図面 (/)

技術 自立型バイオミメティック人工椎間板

出願人 敷波保夫
発明者 敷波保夫
出願日 2010年4月21日 (9年8ヶ月経過) 出願番号 2011-507047
公開日 2012年10月4日 (7年3ヶ月経過) 公開番号 WO2010-113530
状態 特許登録済
技術分野 補綴
主要キーワード 挿入冶具 上表面層 表面地形 截頭角錐 貫通ピン 内部空隙率 圧迫解除 幾何学的形
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2012年10月4日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (9)

課題・解決手段

本発明の人工椎間板は、有機繊維を立体の3軸以上の多軸次元組織もしくは編組織又はこれらの複合組織とした生体椎間板模倣した構造と物理挙動をもつ組織構造体と、この組織構造体の上下両表面にそれぞれ設置された固定用凸子とからなり、その凸子は組織構造体の表裏を貫通する連結糸連結固定されている。この組織構造体は本来の椎間板としての生体模倣的な物理的挙動発現するため、臨床に真に有効な信頼性の高い低侵襲挿入固定が可能な自立型生体模倣性人工椎間板が実現できる。

概要

背景

本発明者は、椎体間に挿入されて上下から生体荷重を受けた場合に、椎体エンドプレート(endplate)表面に良く密着しながら生体の椎間板模倣した可動性(biomimetic
mobility)を示す人工椎間板を出願した。その一つは、有機繊維の立体多軸次元組織もしくは編組織又はこれらの複合組織とした組織構造体に、生体活性且つ吸収性の剛いピンを上下に貫通させて、ピンの両端部を組織構造体の上下両面から突出させた人工椎間板(特許文献1)であり、もう一つは、上記組織構造体の内部に上記ピンを上下に貫入させて、組織構造体が上下から圧縮されるとピンの両端部が組織構造体の上下両面から突き出すようにした人工椎間板(特許文献2)である。これらは、組織構造体の上下両面から突き出すピンの両端部を、上下の椎体のエンドプレート表面にあけた穴に嵌め込んで固定する、自立型の人工椎間板である。

しかしながら、上記人工椎間板を用いて、死体への挿入、および可動実験マントヒヒ(Baboon)への埋入、可動実験を行った結果、以下のような欠点があるのを認識するに至った。即ち、上記人工椎間板の有機繊維の組織構造体を貫通しもしくは内部に貫入して、その上下の表面から突出したピンで固定しようとした場合には、以下のような問題が残ることが分かった。

一つの問題は、上記人工椎間板の椎体間への挿入、固定が下記の如く困難であり、無理な挿入によって椎体あるいは隣接椎間板を傷める危険性があることである。

痛んだ椎間板を掻爬して整備した椎体空間(Disc Space)に上記人工椎間板を挿入して固定するときは、最初に上下の椎体のエンドプレート表面にエンドプレートパンチャー(Endplate Puncher)を用いて穴(punched hole)を開け、この穴に人工椎間板の組織構造体の上下両面から突き出したピンの両端部を嵌め込んで正しい位置に人工椎間板を設置、固定するための準備をする。ピンが穴の位置と一致する位置まで人工椎間板を挿入するには、ピンの突き出した両端部の長さだけ椎体間を押し拡げなければならないので、当然ながら、拡げられた椎体に押されて、隣接する上下の椎間板がその分だけ圧迫されることになる。確実な固定をするためには、人工椎間板の組織構造体の表面から突き出したピンの片方の端部の必要な長さ(突出長さ)は、経験的に1.0〜3.0mm、望ましくは少なくとも1.0〜2.0mmである。

上記人工椎間板を挿入するときは、挿入冶具であるキャタリスト(Catalyst)の先端部分の二枚のブレード(Blade)により人工椎間板の組織構造体を挟み込んで保持するのである。この際、このブレードにピン端部の突出長さと同じ深さの凹溝、あるいは、ブレードの表裏まで貫通した切込み溝を設けて、突き出したピンの端部を嵌め込んだ状態で椎間に挿入する方法を採らねばならない。しかし、ピン端部の突出長さよりも厚いブレードにピン端部の突出長さと同じ深さの凹溝を設ける場合は、ブレードの厚みの方がピン端部の突出長さよりも大きいので、このブレードの厚み分だけ、椎間を更に押し拡げなければならない。これにより、隣接椎間板が更に圧迫されて、壊死、損傷する危険性が増すことになる。

一方、ピン端部の突出長さと同じ厚みのブレードに切込み溝を設ける場合は、上記の場合よりも薄い1.0〜2.0(3.0)mm厚のブレードで人工椎間板の組織構造体を把持することになるので、上記の場合よりも椎間の拡張は抑えられる。しかし、この場合は、掻爬して整備した椎間に露呈しているエンドプレート表面地形(形状)に沿うように人工椎間板の組織構造体を圧迫密着(press fitting)させる状態は得られない。椎体のエンドプレートと人工椎間板の組織構造体との界面での結合性を促進させるには、少し厚めの組織構造体を椎間に挿入し、圧迫固定して密着状態にするのがよい。そのためには、ピン端部の突出長さと同じ、例えば1.0〜2.0(3.0)mmの厚さを持つ二枚のブレードで上下から組織構造体を圧縮し、組織構造体の厚みを薄くした状態で椎間に挿入して所定の位置にセットし、ブレードを抜き取った後に組織構造体が上下の椎体の圧力で圧縮されて、両端部が突き出したピンにより固定を得るという方法を採ることになる。しかし、これでは組織構造体をブレードで圧縮した分だけピンの端部がブレードの表面から突き出すことになるので、結局はピンの全長だけ椎間を拡張しなければならないことに代わりはない。いずれにせよ、手術中に椎間距離拡張を出来る限り小さくするために、表裏が貫通した切込み溝を持つブレードを用いる場合においても、ブレードは人工椎間板の組織構造体を圧迫密着に必要な厚みだけ圧縮できる物理的強度をもたねばならない。

