培地に、スフィンゴ糖脂質グルコシルセラミド(GlcCer)生合成酵素の特異的な阻害剤であるD-PDMP (D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol)(Sigma-Aldrich, St. Louis, MO)を20 μM添加し、4日間培養した。次いで、培養液を除き、Dispase (1 mg/mL)を1〜2 mL添加し、37℃で約2分間インキュベートした。以後は上記10)フローサイトメトリーに記した方法に従い、0.25% Trypsin/EDTA処理により単一細胞懸濁液を調製し、これらの細胞をそれぞれ、SSEA-4、TRA-1-60、R-17Fと氷水中、45分間反応させた後、セルストレイナー付きFACSチューブへ移し、FACS解析した。

0093

13) R-17F抗体による培養iPS細胞コロニーに対する細胞増殖抑制作用
ヒトiPS細胞Ticをチャンバースライドグラス上に播種、2日間iPS培養培地で培養を行い、その後、hESF9培地にR-10G抗体 100 μg、R-17F抗体 100 μg、コントロールとしてPBSを加えたものそれぞれ200 μLを調製し培地交換、72時間培養した。0h、24h、48h、72h毎に位相差顕微鏡にて観察・撮影を行った。

0094

14)Tic細胞脂質の抽出及びTLC-免疫染色
凍結保存したTic細胞(3.0 x 107個)に3 mLのクロロホルム/メタノール(2:1, v/v)を加え、37℃で5分間、超音波処理した後、37℃で1時間抽出した。4℃にて、2500 rpmで10分間遠心し、得られた上清をガラスチューブに移した。沈殿に2 mlのクロロホルム/メタノール/水 (1:2:0.8, v/v/v) を加え、37℃で2時間抽出した。懸濁液を4 ℃、2500 rpmで10分間遠心し、得られた上清を先の上清に合わせて全脂質抽出物とした。この全脂質抽出物を250 μLのクロロホルム/メタノール/水 (65:25:4, v/v/v) に溶解してTLC分析試料とした。TLCはHPTLCシリカゲル60アルミナプレート(Merk)(10 cm x 10 cm) を使用した。Linomat 5 (CAMAG、 Muttenz, Switzerland) を用いて試料をスポットし(5〜20 μL)、クロロホルム/メタノール/水 (65:25:4, v/v/v) を溶媒として展開した。展開終了後、風乾したTLCプレートにprimulin試薬(0.001%アセトン/水 (1:10, v/v)溶液)を噴霧し、紫外線落射撮影装置(ATTO, 東京)を用いて365 nmにて観察し、脂質成分の分離を観察した。ついで、TLCプレート上に分離した脂質成分をの方法 (Taki&Ishikawa, 1997) に従い、TLC熱転写装置(ATTO, AC-5970)を用いてPVDF膜に転写した。すなわち、TLCプレートをブロテング溶媒(イソプロパノール/0.2% CaCl2/メタノール (40:20:7、v/v/v))に15秒間浸した後、PVDF膜、テフロン登録商標)膜、ガラスファイバーろ紙を重ね、180 ℃に加熱した熱転写装置で30秒転写した。転写されたPVDF膜を3%BSA/PBS中で4℃、一夜ブロッキングした後、R-17F抗体 (1 μg/mL) と室温で1.5時間インキュベートして反応させた。次いで、ビオチン標識抗マウスIgG(H+L)(0.1 μg/mL)(Kirke gaard & Perry Laboratories, Inc., MD, USA)) と室温で1時間、HRP-標識ストレプトアビジン(55 ng/mL)(Pierce-Thermo Scientific, Rockford,IL) と1時間反応させた後、化学発光試薬(Pierce West Pico, Pierce-Thermo Scientific) で5分間処理し、LAS 4000 mini (GE Healthcare, Buckinghamshire, UK) で観察した。

