図面 (/)

技術 静電結合方式非接触給電装置およびその制御方法

出願人 株式会社FUJI
発明者 斉藤克瀧川慎二野村壮志
出願日 2012年9月25日 (8年3ヶ月経過) 出願番号 2014-537865
公開日 2016年8月18日 (4年4ヶ月経過) 公開番号 WO2014-049683
状態 特許登録済
技術分野 電磁波による給配電方式
主要キーワード 分離端子 電気的諸量 表示設定装置 双方向性結合器 吸着採取 給電用ケーブル 理想電圧 平行板コンデンサ
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2016年8月18日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (5)

課題・解決手段

本発明の静電結合方式非接触給電装置は、固定部に設けられた給電用電極および高周波電源部と、可動部に設けられた受電用電極および受電変換部と、直列共振回路を構成する共振用インダクタとを備え、高周波電源部と直列共振回路との間に設けられて高周波電源部から直列共振回路に向かう進行波進行波電圧および逆方向の反射波反射波電圧を検出する電圧検出手段と、固定部に設けられて受電用電極に発生する受電電圧を非接触で検出する補助電圧検出手段と、進行波電圧および反射波電圧に基づいて負荷側インピーダンス演算し、受電電圧に基づいて共振状況を判定し、高周波電源部の出力周波数および出力電圧の少なくとも一方を可変に制御する演算制御手段と、をさらに備えた。これにより、可動部上の電気負荷稼動定性を高めつつ、可動部側電気回路を簡略化して小形軽量化を実現し、給電電力の削減や装置のコスト低減に寄与できる。

概要

背景

多数の部品実装された基板生産する基板用作業機器として、はんだ印刷機部品実装機リフロー機基板検査機などがあり、これらを基板搬送装置で連結して基板生産ライン構築する場合が多い。これらの基板用作業機器の多くは基板の上方を移動して所定の作業を行う可動部を備えており、可動部を駆動する一手段としてリニアモータ装置を用いることができる。リニアモータ装置は、移動方向に沿い複数の磁石のN極およびS極が交互に列設された軌道部材と、コアおよびコイルを有する電機子を含んで構成された可動部とを備えるのが一般的である。リニアモータ装置を始めとする可動部上の電力負荷給電するために、従来から変形可能な給電用ケーブルが用いられてきた。また、近年では、給電用ケーブルによる荷搬重量の増加や金属疲労による断線リスクなどの弊害を解消するために、非接触給電装置の適用も提案されている。

非接触給電装置の方式として、従来からコイルを用いた電磁誘導方式が多用されてきたが、最近では対向する電極板によりコンデンサを構成した静電結合方式も用いられるようになってきており、他に磁界共鳴方式なども検討されている。いずれの方式においても、給電効率の向上が重要であり、非接触給電回路の全体を直列共振回路として大電流を流す技術や、給電点インピーダンス整合を図る技術などが提案されている。また、非接触給電装置では、可動部上の電気負荷の変動に追従するために、固定部側高周波電源部の出力周波数出力電圧可変に調整する場合が多い。

この種の非接触給電装置の技術例が特許文献1に開示されている。特許文献1のワイヤレス給電システムは、電磁共鳴方式(磁界共鳴方式)の非接触給電装置を主な対象として、給電点におけるインピーダンス整合を図ることを要旨としている。特許文献1の請求項1には、給電装置電力生成部、送電素子給電側インピーダンス検出部、インピーダンス可変勢合部、インピーダンス特性記憶部、および制御部を有する態様が示され、給電側の出力インピーダンスを可変に調整できるようになっている。また、請求項8には、受電装置に類似の構成を有して、受電側入力インピーダンスを可変に調整する態様が示されている。さらに、請求項15および16には、通信部を有して給電装置と受電装置との間でインピーダンス制御情報送受信する態様が示されている。これにより、双方のインピーダンス調整を行って電力損失を低減でき、回路規模およびコストの増大を抑止できる、と記載されている。

概要

本発明の静電結合方式非接触給電装置は、固定部に設けられた給電用電極および高周波電源部と、可動部に設けられた受電用電極および受電変換部と、直列共振回路を構成する共振用インダクタとを備え、高周波電源部と直列共振回路との間に設けられて高周波電源部から直列共振回路に向かう進行波進行波電圧および逆方向の反射波反射波電圧を検出する電圧検出手段と、固定部に設けられて受電用電極に発生する受電電圧を非接触で検出する補助電圧検出手段と、進行波電圧および反射波電圧に基づいて負荷側インピーダンス演算し、受電電圧に基づいて共振状況を判定し、高周波電源部の出力周波数および出力電圧の少なくとも一方を可変に制御する演算制御手段と、をさらに備えた。これにより、可動部上の電気負荷の稼動定性を高めつつ、可動部側電気回路を簡略化して小形軽量化を実現し、給電電力の削減や装置のコスト低減に寄与できる。

目的

本発明は、上記背景技術の問題点に鑑みてなされたもので、非接触給電の対象となる可動部上の電気負荷の稼動状況回路の共振状況を固定部側で検出して稼動安定性を高めつつ、可動部側の電気回路を簡略化して小形軽量化を実現し、給電電力の削減や装置のコスト低減に寄与できる非接触給電装置を提供する