しかし、実際には、人工椎間板の組織構造体を圧迫密着に必要な1.0〜2.0mm程度の厚みだけでも圧縮するためには、極めて大きな力が必要である。例えば頚椎(Cervical)の場合でも平均的頭部の重量である80N(Newton)程度が必要である。ましてや腰椎においてはその数倍以上もの圧縮力が要求される。換言すれば、頚椎用人工椎間板の組織構造体はこの圧縮値で適度に可動的な変形をするように設計されている。挿入冶具であるキャタリストの先端部分の二枚のブレードによってこのプレス強度を実行できるのは、それがステンレス製のブレードであっても、頚椎用人工椎間板の組織構造体の場合であっても少なくとも約3.5mm以上の厚みが必要であることが分かった。これよりも薄いとブレードは外側に反り曲がり、組織構造体を均等に圧縮できない。3.5mm厚のブレードを用いて組織構造体を上下から0.5mmずつ圧縮すると仮定しても、少なくても上下の椎体を6.0mmは拡げる必要がある。実際は挿入をスム−ズにするために上下の椎体を1.0〜2.0mm余分に拡げる必要があるので、この圧縮挿入の場合であっても7.0〜8.0mm以上は拡げなくてはならないことになる。手術中にこの様に大きな椎間拡張を数分間以上続けるだけで、隣接椎間板が圧迫されて壊死を起こす可能性が大きく、極めて危険である。したがって、このように厚いブレードを用いて組織構造体を上下の椎体のエンドプレート表面に圧迫密着させる方法は臨床的に採用すべきでない。

上記ピンの端部の突出長さが長い(≧1.0mm)ほど、信頼ある固定によって安定な自立性が得られるが、上記の理由であまり長くできない。そこで、ピン端部の突出長さを長くしたい場合は、組織構造体の上下両面から突き出すピン端部の突出長さと同じ深さの溝(channel)を上下の椎体のエンドプレートに掘り(keeling)、この溝にピンの端部を通して、定位置に納めるような工夫が考えられる。それにより、ピン端部の突出長さ分だけ上下の椎体間隔を拡張する必要がなくなる。この方法は金属/ポリマー二層構造(Metal/Polymer; two layers)、または金属/ポリマー/金属の三層構造(Metal/Polymer/Metal;three layers)などの現在臨床使用されているボールソケット(Ball and
Socket)タイプの人工椎間板に採用されている。しかしながらこの方法は、挿入の目的だけのために健全な椎体をむやみに傷つける上に、何らかの副作用併発することは避けられないので、臨床的には極力避けるべきである。

もう一つの問題は、前記人工椎間板の組織構造体を貫通し若しくは組織構造体内部に貫入された剛いピンが、組織構造体本来の可動性を阻害することである。
概して、高さ方向(上下方向)に負荷されたときの加圧除圧(Compression,
Decompression)時の組織構造体本来の動的挙動は比較的抑制されないが、左右の曲げ(Lateral
bending)、および前屈後屈(Flexion, Extension)運動のときは、組織構造体のX,Y,Z軸の構成糸が剛いピンによって引っ張られるので自由に本来の変形ができない。本発明者は上記の運動中に組織構造体の厚みの中間部において、内側に向けて座屈(buckling)することを確認した。即ち、In vitroの実験において、人工の椎体間に挟んでこれらの運動をシュミレ−ションした動画を観察すると、前屈、後屈の場合には、組織構造体はピンにより、その周囲の糸が剛性のあるピンにより引っ張られて拘束されるので、組織構造体の前面および後面は中間部より内側に向けて顕著な座屈現象を起すことが分かった。この現象が長期の動的運動のなかで繰り返されると、糸に異常な負荷がかかるので糸の劣化破断、あるいは組織の破損に及ぶ。そして、埋入後の長期間に組織構造体の破壊に到ることは不可避である。同様に、捻り運動(Torsional Motion)時にも自然な組織構造体の挙動が阻害される。即ち、剛いピンによる可動性の抑制作用は人工椎間板の動き易さの目安の値であるROM(Range of Motion)値の低下をきたすので、このような剛性のある貫入、貫通ピンの使用は避けねばならない。

その他の問題としては、ピンが組織構造体中を容易に上下移動してピン端部の突出長さが変わるため、椎体のエンドプレートに形成された穴への納まりに確実性がなく、固定の信頼性に欠けることが挙げられる。また、負荷を受けながら、組織構造体が動的に変形している間に、その変形力によってピン自体が曲がってしまい、エンドプレートに形成された穴から抜け出して、椎間から脱転する可能性があるので、長期間の固定性の信頼に欠けることも挙げられる。

概要

本発明の人工椎間板は、有機繊維を立体の3軸以上の多軸三次元織組織もしくは編組織又はこれらの複合組織とした生体の椎間板を模倣した構造と物理挙動をもつ組織構造体と、この組織構造体の上下両表面にそれぞれ設置された固定用凸子とからなり、その凸子は組織構造体の表裏を貫通する連結糸連結固定されている。この組織構造体は本来の椎間板としての生体模倣的な物理的挙動発現するため、臨床に真に有効な信頼性の高い低侵襲挿入固定が可能な自立型生体模倣性人工椎間板が実現できる。

目的

もう一つの問題は、前記人工椎間板の組織構造体を貫通し若しくは組織構造体内部に貫入された剛いピンが、組織構造体本来の可動性を阻害することである

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

有機繊維を立体の3軸以上の多軸次元組織もしくは編組織又はこれらの複合組織とした組織構造体と、上記組織構造体の上表面と下表面にそれぞれ設置された凸子と、からなる自立型生体模倣人工椎間板

請求項2

上記組織構造体の上表面に設置された上記凸子と下表面に設置された上記凸子が、上記組織構造体を上下方向に貫通する連結糸によって、テンションが加えられた状態で連結されている、請求項1に記載の自立型生体模倣性人工椎間板。

請求項3

上記凸子の高さが1.0〜3.0mmであり、上記凸子の組織構造体との当接面が、平坦面又は組織構造体側に凸曲もしくは凹曲する凸曲面もしくは凹曲面に形成されている、請求項1又は請求項2に記載の自立型生体模倣性人工椎間板。

請求項4

上記凸子の高さが0.3〜1.0mmであり、上記凸子が組織構造体の上表面と下表面のそれぞれに少なくとも5個づつ設置されている請求項1又は請求項2に記載の自立型生体模倣性人工椎間板。

請求項5

上記凸子がX線不透過性のバイオセラミックスからなる凸子である、請求項1ないし請求項4のいずれかに記載の自立型生体模倣性人工椎間板。

請求項6

上記凸子がX線不透過性で且つ生体活性なバイオセラミックスからなる凸子である、請求項1ないし請求項4のいずれかに記載の自立型生体模倣性人工椎間板。

請求項7

上記凸子がX線不透過性で且つ生体活性な生体内吸収性バイオセラミックスの粉体生体内分解吸収性ポリマーとの複合体からなる凸子である、請求項1ないし請求項4のいずれかに記載の自立型生体模倣性人工椎間板。

請求項8

上記組織構造体の上下の表層部が、上記組織構造体の他の部分よりも柔軟である、請求項1ないし請求項4のいずれかに記載の自立型生体模倣性人工椎間板。

請求項9

上記組織構造体の上表面層と下表面層に生体活性なバイオセラミックスの粉体が吹き付けられている、請求項1ないし請求項4のいずれかに記載の自立型生体模倣性人工椎間板。

請求項10

上記組織構造体の上表面層と下表面層が、生体活性なバイオセラミックスの粉体と生体内分解吸収性ポリマーとの複合体でコーティングされている、請求項1ないし請求項4のいずれかに記載の自立型生体模倣性人工椎間板。

