図面 (/)

技術 画像診断装置及びその制御方法

出願人 テルモ株式会社
発明者 末原達
出願日 2010年9月14日 (9年1ヶ月経過) 出願番号 2011-534050
公開日 2013年2月21日 (6年7ヶ月経過) 公開番号 WO2011-039956
状態 特許登録済
技術分野 内視鏡 内視鏡
主要キーワード スリーブ支 軸方向動作 コネクタ固定部材 カップリング状態 複数回転分 時間掃引 セットスクリュー 直線駆動装置
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2013年2月21日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (15)

課題・解決手段

画像診断装置において、スキャナプルバック部における光カップリング部の光軸のずれを確認できるようにする。本発明に係る画像診断装置は、光源より伝送された光を連続的に体腔内に送信するとともに体腔内からの反射光を連続的に受信する送受信部を有するプローブを接続し、該送受信部を回転させながら、該送受信部より反射光を取得することで、該取得した反射光に基づいて該体腔内の断層画像を生成可能であり、回転中の前記送受信部の各回転角度において該送受信部より取得した前記反射光のうち、該送受信部まで伝送された光が該送受信部において反射することで取得された反射光の強度を抽出する手段(905)と、前記送受信部の各回転角度において、前記抽出された各反射光の強度が、所定の変動幅の範囲にあるか否かを判定する手段(906)とを備えることを特徴とする。

概要

背景

従来より、光干渉断層画像診断装置OCT)や波長掃引利用光干渉断層診断装置(OFDI)等の画像診断装置では、血管等の体腔内に挿入されるプローブとして、光の送受信を行う送受信部と光ファイバとが内蔵された光プローブ部を使用している(例えば、特開2000−097845号参照)。

画像診断装置では、送受信部により体腔内をラジアル走査するために、光プローブ部を体腔内に挿入させた状態で、送受信部を回転させながら、体腔内の末梢方向およびその反対方向(軸方向)に移動させる動作を行う。

このような送受信部のラジアル動作を実現するために、画像診断装置には、通常、スキャナプルバック部が備えられている。そして、スキャナ/プルバック部には、光プローブ部に内蔵された送受信部及び光ファイバを軸方向に移動させながら回転させる回転駆動部と、画像診断装置の本体制御部に光学的に接続された固定部とが備えられており、回転駆動部と固定部との間では、光カップリング部による光の伝送が行われている。

概要

画像診断装置において、スキャナ/プルバック部における光カップリング部の光軸のずれを確認できるようにする。本発明に係る画像診断装置は、光源より伝送された光を連続的に体腔内に送信するとともに体腔内からの反射光を連続的に受信する送受信部を有するプローブを接続し、該送受信部を回転させながら、該送受信部より反射光を取得することで、該取得した反射光に基づいて該体腔内の断層画像を生成可能であり、回転中の前記送受信部の各回転角度において該送受信部より取得した前記反射光のうち、該送受信部まで伝送された光が該送受信部において反射することで取得された反射光の強度を抽出する手段(905)と、前記送受信部の各回転角度において、前記抽出された各反射光の強度が、所定の変動幅の範囲にあるか否かを判定する手段(906)とを備えることを特徴とする。

目的

本発明は上記課題に鑑みてなされたものであり、画像診断装置において、スキャナ/プルバック部における光カップリング部の光軸のずれを確認できるようにすることを目的とする

効果

実績

技術文献被引用数
0件
牽制数
1件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

光源より伝送された光を連続的に体腔内に送信するとともに体腔内からの反射光を連続的に受信する送受信部を有するプローブを接続し、該送受信部を回転させながら、該送受信部より反射光を取得することで、該取得した反射光に基づいて該体腔内の断層画像を生成する画像診断装置であって、回転中の前記送受信部の各回転角度において該送受信部より取得した前記反射光のうち、該送受信部まで伝送された光が該送受信部において反射することで取得された反射光の強度を抽出する抽出手段と、前記送受信部の各回転角度において、前記抽出手段により抽出された各反射光の強度が、所定の変動幅の範囲にあるか否かを判定する判定手段とを備えることを特徴とする画像診断装置。

請求項2

前記判定手段により所定の変動幅の範囲にないと判定された場合に、前記プローブの接続位置におけるカップリングに異常があるとして、警報を出力する出力手段を更に備えることを特徴とする請求項1に記載の画像診断装置。

請求項3

前記送受信部の各回転角度に対する、前記抽出手段により抽出された各反射光の強度の変化を示すグラフを生成する生成手段を更に備えることを特徴とする請求項1に記載の画像診断装置。

請求項4

前記送受信部は、前記光源より伝送される光を、体腔内に送信するための反射部を備え、前記抽出手段は、前記反射部の反射面からの反射光の強度を抽出することを特徴とする請求項1に記載の画像診断装置。

請求項5

前記判定手段は、少なくとも、前記送受信部1回転分に対して、前記抽出手段により抽出された各反射光の強度が、所定の変動幅の範囲にあるか否かを判定することを特徴とする請求項1に記載の画像診断装置。

請求項6

光源より伝送された光を連続的に体腔内に送信するとともに体腔内からの反射光を連続的に受信する送受信部を有するプローブを接続し、該送受信部を回転させながら、該送受信部より反射光を取得することで、該取得した反射光に基づいて該体腔内の断層画像を生成する画像診断装置の制御方法であって、回転中の前記送受信部の各回転角度において該送受信部より取得した前記反射光のうち、該送受信部まで伝送された光が該送受信部において反射することで取得された反射光の強度を抽出する抽出工程と、前記送受信部の各回転角度において、前記抽出工程において抽出された各反射光の強度が、所定の変動幅の範囲にあるか否かを判定する判定工程とを備えることを特徴とする画像診断装置の制御方法。