効果

実績

技術文献被引用数
1件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

固定部に設けられた給電用電極と、前記給電用電極に高周波電力給電する高周波電源部と、前記固定部に移動可能に装架された可動部に設けられ、前記給電用電極に離隔対向して非接触で高周波電力を受け取る受電用電極と、前記受電用電極が受け取った高周波電力を変換して前記可動部上の電気負荷に給電する受電変換部と、前記給電用電極と前記受電用電極とにより構成されたコンデンサ直列接続されて直列共振回路を形成する共振用インダクタと、を備えた静電結合方式非接触給電装置であって、前記高周波電源部と前記直列共振回路との間に設けられて、前記高周波電源部から前記直列共振回路に向かう進行波進行波電圧および逆方向の反射波反射波電圧を検出する電圧検出手段と、前記固定部に設けられて、前記受電用電極に発生する受電電圧を非接触で検出する補助電圧検出手段と、前記進行波電圧および前記反射波電圧に基づいて前記電圧検出手段からみた負荷側インピーダンス演算し、前記受電電圧に基づいて前記直列共振回路の共振状況を判定し、前記負荷側インピーダンスおよび前記共振状況に基づいて前記高周波電源部の出力周波数および出力電圧の少なくとも一方を可変に制御する演算制御手段と、をさらに備えた静電結合方式非接触給電装置。

請求項2

請求項1において、前記演算制御手段は、前記進行波電圧、前記反射波電圧、および前記高周波電源部の内部インピーダンスに基づき、電圧反射率および電圧定在波比の少なくとも一方を用いて前記負荷側インピーダンスを演算する静電結合方式非接触給電装置。

請求項3

請求項1または2において、前記演算制御手段は、前記負荷側インピーダンスおよび前記高周波電源部の出力電圧をパラメータとして前記高周波電源部の周波数目標値を求める周波数マップを保持しており、前記周波数マップを用いて求めた前記周波数目標値に前記出力周波数が一致するように制御する静電結合方式非接触給電装置。

請求項4

請求項3において、前記演算制御手段は、前記負荷側インピーダンスおよび前記高周波電源部の出力電圧をパラメータとして前記受電電圧の電圧目標値を求める電圧マップを保持しており、前記電圧マップを用いて前記電圧目標値を求め、かつ、前記周波数目標値に一致した出力周波数で前記高周波電源部が給電していて、前記受電電圧が前記電圧目標値に一致しない場合は、前記出力周波数を微調整する静電結合方式非接触給電装置。

請求項5

請求項1〜4のいずれか一項において、前記電圧検出手段は、前記高周波電源部と前記前記直列共振回路との間に直列接続された双方向性結合器と、前記双方向性結合器で分離された前記進行波電圧および前記反射波電圧を測定する電圧測定器と、を含む静電結合方式非接触給電装置。

請求項6

請求項1〜5のいずれか一項において、前記補助電圧検出手段は、前記固定部に設けられて前記受電用電極に離隔対向する補助電極と、前記補助電極に誘起される補助電圧を測定する電圧測定器と、を含む静電結合方式非接触給電装置。

請求項7

固定部に設けられた給電用電極と、前記給電用電極に高周波電力を給電する高周波電源部と、前記固定部に移動可能に装架された可動部に設けられ、前記給電用電極に離隔対向して非接触で高周波電力を受け取る受電用電極と、前記受電用電極が受け取った高周波電力を変換して前記可動部上の電気負荷に給電する受電変換部と、前記給電用電極と前記受電用電極とにより構成されるコンデンサに直列接続されて直列共振回路を形成する共振用インダクタと、を備えた静電結合方式非接触給電装置の制御方法であって、前記高周波電源部と前記直列共振回路との間で、前記高周波電源部から前記直列共振回路に向かう進行波の進行波電圧および逆方向の反射波の反射波電圧を検出する電圧検出ステップと、前記固定部側で、前記受電用電極に発生する受電電圧を非接触で検出する補助電圧検出ステップと、前記進行波電圧および前記反射波電圧に基づいて前記直列共振回路を含む負荷側インピーダンスを演算し、前記受電電圧に基づいて前記直列共振回路の共振状況を判定し、前記負荷側インピーダンスおよび前記共振状況に基づいて前記高周波電源部の出力周波数および出力電圧の少なくとも一方を可変に制御する演算制御ステップと、を有する静電結合方式非接触給電装置の制御方法。

技術分野

0001

本発明は、可動部上の電気負荷電極を用いて非接触で給電する静電結合方式非接触給電装置およびその制御方法に関し、より詳細には、電気負荷の稼働状況の変動に追従して高周波電源部を制御する装置および制御方法に関する。

背景技術

0002

多数の部品実装された基板生産する基板用作業機器として、はんだ印刷機部品実装機リフロー機基板検査機などがあり、これらを基板搬送装置で連結して基板生産ライン構築する場合が多い。これらの基板用作業機器の多くは基板の上方を移動して所定の作業を行う可動部を備えており、可動部を駆動する一手段としてリニアモータ装置を用いることができる。リニアモータ装置は、移動方向に沿い複数の磁石のN極およびS極が交互に列設された軌道部材と、コアおよびコイルを有する電機子を含んで構成された可動部とを備えるのが一般的である。リニアモータ装置を始めとする可動部上の電力負荷に給電するために、従来から変形可能な給電用ケーブルが用いられてきた。また、近年では、給電用ケーブルによる荷搬重量の増加や金属疲労による断線リスクなどの弊害を解消するために、非接触給電装置の適用も提案されている。

0003

非接触給電装置の方式として、従来からコイルを用いた電磁誘導方式が多用されてきたが、最近では対向する電極板によりコンデンサを構成した静電結合方式も用いられるようになってきており、他に磁界共鳴方式なども検討されている。いずれの方式においても、給電効率の向上が重要であり、非接触給電回路の全体を直列共振回路として大電流を流す技術や、給電点インピーダンス整合を図る技術などが提案されている。また、非接触給電装置では、可動部上の電気負荷の変動に追従するために、固定部側の高周波電源部の出力周波数出力電圧可変に調整する場合が多い。