技術分野

0001

本発明は、低侵襲に挿入、固定が可能な生体模倣性(biomimetic)の構造と動的挙動を有する自立型の立体多軸三次元織物人工椎間板(A stand-alone type of cubic multi-axial three-dimensional
fabric-artificial intervertebral disc ; Stand-alone
3DFDisc)に関する。更に詳しくは、本発明は、上下の椎体に対して信頼できる固定性を有し、その固定によっても本来の生体模倣的な可動性が失われることがなく、しかも、椎間拡張を極力少なくし椎体をできる限り傷つけないで椎体間へ容易に挿入、固定(minimally invasive operation)でき、椎体表面との界面で経時的な結合状態レントゲンによって観察することもできる、臨床に真に有効で信頼性の高い自立型(バイオミメティック)生体模倣性人工椎間板に関する。

背景技術

0002

本発明者は、椎体間に挿入されて上下から生体の荷重を受けた場合に、椎体のエンドプレート(endplate)表面に良く密着しながら生体の椎間板を模倣した可動性(biomimetic
mobility)を示す人工椎間板を出願した。その一つは、有機繊維の立体多軸三次元組織もしくは編組織又はこれらの複合組織とした組織構造体に、生体活性且つ吸収性の剛いピンを上下に貫通させて、ピンの両端部を組織構造体の上下両面から突出させた人工椎間板(特許文献1)であり、もう一つは、上記組織構造体の内部に上記ピンを上下に貫入させて、組織構造体が上下から圧縮されるとピンの両端部が組織構造体の上下両面から突き出すようにした人工椎間板(特許文献2)である。これらは、組織構造体の上下両面から突き出すピンの両端部を、上下の椎体のエンドプレート表面にあけた穴に嵌め込んで固定する、自立型の人工椎間板である。

0003

しかしながら、上記人工椎間板を用いて、死体への挿入、および可動実験マントヒヒ(Baboon)への埋入、可動実験を行った結果、以下のような欠点があるのを認識するに至った。即ち、上記人工椎間板の有機繊維の組織構造体を貫通しもしくは内部に貫入して、その上下の表面から突出したピンで固定しようとした場合には、以下のような問題が残ることが分かった。

0004

一つの問題は、上記人工椎間板の椎体間への挿入、固定が下記の如く困難であり、無理な挿入によって椎体あるいは隣接椎間板を傷める危険性があることである。

0005

痛んだ椎間板を掻爬して整備した椎体空間(Disc Space)に上記人工椎間板を挿入して固定するときは、最初に上下の椎体のエンドプレート表面にエンドプレートパンチャー(Endplate Puncher)を用いて穴(punched hole)を開け、この穴に人工椎間板の組織構造体の上下両面から突き出したピンの両端部を嵌め込んで正しい位置に人工椎間板を設置、固定するための準備をする。ピンが穴の位置と一致する位置まで人工椎間板を挿入するには、ピンの突き出した両端部の長さだけ椎体間を押し拡げなければならないので、当然ながら、拡げられた椎体に押されて、隣接する上下の椎間板がその分だけ圧迫されることになる。確実な固定をするためには、人工椎間板の組織構造体の表面から突き出したピンの片方の端部の必要な長さ(突出長さ)は、経験的に1.0〜3.0mm、望ましくは少なくとも1.0〜2.0mmである。

0006

上記人工椎間板を挿入するときは、挿入冶具であるキャタリスト(Catalyst)の先端部分の二枚のブレード(Blade)により人工椎間板の組織構造体を挟み込んで保持するのである。この際、このブレードにピン端部の突出長さと同じ深さの凹溝、あるいは、ブレードの表裏まで貫通した切込み溝を設けて、突き出したピンの端部を嵌め込んだ状態で椎間に挿入する方法を採らねばならない。しかし、ピン端部の突出長さよりも厚いブレードにピン端部の突出長さと同じ深さの凹溝を設ける場合は、ブレードの厚みの方がピン端部の突出長さよりも大きいので、このブレードの厚み分だけ、椎間を更に押し拡げなければならない。これにより、隣接椎間板が更に圧迫されて、壊死、損傷する危険性が増すことになる。

0007

一方、ピン端部の突出長さと同じ厚みのブレードに切込み溝を設ける場合は、上記の場合よりも薄い1.0〜2.0(3.0)mm厚のブレードで人工椎間板の組織構造体を把持することになるので、上記の場合よりも椎間の拡張は抑えられる。しかし、この場合は、掻爬して整備した椎間に露呈しているエンドプレート表面地形(形状)に沿うように人工椎間板の組織構造体を圧迫密着(press fitting)させる状態は得られない。椎体のエンドプレートと人工椎間板の組織構造体との界面での結合性を促進させるには、少し厚めの組織構造体を椎間に挿入し、圧迫固定して密着状態にするのがよい。そのためには、ピン端部の突出長さと同じ、例えば1.0〜2.0(3.0)mmの厚さを持つ二枚のブレードで上下から組織構造体を圧縮し、組織構造体の厚みを薄くした状態で椎間に挿入して所定の位置にセットし、ブレードを抜き取った後に組織構造体が上下の椎体の圧力で圧縮されて、両端部が突き出したピンにより固定を得るという方法を採ることになる。しかし、これでは組織構造体をブレードで圧縮した分だけピンの端部がブレードの表面から突き出すことになるので、結局はピンの全長だけ椎間を拡張しなければならないことに代わりはない。いずれにせよ、手術中に椎間距離拡張を出来る限り小さくするために、表裏が貫通した切込み溝を持つブレードを用いる場合においても、ブレードは人工椎間板の組織構造体を圧迫密着に必要な厚みだけ圧縮できる物理的強度をもたねばならない。

