図面 (/)

この項目の情報は公開日時点(2013年6月27日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (6)

課題・解決手段

内燃機関制御装置は、車両に搭載され、エンジンと、触媒と、制御手段とを備える。エンジンは、気体燃料及び液体燃料燃料として運転するバイフューエルエンジンである。制御手段は、液体燃料の使用時に、触媒の温度が所定の上限値を超えた場合、空燃比リッチにすると共に気体燃料の割合を増大させる。

概要

背景

従来から、触媒高温になった場合、燃料噴射量を増量することで、排気ガス温度を低下させる技術が知られている。例えば、特許文献1には、アルコールを含む燃料において、触媒温度が上限温度以上に昇温するときには、アルコール燃料割合を増加させる技術が開示されている。この場合、蒸発熱燃焼温度の違いにより、触媒温度が減少し触媒劣化が抑制される。また、特許文献2には、排気系温度の過昇温を防止するために、燃料の含酸素燃料の割合に基づいて燃料カットする温度の設定を変更する技術が開示されている。

概要

内燃機関制御装置は、車両に搭載され、エンジンと、触媒と、制御手段とを備える。エンジンは、気体燃料及び液体燃料を燃料として運転するバイフューエルエンジンである。制御手段は、液体燃料の使用時に、触媒の温度が所定の上限値を超えた場合、空燃比リッチにすると共に気体燃料の割合を増大させる。

目的

本発明は、上記のような課題を解決するためになされたものであり、触媒温度を低減しつつ触媒の劣化を抑制することが可能な内燃機関の制御装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

気体燃料及び液体燃料燃料として運転可能なエンジンと、前記エンジンの排気ガス浄化する触媒と、前記液体燃料の使用時に、前記触媒の温度が所定の上限値を超えた場合、空燃比リッチにすると共に前記気体燃料の割合を増大させる制御手段と、を備えることを特徴とする内燃機関制御装置

請求項2

前記制御手段は、前記空燃比をリッチにすると共に前記気体燃料の割合を増大させた後、当該割合を元に戻すタイミングを、燃料カットからの復帰時とする請求項1に記載の内燃機関の制御装置。

請求項3

前記制御手段は、前記空燃比をリッチにすると共に前記気体燃料の割合を増大させる制御を、加速時又は/及びトランスミッション変速時に実施する請求項1又は2に記載の内燃機関の制御装置。

技術分野

0001

本発明は、内燃機関エンジン)を備える車両の制御に関する。

背景技術

0002

従来から、触媒高温になった場合、燃料噴射量を増量することで、排気ガス温度を低下させる技術が知られている。例えば、特許文献1には、アルコールを含む燃料において、触媒温度が上限温度以上に昇温するときには、アルコール燃料割合を増加させる技術が開示されている。この場合、蒸発熱燃焼温度の違いにより、触媒温度が減少し触媒劣化が抑制される。また、特許文献2には、排気系温度の過昇温を防止するために、燃料の含酸素燃料の割合に基づいて燃料カットする温度の設定を変更する技術が開示されている。

先行技術

0003

特開2008−133726号公報
特開2009−257248号公報

発明が解決しようとする課題

0004

液体燃料の燃料噴射量の増量時には、吸気ポート燃焼室内の燃料付着量が大きくなる。従って、その後、減速に伴い燃料カットを行う場合には、上述の未燃燃料排気系に流入し、未燃燃料と大量の酸素触媒内酸化反応が促進され、触媒温度が昇温すると共に触媒劣化が進行する可能性がある。

0005

本発明は、上記のような課題を解決するためになされたものであり、触媒温度を低減しつつ触媒の劣化を抑制することが可能な内燃機関の制御装置を提供することを目的とする。

課題を解決するための手段

0006

本発明の1つの観点では、内燃機関の制御装置は、気体燃料及び液体燃料を燃料として運転可能なエンジンと、前記エンジンの排気ガス浄化する触媒と、前記液体燃料の使用時に、前記触媒の温度が所定の上限値を超えた場合、空燃比リッチにすると共に前記気体燃料の割合を増大させる制御手段と、を備える。