請求項7

前記判定工程において所定の変動幅の範囲にないと判定された場合に、前記プローブの接続位置におけるカップリングに異常があるとして、警報を出力する出力工程を更に備えることを特徴とする請求項6に記載の画像診断装置の制御方法。

請求項8

前記送受信部の各回転角度に対する、前記抽出工程において抽出された各反射光の強度の変化を示すグラフを生成する生成工程を更に備えることを特徴とする請求項6に記載の画像診断装置の制御方法。

請求項9

前記送受信部は、前記光源より伝送される光を、体腔内に送信するための反射部を備え、前記抽出工程は、前記反射部の反射面からの反射光の強度を抽出することを特徴とする請求項6に記載の画像診断装置の制御方法。

請求項10

前記判定工程は、少なくとも、前記送受信部1回転分に対して、前記抽出工程において抽出された各反射光の強度が、所定の変動幅の範囲にあるか否かを判定することを特徴とする請求項6に記載の画像診断装置の制御方法。

技術分野

0001

本発明は、画像診断装置及びその制御方法に関するものである。

背景技術

0002

従来より、光干渉断層画像診断装置OCT)や波長掃引利用光干渉断層診断装置(OFDI)等の画像診断装置では、血管等の体腔内に挿入されるプローブとして、光の送受信を行う送受信部と光ファイバとが内蔵された光プローブ部を使用している(例えば、特開2000−097845号参照)。

0003

画像診断装置では、送受信部により体腔内をラジアル走査するために、光プローブ部を体腔内に挿入させた状態で、送受信部を回転させながら、体腔内の末梢方向およびその反対方向(軸方向)に移動させる動作を行う。

0004

このような送受信部のラジアル動作を実現するために、画像診断装置には、通常、スキャナプルバック部が備えられている。そして、スキャナ/プルバック部には、光プローブ部に内蔵された送受信部及び光ファイバを軸方向に移動させながら回転させる回転駆動部と、画像診断装置の本体制御部に光学的に接続された固定部とが備えられており、回転駆動部と固定部との間では、光カップリング部による光の伝送が行われている。

発明が解決しようとする課題

0005

このような光カップリング部を有するスキャナ/プルバック部では、回転駆動部側の光軸固定部側の光軸とがずれると、ラジアル走査において、本体制御部からの測定光を送受信部に対して正確に伝送することができなくなり、また、送受信部からの反射光を本体制御部に対して正確に伝送することができなくなるため、生成される断層画像画質が低下するといった不具合が生じることとなる。

0006

このため、ラジアル走査を行うにあたっては、事前に光カップリング部における回転駆動部側の光軸と、固定部側の光軸とが一致していることを確認できることが望ましい。

0007

しかしながら、従来の画像診断装置では、光カップリング部における回転駆動部側の光軸と固定部側の光軸とのずれを確認することが可能な構成となっておらず、光軸のずれに起因する断層画像の画質の低下を招く可能性があった。

0008

本発明は上記課題に鑑みてなされたものであり、画像診断装置において、スキャナ/プルバック部における光カップリング部の光軸のずれを確認できるようにすることを目的とする。

課題を解決するための手段

0009

上記の目的を達成するために本発明に係る画像診断装置は以下のような構成を備える。即ち、
光源より伝送された光を連続的に体腔内に送信するとともに体腔内からの反射光を連続的に受信する送受信部を有するプローブを接続し、該送受信部を回転させながら体腔内を軸方向に移動させつつ、該送受信部より反射光を取得することで、該取得した反射光に基づいて該体腔内の断層画像を生成する画像診断装置であって、
回転中の前記送受信部の各回転角度において該送受信部より取得した前記反射光のうち、該送受信部まで伝送された光が該送受信部において反射することで取得された反射光の強度を抽出する抽出手段と、
前記送受信部の各回転角度において、前記抽出手段により抽出された各反射光の強度が、所定の変動幅の範囲にあるか否かを判定する判定手段とを備える。

発明の効果

0010

本発明によれば、画像診断装置において、スキャナ/プルバック部における光カップリング部の光軸のずれを確認することができるようになる。

0011

本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付すものとする。

図面の簡単な説明

0012

添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
図1は、本発明の第1の実施形態にかかる画像診断装置の外観構成を示す図である。
図2は、光干渉断層画像診断装置100の機能構成を示す図である。
図3は、波長掃引利用の光干渉断層画像診断装置100の機能構成を示す図である。
図4は、光プローブ部の全体構成を示す図である。
図5Aは、光プローブ部の先端部の構成を示す図である。
図5Bは、光プローブ部の先端部の構成を示す図である。
図6は、イメージングコアの全体構成を示す図である。
図7は、光プローブ部の後端部の構成を示す図である。
図8Aは、スキャナ/プルバック部における光カップリング部の構成を示す図である。
図8Bは、スキャナ/プルバック部における光カップリング部の構成を示す図である。
図9は、信号処理部の詳細構成ならびに関連する機能ブロックを示した図である。
図10は、断層画像の生成に用いられるラインデータの一例を示す図である。
図11は、光カップリング部のカップリング状態レンズ表面からの反射強度時間変化との関係を示す図である。
図12は、カップリング状態検査処理の流れを示すフローチャートである。

実施例

0013

以下、必要に応じて添付図面を参照しながら本発明の実施形態を詳細に説明する。

0014

[第1の実施形態]
<1.画像診断装置の外観構成>
図1は本発明の第1の実施形態にかかる画像診断装置(光干渉断層画像診断装置または波長掃引利用の光干渉断層画像診断装置)100の外観構成を示す図である。