0004

この種の非接触給電装置の技術例が特許文献1に開示されている。特許文献1のワイヤレス給電システムは、電磁共鳴方式(磁界共鳴方式)の非接触給電装置を主な対象として、給電点におけるインピーダンス整合を図ることを要旨としている。特許文献1の請求項1には、給電装置電力生成部、送電素子給電側インピーダンス検出部、インピーダンス可変勢合部、インピーダンス特性記憶部、および制御部を有する態様が示され、給電側の出力インピーダンスを可変に調整できるようになっている。また、請求項8には、受電装置に類似の構成を有して、受電側入力インピーダンスを可変に調整する態様が示されている。さらに、請求項15および16には、通信部を有して給電装置と受電装置との間でインピーダンス制御情報送受信する態様が示されている。これにより、双方のインピーダンス調整を行って電力損失を低減でき、回路規模およびコストの増大を抑止できる、と記載されている。

先行技術

0005

特開2011−223739号公報

発明が解決しようとする課題

0006

ところで、特許文献1のシステムでは、比較的長い距離で磁界共鳴方式により非接触給電するために、インピーダンス整合が必要になっている。しかしながら、比較的短い距離で静電結合方式や電磁誘導方式により非接触給電する場合には、直列共振回路により給電効率を高めるのが一般的であり、特許文献1のシステムを適用すると装置構成が過剰でコストが割高になってしまう。

0007

一方、静電結合方式や電磁誘導方式では、電気負荷の稼動状況の変動や回路共振状況の変動に依存して給電効率が変化する。したがって、電気負荷の稼動状況や回路の共振状況などを検出し、これらに対応して給電側の高周波電源部の出力周波数や出力電圧を可変に制御することが好ましい。しかしながら、特許文献1に類似した検出回路や通信部を受電側に設けると、その分だけ受電側の構成が複雑化して重厚長大化する。ここで、受電側は可動部に設けられるのが一般的であるので、可動部の大形化および重量化は給電電力の削減や装置コストの低減などに大きな妨げとなる。

0008

また、電気負荷の稼動状況や回路の共振状況を検出しなければ非接触給電の実施状況が不明となるため、可動部上の電気負荷の稼動定性が低下したり、動作速度が低下したりするおそれが生じる。

0009

本発明は、上記背景技術の問題点に鑑みてなされたもので、非接触給電の対象となる可動部上の電気負荷の稼動状況や回路の共振状況を固定部側で検出して稼動安定性を高めつつ、可動部側電気回路を簡略化して小形軽量化を実現し、給電電力の削減や装置のコスト低減に寄与できる非接触給電装置を提供することを解決すべき課題とする。

課題を解決するための手段

0010

上記課題を解決する請求項1に係る静電結合方式非接触給電装置の発明は、固定部に設けられた給電用電極と、前記給電用電極に高周波電力を給電する高周波電源部と、前記固定部に移動可能に装架された可動部に設けられ、前記給電用電極に離隔対向して非接触で高周波電力を受け取る受電用電極と、前記受電用電極が受け取った高周波電力を変換して前記可動部上の電気負荷に給電する受電変換部と、前記給電用電極と前記受電用電極とにより構成されたコンデンサに直列接続されて直列共振回路を形成する共振用インダクタと、を備えた静電結合方式非接触給電装置であって、前記高周波電源部と前記直列共振回路との間に設けられて、前記高周波電源部から前記直列共振回路に向かう進行波進行波電圧および逆方向の反射波反射波電圧を検出する電圧検出手段と、前記固定部に設けられて、前記受電用電極に発生する受電電圧を非接触で検出する補助電圧検出手段と、前記進行波電圧および前記反射波電圧に基づいて前記電圧検出手段からみた負荷側インピーダンス演算し、前記受電電圧に基づいて前記直列共振回路の共振状況を判定し、前記負荷側インピーダンスおよび前記共振状況に基づいて前記高周波電源部の出力周波数および出力電圧の少なくとも一方を可変に制御する演算制御手段と、をさらに備えた。

0011

請求項2に係る発明は、請求項1において、前記演算制御手段は、前記進行波電圧、前記反射波電圧、および前記高周波電源部の内部インピーダンスに基づき、電圧反射率および電圧定在波比の少なくとも一方を用いて前記負荷側インピーダンスを演算する。

0012

請求項3に係る発明は、請求項1または2において、前記演算制御手段は、前記負荷側インピーダンスおよび前記高周波電源部の出力電圧をパラメータとして前記高周波電源部の周波数目標値を求める周波数マップを保持しており、前記周波数マップを用いて求めた前記周波数目標値に前記出力周波数が一致するように制御する。

0013

請求項4に係る発明は、請求項3において、前記演算制御手段は、前記負荷側インピーダンスおよび前記高周波電源部の出力電圧をパラメータとして前記受電電圧の電圧目標値を求める電圧マップを保持しており、前記電圧マップを用いて前記電圧目標値を求め、かつ、前記周波数目標値に一致した出力周波数で前記高周波電源部が給電していて、前記受電電圧が前記電圧目標値に一致しない場合は、前記出力周波数を微調整する。

0014

請求項5に係る発明は、請求項1〜4のいずれか一項において、前記電圧検出手段は、前記高周波電源部と前記前記直列共振回路との間に直列接続された双方向性結合器と、前記双方向性結合器で分離された前記進行波電圧および前記反射波電圧を測定する電圧測定器と、を含む。

0015

請求項6に係る発明は、請求項1〜5のいずれか一項において、前記補助電圧検出手段は、前記固定部に設けられて前記受電用電極に離隔対向する補助電極と、前記補助電極に誘起される補助電圧を測定する電圧測定器と、を含む。