0095

15)調製用TLCによるR-17F抗体エピトープの精製
HPTLCプレート(10 cm×10 cm) (HPTLC silica gel 60 F254 MS-grade glass plate 、 Merck)の中央部66mm幅に、180 μLのクロロホルム/メタノール/水(65:25:4, v/v/v)で溶解したTic 総脂質 4.0×107細胞相当分を塗布した。HPTLCプレートを乾燥後、クロロホルム/メタノール/ミリQ水(65:25:4, v/v/v)の展開槽中で6 cm展開した(展開1回目)。HPTLCプレートをドライヤーで風乾し10分間静置した。展開したHPTLCプレートを同じ混合比の展開溶媒入れ替えた展開槽中で8.5 cm展開した(展開2 回目)。展開後、HPTLCプレートを乾燥させたのち、展開2 回目の操作を繰り返し、あわせて3度の展開を行った。展開後のHPTLCプレートの両端各2 cmをガラス切り(先端ダイヤモンド入りガラス切り2A、東新理興 TOSHINRIKO CO.,LTD.)でカットし、カットした10 cm×2 cmのHPTLCプレートの両端部分をR-17F 1 μg/mLによるTLC-Immunostainingを行いR-17F結合脂質の検出を行った。
Preparative TLC用のプレートから、TLC-Immunostainingによって検出したR-17F結合脂質の移動度に相当するバンド部位のシリカゲルを掻き取った。掻き取ったシリカゲルをネジ口ガラス試験管に移し、3 mLのクロロホルム/メタノール/ミリQ水(65:25:4, v/v/v)を加え室温湯浴中で外から3 分間超音波処理を行い、4 ℃で一晩静置させ脂質を抽出した。ガラスSPEカートリッジ(ジーエルサイエンス)にガラスSPEろ紙フィルター(ジーエルサイエンス)をセットし、シリカゲル懸濁液を加え、濾過した。ろ液脂質抽出液)はスピッツ型ネジ口ガラス試験管(IWAKI)に集めた。ろ過後のガラスSPEカートリッジはクロロホルム/メタノール/ミリQ水(65:25:4, v/v/v)500 μLで3 度、メタノール500 μLで2度洗浄した。これらの洗浄液はろ液(脂質抽出液)とあわせ、窒素ガス気流下で乾燥させ、R-17F抗体結合脂質とした。R-17F結合脂質を150 μLのクロロホルム/メタノール/ミリQ水(65:25:4, v/v/v)で溶解し、4 ℃にて保存した。

0096

16)質量分析装置によるエピトープ構造の解析
試料溶液1〜2 μLをガラスキャピラリーを用いて吸い取りMALDIプレートアプライした。これにマトリックス容液(DHB,2,5-dihyroxybenzoic acid、5 mg/mL)を重層して乾燥した。島津/Kratosレーダー脱離イオン四重極イオントラップ飛行時間型分析装置、AXIMA Resonance(島津製作所)を用い、ポジティブモードで測定した。試料について得られたマススペクトルは m/z 1000 - 2000領域にアサイン可能な一群シグナルを示した。主要なピークについて、MS/MS,さらにはMS3の測定を行い、推定構造提出した(本研究は島津製作所、Kyoto, Japan の奥毅氏、中家修一氏の協力により実施された。)。

0097

17)糖鎖マイクロアレイによるR-17F抗体の結合特異性の解析
各種精製ネオグリコリピド糖鎖をNC膜(Trans-Blot Transfer Medium Pure Nitorocellulose 0.45 μm、 Bio-Rad Laboratories, Inc.)にそれぞれ2mm幅に1 pmol, 5 mol塗布し乾燥させた後、3%BSA/PBSに浸して4 ℃で一晩ブロッキングした。ブロッキング後、NC膜を保湿箱に移し、1%BSA/PBSで希釈したR-17F 1 μg/mLを1 cm2当たり40 mLオーバーレイして、室温で2時間反応させた。
次抗体反応後、膜をPBSで3 分間3度洗浄し別の保湿箱に移し、1% BSA/PBSで希釈した2次抗体1.3 μg/mL Rabbit polyclonal anti-mouseIg-HRP [DAKO]を1 cm2当たり40 μLオーバーレイして、室温で1 時間反応させた。反応後、膜をPBSで3 分間3 度洗浄し、化学発光試薬SuperSignal West Pico Chemiluminescent Substrate、Thermo Fisher Scientific, Rockford) と5分反応させ、ルミノ・イメージアナライザー(Las4000miniEPUV、GE Healthcare]のChemiluminescenceモードで検出を行った。
糖鎖の構造を以下に示す。すべてADHP誘導体化して用いた。
LNFPI : Lacto-N-fucopentaose I
Fuc(a1-2)Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc
LNnT : Lacto-N-neotetraose
Gal(β1-4)GlcNAc(β1-3)Gal(β1-4)Glc
LNT: Lacto-N-tetraose
Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc
Lewis b : Lacto-N-difucohexose I、LNDFH I
Fuc(α1-2)Gal(β1-3)[Fuc(α1-4)]GlcNAc(β1-3)Gal(β1-4)Glc
Lewis a : Lacto-N-fucopentaose II、LNFP II
Gal(β1-3)[Fuc(α1-4)]GlcNAc(β1-3)Gal(β1-4)Glc