0015

図1に示すように、画像診断装置100は、光プローブ部101と、スキャナ/プルバック部102と、操作制御装置103とを備え、スキャナ/プルバック部102と操作制御装置103とは、信号線104により接続されている。

0016

光プローブ部101は、直接血管等の体腔内に挿入され、後述するイメージングコアを用いて体腔内部の状態を測定する。スキャナ/プルバック部102は、光プローブ部101と着脱可能に構成されており、内蔵されたモータが駆動することで光プローブ部101内のイメージングコアのラジアル動作を規定する。

0017

操作制御装置103は、体腔内光干渉断層診断を行うにあたり、各種設定値を入力するための機能や、測定により得られたデータを処理し、断層画像として表示するための機能を備える。

0018

操作制御装置103において、111は本体制御部であり、測定により得られたデータを処理したり、処理結果を出力したりする。111−1はプリンタDVDレコーダであり、本体制御部111における処理結果を印刷したり、データとして記憶したりする。

0019

112は操作パネルであり、ユーザは該操作パネル112を介して、各種設定値及び指示の入力を行う。113は表示装置としてのLCDモニタであり、本体制御部111における処理結果を表示する。

0020

<2.光干渉断層画像診断装置の機能構成>
次に、本実施形態にかかる画像診断装置100のうち、光干渉断層画像診断装置の主たる機能構成について図2を用いて説明する。

0021

209は超高輝度発光ダイオード等の低干渉性光源である。低干渉性光源209は、その波長が1310nm程度で、その可干渉距離コヒーレント長)が数μm〜10数μm程度であるような短い距離範囲でのみ干渉性を示す低干渉性光を出力する。

0022

このため、この光を2つに分割した後、再び混合した場合には分割した点から混合した点までの2つの光路長の差が数μm〜10数μm程度の短い距離範囲内の場合には干渉光として検出されることとなり、それよりも光路長の差が大きい場合は干渉光として検出されることがない。

0023

低干渉性光源209の光は、第1のシングルモードファイバ228の一端に入射され、先端面側に伝送される。第1のシングルモードファイバ228は、途中の光カップラ部208で第2のシングルモードファイバ229及び第3のシングルモードファイバ232と光学的に結合されている。

0024

光カップラ部とは、1つの光信号を2つ以上の出力に分割したり、入力された2つ以上の光信号を1つの出力に結合したりすることができる光学部品であり、低干渉性光源209の光は、当該光カップラ部208により最大で3つの光路に分割して伝送されうる。

0025

第1のシングルモードファイバ228の光カップラ部208より先端側には、スキャナ/プルバック部102が設けられている。スキャナ/プルバック部102の回転駆動装置204内には、非回転部(固定部)と回転部(回転駆動部)との間を結合し、光を伝送する光ロータリジョイント(光カップリング部)203が設けられている。

0026

更に、光ロータリジョイント203内の第4のシングルモードファイバ230の先端側は、光プローブ部101の第5のシングルモードファイバ231と、アダプタ202を介して着脱自在に接続されている。これにより光の送受信を繰り返すイメージングコア201内に挿通され回転駆動可能な第5のシングルモードファイバ231に、低干渉性光源209からの光が伝送される。

0027

第5のシングルモードファイバ231に伝送された光は、イメージングコア201の先端側から血管内の生体組織に対してラジアル動作しながら照射される。そして、生体組織の表面あるいは内部で散乱した反射光の一部はイメージングコア201により取り込まれ、逆の光路を経て第1のシングルモードファイバ228側に戻り、光カップラ部208によりその一部が第2のシングルモードファイバ229側に移る。そして、第2のシングルモードファイバ229の一端から出射され、光検出器(例えばフォトダイオード210)にて受光される。

0028

なお、光ロータリジョイント203の回転駆動部側は回転駆動装置204のラジアル走査モータ205により回転駆動される。また、ラジアル走査モータ205の回転角度は、エンコーダ部206により検出される。更に、スキャナ/プルバック部102は、直線駆動装置207を備え、信号処理部214からの指示に基づいて、イメージングコア201の軸方向(体腔内の末梢方向およびその反対方向)の移動(軸方向動作)を規定している。軸方向動作は、信号処理部214からの制御信号に基づいて、直線駆動装置207が光ロータリジョイント203を含むスキャナを移動させることにより実現される。

0029

この際、光プローブ部101のカテーテルシースは血管内に固定されたままで、カテーテルシース内に格納されているイメージングコア201のみが軸方向に移動することで、血管壁を傷つけることなく軸方向動作が行われる。

0030

一方、第2のシングルモードファイバ229の光カップラ部208より先端側(参照光路)には、参照光の光路長を変える光路長の可変機構216が設けてある。

0031

この光路長の可変機構216は生体組織の深さ方向(測定光の出射の方向)の検査範囲に相当する光路長を高速に変化させる第1の光路長変化手段と、光プローブ部101を交換して使用した場合の個々の光プローブ部101の長さのばらつきを吸収できるように、その長さのバラツキに相当する光路長を変化させる第2の光路長変化手段とを備えている。

0032

第3のシングルモードファイバ232の先端に対向して、この先端とともに1軸ステージ220上に取り付けられ、矢印223に示す方向に移動自在のコリメートレンズ221を介して、ミラー219が配置されている。また、このミラー219(回折格子)と対応するレンズ218を介して微小角度回動可能なガルバノメータ217が第1の光路長変化手段として取り付けられている。このガルバノメータ217はガルバノメータコントローラ224により、矢印222方向に高速に回転される。

0033

ガルバノメータ217はガルバノメータのミラーにより光を反射させるものであり、参照ミラーとして機能するガルバノメータに交流駆動信号印加することによりその可動部分に取り付けたミラーを高速に回転させるように構成されている。