0016

請求項7に係る静電結合方式非接触給電装置の制御方法の発明は、固定部に設けられた給電用電極と、前記給電用電極に高周波電力を給電する高周波電源部と、前記固定部に移動可能に装架された可動部に設けられ、前記給電用電極に離隔対向して非接触で高周波電力を受け取る受電用電極と、前記受電用電極が受け取った高周波電力を変換して前記可動部上の電気負荷に給電する受電変換部と、前記給電用電極と前記受電用電極とにより構成されるコンデンサに直列接続されて直列共振回路を形成する共振用インダクタと、を備えた静電結合方式非接触給電装置の制御方法であって、前記高周波電源部と前記直列共振回路との間で、前記高周波電源部から前記直列共振回路に向かう進行波の進行波電圧および逆方向の反射波の反射波電圧を検出する電圧検出ステップと、前記固定部側で、前記受電用電極に発生する受電電圧を非接触で検出する補助電圧検出ステップと、前記進行波電圧および前記反射波電圧に基づいて前記直列共振回路を含む負荷側インピーダンスを演算し、前記受電電圧に基づいて前記直列共振回路の共振状況を判定し、前記負荷側インピーダンスおよび前記共振状況に基づいて前記高周波電源部の出力周波数および出力電圧の少なくとも一方を可変に制御する演算制御ステップと、を有する。

発明の効果

0017

請求項1に係る発明では、電圧検出手段が検出する反射波電圧は、電気負荷の稼動状況の変動および直列共振回路の共振状況の変動に依存して変化する。また、補助電圧検出手段が非接触で検出する受電用電極の受電電圧は、直列共振回路の共振状況の変動に依存して変化する。したがって、演算制御手段は、進行波電圧および反射波電圧に基づいて負荷側インピーダンスを演算し、受電電圧に基づいて直列共振回路の共振状況を判定することで、電気負荷の稼動状況および直列共振回路の共振状況を把握できる。さらに、演算制御手段は、把握した状況に応じて高周波電源部を可変に制御することで高い給電効率を維持できるので、可動部上の電気負荷の稼動安定性が高められる。

0018

また、特許文献1と異なり、電圧検出手段、補助電圧検出手段、および演算制御手段は、全て固定部側に設けることができる。したがって、可動部側の電気回路を簡略化して小形軽量化を実現できる。加えて、装置1の給電電力の削減や装置のコスト低減にも寄与できる。

0019

請求項2に係る発明では、演算制御手段は、進行波電圧、反射波電圧、および高周波電源部の内部インピーダンスに基づき、電圧反射率および電圧定在波比の少なくとも一方を用いて負荷側インピーダンスを演算する。電気負荷の稼動状況は、等価回路上は負荷側インピーダンスの変動として表される。また、反射波電圧の大きさは、負荷側インピーダンスと高周波電源部の内部インピーダンスとの関係に依存する。そして、この関係は電圧反射率および電圧定在波比の少なくとも一方を用いて表される。したがって、演算制御手段は、少なくとも一方を用いた演算によって負荷側インピーダンスを求めることができ、電気負荷の稼動状況を把握することができる。

0020

請求項3に係る発明では、演算制御手段は、負荷側インピーダンスおよび高周波電源部の出力電圧をパラメータとして高周波電源部の周波数目標値を求める周波数マップを保持しており、周波数マップを用いて求めた周波数目標値に出力周波数が一致するように制御する。つまり、演算制御手段は、負荷側インピーダンスの変動に応じて高周波電源部の出力周波数を可変に制御する。これにより、電気負荷の稼動状況に応じて、直列共振回路の共振状況を良好に保って高い給電効率を維持できる。

0021

請求項4に係る発明では、演算制御手段は、周波数マップに加えて電圧マップを保持しており、周波数目標値に一致した出力周波数で高周波電源部が給電していて、受電電圧が電圧目標値に一致しない場合は、出力周波数を微調整する。つまり、周波数マップから最適な周波数目標値を求めて制御することで、通常は受電用電極の受電電圧は電圧目標値に概ね一致するが、不測の要因で受電電圧が電圧目標値から外れる場合が起こり得る。この場合、出力周波数が実際の共振周波数から偏移しているものと判断し、周波数目標値に制約されずに出力周波数を微調整する。これにより、不測の要因が生じていても、直列共振回路の共振状況を良好に保ち、所定の受電電圧を発生させて高い給電効率を維持できる。

0022

請求項5に係る発明では、電圧検出手段は双方向性結合器と電圧測定器とを含んで構成される。このように、固定部側で汎用の機材を組み合わせて進行波電圧および反射波電圧を測定し、測定値に基づいて負荷側インピーダンスを演算するので、装置コストの低減に資することができる。

0023

請求項6に係る発明では、補助電圧検出手段は、固定部に設けられて受電用電極に離隔対向する補助電極と、補助電極に誘起される補助電圧を測定する電圧測定器とを含んで構成される。このように、固定部側で汎用の機材を組み合わせて可動部側の受電電圧を非接触で測定するので、装置コストの低減に資することができる。

0024

請求項7に係る静電結合方式非接触給電装置の制御方法の発明では、電圧検出ステップ、補助電圧検出ステップ、および演算制御ステップを有しており、請求項1の装置の発明と同様の効果が生じる。本発明は、装置の発明だけでなく、方法の発明としても実施することができる。

図面の簡単な説明

0025

本発明の静電結合方式非接触給電装置を適用できる部品実装機の全体構成を示した斜視図である。
実施形態の静電結合方式非接触給電装置を説明するブロック構成図である。
実施形態の静電結合方式非接触給電装置の給電回路等価回路図である。
従来技術の静電結合方式非接触給電装置を説明するブロック構成図である。