0008

しかし、実際には、人工椎間板の組織構造体を圧迫密着に必要な1.0〜2.0mm程度の厚みだけでも圧縮するためには、極めて大きな力が必要である。例えば頚椎(Cervical)の場合でも平均的頭部の重量である80N(Newton)程度が必要である。ましてや腰椎においてはその数倍以上もの圧縮力が要求される。換言すれば、頚椎用人工椎間板の組織構造体はこの圧縮値で適度に可動的な変形をするように設計されている。挿入冶具であるキャタリストの先端部分の二枚のブレードによってこのプレス強度を実行できるのは、それがステンレス製のブレードであっても、頚椎用人工椎間板の組織構造体の場合であっても少なくとも約3.5mm以上の厚みが必要であることが分かった。これよりも薄いとブレードは外側に反り曲がり、組織構造体を均等に圧縮できない。3.5mm厚のブレードを用いて組織構造体を上下から0.5mmずつ圧縮すると仮定しても、少なくても上下の椎体を6.0mmは拡げる必要がある。実際は挿入をスム−ズにするために上下の椎体を1.0〜2.0mm余分に拡げる必要があるので、この圧縮挿入の場合であっても7.0〜8.0mm以上は拡げなくてはならないことになる。手術中にこの様に大きな椎間拡張を数分間以上続けるだけで、隣接椎間板が圧迫されて壊死を起こす可能性が大きく、極めて危険である。したがって、このように厚いブレードを用いて組織構造体を上下の椎体のエンドプレート表面に圧迫密着させる方法は臨床的に採用すべきでない。

0009

上記ピンの端部の突出長さが長い(≧1.0mm)ほど、信頼ある固定によって安定な自立性が得られるが、上記の理由であまり長くできない。そこで、ピン端部の突出長さを長くしたい場合は、組織構造体の上下両面から突き出すピン端部の突出長さと同じ深さの溝(channel)を上下の椎体のエンドプレートに掘り(keeling)、この溝にピンの端部を通して、定位置に納めるような工夫が考えられる。それにより、ピン端部の突出長さ分だけ上下の椎体間隔を拡張する必要がなくなる。この方法は金属/ポリマー二層構造(Metal/Polymer; two layers)、または金属/ポリマー/金属の三層構造(Metal/Polymer/Metal;three layers)などの現在臨床使用されているボールソケット(Ball and
Socket)タイプの人工椎間板に採用されている。しかしながらこの方法は、挿入の目的だけのために健全な椎体をむやみに傷つける上に、何らかの副作用併発することは避けられないので、臨床的には極力避けるべきである。

0010

もう一つの問題は、前記人工椎間板の組織構造体を貫通し若しくは組織構造体内部に貫入された剛いピンが、組織構造体本来の可動性を阻害することである。
概して、高さ方向(上下方向)に負荷されたときの加圧除圧(Compression,
Decompression)時の組織構造体本来の動的挙動は比較的抑制されないが、左右の曲げ(Lateral
bending)、および前屈後屈(Flexion, Extension)運動のときは、組織構造体のX,Y,Z軸の構成糸が剛いピンによって引っ張られるので自由に本来の変形ができない。本発明者は上記の運動中に組織構造体の厚みの中間部において、内側に向けて座屈(buckling)することを確認した。即ち、In vitroの実験において、人工の椎体間に挟んでこれらの運動をシュミレ−ションした動画を観察すると、前屈、後屈の場合には、組織構造体はピンにより、その周囲の糸が剛性のあるピンにより引っ張られて拘束されるので、組織構造体の前面および後面は中間部より内側に向けて顕著な座屈現象を起すことが分かった。この現象が長期の動的運動のなかで繰り返されると、糸に異常な負荷がかかるので糸の劣化破断、あるいは組織の破損に及ぶ。そして、埋入後の長期間に組織構造体の破壊に到ることは不可避である。同様に、捻り運動(Torsional Motion)時にも自然な組織構造体の挙動が阻害される。即ち、剛いピンによる可動性の抑制作用は人工椎間板の動き易さの目安の値であるROM(Range of Motion)値の低下をきたすので、このような剛性のある貫入、貫通ピンの使用は避けねばならない。

0011

その他の問題としては、ピンが組織構造体中を容易に上下移動してピン端部の突出長さが変わるため、椎体のエンドプレートに形成された穴への納まりに確実性がなく、固定の信頼性に欠けることが挙げられる。また、負荷を受けながら、組織構造体が動的に変形している間に、その変形力によってピン自体が曲がってしまい、エンドプレートに形成された穴から抜け出して、椎間から脱転する可能性があるので、長期間の固定性の信頼に欠けることも挙げられる。

先行技術

0012

特開2003−230583号公報
国際公開第09/084559号

発明が解決しようとする課題

0013

本発明は上記問題に対処すべくなされたものである。即ち、本発明が解決しようとする課題は、有機繊維の立体多軸三次元織(編)組織構造体を用いた人工椎間板であって、上下の椎体に対して信頼できる固定性を有し、その固定によっても組織構造体本来の生体模倣的な可動性が失われることがなく、しかも、椎間拡張を極力少なくし椎体をできる限り傷つけないで椎体間へ容易に低侵襲に挿入、固定することができ、椎体表面と組織構造体との界面で経時的な結合状態をレントゲンによって観察することもできる、臨床に真に有効で信頼性の高い自立型生体模倣性人工椎間板を提供することにある。

課題を解決するための手段

0014

上記課題を解決するため、本発明に係る自立型生体模倣性人工椎間板は、有機繊維を立体の3軸以上の多軸三次元織組織もしくは編組織又はこれらの複合組織とした組織構造体と、この組織構造体の上表面と下表面にそれぞれ設置された凸子(「ピン」や「凸状素子」ともいえる。)と、からなることを特徴とするものである。

0015

本発明の自立型生体模倣性人工椎間板においては、組織構造体の上表面に設置された凸子(上表面側凸子)と下表面に設置された凸子(下表面側凸子)が、組織構造体を上下方向に貫通する連結糸によって、テンションが加えられた状態で連結されていることが好ましい。そして、上下の椎体のエンドプレート表面に開けた穴に上記凸子を嵌め込んで人工椎間板の組織構造体を自立固定させる場合は、上記凸子の高さが1.0〜3.0mmであり、凸子の組織構造体との当接面が、平坦面又は組織構造体側に凸曲もしくは凹曲する凸曲面もしくは凹曲面に形成されていることが好ましい。これは、凸子が、組織構造体を構成する糸の上に乗ることにより貫入し難くすることと、上面からの椎体の圧力によって組織構造体の表面に沈下埋没した状態から除圧開放されたときに、組織構造体を構成する糸の反発力によって表面に飛び出し易くするためである。また、後述するようにラスプで粗面化した椎体のエンドプレート表面に上記凸子を引っ掛けて人工椎間板の組織構造体を自立固定させる場合は、上記凸子の高さを0.3〜1.0mmとし、且つ、組織構造体の上下両表面のそれぞれに上記凸子を少なくとも5個ずつ(もちろん5個に限定されるわけではないが)設置することが好ましい。なお、上記いずれの場合においても、上表面側凸子の高さと下表面側凸子の高さは同じでも違っていてもよい。