0098

18)R-17F抗体遺伝子の可変領域塩基配列の決定
ハイブリドーマ細胞R-17Fから、MACHEREY-NAGEL NucleoSpin RNA kit (MACHEREY-NAGEL GmbH & Co. KG, Duren, Germany) を用いて、トータルRNA を精製した。SMARTerTMRACEcDNAAmplification Kit (Clonetech)を用いて5'RACE解析を行った。次に、トータル RNAを鋳型にマウス抗体(IgG)H鎖特異的なprimer(H-RT1)を用いてRT反応によりH鎖cDNA合成を行った。同様に、(IgG)L鎖特異的なプライマー(L-RT1) を用いてL鎖cDNAを合成した。これらcDNAを鋳型として、マウス抗体(IgG)H鎖定常域特異的なプライマー (H-PCR)をリバースプライマー、キットに含まれるUPM (Universal primer mix)をフォワードプライマーとしてRACE PCRを行った。同様に、L鎖定常域特異的なプライマー(L-PCR)をリバースプライマーとしてRACE PCRを行った。得られたPCR産物アガロースゲル電気泳動で解析した。想定の大きさのPCR産物が得られたので、それぞれSYN4553H, SYN5531Lと命名した。ゲル抜き精製したPCR産物をクローニングプラスミドpMD20-Tにライゲーションした。常法により形質転換を行い、PCR産物由来ごとにそれぞれ48クローンを得た。これらのクローン をプラスミド領域の片側から解析した。シークエンス反応はBigDye Terminators v3.1 Cycle Sequencing Kit (ABI社)を使用し、ABI3730Sequencer(ABI社)により解析した。取得塩基配列の相同性をDNA Sequenceアセンブルソフトウエア、SEQUENCHERTMにより行った。
次に、本実験で用いたプライマー の塩基配列(5'→3')を示す。
RT反応
H-RT1:TCCAKAGTTCCA(配列番号:11)
L-RT1:GCTGTCCTGATC(配列番号:12)

PCR 反応(Reverse Primer)
H-PCR : GGGAARTARCCCTTGACCAGGCA(配列番号:13)
GGGAARTAGCCTTTGACAAGGCA(配列番号:14)
これら2配列を等モルずつ混合して使用
L-PCR : CACTGCCATCAATCTTCCACTTGACA(配列番号15)

0099

[結果]
1.ヒトiPS細胞に特異的なモノクローナル抗体R-17Fの作製
ヒトiPS細胞の細胞表面マーカーに対するモノクローナル抗体パネルを作製するために、PBS中で凍結融解したTic細胞をFCAと混合し、C57BL/6マウスを腹腔内もしくは皮下免疫した。Tic細胞固定プレートとMRC-5固定プレート(コントロール)を用いて、計960のハイブリドーマについて1次スクリーニングを行なった結果、29クローンがTic細胞上の表面抗原に反応性を有するモノクローナル抗体を産生することが分かった。これら29クローンについて2次スクリーニングを行い、2102Ep等のヒトEC細胞及びマウスフィーダー細胞(MEF)との交差反応性を調べた。免疫感作に先立ってヒトiPS細胞と共培養されたマウスフィーダー細胞に実質的な交差反応性を示す抗体はなかった。対照的に、モノクローナル抗体パネルの多くは、EC細胞株2102Epと反応性を有していた。しかし、興味深いことに、No. 10、No. 11及びNo. 17のモノクローナル抗体は、2102Epと反応性を有しないか、弱い反応性しか有しなかった。このことは、ヒトiPS細胞とヒトEC細胞との間で、表面抗原の発現に相違があることを明確に示している。
ヒトiPS細胞へのモノクローナル抗体の結合をウェスタンブロッティングにより確認した。Tic細胞溶解液をSDS-PAGEにて分離し(図1A)、ハイブリドーマ培養上清を一次抗体として試験した。いくつかの代表的なウェスタンブロッティングのプロファイル図1Bに示す。いくつかのモノクローナル抗体は、細胞プレートアッセイにおいてヒトiPS細胞と強い結合性を示したにもかかわらず、ウェスタンブロッティングでは実質的なバンドが検出されないか、あるいはかすかなバンドしか検出されなかった(No. 11, No. 12, No. 17)。従って、これらのモノクローナル抗体は、タンパク質以外の細胞表面成分と反応すると考えられる。これらの抗体のうち、本発明者らは、IgG1サブクラスに属するクローンNo. 17の抗体(R-17Fと命名した)に焦点を当てた。