実施例

0026

まず、本発明を適用できる部品実装機10について、図1を参考にして説明する。図1は、本発明の静電結合方式非接触給電装置を適用できる部品実装機10の全体構成を示した斜視図である。部品実装機10は、基板に多数の部品を実装する装置であり、2セットの同一構造部品実装ユニットが概ね左右対称に配置されて構成されている。ここでは、図1右手前側のカバーを取り外した状態の部品実装ユニットを例にして説明する。なお、図中の左奥側から右手前側に向かう部品実装機10の幅方向をX軸方向とし、部品実装機10の長手方向をY軸方向とする。

0027

部品実装機10は、基板搬送装置110、部品供給装置120、2つの部品移載装置130、140などが機台190に組み付けられて構成されている。基板搬送装置110は、部品実装機10の長手方向の中央付近をX軸方向に横断するように配設されている。基板搬送装置110は、図略の搬送コンベアを有しており、基板をX軸方向に搬送する。また、基板搬送装置110は、図略のクランプ装置を有しており、基板を所定の実装作業位置に固定および保持する。部品供給装置120は、部品実装機10の長手方向の前部(図1の左前側)及び後部(図には見えない)に設けられている。部品供給装置120は、複数のカセット式フィーダ121を有し、各フィーダ121にセットされたキャリアテープから2つの部品移載装置130、140に連続的に部品を供給するようになっている。

0028

2つの部品移載装置130、140は、X軸方向およびY軸方向に移動可能ないわゆるXYロボットタイプの装置である。2つの部品移載装置130、140は、部品実装機10の長手方向の前側および後側に、相互に対向するように配設されている。各部品移載装置130、140は、Y軸方向の移動のためのリニアモータ装置150を有している。

0029

リニアモータ装置150は、2つの部品移載装置130、140に共通な軌道部材151および補助レール155と、2つの部品移載装置130、140ごとのリニア可動部153で構成されている。軌道部材151は、本発明の固定部2の一部に相当し、リニア可動部153の移動方向となるY軸方向に延在している。軌道部材151は、リニア可動部153の下側に配置された底面、およびリニア可動部153の両側に配置された側面からなり、上方に開口する溝形状になっている。軌道部材151の向かい合う側面の内側には、Y軸方向に沿って複数の磁石152が列設されている。

0030

リニア可動部153は、軌道部材151に移動可能に装架されている。リニア可動部153は、本発明の可動部3に相当し、可動本体部160、X軸レール161、および実装ヘッド170などで構成されている。可動本体部160は、Y軸方向に延在しており、その両側面には軌道部材151の磁石152に対向して推進力を発生する電機子が配設されている。X軸レール161は、可動本体部160からX軸方向に延在している。X軸レール161は、一端162が可動本体部160に結合され、他端163が補助レール155に移動可能に装架されており、可動本体部160と一体的にY軸方向に移動するようになっている。

0031

部品実装ヘッド170は、X軸レール161に装架され、X軸方向に移動するようになっている。部品実装ヘッド170の下端には図略の吸着ノズルが設けられている。吸着ノズルは、エアポンプにより生成される負圧を利用して部品供給装置120から部品を吸着採取し、駆動モータにより昇降駆動および回転駆動され、吸着した部品を実装作業位置の基板に実装する。X軸レール161上に設けられた図略のボールねじ送り機構は、可動本体部160に配設されたX軸モータにより駆動されて、部品実装ヘッド170をX軸方向に駆動する。

0032

部品実装機10は、他に、オペレータと情報を交換するための表示設定装置180および、基板や部品を撮像する図略のカメラなどを備えている。

0033

可動本体部160上のX軸モータならびに電機子や、部品実装ヘッド170上のエアポンプや駆動モータなどは、本発明の電気負荷に相当する。また、リニア可動部153上の説明を省略したセンサ類制御基板なども電気負荷の一部である。

0034

これらの可動部3上(リニア可動部153上)の電気負荷に固定部2(軌道部材151)から給電するために、本発明の実施形態の静電結合方式非接触給電装置1が構成されている。図2は、実施形態の静電結合方式非接触給電装置1を説明するブロック構成図である。静電結合方式非接触給電装置1は、給電用電極21、高周波電源部25、共振用インダクタ29、受電用電極31、受電変換部35、電圧検出手段4、補助電圧検出手段5、および演算制御手段6などで構成されている。

0035

2個の給電用電極21は、固定部2に設けられており、金属材料細長帯状に形成されている。給電用電極21は、固定部2の軌道部材151のY軸方向(図2紙面表裏方向)の概ね全長にわたって配設されている。

0036

高周波電源部25は、固定部2に配設されており、高周波電力を出力する。高周波電源部25の2つの出力端子は、電源線251により後述する双方向性結合器41および共振用インダクタ29を経由して給電用電極21に接続されている。高周波電源部25は、例えば、直流電源と4個のスイッチング素子からなるブリッジ回路とを含んで構成することができる。この構成によれば、スイッチング素子の制御周期を可変に制御することで、高周波電源部25の出力周波数fを100kHz〜MHz帯で可変に制御することができる。高周波電源部25の出力電圧V1は、一定としてもよいし、可変に制御するようにしてもよい。出力電圧波形としては、スイッチングされた電圧を直接出力する矩形波や、ブリッジ回路の出力側平滑回路を挿入して生成する正弦波などを例示できる。

0037

2個の受電用電極31は、可動部3に設けられており、金属材料で形成されている。受電用電極31のY軸方向に直角な幅寸法図2の上下方向の寸法)は、給電用電極21の幅寸法よりも大きい。受電用電極31および給電用電極21は、所定の給電電力を得るために大きな対向面積が確保されており、わずかな離間距離を有して対向配置されている。このため、2個の受電用電極31と給電用電極21により、2組の平行板コンデンサが構成されている。リニアモータ装置150により可動部3が駆動されても、離間距離は概ね一定に保たれ、平行板コンデンサの静電容量値C1も概ね一定に保たれる。