0016

上記凸子は、X線不透過性のバイオセラミックスからなる凸子、或いは、X線不透過性で且つ生体活性なバイオセラミックスからなる凸子、のいずれかであることが好ましい。但し、後述するように組織構造体の上下両表面層に生体活性なバイオセラミックスの粉体を吹き付けるなどの処理をして椎体との結合性を付与する場合は、X線不透過性で且つ生体活性な生体内吸収性バイオセラミックスの粉体と生体内分解吸収性ポリマーとの複合体からなる凸子も好ましく使用される。

0017

また、上記組織構造体の上下の表層部は、組織構造体の他の部分よりも柔軟であることが好ましい。そして、上記組織構造体の上表面層と下表面層に生体活性なバイオセラミックスの粉体が吹き付けられているか、又は、上記組織構造体の上表面層と下表面層が、生体活性なバイオセラミックスの粉体と生体内分解吸収性ポリマーとの複合体でコーティングされていることが好ましい。これにより、椎体表面の骨と組織構造体との結合が為され、より信頼性が高められた自立固定性が得られる。

発明の効果

0018

本発明に係る自立型生体模倣性人工椎間板を椎間に挿入、固定するときは、挿入治具の二枚のブレード(溝が形成されていないブレード)で本発明の人工椎間板を上下から圧迫して、組織構造体の上面と下面に設置された凸子の先端が組織構造体の上表面と下表両に面一となるように、凸子を組織構造体の上表面と下表面に押し込んで沈ませ、組織構造体と二枚のブレードとの合計厚みよりも少し拡げた上下の椎体間に挿入する。そして、二枚のブレードを取り除くと、組織構造体の上表面と下表面に押し込まれて沈んでいる凸子が組織構造体の糸の反発力(弾性復元力)で元の突き出た状態に戻って、上下の椎体のエンドプレート表面にあけられた穴に嵌まり込み、これによって本発明の人工椎間板が上下の椎体間に自立固定される。
その場合、本発明の人工椎間板の組織構造体が、掻爬して整備した椎体間距離(拡げる前の椎体間距離)よりも片側で0.5〜1.0mm、両側で1.0〜2.0mm程度厚いものであると、拡げられた上下の椎体が人工椎間板挿入後、元の椎体間距離に戻されたとき、組織構造体の上下両表面が上下の椎体のエンドプレート表面地形に沿って少し圧迫された状態で密着することになる。このように圧迫密着した状態は、組織構造体の上下両表面層に生体活性なバイオセラミックス粉体を吹き付けるなどの処理した場合に、バイオセラミックス粉体の骨伝導誘導)性により組織構造体と椎体との良好な骨結合性(Bone Bonding)を得るのに好適である。

0019

上記のように、本発明の人工椎間板は、上下の椎体間に挿入するときに挿入治具の二枚のブレードで組織構造体の上下両表面の凸子を上下両表面に押し込んで沈ませるものであるから、大きい圧迫力は不要であり、それ故、挿入治具のブレードは0.5mm厚程度の薄いステンレス製のブレードでも十分である。このため、上下の椎体は、両側で二枚のブレードの厚み分1.0mmと余裕の隙間分1.0〜2.0mmとの合計2.0〜3.0mmだけ拡げればよく、また、圧迫密着させるために椎体間距離(拡げる前の椎体間距離)よりも両側で1.0〜2.0mm程度厚い組織構造体を用いる場合でも、上下の椎体を両側で3.0〜5.0mm程度拡げればよい。このように、本発明の人工椎間板は、前述した従来の貫通ピンや貫入ピンを用いた人工椎間板のように上下の椎体を両側で7.0〜8.0mm以上拡げなければならないものに比べると、椎間拡張がほぼ半分以下となるため、隣接椎間板が壊死、損傷する危険性がなくなり、また、椎間拡張に特別な方法を施す必要もなくなる。

0020

本発明の人工椎間板においては、組織構造体の上表面に設置された凸子と下表面に設置された凸子が、組織構造体を上下方向に貫通する連結糸によって、張力(tension)が加えられた状態で連結されているので、凸子が組織構造体から離脱したり転倒したりすることなく、安定した設置状態を保つことができ、しかも、挿入治具のブレードで凸子を組織構造体の上表面と下表面に押し込むときに連結糸がその妨げとならないため、小さい圧迫力で凸子を容易に押し込んで沈ませることができる。そして、この連結糸は、従来の人工椎間板の剛性のある貫通ピンや貫入ピンのように左右の曲げ運動や前後屈運動のときに組織構造体の構成糸を引っ張って、動的な動きを拘束することがないので、組織構造体本来の生体模倣的な変形を妨げたり、組織構造体の厚みの中間部において内側に向けて座屈現象を起こしたりする欠点を解消することができる。

0021

また、上下の椎体のエンドプレート表面に開けた穴に上記凸子を嵌め込んで自立固定させる人工椎間板は、凸子の高さを1.0〜3.0mmとし、凸子の組織構造体との当接面(底面)を平坦面又は組織構造体側に凸曲もしくは凹曲した凸曲面もしくは凹曲面とするのがよい。凸子の高さが1.0mm以上であれば、凸子が椎体のエンドプレート表面の穴に抜け出さないように確実に嵌まり込み、3.0mm以下であれば、椎体のエンドプレート表面に深すぎる穴をあける必要がないので好ましい。そして、凸子の底面が平坦面に形成されているものは凸子の設置安定性が良く、また、凸子の底面が組織構造体側に凸曲する凸曲面、もしくは凹曲する凹曲面に形成されているものは、底面の面積が平坦面のそれよりも幾分大きくなり、組織構造体を構成する糸をその分だけ多く凸子の底に敷設することになるので凸子の設置安定性が更に向上する。従って、挿入治具のブレードで凸子を圧迫しながら組織構造体の上下両表面を凹ませて押し込むときに凸子が倒れ心配がなく、しかも、ブレードを取り除くと同時に組織構造体を構成する糸の弾性復元力によって凸子が安定良く直立状態で椎体のエンドプレート表面の穴に嵌まり込み、該穴から抜け出す惧れがないので、組織構造体が椎間から脱転しないように確実に固定することができる。特に、凸曲面の場合は、凸子の位置がエンドプレート表面にあけた穴から少しずれた状態で挿入設置されたとしても、少し揺さぶってやる事により凸子の先端が底面の曲率に応じて揺れ動くので、穴に嵌り易くなるのでよい。
一方、ラスプで粗面化した椎体のエンドプレート表面に凸子を引っ掛けて自立固定させる人工椎間板は、凸子の高さを0.3〜1.0mmとし、且つ、組織構造体の上下両表面のそれぞれに上記凸子を少なくとも5個づつ設置するのがよい。凸子の高さが0.3mm以上であれば、粗面化された椎体のエンドプレート表面に凸子が確実に引っ掛かって自立固定でき、1.0mm以下であれエンドプレート表面と組織構造体の上下両表面との圧迫密着を損なう恐れがないので好ましい。また、組織構造体の上下両表面にそれぞれ設置される凸子の個数が少なくとも5個づつあれば、凸子が椎体のエンドプレート表面に引っ掛かって滑り抵抗が大きくなり、人工椎間板の脱転を確実に阻止することができる。