0007

上記の内燃機関の制御装置は、車両に搭載され、エンジンと、触媒と、制御手段とを備える。エンジンは、気体燃料及び液体燃料を燃料として運転するバイフューエルエンジンである。制御手段は、例えばECU(Electronic Control Unit)であり、液体燃料の使用時に、触媒の温度が所定の上限値を超えた場合、空燃比をリッチにすると共に気体燃料の割合を増大させる。ここで、「気体燃料の割合」とは、気体燃料を燃料として使用する割合を指す。また、「空燃比をリッチにする」とは、空燃比をリッチ側へ遷移させることを指す。このように、内燃機関の制御装置は、触媒温度が高温となり劣化防止のため触媒温度を低下させる場合に、空燃比をリッチにすると共に気体燃料の割合を増加させる。これにより、内燃機関の制御装置は、吸気ポートや筒内に未燃燃料が過度に付着するのを防ぎ、燃料カット時の触媒劣化及び触媒昇温を抑制することができる。また、内燃機関の制御装置は、同一質量での体積が液体燃料より大きい気体燃料の使用割合を増加させることで、燃料室への吸入空気量及び充填効率を低下させ、触媒温度を低下させることができる。また、内燃機関の制御装置は、燃料増量時に気体燃料の割合を増加させることで、低エミッション化を実現することができる。

0008

上記の内燃機関の制御装置の一態様では、前記制御手段は、前記空燃比をリッチにすると共に前記気体燃料の割合を増大させた後、当該割合を増大させる前の状態に戻すタイミングを、燃料カットからの復帰時とする。このように、内燃機関の制御装置は、燃料カットからの復帰時に気体燃料の割合を元に戻すタイミングを設定することで、燃料カット時に燃焼室内を掃気することができる。従って、内燃機関の制御装置は、再び元の燃料噴射制御を開始する場合に、気体燃料の割合を増加させたことによる影響を回避することができる。

0009

上記の内燃機関の制御装置の他の一態様では、前記制御手段は、前記空燃比をリッチにすると共に前記気体燃料の割合を増大させる制御を、加速時又は/及びトランスミッション変速時に実施する。これにより、内燃機関の制御装置は、加速時やトランスミッションの変速時に、吸気ポートや筒内に未燃燃料が過度に付着するのを防ぎ、燃料カット時の触媒劣化及び触媒昇温を抑制することができる。また、内燃機関の制御装置は、燃料室への吸入空気量及び充填効率を低下させ、触媒温度を低下させることができる。また、内燃機関の制御装置は、燃料増量時に気体燃料の割合を増加させることで、低エミッション化を実現することができる。

図面の簡単な説明

0010

本発明に係る内燃機関の制御装置が適用された燃料噴射システムの一例を示す図である。
液体燃料運転時及び気体燃料運転時での触媒温度の挙動を説明するためのタイムチャートの一例である。
加速走行時における第3制御の処理概要を示すタイムチャートの一例である。
第1制御及び第2制御を同時に実行した場合の処理手順を示すフローチャートの一例である。
第3制御の処理手順を示すフローチャートの一例である。

実施例

0011

以下、図面を参照して本発明の好適な実施の形態について説明する。

0012

[内燃機関の概略構成
図1は、本発明に係る内燃機関の制御装置が適用された燃料噴射システム100を示す。図中の実線矢印ガスの流れの一例を示している。

0013

燃料噴射システム100は、主に、エンジン1と、第1燃料噴射弁2と、第2燃料噴射弁3と、サージタンク4と、スロットルバルブ5と、吸気通路6と、エアクリーナ7と、排気通路8と、触媒10と、を備える。

0014

エンジン1は、4つの気筒11を備え、各気筒11はインテークマニホールドを介して共通のサージタンク4に接続されている。そして、各気筒11には、気体燃料を噴射するための第1燃料噴射弁2と、液体燃料を噴射するための第2燃料噴射弁3とがそれぞれ設けられている。ここで、気体燃料は、例えば、CNG(Compressed Natural Gas)、LPG(Liquefied Petroleum Gas)、LNG(Liquefied Natural Gas)などが該当する。また、液体燃料は、例えば、ガソリン軽油メタノールエタノールなどのアルコール、又はこれらの混合燃料である。