0038

受電変換部35は、可動部3に設けられており、非接触受電用電極31から入力された高周波電力を変換して、電気負荷91に出力する。非接触給電の給電対象となる電気負荷91は、具体的には前述したリニア可動部153上のX軸モータならびに電機子、部品実装ヘッド170上のエアポンプや駆動モータ、センサ類や制御基板などである。これら複数の電気負荷91は、動作電圧が互いに異なっていてもよい。

0039

受電変換部35の入力端子は、電源線351により受電用電極31に接続されている。受電変換部35の出力端子は、給電線352により電気負荷91に接続されている。電気負荷91は直流負荷および交流負荷のいずれでもよく動作電圧の大きさも限定されないが、受電変換部35は電気負荷91に対応した電圧出力機能を具備する必要がある。受電変換部35には、例えば、入力された高周波電力を直流電力に変換する全波整流回路や、商用周波交流電力に変換するインバータ回路などを用いることができる。また、複数の電気負荷91の動作電圧や周波数が異なる場合には、マルチ出力形の受電変換部35を用いることができる。

0040

2個の共振用インダクタ29は、給電用電極21と受電用電極31とにより構成された平行板コンデンサに直列接続されて直列共振回路を形成する。共振用インダクタ29として、一般的にはコイルを用いる。共振用インダクタ29は、固定部2側の2本の電源線251の双方向性結合器41と給電用電極21との間にそれぞれ接続されている。共振用インダクタ29のインダクタンス値L1は、平行板コンデンサの静電容量値C1に合わせて適正に選定されている。なお、2個の共振用インダクタ29に代えて、2倍のインダクタンス値(2L1)を有するインダクタを一方の電源線251に挿入接続するようにしてもよい。

0041

電圧検出手段4は、高周波電源部25と直列共振回路との間に設けられている。電圧検出手段4は、高周波電源部25から直列共振回路に向かう進行波の進行波電圧V1および逆方向の反射波の反射波電圧V2を検出する。電圧検出手段4は、高周波電源部25と直列共振回路との間に接続された双方向性結合器41、ならびに電圧検出器45を含んで構成されている。

0042

図2に示されるように、双方向性結合器41の第1主端子421は高周波電源部25に接続され、第2主端子422は共振用インダクタ29に接続されている。また、双方向性結合器41の第1分離端子423および第2分離端子424は電圧検出器45に接続されている。第1主端子421と第2主端子422との間では、進行方向に関わりなくすべての電圧が透過する。

0043

これに対して、第1分離端子423は、第1主端子421から第2主端子422に向かう電圧のみを分離して出力する。すなわち、高周波電源部25から出力された出力電圧V1であって、直列共振回路に向かう進行波の進行波電圧V1のみを分離して出力する。逆に、第2主端子422から第1主端子421に向かう電圧があっても、第1分離端子423には出力されない。一方、第2分離端子424は、第2主端子422から第1主端子421に向かう電圧のみ、換言すれば反射波の反射波電圧V2のみを分離して出力する。

0044

電圧検出器45は、第1分離端子423の進行波電圧V1、ならびに第2分離端子424の反射波電圧V2を測定し、測定値を演算制御手段6に送出する。電圧検出器45は、例えば、演算制御手段6から制御される2チャンネル以上のAD変換器を含んで構成することができ、これに限定されない。

0045

補助電圧検出手段5は、固定部2に設けられており、受電用電極31に発生する受電電圧V3を非接触で検出する。補助電圧検出手段5は、固定部2に設けられて各受電用電極31にそれぞれ離隔対向する2個の補助電極51と、補助電極51に誘起される補助電圧V4を測定する電圧測定器55とを含んで構成されている。

0046

2個の補助電極51は、金属材料で細長い帯状に形成されており、それぞれ給電用電極21に並行し、軌道部材151のY軸方向(図2の紙面表裏方向)の概ね全長にわたって配設されている。補助電極51のY軸方向に直角な幅寸法(図2の上下方向の寸法)は、受電用電極31の幅寸法から給電用電極21の幅寸法を差し引いた寸法に略一致している。受電用電極31と補助電極51との間には、所定の対向面積が確保されており、わずかな離間距離を有して対向配置されている。したがって、2個の受電用電極31および補助電極51により、2組の補助コンデンサが構成されている。可動部3がリニアモータ装置150により駆動されても、離間距離は概ね一定に保たれ、補助コンデンサの静電容量C2も概ね一定に保たれる。なお、補助電極51と給電用電極21とは同一平面上に配置されて対向していないのでコンデンサは構成されず、両者51、21の間の静電結合は無視して考えることができる。

0047

2個の補助電極51の間には、受電用電極31に発生する受電電圧V3が分圧されて誘起電圧V4が誘起される。誘起電圧V4は受電電圧V3に比例するので、電圧測定器55で誘起電圧V4を測定し、測定値に分圧比の逆数乗算することで受電電圧V3を求めることができる。電圧測定器55は、受電電圧V3の測定値を演算制御手段6に送出する。電圧測定器55は、例えば、演算制御手段6から制御されるAD変換器を含んで構成することができ、これに限定されない。また、進行波電圧V1および反射波電圧V2を測定する電圧検出器45と、誘起電圧V4を測定する電圧測定器55とを一体化してもよい。