0100

2. R-17F抗体の細胞結合特性
R-17F抗体のヒトiPS細胞(Tic)、ヒトES細胞(KhES-3, H9)及びヒトEC細胞(2102Ep,NCR-G3)に対する反応性を、既知のヒトiPS/ES細胞マーカーに対する抗体であるTRA-1-60、TRA-1-81、SSEA-4、SSEA-3、SSEA-1、Nanog及びOct-4、ヒトES細胞株HES-3を免疫原として作製されたマウスモノクローナル抗体mAB84 (Choo et al., 2008)、並びに組換えヒトポドカリキシンに対する抗ポドカリキシン抗体aPODXLのそれらと比較した。結果を表1及び図2に示す。

0101

0102

R-17F抗体は、既に報告したR-10Gと同様に、ヒトiPS細胞及びES細胞に強く結合し、ヒトEC細胞にはほとんど結合しないことが分かった(表1)。
また、R-17F抗体は殆どすべてのヒトiPS細胞の細胞膜全体を鮮明、均一に染色した(図2)。この染色性は従来の多能性幹細胞マーカー抗体であるSSEA-3, SSEA-4などとは明瞭に区別された(図2, 下パネル)。すなわち、SSEA-3, SSEA-4も細胞膜を染色したが、その染色には部位により不均一性が見られた。エピトープの細胞内局在性からもR-17F抗体はこれまで知られていない新規なマーカー抗体であることが示された。

0103

3. R-17F抗体のヒトiPS細胞に対する細胞障害活性
R-17F抗体のヒトiPS細胞に対する細胞障害活性の有無を調べるために、Tic細胞懸濁液に種々の濃度でR-17F抗体を添加し、4 ℃で45分間反応させた後、死細胞のみを染色する7-AADを添加し、FACS解析によりTic細胞の生存率を測定した。コントロールとして、抗マンナン結合タンパク質(MBP)抗体を用いた。その結果、R-17F抗体は濃度依存的にヒトiPS細胞の対して強い細胞障害活性を示した(図3)。
次に、R-17F抗体の細胞障害活性の機序を検討すべく、細胞障害活性の温度依存性について調べた。即ち、Tic細胞とR-17F抗体とを45分間、氷水中で反応させた場合と、37 ℃で反応させた場合とで、細胞の生存率を上記と同様にして調べた。その結果、両条件下で細胞障害活性はほぼ同様に進行したことから、この細胞障害作用は補体(酵素)非依存的な反応であることが示唆された(図4)。
次に、R-17F抗体添加によるTic細胞の生存率の経時変化を15分おきに45分までモニタリングした。その結果、Tic細胞はR-17F抗体添加直後半数近くが死滅し、その後も反応時間依存的に生存率は減少した(図5)。
次に、二次抗体の添加によりR-17F抗体のヒトiPS細胞に対する細胞障害活性が影響を受けるか否かを調べた。その結果、R-17F抗体の細胞障害活性は、ごく少量の二次抗体を加えることで著しく増強された(図6)。
最後に、他の抗iPS/ES細胞抗体のヒトiPS細胞に対する細胞障害活性をR-17F抗体のそれと比較した。ネガティブコントロールとして抗MBP抗体を用いた。その結果、本発明者らが既に報告したR-10Gや、既存の抗体(TRA-1-60, TRA-1-81,SSEA-4)はいずれも有意な細胞障害活性を示さなかった(図7)。
上より、R-17F抗体のヒトiPS細胞に対する細胞障害活性は、既知の他の抗iPS/ES細胞抗体には見られない特徴的な作用であることが確認された。
さらに、ヒト組織について、ヒト正常組織および胎児組織アレイ大脳小脳心臓肝臓胸腺結腸腎臓・脾臓・胎盤膀胱・皮膚・筋組織を含む(BioChain Institution, Inc. Hayward, CA))について、蛍光標識抗体を用いて組織化学的に検討した。その結果、1-2の組織で例外的に弱い染色が見られたが、他の組織では検出限界以下であった。