0015

サージタンク4は、吸気通路6を介してエアクリーナ7に接続され、吸気通路6内にはスロットルバルブ5が配置されている。このスロットルバルブ5は、ECU50の制御信号に基づいてその開度(以後、「スロットル開度Thr」と呼ぶ。)が制御される。一方、各気筒11は共通のエキゾーストマニホールドを介して排気通路8に連結される。そして、排気通路8上には三元触媒である触媒10が設置される。

0016

ECU50は、図示しないCPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)などを備え、燃料噴射システム100の各構成要素に対して種々の制御を行う。例えば、ECU50は、各種センサからの検出信号に基づき、第1燃料噴射弁2及び第2燃料噴射弁3の制御を行う。また、ECU50は、所定の運転状態で触媒10が高温であると判断した場合に、触媒10の温度(以後、「触媒温度Tb」と呼ぶ。)を低下させる制御を行う。このように、ECU50は、本発明における制御手段の一例である。

0017

制御方法
次に、ECU50が実行する制御について具体的に説明する。ECU50は、以下に説明する第1制御乃至第3制御を実行することで、触媒温度Tbを低減しつつ、触媒10の劣化を抑制する。

0018

なお、以後では、「気体燃料運転」とは、第1燃料噴射弁2による燃料噴射を実行している運転、即ち、気体燃料を使用した運転を指し、「液体燃料運転」とは、第2燃料噴射弁3による燃料噴射を実行している運転、即ち、液体燃料を使用した運転を指す。また、「燃料カット」とは、一部又は全ての気筒11の燃料噴射を停止することを指す。さらに、「燃料カットからの復帰」とは、燃料カット状態から燃料噴射を再開することを指す。また、
(第1制御)
第1制御では、概略的には、ECU50は、液体燃料運転を実行する運転領域で、触媒温度Tbが所定の上限温度を超えた場合、燃料噴射量の増量(以後「燃料増量」とも呼ぶ。)を行うと共に気体燃料運転に切り替える。これにより、ECU50は、触媒10の劣化を抑制しつつ、触媒温度Tbを低減させる。

0019

これについて具体的に説明する。まず、ECU50は、液体燃料運転を実行中の場合、触媒温度Tbが所定の上限温度(以後、「上限温度Tbth」と呼ぶ。)より大きいか否か判定する。上限温度Tbthは、例えば触媒10の劣化が生じる虞が無い触媒温度Tbの上限値に、実験等に基づき設定される。

0020

具体的には、ECU50は、例えばエンジン1の負荷とエンジン1の回転数とに基づき触媒温度Tbを推定する。そして、ECU50は、エンジン1が高回転高負荷の所定の運転域の場合、触媒温度Tbが上限温度Tbthより大きいと推定する。他の例では、ECU50は、排気ガスの温度を排気通路8上に設置された図示しない温度センサに基づき排気ガス温度を測定する。そして、ECU50は、当該排気ガス温度から触媒温度Tbを推定し、上限温度Tbthと比較する。さらに別の例では、ECU50は、触媒10に設置された図示しない温度センサに基づき触媒温度Tbを検出し、上限温度Tbthと比較する。

0021

そして、ECU50は、触媒温度Tbが上限温度Tbthより大きい場合、燃料増量して空燃比をリッチにすると共に、液体燃料運転から気体燃料運転に切り替える。これにより、ECU50は、第1制御での第1の効果として、吸気ポートや気筒11の筒内に燃料が付着することに起因した燃料カット時での触媒温度Tbの上昇及び触媒10の劣化を防ぐことができる。さらに、ECU50は、燃料増量時に液体燃料運転から気体燃料運転に切り替えることで、第1制御での第2の効果として、効率よく触媒温度Tbを低下させることができる。即ち、ECU50は、燃料増量時に液体燃料よりも同一質量での体積が大きい気体燃料に切り替えることで、充填効率及び吸入空気量を低下させ、排気ガスの温度を低減させることができる。また、一般に、理論空燃比よりリッチの場合、液体燃料よりガス燃料の方が低エミッションである。従って、ECU50は、燃料増量時に気体燃料運転を行うことで、第1制御での第3の効果として、低エミッション化を実現することができる。