0048

演算制御手段6は、負荷側インピーダンスZLを演算し、共振状況を判定して、高周波電源部25の少なくとも出力周波数fを可変に制御する.演算制御手段6には、例えば、マイコンを内蔵してソフトウェアで動作する電子制御装置を用いることができる。演算制御手段6は、まず、前述した進行波電圧V1および反射波電圧V2に基づいて負荷側インピーダンスZLを演算する。負荷側インピーダンスZLの演算方法については、後で等価回路を用いて詳述する。

0049

演算制御手段6は、次に、受電電圧V3に基づいて直列共振回路の共振状況を判定し、具体的には電圧マップを用いた判定を行う。電圧マップは、負荷側インピーダンスZLおよび高周波電源部25の出力電圧V1をパラメータとして受電電圧V3の電圧目標値V3Tを求める一覧表である。演算制御手段6は、受電電圧V3が電圧目標値V3Tに概ね一致している場合に、共振状況が良好であると判定する。演算制御手段6は、受電電圧V3が電圧目標値V3Tから外れている場合、大抵は受電電圧V3が電圧目標値V3Tから低下した場合に、共振状況が良好でないと判定する。

0050

演算制御手段6は、三番目に、負荷側インピーダンスZLおよび共振状況に基づいて高周波電源部21の出力周波数fを可変に制御する。具体的に、演算制御手段6は、周波数マップを用いて周波数目標値fTを求め、これに出力周波数fが一致するように制御する。周波数マップは、負荷側インピーダンスZLおよび高周波電源部25の出力電圧V1をパラメータとして周波数目標値fTを求める一覧表である。

0051

さらに、演算制御手段6は、共振状況が良好でない場合に、出力周波数fを微調整する。つまり、不測の要因で受電電圧V3が電圧目標値V3Tから外れていることから、出力周波数fが実際の共振周波数から偏移しているものと判断できるので、演算制御手段6は、周波数目標値fTに制約されずに出力周波数fを微調整する。

0052

なお、電圧マップおよび周波数マップは、実際の部品実装機10を用いた確認実験や、部品実装機10の電気的諸量模擬して行うシミュレーションなどにより、予め作成しておくことができる。

0053

次に、上述のように構成された実施形態の静電結合方式非接触給電装置1の作用について説明する。図3は、実施形態の静電結合方式非接触給電装置1の給電回路の等価回路図7である。図3で、高周波電源部25は、理想電圧源71とインピーダンス値Z0の内部インピーダンス72との直列回路に置き換えることができる。また、受電変換部35および電気負荷91は、稼働状況に応じて抵抗値RLが変動する負荷抵抗73、およびインダクタンス値LLが変動する負荷インダクタ74の直列回路に置き換えることができる。

0054

一方、2個の給電用電極21および受電用電極31で構成された2組の平行板コンデンサは直列接続されることになり、トータルの静電容量値は個別の静電容量値C1の半分になる。また、2個の共振用インダクタ29も直列接続されることになり、トータルのインダクタンス値は個別のインダクタンス値L1の2倍になる。したがって、電圧検出手段4からみた負荷側インピーダンスZLは、次の式(1)により求めることができる。なお、ωは出力周波数fに2πを乗算した角周波数であり、jは虚数単位である。

0055

ここで、高周波電源部25の内部インピーダンス72が純抵抗であり、かつ受電変換部35および電気負荷91を純抵抗とみなせる場合には、インダクタンス値LL=0となり、次の式(2)が直列共振条件となる。

0056

出力周波数fが適正に共振周波数に制御されて式(2)の直列共振条件が満たされていると、負荷側インピーダンスZLの虚数部はゼロになる。このとき、受電用電極31に発生する受電電圧V3は、高周波電源部25の出力電圧V1に一致する。また、出力周波数fが共振周波数から偏移するにつれて、負荷側インピーダンスZLの虚数部が増加し、受電電圧V3は漸減する。このため、演算制御手段6は、受電電圧V3の大小により共振状況を判定することができる。

0057

実際の部品実装機10では、電気負荷91にモータなどが含まれているので、負荷インダクタ74が存在して(インダクタンス値LL≠0)直列共振条件に影響を及ぼす。この影響を低減して実用的な給電制御を行うために、前述した電圧マップを確認実験やシミュレーションによって予め作成しておくことが好ましい。

0058

次に、電圧検出手段4で検出した進行波電圧V1および反射波電圧V2を用いると、電圧反射率Γは、次の式(3)により求めることができる。

0059

また、電圧反射率Γは、次の式(4)でも表される。

0060

したがって、式(3)の右辺と式(4)の右辺とが等しくなり、内部インピーダンス72のインピーダンス値Z0が既知一定値であることから、負荷側インピーダンスZLを演算によって求めることができる。

0061

ここで、直列共振回路を構成するインダクタンス値L1は一定値であり、静電容量値C1を一定とみなせば、電気負荷の稼動状況に応じて変動する抵抗値RLおよびインダクタンス値LLを逐次演算できる。さらに、これら諸量に基づいて、直列共振条件が成立するように出力周波数fの周波数目標値fTを逐次求めることができる。このため、演算制御手段6は、負荷側インピーダンスZLを演算して適正な周波数目標値fTを求め、これに一致するように出力周波数fを適正に制御することができる。

0062

実際の部品実装機10では、可動部3が移動すると、受電用電極31と給電用電極21との離間距離が微妙に変動して静電容量値C1に影響を及ぼすことが考えられる。このような静電容量値C1の変動を考慮して、前述した周波数マップを予め作成しておくことが好ましい。

0063

さらに、不測の要因が発生して周波数目標値fTで良好な共振状況が得られない場合には、演算制御手段6は、周波数目標値fTにとらわれることなく出力周波数fを暫定的に増減制御して最適値を求め、電圧目標値V3Tに概ね一致した大きな受電電圧V3が得られるように制御する。なお、不測の要因の影響は、等価回路上では静電容量値C1の変動またはインダクタンス値LLの変動で表される。