0034

つまり、ガルバノメータコントローラ224より、ガルバノメータ217に対して駆動信号が印加され、該駆動信号により矢印222方向に高速に回転することで、参照光の光路長が、生体組織の深さ方向の検査範囲に相当する光路長だけ高速に変化することとなる。この光路差の変化の一周期一ライン分の干渉光を取得する周期となる。

0035

一方、1軸ステージ220は光プローブ部101を交換した場合に、光プローブ部101の光路長のバラツキを吸収できるだけの光路長の可変範囲を有する第2の光路長変化手段として機能する。さらに、1軸ステージ220はオフセットを調整する調整手段としての機能も備えている。例えば、光プローブ部101の先端が生体組織の表面に密着していない場合でも、1軸ステージ220により光路長を微小変化させることにより、生体組織の表面位置からの反射光と干渉させる状態に設定することができる。

0036

光路長の可変機構216で光路長が変えられた光は第3のシングルモードファイバ232の途中に設けられた光カップラ部208で第1のシングルモードファイバ228側から得られた光と混合されて、干渉光としてフォトダイオード210にて受光される。

0037

このようにしてフォトダイオード210にて受光された干渉光は光電変換され、アンプ211により増幅される。

0038

その後、復調器212に入力され、復調器212では干渉した光の信号部分のみを抽出する復調処理を行い、その出力はA/D変換器213に入力される。

0039

A/D変換器213では、干渉光信号を例えば200ポイントサンプリングして1ラインのデジタルデータ(「干渉光データ」)を生成する。この場合、サンプリング周波数は、光路長の1走査の時間を200で除した値となる。

0040

A/D変換器213で生成されたライン単位の干渉光データは、信号処理部214に入力される。信号処理部214では生体組織の深さ方向の干渉光データをビデオ信号に変換することにより、血管内の各位置での断層画像を生成し、所定のフレームレートでLCDモニタ215(図1の参照番号113に対応する)に出力する。

0041

信号処理部214は、更に光路長調整段制御装置226と接続されている。信号処理部214は光路長調整手段制御装置226を介して1軸ステージ220の位置の制御を行う。また、信号処理部214はモータ制御回路225と接続され、ラジアル走査モータ205の回転駆動を制御する。

0042

また、信号処理部214は、参照ミラー(ガルバノメータミラー)の光路長の走査を制御するガルバノメータコントローラ224と接続されており、ガルバノメータコントローラ224は信号処理部214へ駆動信号を出力する。モータ制御回路225では、この駆動信号を用いることによりガルバノメータコントローラ224との同期をとっている。

0043

<3.波長掃引利用の光干渉断層画像診断装置の機能構成>
次に、本実施形態にかかる画像診断装置100のうち、波長掃引利用の光干渉断層画像診断装置の主たる機能構成について図3を用いて説明する。

0044

図3は、波長掃引利用の光干渉断層画像診断装置100の機能構成を示す図である。

0045

308は波長掃引光源であり、Swept Laserが用いられる。Swept Laserを用いた波長掃引光源308は、SOA315(semiconductor optical amplifier)とリング状に結合された光ファイバ316とポリゴンスキャニングフィルタ(308b)よりなる、Extended−cavity Laserの一種である。

0046

SOA315から出力された光は、光ファイバ316を進み、ポリゴンスキャニングフィルタ308bに入り、ここで波長選択された光は、SOA315で増幅され、最終的にcoupler314から出力される。

0047

ポリゴンスキャニングフィルタ308bでは、光を分光する回折格子312とポリゴンミラー309との組み合わせで波長を選択する。具体的には、回折格子312により分光された光を2枚のレンズ(310、311)によりポリゴンミラー309の表面に集光させる。これによりポリゴンミラー309と直交する波長の光のみが同一の光路を戻り、ポリゴンスキャニングフィルタ308bから出力されることとなるため、ポリゴンミラー309を回転させることで、波長の時間掃引を行うことができる。

0048

ポリゴンミラー309は、例えば、32面体のミラーが使用され、回転数が50000rpm程度である。ポリゴンミラー309と回折格子312とを組み合わせた波長掃引方式により、高速、高出力の波長掃引が可能である。

0049

Coupler314から出力された波長掃引光源308の光は、第1のシングルモードファイバ330の一端に入射され、先端側に伝送される。第1のシングルモードファイバ330は、途中の光カップラ部334において第2のシングルモードファイバ337及び第3のシングルモードファイバ331と光学的に結合されている。従って、第1のシングルモードファイバ330に入射された光は、この光カップラ部334により最大で3つの光路に分割されて伝送される。

0050

第1のシングルモードファイバ330の光カップラ部334より先端側には、非回転部(固定部)と回転部(回転駆動部)との間を結合し、光を伝送する光ロータリジョイント(光カップリング部)303が回転駆動装置204内に設けられている。

0051

更に、光ロータリジョイント(光カップリング部)303内の第4のシングルモードファイバ335の先端側は、光プローブ部101の第5のシングルモードファイバ336とアダプタ302を介して着脱自在に接続されている。これによりイメージングコア301内に挿通され回転駆動可能な第5のシングルモードファイバ336に、波長掃引光源308からの光が伝送される。

0052

伝送された光は、イメージングコア301の先端側から体腔内の生体組織に対してラジアル動作しながら照射される。そして、生体組織の表面あるいは内部で散乱した反射光の一部がイメージングコア301により取り込まれ、逆の光路を経て第1のシングルモードファイバ330側に戻る。さらに、光カップラ部334によりその一部が第2のシングルモードファイバ337側に移り、第2のシングルモードファイバ337の一端から出射され、光検出器(例えばフォトダイオード319)にて受光される。