0022

上述の効果について、図2を参照してさらに補足説明する。図2は、液体燃料運転時及び気体燃料運転時での触媒温度Tbの挙動を説明するためのタイムチャートの一例である。図2は、上から順に、スロットル開度Thr、触媒温度Tbの上昇に起因した燃料増量を示す「燃料増量」、燃料カットの有無、エンジン1の回転数を示す「エンジン回転数Ne」、吸気ポートや筒内に未燃焼のまま残存した燃料の量を示す「未燃燃料」、及び触媒温度Tbを示す。また、図2において、グラフ「B1」乃至「B4」は、液体燃料運転時と気体燃料運転時に共通した各要素の時間変化を示す。また、グラフ「B5」は、液体燃料運転時の未燃燃料の時間変化を示し、グラフ「B6」は、気体燃料運転時の未燃燃料の時間変化を示す。さらに、グラフ「B7」は、液体燃料運転時の触媒温度Tbの時間変化を示し、グラフ「B8」は、気体燃料運転時の触媒温度Tbの時間変化を示す。

0023

まず、時刻「t1」で、運転者アクセル操作等に起因してスロットル開度Thrが上昇する(グラフB1参照)。これにより、エンジン1は高負荷状態となり、液体燃料運転時及び気体燃料運転時のいずれの場合も、排気ガスの温度上昇に伴い触媒温度Tbが上昇する(グラフB7、B8参照)。

0024

そして、時刻t1以後の時刻「t2」で、ECU50は、触媒温度Tbの上昇に伴い、燃料増量を上昇させる(グラフB2参照)。これにより、ECU50は、燃料による気化潜熱を大きくし、排気ガスの温度を低下させる。一方で、時刻t2以後、燃料増加に伴い未燃燃料が増加する(グラフB5、B6参照)。そして、時刻t2以後では、図2に示すように、未燃燃料は、気体燃料運転時よりも液体燃料運転時の方が多くなる。即ち、気体燃料は、吸気ポートや燃料室内に燃料が付着することがないため、液体燃料より未燃燃料が少なくなる。

0025

次に、時刻t2以後の時刻「t3」で、スロットル開度Thrが下降する(グラフB1参照)。これに伴い、ECU50は、減速運転を行い、燃料カットを開始する(グラフB3参照)。そして、液体燃料運転の場合、燃料カット時に未燃燃料が大量に排出され、触媒10で酸化反応が促進される。即ち、この場合、触媒10は、高温かつ酸化雰囲気の条件下になる(グラフB7参照)。その結果、触媒10は、貴金属シンタリングが起き、性能が劣化するおそれがある。

0026

一方、気体燃料運転の場合、時刻t3の燃料カット時での未燃燃料が液体燃料運転時よりも少ない(グラフB5、B6参照)。よって、気体燃料運転の場合、燃料カット中であっても、未燃燃料の排出に起因した触媒温度Tbの上昇及び触媒10の劣化が抑制され、液体燃料運転時と比較して触媒温度Tbが早期に低下する(グラフB7、B8参照)。

0027

以上のように、ECU50は、触媒高温時燃料増量時に液体燃料運転を実行した場合、未燃燃料が大量にエンジン1内に残る。その結果、触媒温度Tbの上昇及び触媒10の劣化が促進される虞がある。以上を案し、ECU50は、触媒温度Tbが上限温度Tbthより大きい場合、燃料噴射量を増量して空燃比をリッチにすると共に、液体燃料運転から気体燃料運転に切り替える。これにより、ECU50は、吸気ポートや気筒11の筒内に燃料が付着するのを抑制し、触媒温度Tbを低減しつつ触媒10の劣化を抑制することができる。