0104

4. R-17F抗体のヒトiPS/ES細胞に対するユビキタスな結合性
ヒトiPS細胞(Tic,201B7)、ヒトES細胞(KhES-3, H9)に対するR-17F抗体の反応性をフローサイトメトリーにより定量的に解析した。R-17F抗体はTicの他,山中教授により世界で最初に作成されたiPS細胞株の1種である201B7、代表的なヒトES細胞株であるH9、KhES-3の4種の細胞株において、いずれも、高結合部位に単一の細胞ピークを示し、同一の株内での細胞間での結合不均一性が少ないことをしめしている(図9)。この結果は、図2に示した共焦点レーザー顕微鏡によるR-17F抗体染色試験において全ての細胞がR-17F抗体陽性である結果と一致しており、R-17F抗体がiPS,ES細胞一般に対して広く結合するユビキタスなマーカー抗体としての性質を持つことを強く示唆している。

0105

5. R-17F抗体のヒトiPS/ES細胞に対する細胞障害活性
ヒトiPS細胞(Tic,201B7)、ヒトES細胞(KhES-3, H9)に対するR-17F抗体の細胞障害活性を解析した。R-17F抗体を添加し、4℃で45分間反応させた後、死細胞のみを染色する7-AADを添加し、FACS解析により細胞の生存率を測定した。その結果、R-17F抗体はこれら全ての細胞株に対して抗体濃度依存的に細胞障害活性を示した(図10)。また、細胞株間でR-17Fの細胞障害活性に対する感受性に大きな相違は見られなかった。すなわち、R-17F抗体はヒトiPS/ES細胞に対しユビキタスに細胞障害活性を持つことが強く示唆された。

0106

6.ヒトiPS細胞コロニー増殖に対するR-17F抗体の抑制作用
これまでの研究において、R-17F抗体はヒトiPS/ES細胞に対し、普遍的に細胞障害活性コロニー傷害活性を持つことが強く示唆されたが、これらの研究において、R-17F抗体の細胞障害活性は単細胞状態で懸濁培養したiPS細胞にR-17Fを加えてアッセイしている。しかし、iPS細胞は、実際には、単細胞懸濁の状態で分裂、増殖するのではなく、接着した状態でコロニーを形成して増殖する。そこで、再生医療においてR-17F抗体をヒトiPS/ES細胞の選択的除去剤としての利用の可能性を考えるならば、コロニーを形成したiPS細胞の増殖に対するR-17Fの効果を調べる必要がある。そこで、Tic細胞のコロニー増殖に対するR-17F抗体の効果を培養72時間まで調べた。この間、Tic細胞コロニーは24時間程度のダブリングタイムで増殖しR-17F抗体を加えて培養すると、24時間後にはコロニーの増殖がごく僅かみられたが、48時間後には成長が阻止され、72時間後には元のコロニーサイズ以下への退縮が観察された。なお、ヒトiPS/ES細胞の低硫酸化ケラタン硫酸に選択的に結合するR-10G抗体を加えた場合には、コロニー増殖への影響はまったく観察されておらず、72時間後には巨大なコロニーへと増殖した。このようにR-17F抗体はTic 細胞のコロニー増殖を選択的に阻害することが示された(図8)。