0053

なお、光ロータリジョイント303の回転駆動部側は回転駆動装置304のラジアル走査モータ305により回転駆動される。また、ラジアル走査モータ305の回転角度は、エンコーダ部306により検出される。更に、スキャナ/プルバック部102は、直線駆動装置307を備え、信号処理部323からの指示に基づいて、イメージングコア301の軸方向動作を規定する。

0054

一方、第3のシングルモードファイバ331の光カップラ部334と反対側の先端には、参照光の光路長を微調整する光路長の可変機構325が設けられている。

0055

この光路長の可変機構325は光プローブ部101を交換して使用した場合の個々の光プローブ部101の長さのばらつきを吸収できるように、その長さのばらつきに相当する光路長を変化させる光路長変化手段を備えている。

0056

第3のシングルモードファイバ331およびコリメートレンズ326は、その光軸方向に矢印333で示すように移動自在な1軸ステージ332上に設けられており、光路長変化手段を形成している。

0057

具体的には、1軸ステージ332は光プローブ部101を交換した場合に、光プローブ部101の光路長のばらつきを吸収できるだけの光路長の可変範囲を有する光路長変化手段として機能する。さらに、1軸ステージ332はオフセットを調整する調整手段としての機能も備えている。例えば、光プローブ部101の先端が生体組織の表面に密着していない場合でも、1軸ステージにより光路長を微小変化させることにより、生体組織の表面位置からの反射光と干渉させる状態に設定することが可能である。

0058

光路長の可変機構325で光路長が微調整された光は第3のシングルモードファイバ331の途中に設けた光カップラ部334で第1のシングルモードファイバ330側から得られた光と混合されて、フォトダイオード319にて受光される。

0059

このようにしてフォトダイオード319にて受光された干渉光は光電変換され、アンプ320により増幅された後、復調器321に入力される。この復調器321では干渉した光の信号部分のみを抽出する復調処理を行い、その出力は干渉光信号としてA/D変換器322に入力される。

0060

A/D変換器322では、干渉光信号を例えば180MHzで2048ポイント分サンプリングして、1ラインのデジタルデータ(干渉光データ)を生成する。なお、サンプリング周波数を180MHzとしたのは、波長掃引の繰り返し周波数を40kHzにした場合に、波長掃引の周期(12.5μsec)の90%程度を2048点のデジタルデータとして抽出することを前提としたものであり、特にこれに限定されるものではない。

0061

A/D変換器322にて生成されたライン単位の干渉光データは、信号処理部323に入力される。測定モードの場合、信号処理部323では干渉光データをFFT高速フーリエ変換)により周波数分解して深さ方向のデータを生成し、これを座標変換することにより、血管内の各位置での断層画像を形成し、所定のフレームレートでLCDモニタ317(図1の参照番号113に対応する)に出力する。

0062

信号処理部323は、更に光路長調整手段制御装置318と接続されている。信号処理部323は光路長調整手段制御装置318を介して1軸ステージ332の位置の制御を行う。また、信号処理部323はモータ制御回路324と接続され、モータ制御回路324のビデオ同期信号を受信する。信号処理部323では、受信したビデオ同期信号に同期して断層画像の生成を行う。

0063

また、このモータ制御回路324のビデオ同期信号は、回転駆動装置304にも送られ、回転駆動装置304はビデオ同期信号に同期した駆動信号を出力する。

0064

<4.光プローブ部の全体構成>
次に光プローブ部101の全体構成について図4を用いて説明する。図4に示すように、光プローブ部101は、直接血管等の体腔内に挿入される長尺のカテーテルシース401と、ユーザが操作するために体腔内に挿入されずユーザの手元側に配置されるコネクタ部402とにより構成される。カテーテルシース401の先端には、ガイドワイヤルーメンチューブ403が形成されており、カテーテルシース401は、ガイドワイヤルーメン用チューブ403との接続部分からコネクタ部402との接続部分にかけて連続する管腔として形成されている(なお、詳細は図5A及び図5B参照)。

0065

カテーテルシース401の管腔内部には、測定光を送受信する送受信部を備えるハウジング421と、それを回転させるための駆動力を伝送する駆動シャフト422とを備えるイメージングコア420がカテーテルシース401のほぼ全長にわたって挿通されている。

0066

コネクタ部402は、カテーテルシース401の基端一体化して構成された手元部402aと駆動シャフト422の基端に一体化して構成された接続コネクタ402bとからなる。

0067

手元部402aとカテーテルシース401の境界部には、耐キンクプロテクタ411が設けられている。これにより所定の剛性が保たれ、急激な変化による折れ曲がり(キンク)を防止することができる。

0068

接続コネクタ402bの基端(詳細は図7参照)は、後述するスキャナ/プルバック部102(詳細は図8A及び図8B参照)と接続可能に構成されている。

0069

<5.光プローブ部の先端部の構成>
次に、光プローブ部101の先端部の構成について図5A及び図5Bを用いて説明する。図5Aに示すように、カテーテルシース401の管腔内部には、測定光を送信し、反射光を受信する送受信部501が配されたハウジング421と、それを回転させるための駆動力を伝送する駆動シャフト422とを備えるイメージングコア420がほぼ全長にわたって挿通されており、光プローブ部101を形成している。

0070

送受信部501では、体腔内組織に向けて測定光を送信するとともに、体腔内組織からの反射光を受信する。

0071

駆動シャフト422はコイル状に形成され、その内部には信号線(シングルモードの光ファイバ)が配されている。

0072

ハウジング421は、短い円筒状の金属パイプの一部に切り欠き部を有した形状をしており、金属塊からの削りだしやMIM(金属粉末射出成形)等により成形される。ハウジング421は、内部に送受信部501を有し、基端側は駆動シャフト422と接続されている。また、先端側には短いコイル状の弾性部材502が設けられている。