0028

(第2制御)
第2制御では、第1制御に加え、ECU50は、第1制御に基づき液体燃料運転から気体燃料運転に切り替えた場合、再び液体燃料運転に切り替えるタイミングを、燃料カットの復帰時にする。

0029

これについて具体的に説明する。まず、ECU50は、液体燃料運転中に触媒温度Tbが上限温度Tbthより大きい場合、第1制御に基づき燃料増量を行うと共に気体燃料運転に切り替える。その後、ECU50は、燃料カットからの復帰時まで、気体燃料運転を継続する。そして、ECU50は、減速時に燃料カットを開始し、その復帰時に気体燃料運転から液体燃料運転へ切り替える。これにより、ECU50は、燃料を切り替える際に、燃焼室内を空気により一度掃気させて、前に使用した燃料が残存することによる影響を排除することができる。

0030

また、好適には、燃料カットからの復帰時に、ECU50は、気体燃料により最後に燃焼した気筒11の次に燃焼行程を行う気筒11から液体燃料の噴射を行う。これにより、ECU50は、各気筒11を均等に空気により掃気させ、前の使用燃料の残存の影響を確実に排除することができる。

0031

(第3制御)
第3制御では、第1制御及び第2制御に代えて、またはこれに加え、ECU50は、液体燃料運転時であって、点火時期の遅角が実行される加速時やトランスミッションの変速時に触媒温度Tbが上限温度Tbthより大きい場合、燃料増量を行うと共に気体燃料運転に切り替える。これにより、ECU50は、低エミッション化を実現しつつ、触媒温度Tbを低下させる。

0032

これについて図3のタイムチャートを参照して説明する。図3は、加速走行時における第3制御の処理概要を示すタイムチャートの一例である。図3は、上から順に、触媒温度Tb、点火時期、触媒高温時での燃料増量、気体燃料運転の有無、液体燃料運転の有無を示す。なお、タイムチャート開始時では、ECU50は、液体燃料運転を行っているものとする。

0033

まず、時刻「t11」で、ECU50は、トランスミッションの変速等に対応して、点火時期を一定時間遅角させる(グラフC2参照)。しかし、この場合、ECU50は、触媒温度Tbが上限温度Tbth以下であることから、触媒温度Tbを低減する必要はないと判断し、燃料増量を行わない(グラフC3参照)。

0034

次に、時刻「t12」で、エンジン1の排気ガス温度の上昇に伴い触媒温度Tbが上限温度Tbthを超える(グラフC1参照)。そして、時刻t12以後の時刻「t13」で、ECU50は、トランスミッションの変速等に起因して再び点火時期を遅角に設定する(グラフC2参照)。このとき、ECU50は、時刻t12で既に触媒温度Tbが上限温度Tbthを超えていることから、点火時期の遅角と共に燃料増量を行い(グラフC3参照)、さらに液体燃料運転から気体燃料運転に切り替える(グラフC4、C5参照)。このように、ECU50は、燃料増量時に気体燃料運転へ切り替えることにより、充填効率及び吸入空気量を低下させて、排気ガス温度を効率的に低下させることができる。

0035

そして、ECU50は、点火時期を通常に戻す時刻「t14」で、燃料増量を停止すると共に、気体燃料運転から液体燃料運転へ切り替える(グラフC3乃至C5参照)。このように、ECU50は、燃料増量を行いリッチになる運転領域では、気体燃料運転を行うことで、低エミッション化を実現することができる。

0036

処理フロー
次に、本実施形態における処理手順について説明する。以下では、まず、第1制御及び第2制御を同時に実行した場合の処理フローについて図4を用いて説明した後、第3制御を実行した場合の処理フローについて図5を用いて説明する。

0037

(第1制御及び第2制御)
図4は、第1制御及び第2制御を同時に実行した場合の処理手順を示すフローチャートの一例である。図4に示すフローチャートは、ECU50により所定の周期に従い繰り返し実行される。