0022

また、本発明の人工椎間板において、凸子がX線不透過性のバイオセラミックスからなるものであると、該凸子がレントゲンに映るので、レントゲン撮影によって、該凸子が椎体のエンドプレート表面の穴にうまく嵌まり込んでいるかどうかを観察でき、手術直後や長期経過後の組織構造体の位置や椎体との界面での結合状態などを観察することができる。そして、凸子がX線不透過性で且つ生体活性なバイオセラミックスからなるものであると、上記に加えて、生体活性なバイオセラミックスの骨伝導能により、椎体から骨組織が凸子に伝導形成されて椎体と凸子が結合される利点がある。更に、凸子がX線不透過性で且つ生体活性な生体内吸収性バイオセラミックスの粉体と生体内分解吸収性ポリマーとの複合体からなるものであると、生体内分解吸収性ポリマーの加水分解の進行に伴って露出するバイオセラミックス粉体の骨伝導能により、椎体から骨組織が凸子に伝導形成され、最終的に凸子のポリマーもバイオセラミックス粉体も吸収されて、凸子が骨組織と全置換して消失し、椎体のエンドプレートの穴が全置換した骨組織で埋められて修復されるという利点がある。もっとも、この複合体からなる凸子を設置する場合は、凸子が消失するまでに組織構造体と椎体が結合できるように、組織構造体の上下両表面層に椎体との結合性を付与する処理(生体内吸収性、且つ生体活性なバイオセラミックスの粉体を吹き付けるなどの処理)を施せば、凸子が消失した後も組織構造体の位置ずれや脱転を防止できる。この場合、生体内非吸収性の生体活性なバイオセラミックスを用いるとこの粉体が他の部位に流出して予想できない組織との異物反応を起こす危惧があるので、生体内吸収性、且生体活性なバイオセラミックスの粉体を用いるべきである。

0023

また、本発明の人工椎間板において、組織構造体の上下の表層部が、組織構造体の中間層部分よりも柔軟であるものは、この組織構造体の椎体間設置後に表層部の表面が上部の椎体の自重によって、整備された後の椎体のエンドプレート表面の地形に良く沿って圧迫密着性を確実に発現するので好ましい。

0024

更に、本発明の人工椎間板において、組織構造体の上表面層と下表面層に生体活性なバイオセラミックスの粉体が吹き付けられているものは、バイオセラミックス粉体の骨伝導能によって椎体から骨組織が組織構造体の上下両表面層に伝導形成され、骨組織が組織構造体の上下両表面層の有機繊維と絡んで椎体と組織構造体が結合するため、人工椎間板の自立固定性が増して椎間から脱転する危惧が回避される。
また、本発明の人工椎間板において、組織構造体の上表面層と下表面層が、生体活性なバイオセラミックスの粉体と生体内分解吸収性ポリマーとの複合体でコーティングされているものは、生体内分解吸収性ポリマーの加水分解の進行に伴って露出するバイオセラミックス粉体の骨伝導能ないし骨誘導能によって、椎体から骨組織が組織構造体の上下両表面層に伝導(誘導)形成されて該ポリマーと置換し、上記と同様に骨組織が組織構造体の上下両表面層の有機繊維に絡んで椎体と組織構造体が結合されるため、人工椎間板の自立固定が完全となって椎間から脱転する危惧が解消される。

図面の簡単な説明

0025

本発明の一実施形態に係る自立型生体模倣性人工椎間板の斜視図である。
同人工椎間板の正面図である。
同人工椎間板の概略断面図であって、挿入治具の二枚のブレードで上下から圧迫する前の状態を示すものである。
同人工椎間板の概略断面図であって、挿入治具の二枚のブレードで上下から圧迫した状態を示すものである。
上下の椎体間に設置された同人工椎間板の概略断面図である。
本発明の他の実施形態に係る自立型生体模倣性人工椎間板の斜視図である。
本発明の更に他の実施形態に係る自立型生体模倣性人工椎間板(腰椎用の勾玉型部分置換タイプ)の斜視図である。
同人工椎間板の挿入位置を示す平面図である。

実施例

0026

以下、図面を参照して本発明の具体的な実施形態を詳述する。

0027

図1図2に示す自立型生体模倣性人工椎間板10は、図5に示すように、頸椎胸椎、あるは腰椎の上下の椎体20,20間に挿入、固定される全置換型の人工椎間板であって、前半分が半円形で後半分が長方形の平面形状を有する生体の椎間板に良く似た形状であり、このバルク状に形成された有機繊維の組織構造体1と、この組織構造体1の上表面と下表面の相対向する位置にそれぞれ設置された凸子2とからなるものである。この人工椎間板10の大きさは、ヒトの体の大きさによっても異なり、また、成人用と子供用、腰椎、胸椎、頸椎用で異なるが、例えば、一般的な成人用で脊椎用の人工椎間板の場合は、通常、横幅寸法が30〜40mm程度、前後寸法が25〜30mm程度、厚さが10〜15mm程度であり、成人用で頸椎用の人工椎間板の場合は、通常、横幅寸法が14〜20mm程度、前後寸法が10〜15mm程度、厚さが8〜12mm程度である。

0028

この人工椎間板10の組織構造体1は、有機繊維を立体の3軸以上の三次元織組織もしくは編組織又はこれらの複合組織とした組織構造体であって、椎間板と同程度の静的な機械的強度と柔軟性を有し、動的(変形)挙動がきわめて生体模倣的である。この組織構造体1は、本出願人が既に出願した特願平6−254515号(特許第3243679号)に記載された組織構造体と同様のものであって、その幾何学的形状を次元数で表し、繊維配列方位数を軸数で表すならば、上記のように3軸以上の多軸−三次元織組織等からなる構造体である。

0029

所謂3軸−三次元組織は、縦、横、垂直の3軸の方向の繊維を立体的に組織したもので、その構造体の代表的な形状は、上記のような厚みのあるバルク状(板状ないしブロック状)であるが、円筒状やハニカム状とすることも可能である。この3軸−三次元組織は、組織の違いによって、直交組織、非直交組織、絡み組織、円筒組織などに分類される。また、4軸以上の多軸−三次元組織の構造体は、4,5,6,7,9,11軸等の多軸方位を配列することによって、構造体の強度的な等方性を向上させることができるものである。そして、これらの選択によって、より生体の椎間板に酷似した、よりバイオミメティックな構造体を任意に得ることができる。