0107

7. R-17F抗体エピトープの単離と構造解析
上記1.のウェスタンブロッティングの結果(図1B)やTic細胞の免疫染色の結果(図2)から、本発明者らは、R-17F抗体がヒトiPS/ES細胞上の脂質性物質をエピトープとして認識しているのではないかと予測した、そこで、この仮説を検証すべく、まずTic細胞を、セラミドを、ガングリオシド系列やグロボシド系列の糖脂質生合成の出発物質であるグルコシルセラミド(GluCer)に変換する酵素反応を阻害することが知られているD-PDMPで処理し、細胞表面での糖脂質の発現を抑制させた。このD-PDMP処理したTic細胞をR-17F抗体と反応させ、蛍光標識した二次抗体を添加してFACS解析によりR-17F抗体のTic細胞に対する反応性の変化を調べた。その結果、D-PDMP処理したTic細胞では、平均蛍光強度が未処理のTic細胞に比べて48.9%にまで減少した(図11A)。また、図には示していないが、糖脂質を認識することが知られているSSEA-4もR-17F抗体と類似の挙動(28.0%まで減少)を示したが、糖タンパク質を認識するTRA-1-60では、D-PDMP処理によりTic細胞に対する反応性に変化はなかった。以上より、R-17F抗体はヒトiPS/ES細胞表面上に特異的に発現する糖脂質分子を認識している可能性が示唆された。
次に、Tic細胞の細胞膜より全脂質成分を抽出し、TLC分離した後、PVDFメンブレンに転写し、Far-eastern blottingによりR-17F抗体との反応を調べた。その結果、グロボシドの近辺メインスポット(A)が検出された他、その少し上にマイナースポットが一つ観察された(図11B)。また、図には示していないが、これらのスポットはSSEA-4抗体をプローブとして検出されるスポットとは異なっていた。
次に、Tic細胞の脂質画分をTLCにより分画し、メインスポット(A)の精製を試みた。TLCによる分離条件を検討し、注意深く分離用TLCを行った結果メインスポット(A)を質量分析的に均一標品に精製することに成功した。すなわち、MALDI-TOF-MSにより得られたマススペクトルは m/z 1000 - 2000領域にアサイン可能なシグナルを示し、スポットAが高純度に精製された糖脂質であることを示していた(図11C)。次いでこれらのシグナルに関してMSのn乗測定を行い、その構造を確認した。これらの実験によりスポットAの構造はセラミドを含む糖脂質、Fuc-Hex-HexNAc-Hex-Hex-ceramideと同定された。また、R-17F陽性スポットを各種グリコシダーゼ処理することにより、活性に関与する糖残基を同定した。

0108

8.糖鎖マイクロアレイによるR-17F抗体エピトープの解析
質量分析によるエピトープの構造解析の結果に基づき、ラクト系およびネオラクト系の糖鎖をADHP(N-aminoacetyl-N-(9-antharacenyl methyl)-1,2-dihexadecyl-sn-glycero-3-phosphoethanolamine)で蛍光標識したネオグリコリピドをニトロセルロース膜にスポットし、R-17F抗体の反応性を調べた。その結果、LNFPI: Lacto-N-fucopentaose I [Fuc(α1-2)Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc] に顕著な結合活性を示したが、LNnT: Lacto-N-neotetraose [Gal(β1-4)GlcNAc(β1-3)Gal(β1-4)Glc], LNT: Lacto-N-tetraose [Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc, Lewis b: Lacto-N-difucohexose I (LNDFH I) [Fuc(α1-2)Gal(β1-3)[Fuc(α1-4)]GlcNAc(β1-3)Gal(β1-4)Glc, Lewis a: Lacto-N-fucopentaose II (LNFP II) [Gal(β1-3)[Fuc(α1-4)]GlcNAc(β1-3)Gal(β1-4)Glc には全く結合活性を示さなかった(図12)。これらの結果はFuc(α1-2)Gal(β1-3)GlcNAc構造がR-17F抗体エピトープとして重要な役割りを果たしていることを示している。