0038

まず、ECU50は、エンジン1の運転状態を検出する(ステップS101)。具体的には、ECU50は、現在、液体燃料又は気体燃料のいずれを使用しているか、燃料カットを実行中であるか否か、触媒温度Tbの高温化に伴う燃料増量を実行中であるか否か等を検出する。

0039

次に、ECU50は、液体燃料運転の運転領域であるか否かについて判定する(ステップS102)。例えば、ECU50は、現在の運転状態等に基づき、所定のマップを参照して液体燃料運転の運転領域であるか否か判定する。そして、ECU50は、液体燃料運転の運転領域であると判断した場合(ステップS102;Yes)、ステップS103へ処理を進める。一方、ECU50は、液体燃料運転の運転領域ではないと判断した場合(ステップS102;No)、即ち、気体燃料運転を実行すべき運転領域であると判断した場合、気体燃料運転を実行する(ステップS106)。また、このとき、ECU50は、燃料増量を実行すべき条件が満たされている場合には、燃料増量を実行してもよい。

0040

次に、ECU50は、触媒温度Tbを検出する(ステップS103)。具体的には、ECU50は、エンジン1の負荷及び回転数に基づき触媒温度Tbを推定してもよく、触媒10に設置された温度センサ等の検出値に基づき触媒温度Tbを検出してもよい。

0041

そして、ECU50は、触媒温度Tbが上限温度Tbthより大きいか否か判定する(ステップS104)。ここで、上限温度Tbthは、例えば触媒10の劣化が生じる虞のない触媒温度Tbの上限に、予め実験等に基づき設定される。そして、ECU50は、触媒温度Tbが上限温度Tbthより大きいと判断した場合(ステップS104;Yes)、ステップS105へ処理を進める。一方、ECU50は、触媒温度Tbが上限温度Tbth以下であると判断した場合(ステップS104;No)、触媒温度Tbの低減のための燃料増量及び気体燃料運転への切り替えを実行する必要はないと判断し、ステップS107へ処理を進める。

0042

次に、ECU50は、燃料増量の条件が成立するか否か判定する(ステップS105)。具体的には、ECU50は、触媒温度Tb以外の条件であって、燃料増量を行うための各種条件が存在する場合には、これらの条件が満たされているか否か判断する。

0043

そして、ECU50は、燃料増量の条件が成立すると判断した場合(ステップS105;Yes)、気体燃料運転による燃料増量を実行する(ステップS106)。即ち、ECU50は、燃料増量を行うと共に、液体燃料運転から気体燃料運転に切り替える。これにより、ECU50は、燃料増量に起因して吸気ポートや筒内に未燃燃料が残存するのを抑制して燃料カット時の触媒10の劣化及び触媒温度Tbの昇温を抑制すると共に、充填効率の低下及び吸入空気量の低下により排気ガス温度及び触媒温度Tbを低減させることができる。一方、ECU50は、燃料増量の条件が成立しないと判断した場合(ステップS105;No)、ステップS107へ処理を進める。

0044

次に、ステップS107以後の処理について説明する。ECU50は、触媒温度Tbが上限温度Tbth以下(ステップS104;No)又は燃料増量の条件が成立しない場合(ステップS105;No)、燃料カットを実行中であるか否か判定する(ステップS107)。そして、ECU50は、燃料カット実行中であると判断した場合(ステップS107;Yes)、液体燃料運転を実行する(ステップS108)。例えば、ECU50は、ステップS106で液体燃料運転から気体燃料運転に切り替え後、再びフローチャートを実行し、液体燃料運転の運転領域(ステップS102;Yes)、かつ、触媒温度Tbが上限温度Tbth以下の場合(ステップS104;Yes)に、燃料カット実行後に液体燃料運転を行う。これにより、ECU50は、各気筒11内の燃焼室を掃気することができ、前に使用した燃料が筒内等に残存することに起因した影響を排除することができる。