0030

この人工椎間板10の組織構造体1は、上記のような有機繊維の織、編組織をつくる技術を工夫して、椎間板にふさわしい種々の静的、動的物理物性を有する組織構造体に造り上げたものであって、図3に示すように、この組織構造体1の内層部1aを挟んで上下両側には、組織構造体1の内層部1aよりも柔軟な表層部1b,1bが形成されている。このように表層部1b,1bが内層部1aよりも柔軟であると、この人工椎間板10を椎間に挿入するときに、挿入治具であるブレードを用いてスポット的に存在する凸子2を組織構造体1の上下両表面に押し込みやすくなるのである。つまり、0.5mm程度の薄いブレードであっても、凸子2がスポット的に点在するので、組織構造体1の上下両表面に押し込めるのである。ただし、このような場合でも3.5mm以上の厚いステンレス製のブレードを用いて挟み込んで圧迫しないと表層部1b,1bを全面的に圧縮して組織構造体1の厚さを小さくすることはできない。しかし、少し厚い(例えば、片側が0.5mm程度真の椎体間距離より厚い)組織構造体1を選んで、これを挿入するときに、椎間をそれに応じた分だけ少し拡げて人工椎間板10を挿入、設置した後、椎体よりも上部の荷重で元の椎体間距離まで戻ったときに、図5に示すように、柔軟な表層部1b,1bが椎体20,20のエンドプレート表面の凹凸地形に容易に追従して変形して沿うために、組織構造体1と椎体20,20との密着性が大幅に向上するという目的を達成できるのである。換言すれば、挿入すべき組織構造体1に凸子2の高さの2倍を加えた距離に椎間を拡げる必要はなく、挿入すべき組織構造体1の距離だけ拡げればよく、両側の凸子2は0.5mm厚のブレードで圧迫して両表層に沈み込ませて(貫入ではない)、椎間に挿入設置する事ができるのである。柔軟な表層部1b,1bを形成する手法としては、例えば、単位空間当たりの糸の多少を表す緻密度を小さくしたり、糸の本数が同じ場合は糸を細くしたりするなどの手法が有力であり、糸の本数をどの程度減らすか、或いは、糸をどの程度の細さにするかによって、上下の表層部1b,1bの柔軟性を自由に変えることができる。

0031

柔軟な表層部1b,1bの厚みは、凸子2の高さよりも大きくすることが好ましく、そのようにすれば、図4に示すように挿入治具の二枚のブレード3,3によって上下から小さい圧迫力で凸子2,2を圧迫しながら表層部1b,1bを凹ませて、凸子2,2の先端が組織構造体1の上下両表面(表層部1b,1bの表面)と面一になるまで容易に押し込んで沈ませることができる。

0032

この実施形態の人工椎間板10では、組織構造体1の上下両表面を平坦面としているが、上側の椎体20の凹んだエンドプレートの下面に接触する組織構造体1の上表面(上側の表層部1bの表面)は、上側の椎体20の凹んだエンドプレートの下面の地形にほぼ合致する隆起面であってもよく、その場合は、上側の表層部1bが上側の椎体20の凹んだ下表面に嵌まった状態でほぼ均等に圧縮変形して密着するため、組織構造体1の上側に椎体20の圧力がほぼ均等にかかるという利点があり、また、隆起した上面が組織構造体1の位置ズレや脱転を防止する役目も果たすことになる。そして、このような密着状態にあれば、椎体骨との結合が効果的に達成される。下側の椎体20の上表面に接触する組織構造体1の下表面は、椎体20の上面が下面よりも平面状に近いのが普通であるので、その表面地形に沿うように平坦面のままであってよい。

0033

なお、組織構造体1を前述したような内層部1aとこれより柔軟な上下の表層部1b,1bとからなる三層構造とすることは必須要素でなく、適度の柔軟性を持つ単層構造の組織構造体でもよいことは言うまでもない。

0034

組織構造体1の内部空隙率は20〜90%の範囲にあることが好ましく、20%以上であれば、組織構造体1が緻密になって柔軟性や変形性が損なわれることがないため、人工椎間板の組織構造体として満足できるものとなる。また、90%以下であれば、組織構造体1の動的、静的物理物性が十分であり、圧縮強度保形性が損なわれることもない。

0035

組織構造体1を構成する有機繊維としては、医療用具として実績のあるものが選択される。生体不活性合成樹脂繊維としては、ポリエチレンポリプロピレンポリテトラフルオロエチレンなどの生体不活性な繊維、および、これらまたはこれらとは別の有機質の繊維を用いて柔軟性を発現するためのマルチフィラメント芯材とし、上記の生体不活性な樹脂被覆して生体不活性とした被覆繊維などが好ましく使用される。特に、超高分子ポリエチレン芯繊維として直鎖状低密度ポリエチレン被膜で被覆した被覆繊維(直径が例えば0.2〜0.4mm程度のモノフィラメント)は、強度、硬さ、弾力性、織編のしやすさ等の点で最適な繊維である。尚、これとは別に、生体活性(例えば骨伝導能や骨誘導能)のある繊維を選ぶこともできる。

0036

有機繊維の組織構造体ついては、前記の特願平6−254515号(特許第3243679号)に詳細に開示されているので、これ以上の説明は省略する。なお、特願平6−254515号(特許第3243679号)の内容は本明細書に組み込まれる。

0037

組織構造体1の上表面と下表面に設置された凸子2は、図5に示すように人工椎間板10を上下の椎体20,20間に挿入したとき、椎体20,20のエンドプレート表面に開けられた穴20a,20aに嵌まり込んで、組織構造体1が位置ズレしたり椎間から脱転したりすることがないように固定するものである。人工椎間板10の信頼ある自立固定を行わせるには、組織構造体1の左右の曲げ運動や前後屈運動によって凸子2が椎体20のエンドプレート表面の穴20aから抜け出さないようにすること、及び、凸子2が脱離しないように組織構造体1の上下両表面に設置することが必要である。

0038

凸子2が椎体20のエンドプレート表面の穴20aから抜け出さないようにするためには、凸子2の高さを1.0〜3.0mmに設定することが重要である。凸子2の高さが1.0mm以上であれば、椎体20の表面の穴20aから抜け出す惧れがなく、一方、3.0mm以下であれば、深い穴20aをあけなくてもよいので負担が小さくなり、また、挿入治具のブレード3,3によって凸子2の先端が組織構造体1の上下両面と面一になるまで凸子2を組織構造体1の上下両面に押し込む作業がし易くなる。凸子2の更に好ましい高さは、1.5〜2.0mmである。