0109

9. R-17F抗体遺伝子の可変領域塩基配列の決定
ハイブリドーマR-17Fから調製したトータルRNAを用いて、5’-RACEPCRにより、重鎖、軽鎖それぞれの可変領域を含むcDNAを増幅した。増幅産物プラスミドベクターにクローニングし、塩基配列解析を行い、得られた塩基配列結果をもとにコードされるアミノ酸配列を推定した(重鎖塩基配列: 図13-A, 軽鎖塩基配列: 図13-B)。CDRの解析はIMGT/V-QUEST (http://www.imgt.org/IMGT_vquest/share/textes/)を用いて行った。その結果、重鎖)および軽鎖のCDRは以下のように推定された。
重鎖 CDR 1 GFTFSYYW(配列番号:1)
CDR 2 IRLKSDNYAT(配列番号:2)
CDR 3 EGFGY(配列番号:3)
軽鎖 CDR 1 QDVSTA(配列番号:4)
CDR 2 WAS(配列番号:5)
CDR 3 QQHYSTPRT(配列番号:6)

0110

10. mAb84との比較
WO 2007/102787に記載されるmAb84とR-17F抗体との相違を明確にすべく、ヒトiPS細胞Ticに対する両者の反応性をFACS解析により比較した。ネガティブコントロールとして抗MBP抗体を用いた。その結果、mAb84のTic細胞に対する反応性は、R-17F抗体に比べて弱いことが示された(図13A)。
次に上記3.と同様にして、mAb84のTic細胞に対する細胞障害活性を調べたところ、mAb84の添加によってTic細胞の生存率は殆ど減少しなかったことから(図13B)、mAb84にはR-17F抗体などのヒトiPS細胞に対する強い細胞障害活性がないと考えられた。なお、本件については、その後も、細胞組織染色、フローサイトメトリー分析、細胞障害作用などに関して、追加実験を行ったが結果は再現性に乏しく、場合によってはヒトiPS細胞に対してR-17F抗体と同じ程度の結合性および細胞障害活性が観察された。再現性が低い理由については現在のところ不明である。
なお、mAb84はヒトポドカリキシン様タンパク質I を認識する抗体であり、サブタイプはIgMである。R-17F抗体は糖脂質を認識する抗体であり、サブタイプはIgG1である。また、両者の重鎖、軽鎖のCDR1〜CDR3のアミノ酸配列に相同性は見られない。

0111

[参考文献]
1. Choo AB, Tan HL, Ang SN et al. Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells 2008;26:1454-1463.

2. Furue M, Okamoto T, Hayashi Y et al. Leukemia inhibitory factor as an anti-apoptotic mitogen for pluripotent mouse embryonic stem cells in a serum-free medium without feeder cells. In vitro Cell Dev Biol Anim 2005;41:19-28.

3. Furue MK, Na J, Jackson JP et al. Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium. Proc Natl Acad Sci USA 2008;105:13409-13414.

4. Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined fators. Cell 2007;131:861-872.

5. Toyoda M, YamazakiIM, Itakura Y et al. Lectin microarray analysis of pluripotent and multipotent stem cells. Genes to Cells 2011;16:1-11.

6. Taki, T., Ishikawa, D.,TLCblotting: application to microscale analysis of lipidsand as a new approach to lipid-protein interaction, Anal Biochem 251 (1997) 135-143.

7. Watanabe K, Ueno M, Kamiya D et al. A ROCKinhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 2007;25:681-686.

0112

本発明を好ましい態様を強調して説明してきたが、好ましい態様が変更され得ることは当業者にとって自明であろう。本発明は、本発明が本明細書に詳細に記載された以外の方法で実施され得ることを意図する。したがって、本発明は添付の「請求の範囲」の精神及び範囲に包含されるすべての変更を含むものである。
ここで述べられた特許及び特許出願明細書を含む全ての刊行物に記載された内容は、ここに引用されたことによって、その全てが明示されたと同程度に本明細書に組み込まれるものである。

実施例

0113

本出願は、2012年12月21日付で日本国に出願された特願2012-280259を基礎としており、ここで言及することにより、その内容はすべて本明細書に包含される。

0114

本発明の抗iPS/ES細胞抗体は、ヒトiPS/ES細胞陽性で且つEC細胞陰性の新規モノクローナル抗体として、ヒトiPS/ES細胞の規格化・標準化に新たな指標を加えた意義がある。さらに、標的細胞特異的な細胞障害活性を有する本発明の抗体は、多能性幹細胞を利用した再生医学において重要な意味を持つと考えられ、ヒトへの移植ための安全な細胞・組織の調製への有用性が高い。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