0073

弾性部材502はステンレス鋼線材をコイル状に形成したものであり、弾性部材502が先端側に配されることで、イメージングコア420を前後移動させる際にカテーテルシース内での引っかかりを防止する。

0074

503は補強コイルであり、カテーテルシース401の先端部分の急激な折れ曲がりを防止する目的で設けられている。

0075

ガイドワイヤルーメン用チューブ403は、ガイドワイヤ挿入可能なガイドワイヤ用ルーメンを有する。ガイドワイヤルーメン用チューブ403は、予め血管等の体腔内に挿入されたガイドワイヤを受け入れ、ガイドワイヤによってカテーテルシース401を患部まで導くのに使用される。

0076

駆動シャフト422は、カテーテルシース401に対して送受信部501を回転動作及び軸方向動作させることが可能であり、柔軟で、かつ回転をよく伝送できる特性をもつ、例えば、ステンレス等の金属線からなる多重多層密着コイル等により構成されている。

0077

また、図5Bは、イメージングコア420の断面構成を模式的に示したものである。図5Bに示すように、ハウジング421内には、側方照射型ボールレンズ(送受信部)501が配され、駆動シャフト422内には、クラッド部506とコア部505とから構成される光ファイバ504が配されている。なお、送受信部501から送信された測定光は、カテーテルシース内面、カテーテルシース外面を通って、体腔内の生体組織に照射される(矢印510参照)。

0078

<6.イメージングコア全体の構成>
次に、イメージングコア420の全体構成について説明する。図6は、イメージングコア420の全体構成を示す図である。図6に示すように、イメージングコア420の基端側には、接続コネクタ402bがスキャナ/プルバック部102の回転駆動部に接続された際に、回転駆動部内光アダプタ(詳細は後述)と光学的に接続されるとともに、回転駆動部からの回転駆動力を駆動シャフト422に伝達するためのコネクタ装置600が取り付けられている。

0079

コネクタ装置600は、内部にAPC光コネクタ(不図示)が配置されたコネクタ固定部材603と、コネクタ固定部材603を接続コネクタ402bの基端側内部において回転自在に固定するためのフランジ602とを備える。

0080

なお、駆動シャフト422は、接続パイプ601を介してコネクタ装置600内に配置されたAPC光コネクタと接合されているものとする。

0081

<7.接続コネクタの構成>
次に、接続コネクタ402bの断面構成について図7を用いて説明する。図7は接続コネクタ402bの基端側の内部構成を示す断面図である。

0082

図7に示すように、接続コネクタ402bの基端には、光ファイバ用のコネクタ(APC光コネクタ)701が配置されており、これにより光ファイバ504はスキャナ/プルバック部102内の回転駆動部に配された光アダプタと光学的に接続される。

0083

APC光コネクタ701は、接続パイプ601を介して駆動シャフト422と接合されている。また、APC光コネクタ701は、中空円筒形状をしたコネクタ固定部材603の内部に配置されており、先端にフェルール702が設けられた光ファイバ504の端部を保持固定している。光ファイバ504の端部(接続面)は端面での光の反射によりノイズが発生することを防ぐため、光の進行方向(回転軸方向)に対して、所定の傾斜角度が形成されたAPCタイプに加工されている。コネクタ固定部材603は、先端側端部に円盤状のフランジ602を有しており、接続コネクタ402bのハウジング703内部に、回転自在に保持されている。

0084

コネクタ固定部材603は、光アダプタとの結合に際してアダプタ固定部材協働してAPC光コネクタ701の周方向の位置合わせを行う。

0085

<8.スキャナ/プルバック部102の内部構成>
次に、スキャナ/プルバック部102の内部構成について説明する。図8A及び図8Bはスキャナ/プルバック部102の内部構成を示す図である。図8A及び図8Bにおいて、紙面左側は回転駆動部であり、紙面右側は固定部である。

0086

図8Aにおいて、801はスキャナ/プルバック部102のハウジングであり、内面に接続コネクタ402bのハウジング703が嵌合する。802はAPC光コネクタ701と結合される光アダプタである。803はアダプタ固定部材であり、中空の円筒形状をしており、内部に光アダプタ802が相対回転不可能なように固定される。アダプタ固定部材803は、APC光コネクタ701との結合に際してコネクタ固定部材603と協働してAPC光コネクタ701の周方向の位置合わせを行う。

0087

アダプタ固定部材803は、外表面を規定する保護管806と、保護管806の内面に固定され、アダプタ固定部材803の内表面を規定する本体807とから構成されている。

0088

アダプタ固定部材803の内表面には一対の爪804が形成されている。一対の爪804は、APC光コネクタ701と係合し、APC光コネクタ701と光アダプタ802とを強固に一体化するものである。

0089

なお、光アダプタ802には、APC光コネクタ701のフェルール702を受け入れるメス型構造の穴805が形成されている。

0090

811はレンズ固定スリーブ支持部であり、内部には、レンズ固定スリーブ812により光学レンズ813が固定されている。なお、レンズ固定スリーブ812は、レンズ固定スリーブ支持部811に対して、セットスクリュー814により位置調整可能に固定されているものとする。