0064

なお、参考までに、電圧反射率Γを用いて、電圧定在波比VSWRを次の式(5)により求めることができる。

0065

ここで、高周波電源部25の内部インピーダンス72のインピーダンス値Z0は既知の一定値であるので、電圧定在波比VSWRは負荷側インピーダンスZLに比例する。したがって、周波数マップおよび電圧マップのパラメータとして、負荷側インピーダンスZLに代えて電圧定在波比VSWRを用いることもできる。

0066

次に、実施形態の静電結合方式非接触給電装置1の効果について、従来技術と比較しながら説明する。図4は、従来技術の静電結合方式非接触給電装置1X(以降は従来装置1Xと略記)を説明するブロック構成図である。従来装置1Xは、可動部3X側に受電検出手段81および送信回路82を備え、固定部2X側に受信回路83および制御手段84を備えている。その代わりに、従来装置1Xは、実施形態の電圧検出手段4、補助電圧検出手段5、および演算制御手段6を備えていない。

0067

従来装置1Xでは、可動部3X側で、受電検出手段81が受電変換部35の受電電圧V3もしくは変換電力を検出して、検出信号を送信回路82に送出していた。この検出信号は、可動部3X側の送信回路82から固定部2X側の受信回路83へと、無線や光を用いて非接触で送信されていた。そして、制御手段84は検出信号に基づいて、高周波電源部25の出力周波数や出力電圧を可変に制御していた。

0068

従来装置1Xと比較すれば分かるように、実施形態の実施形態の静電結合方式非接触給電装置1では、可動部3側の受電検出手段81および送信回路82が不要になっている。これにより、可動部3側の電気回路を簡略化して小形軽量化を実現できる。加えて、装置1の給電電力の削減やコスト低減にも寄与できる。

0069

また、実施形態では、進行波電圧V1および反射波電圧V2に基づいて演算した負荷側インピーダンスZL、および受電電圧V3に基づいて判定した共振状況に応じて高周波電源部25の出力周波数fを可変に制御する。また、制御に際しては周波数マップおよび電圧マップを用い、不測の要因が生じた場合であっても、直列共振回路の共振状況を良好に保つことができる。したがって、これらの総合的な作用として、高い給電効率を維持でき、可動部3上の電気負荷91の稼動安定性が高められる。

0070

また、電圧検出手段4は双方向性結合器41と電圧測定器45とを含んで構成され、補助電圧検出手段5は、補助電極51と電圧測定器55とを含んで構成されている。このように、固定部2側で汎用の機材を組み合わせて進行波電圧V1、反射波電圧V2、および可動部3側の受電電圧V3を測定するので、装置1のコストを低減できる。

0071

なお、本発明は、装置1でなくとも、非接触給電の制御方法として実施することもできる。また、高周波電源部25は、出力周波数fだけでなく出力電圧V1も制御するように構成してもよい。さらに、電圧検出手段4および補助電圧検出手段5は、固定部2側に設けられればよいのであって、内部の構成は異なっていてもよい。本発明は、その他にも様々な応用や変形が可能である。

0072

本発明の静電結合方式非接触給電装置は、部品実装機を始めとする基板用作業機器に限定されるものでなく、可動部を有して非接触給電を必要とする他の業種産業用機器にも広く利用できる。さらには、走行中の電車に対してパンタグラフなどを用いずに非接触給電する用途や、走行中の電気自動車に対して路面から非接触給電する用途などにも利用可能である。

0073

1、1X:静電結合方式非接触給電装置
2、2X:固定部 21:給電用電極
25:高周波電源部 29:共振用インダクタ
3、3X:可動部
31:受電用電極35:受電変換部
4:電圧検出手段
41:双方向性結合器45:電圧検出器
5:補助電圧検出手段
51:補助電極55:電圧測定器
6:演算制御手段
71:理想電圧源 72:内部インピーダンス
73:負荷抵抗74:負荷インダクタ
81:受電検出手段 82:送信回路
83:受信回路84:制御手段
91:電気負荷
10:部品実装機
110:基板搬送装置120:部品供給装置
130、140:部品移載装置 150:リニアモータ装置
151:軌道部材160:可動本体部 161:X軸レール
170:実装ヘッド180:表示設定装置190:機台
V1:進行波電圧(高周波電源部の出力電圧)
V2:反射波電圧V3:受電電圧V4:補助電圧
ZL:負荷側インピーダンスZ0:内部インピーダンス

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 旭ファイバーグラス株式会社の「 真空断熱材」が 公開されました。( 2020/10/29)

    【課題】センサ等を用いて内部の物性が測定可能な真空断熱材の従来例では、その内部に搭載しれたセンサシステムへの継続的な電力の供給をバッテリーで行うには限界があり、センサからのデータを長期間受信するために... 詳細

  • 三菱ロジスネクスト株式会社の「 無人飛行体用給電システムおよび制御装置」が 公開されました。( 2020/10/29)

    【課題】無人飛行体の稼働時間を向上できる無人飛行体用給電システムおよび制御装置を提供する。【解決手段】無人飛行体用給電システムは、荷役を行う複数の荷役車両と、荷役の支援を行う無人飛行体としてのドローン... 詳細

  • アモグリーンテックカンパニーリミテッドの「 車両用無線電力送信装置」が 公開されました。( 2020/10/29)

    【課題・解決手段】車両用無線電力送信装置が提供される。本発明の例示的な実施例による車両用無線電力送信装置は、無線電力を送出するための少なくとも1つの無線電力送信用アンテナと前記無線電力送信用アンテナの... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