0045

一方、ECU50は、燃料カット実行中でないと判断した場合(ステップS107;No)、フローチャートの処理を終了する。

0046

(第3制御)
図5は、第3制御の処理手順を示すフローチャートの一例である。ECU50は、図5に示す処理を、例えば所定の周期に従い繰り返し実行する。

0047

まず、ECU50は、エンジン1の運転状態を検出する(ステップS201)。次に、ECU50は、液体燃料運転の運転領域であるか否か判定する(ステップS202)。そして、ECU50は、液体燃料運転の運転領域である場合(ステップS202;Yes)、ステップS203へ処理を進める。一方、ECU50は、液体燃料運転の運転領域でないと判断した場合(ステップS202;No)、即ち、気体燃料運転の運転領域であると判断した場合、気体燃料運転を実行する(ステップS206)。また、このとき、ECU50は、燃料増量を実行すべき条件が満たされた場合には、燃料増量を行う。

0048

次に、ECU50は、触媒温度Tbを検出する(ステップS203)。そして、ECU50は、触媒温度Tbが上限温度Tbthより大きいか否か判定する(ステップS204)。そして、ECU50は、触媒温度Tbが上限温度Tbthより大きい場合(ステップS204;Yes)、ステップS205へ処理を進める。一方、ECU50は、触媒温度Tbが上限温度Tbth以下であると判断した場合(ステップS204;No)、液体燃料運転を実行する(ステップS207)。この場合、ECU50は、触媒温度Tbの高温化に伴う燃料増量を実行しない。

0049

次に、ECU50は、点火角制御中かつ、燃料増量の条件が成立するか否か判定する(ステップS205)。具体的には、ECU50は、加速時又はトランスミッションの変速時であることに起因して点火時期を遅角にしているか、及び、燃料増量の条件が成立するか判断する。そして、ECU50は、点火遅角制御中、かつ、燃料増量の条件が成立する場合(ステップS205;Yes)、気体燃料運転による燃料増量を実行する(ステップS206)。即ち、ECU50は、点火遅角制御中に、燃料増量を行うと共に、液体燃料運転から気体燃料運転に切り替える。このようにすることで、ECU50は、燃料増量中の低エミッション化を実現すると共に、吸入空気量及び充填効率を低下させて、排気ガス温度を低下させることができる。

0050

一方、ECU50は、点火遅角制御中でなく、又は、燃料増量の条件が成立しない場合(ステップS205;No)、液体燃料運転を実行する(ステップS207)。

0051

[変形例]
第1制御乃至第3制御の説明では、ECU50は、触媒温度Tbが上限温度Tbthを超え、かつ、所定の条件が満たされた場合に、液体燃料運転から気体燃料運転に切り替えた。しかし、本発明が適用可能な方法は、これに限定されない。

0052

これに代えて、ECU50は、触媒温度Tbが上限温度Tbthを超え、かつ、所定の条件が満たされた場合に、エンジン1の燃焼に使用する燃料のうち、気体燃料の使用割合を増加させてもよい。即ち、この場合、ECU50は、液体燃料を継続して使用しつつ、気体燃料の使用割合を増大させてもよい。これによっても、ECU50は、上述の実施形態と同様、燃料増量時の未燃燃料の増加を抑制しつつ、充填効率及び吸入空気量を低下させて触媒温度Tbを低下させることができる。

0053

これについて、図4図5のフローチャートを参照してさらに具体的に説明する。例えば、ECU50は、図4において、燃料増量の条件が成立した場合(ステップS105;Yes)、燃料増量を実行すると共に、エンジン1の燃焼に使用する燃料のうち気体燃料の割合を増加させる。また、ECU50は、ステップS106の実行後、再びフローチャートの処理を実行し、燃料カットが実行中であると判断した場合(ステップS107;Yes)、気体燃料の使用割合を元に戻す。同様に、図5において、ECU50は、点火遅角制御中かつ燃料増量の条件が成立した場合(ステップS205;Yes)、燃料増量を実行すると共に、エンジン1の燃焼に使用する燃料のうち気体燃料の割合を増加させる。

0054

1エンジン
2 第1燃料噴射弁
3 第2燃料噴射弁
4サージタンク
5スロットルバルブ
6吸気通路
7エアクリーナ
8排気通路
10触媒
50 ECU
100 燃料噴射システム

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