0091

一方、スキャナ/プルバック部102の固定部には、レンズ固定部818が配されており、レンズ固定部818には、コリメータレンズ815が固定されている。また、コリメータレンズ815は、光ファイバ816と接続されている。これにより、APC光コネクタ701のフェルール702より放射された反射光は、光学レンズ813、コリメータレンズ815を介して、接続された光ファイバ816に入射されることとなる。一方、光ファイバ816より導光された測定光は、コリメータレンズ815から出射され、光学レンズ813を介して、非接触で回転駆動部のAPC光コネクタ701のフェルール702に入射されることとなる。

0092

つまり、スキャナ/プルバック部102には、回転駆動部と固定部との間で、非接触により光の伝送を行う光カップリング部が形成されている。

0093

図8Bは当該光カップリング部を模式的に表した図である。図8Bに示すように、回転駆動部側のレンズ固定スリーブ812の位置により規定される光軸821は、通常、回転駆動部の回転軸822と一致しており、かつ、固定部側のレンズ固定部818の位置により規定される光軸820と一致している。

0094

<9.信号処理部214、323の詳細構成>
次に、図9を用いて、画像診断装置100の信号処理部214、323における処理の概要について説明する。図9は、信号処理部214、323の詳細構成ならびに関連する機能ブロックを示した図である。

0095

A/D変換器213、322で生成された干渉光データは、ラインメモリ部901において、モータ制御回路225、324から出力されるラジアル走査モータ205または305のエンコーダ部206または306の信号を用いてラジアル走査モータ1回転あたりのライン数が512本となるように処理された後、後段のラインデータ生成部902に出力される。

0096

ラインデータ生成部902では、干渉光データに対してライン加算平均処理フィルタ処理対数変換処理等を施し、生体組織の深さ方向の干渉光強度データを生成することで、ラインデータを生成した後、該生成したラインデータを後段の信号後処理部903に出力する。信号後処理部903では、ラインデータに対してコントラスト調整輝度調整ガンマ補正フレーム相関シャープネス処理等を行い、画像構築部(DSC)904に出力する。

0097

画像構築部904では、極座標のラインデータ列をRθ変換するこで断層画像を生成した後、ビデオ信号に変換し、該断層画像をLCDモニタ215または317に表示する。なお、本実施形態では一例として、512ラインから断層画像を生成することとしているが、このライン数に限定されるものではない。

0098

更に、本実施形態に係る画像診断装置100の信号処理部214、323では、更に、光カップリング部におけるカップリング状態を検査するための機能(カップリング状態検査機能)として、レンズ表面反射信号抽出部905と判定部906とを備える。以下、図10及び図11を参照しながら、レンズ表面反射信号抽出部905及び判定部906により実現されるカップリング状態検査機能について詳説する。

0099

<10.カップリング状態検査機能(レンズ表面反射信号抽出部)の説明>
図10は、信号処理部214、323において処理されるラインデータを示す図である。図10において、横軸位置情報であり縦軸は強度を示している(つまり、図10は、送受信位置から体腔内の所定の深さ方向の位置までの干渉光の強度分布を示している)。

0100

図5Bに示す送受信部501より取得された干渉光に基づいて生成されたラインデータは、図10に示すように、カテーテルシース401内からの信号とカテーテルシース401外からの信号であって診断に用いられる情報が含まれる信号とに大別することができる。

0101

このうちカテーテルシース401内からの信号には、更に、1)レンズ(送受信部501)表面からの信号と、2)カテーテルシース401内面からの信号と、3)カテーテルシース401外面からの信号とが含まれている。

0102

このうち、レンズ表面からの信号は、光プローブ部101の状態(スタックの発生、カテーテルシース401内への血液の侵入、送受信部の振動等)に関わらず、一定の強度となる。換言すると、レンズ表面からの信号は、スキャナ/プルバック部102の光カップリング部のカップリング状態を表す信号ということができる。

0103

そこで、レンズ表面反射信号抽出部905では、信号後処理部903より出力されたラインデータのうち、レンズ表面からの信号の強度を抽出する。なお、レンズ表面反射信号抽出部905におけるレンズ表面からの信号の強度の抽出は、少なくとも、送受信部1回転分(つまり、512本分)のラインデータに対して行う。これにより、送受信部1回転におけるレンズ表面からの信号の強度の変化を判別することができる。

0104

<11.カップリング状態検査機能(判定部)の説明>
図11は、光カップリング部におけるカップリング状態と、送受信部1回転におけるレンズ表面からの信号の強度の変化との関係を示した図である。

0105

図11の(A)は、回転駆動部側のレンズ固定スリーブ812の位置により規定される光軸821と、回転駆動部の回転軸822とが一致し、かつ、固定部側のレンズ固定部818の位置により規定される光軸820と一致している場合を示している。

0106

図11の(A)の(a)に示すように、光軸820と光軸821と回転軸822とが一致している場合、回転駆動部側の回転角度に関わらず、レンズ固定スリーブ812の断面位置と、レンズ固定部818の断面位置とは常に一致する(図11の(A)の(b)参照)。

0107

この場合、レンズ表面からの信号の強度は、回転駆動部側の回転角度に関わらず一定となる(図11の(A)の(c)参照)。

0108

一方、図11の(B)は、回転駆動部側のレンズ固定スリーブ812の位置により規定される光軸821が、回転駆動部の回転軸822に対してずれており、その結果、固定部側のレンズ固定部818の位置により規定される光軸820に対してずれている場合について示している。

0109

図11の(B)の(a)に示すように、光軸821と回転軸822とが平行にずれ、その結果、光軸820と光軸821とが平行にずれている場合、回転駆動部側の回転角度によって、レンズ固定スリーブ812の断面位置と、レンズ固定部818の断面位置とは、常に平行にずれることとなる(図11の(B)の(b)参照)。

0110

この場合、レンズ表面からの信号の強度は、回転駆動部側の回転角度に応じて、周期的に変動することとなる(図11の(B)の(c)参照)。

0111

また、図11の(C)は、回転駆動部側のレンズ固定スリーブ812の位置により規定される光軸821が、回転駆動部の回転軸822に対して、所定の角度をもってずれており、その結果、固定部側のレンズ固定部818の位置により規定される光軸820に対して、所定の角度をもってずれている場合を示している。

0112

図11の(C)の(a)に示すように、光軸821と回転軸822とが所定の角度をもってずれ、その結果、光軸821が光軸820に対して所定の角度をもってずれている場合、回転駆動部側の回転角度によって、レンズ固定スリーブ812の断面は、レンズ固定部818の断面に対して、常に所定の角度を向くこととなる(図11の(C)の(b)参照)。

0113

この場合、レンズ表面からの信号の強度は、全体として低下するとともに、回転駆動部側の回転角度に応じて、周期的に変動することとなる(図11の(C)の(c)参照)。

0114

このような特性をふまえ、判定部906では、レンズ表面反射信号抽出部905において抽出された、レンズ表面からの信号の強度の変動幅(最大値最小値との差分)について、所定の範囲の閾値を設け、変動幅が所定の閾値を超えた場合に、カップリング状態が異常であると判定し、LCDモニタ215、317に警報を出力する。

0115

<12.カップリング状態検査処理の流れ>
次に、カップリング状態検査処理の流れについて図12を用いて説明する。図12は、本実施形態に係る画像診断装置100におけるカップリング状態検査処理の流れを示すフローチャートである。

0116

操作パネル112において光カップリング部のカップリング状態検査処理開始指示が入力されると、図12に示すカップリング状態検査処理が開始される。

0117

テップS1201では、制御部907に予め登録されている閾値を判定部906が読み出す。

0118

ステップS1202では、レンズ表面反射信号抽出部905が、信号後処理部903より出力されたラインデータに基づいて、レンズ表面からの信号の強度を抽出する。なお、このとき抽出するレンズ表面からの信号の強度は、少なくとも、送受信部1回転分(ラインデータ512本分)であるとする。

0119

ステップS1203では、判定部906が、ステップS1202において抽出された信号強度の変動幅が、ステップS1201において読み出された閾値の範囲を超えているか否かを判定する。

0120

ステップS1203において、信号強度の変動幅が閾値の範囲を超えていないと判定した場合には、ステップS1205に進み、光カップリング部のカップリング状態が正常であると判定し、カップリング状態検査処理を終了する。

0121

一方、ステップS1203において、信号強度の変動幅が閾値の範囲を超えていると判定した場合には、ステップS1204に進み、光カップリング部のカップリング状態が異常であると判定し、ステップS1206に進む。

0122

ステップS1206では、判定部906が、LCDモニタ215、317に、警報を出力し、ユーザに報知した後、カップリング状態検査処理を終了する。

0123

このように、断層画像を撮像するにあたり、事前にカップリング状態検査処理を実行することにより、光カップリング部のカップリング状態を確認することが可能となる。なお、カップリング状態検査処理の結果、警報が出力された場合には、ユーザは、セットスクリュー814によりレンズ固定スリーブ812の位置を調整することにより、レンズ固定スリーブ812の光軸821を、回転駆動部の回転軸822と一致させる。これにより、固定部側のレンズ固定部818の位置により規定される光軸820と一致させることが可能となる。

0124

以上の説明から明らかなように、本実施形態に係る画像診断装置では、生成されたラインデータのうち、レンズ表面からの信号の強度を、少なくとも、送受信部1回転分にわたって抽出し、送受信部の回転角度に対する当該強度の変動幅を判定する構成とした。

0125

この結果、スキャナ/プルバック部における光カップリング部の光軸のずれを確認することが可能となった。

0126

[第2の実施形態]
上記第1の実施形態では、光カップリング部のカップリング状態の異常を検出するにあたり、レンズ表面からの信号の強度の変動幅(最大値と最小値との差分)を算出する構成としたが、本発明はこれに限定されない。

0127

例えば、送受信部1回転分の反射信号の強度の平均値を求め、当該平均値と、最大値または最小値との差分を算出する構成としても良い。あるいは、送受信部1回転分の信号の強度のばらつきを算出する構成としてもよい。

0128

なお、抽出する信号の強度は、送受信部1回転分に限定されず、複数回転分であってもよいし、所定時間分であってもよい。

0129

また、上記第1の実施形態では、判定部906における判定結果をLCDモニタ215、317に出力する構成としたが本発明はこれに限定されない。例えば、レンズ表面反射信号抽出部905において抽出された、送受信部501の各回転位置に対する、各信号の強度の変化を示すグラフ図11の(A)〜(C)の(c))を生成し、当該グラフをLCDモニタ215、317に出力するように構成してもよい。

0130

更に、上記第1の実施形態では、固定部側のレンズ固定部818の位置により規定される光軸820と回転駆動部の回転軸822とが一致していることを前提とし、レンズ固定スリーブ812の位置により規定される光軸821が、回転軸822に対してずれていることに起因して、光軸821と光軸820とがずれていた場合に、レンズ固定スリーブ812の位置をセットスクリュー814を用いて調整する構成としたが、本発明はこれに限定されない。

0131

レンズ固定部818の位置により規定される光軸820が回転軸822に対してずれる場合を想定し、レンズ固定部818も位置調整可能に固定するように構成してもよい。この場合、ユーザは、カップリング状態が異常である旨の警報の出力に対して、レンズ固定部818の位置を調整することで、光軸821と光軸820とを一致させることが可能となる。

0132

本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。

0133

本願は、2009年9月30日提出の日本国特許出願特願2009−227840を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