0039

凸子2の形状は、エンドプレートパンチャーで椎体20のエンドプレート表面に開けられる穴20aの種々の形状に見合って、効果的な形状が任意に選択できる。この実施形態における凸子2は、椎体20のエンドプレート表面の穴20aの形状が円錐形であるため、それに見合う截頭円錐形(頂部を水平に切断した円錐形)としている。この截頭円錐形の凸子2は、その高さが上記のように1.0〜3.0mm(好ましくは1.5〜2.0mm)に設定されており、底面の直径が1.5〜2.0mm、頂部切断面の直径が1.0〜1.5mmに設定されている。そして、この截頭円錐形の凸子2の中心線上には、後述する連結糸4を通す孔径が0.5mm程度の貫通孔2aが形成されている。

0040

この凸子2の組織構造体1との当接面である底面2bは、図3図5に示すように組織構造体1側に凸曲する凸曲面(凸球面)に形成されている。そのため、凸子2の底面2bが組織構造体1の上下両表面に少し沈んだ状態で凸子2が安定良く設置されており、図4に示すように挿入治具のブレード3,3で凸子2を圧迫して組織構造体1の上下両表面(上下の表層部1b,1bの表面)を凹ませながら効率よく押し込むことができ、凸子2が倒れる心配が少なく、ブレードを取り除くと、図5に示すように組織構造体1の表層部1b,1bの組織構造体を形成する糸の弾性復元力で凸子2が安定良く直立姿勢で突き出して椎体20,20のエンドプレート表面の穴20aに嵌まり込み、自立固定の機能を確実に発揮することができる。また、凸子2の底面2bは凹面(凹球面)または平坦面でもよく、その場合も同様に設置安定性が良く、自立固定の機能を確実に発揮することができる。

0041

凸子2の形状は上記の截頭円錐形に限定されるものではなく、椎体20のエンドプレート表面に開けられる穴20aの形状に見合って、例えば球形、半球形紡錘形截頭角錐形、円柱形、角柱形など種々の形状とすることが可能である。そして、これらの大きさは、上記截頭円錐形の凸子2の大きさを基準として多少変化させてもよい。

0042

この人工椎間板10は、凸子2を脱離しないように組織構造体1の上下両表面に設置するために、組織構造体1を上下方向に貫通する有機の連結糸4によって、組織構造体1の上下表両面の凸子2,2を少しテンションを加えた状態で連結している。即ち、有機の連結糸4を組織構造体1の構成糸の間を通して上下方向に貫通させ、この連結糸4の両端部を組織構造体1の上下両表面の凸子2,2の貫通孔2aに通して、貫通孔2aから突き出す連結糸4の両端に抜止め部4aを形成することにより、組織構造体1の上下両表面の凸子2,2を離脱しないように連結して上下両表面に設置している。そして、この有機の連結糸4による凸子2,2の連結を、上下から組織構造体1を少し圧迫して厚みを減少させた状態で行うことによって、圧迫解除により組織構造体1が元の厚みに復元したときに凸子2,2間にテンションが加わるようにし、凸子2,2を組織構造体1の上下両面に乗せた状態で少し沈み加減に倒れることなく直立姿勢でしっかりと設置されている。

0043

有機の連結糸4としては、前述した組織構造体1に用いる直径が0.2〜0.4mm程度の合成樹脂繊維や被覆繊維からなる構成糸と同じものが好ましく使用される。同一糸であることは、本発明の人工椎間板の承認を得る上で有利である。そして、この連結糸4の両端の抜止め部4aは、超音波加熱器、半田ゴテ火炎などで連結糸4の両端を加熱、溶融させて、凸子2の貫通孔2aの直径よりも大きい直径を有する塊を造る等の手段で形成することが好ましい。なお、この抜止め部4aは有機連結糸4の両端部に結び目を造る等の手段で形成してもよい。また、連結糸4は1本に限定されるものではなく、複数本の連結糸4で組織構造体1の上下両表面の凸子2,2を連結してもよい。

0044

このように、組織構造体1の上表面の凸子2と下表面の凸子2が連結糸4によってテンションが加えられた状態で連結されていると、組織構造体の変形に伴って互いに引っ張り合った状態で上下の凸子2が上下両表面により密着固定された状態になるので、凸子2が組織構造体1から離脱したり転倒したりすることが牽制されて、安定した設置状態を保つことができ、しかも、挿入治具のブレード3,3で凸子2,2を組織構造体1の上表面と下表面に押し込むときに連結糸4が弛んで妨げとならないため、小さい圧迫力で凸子2,2を容易に押し込んで沈ませることができる。そして、この連結糸4は、従来の人工椎間板に用いた剛性のあるロッド状の貫通ピンや貫入ピンのように左右の曲げ運動や前後屈運動のときに組織構造体1の構成糸を引っ張って拘束することがないので、組織構造体1本来の生体模倣的な変形を妨げたり、組織構造体1の厚みの中間部において内側に向けて座屈現象を起こしたりする欠点を解消する。

0045

凸子2の材質は、既に臨床上の実績を持つX線不透過性のバイオセラミックス、或いは、X線不透過性で且つ生体活性なバイオセラミックスのいずれかを選択できる。凸子2がX線不透過性のバイオセラミックスからなるものであると、該凸子2がレントゲンに映るので、レントゲン撮影によって、該凸子2が椎体20のエンドプレート表面の穴20aにうまく嵌まり込んでいるかどうかを観察でき、また、手術直後や長期経過後の組織構造体1の位置や椎体20との界面での結合状態なども観察できるので、臨床に真に有効で信頼性の高い人工椎間板が得られる。そして、凸子2がX線不透過性で且つ生体活性なバイオセラミックスからなるものであると、上記に加えて、生体活性なバイオセラミックスの骨伝導能により、椎体20から骨組織が凸子2に伝導形成されて椎体20と凸子2が結合される利点がある。

0046

また、後述するように、組織構造体1の上下両表面層に生体活性なバイオセラミックスの粉体を吹き付けるなどの処理をして組織構造体1に椎体との結合性を付与する場合は、凸子2として、X線不透過性で且つ生体活性な生体内吸収性バイオセラミックスの粉体と生体内分解吸収性ポリマーとの複合体からなるものも好ましく使用することができる。凸子2がこのような複合体からなるものであると、生体内分解吸収性ポリマーの加水分解の進行に伴って露出するバイオセラミックス粉体の骨伝導能により、椎体20から骨組織が凸子2に伝導形成され、最終的に凸子2のポリマーもバイオセラミックス粉体も吸収されて、凸子が骨組織と全置換して消失するため、椎体20のエンドプレート表面に開けられた穴20aが全置換した骨組織で埋められて修復される利点がある。このように凸子2が消失しても、組織構造体1は椎体20と結合しているので、椎間での位置ズレや脱転が妨げられる。

0047

凸子2の材料となるX線不透過性のバイオセラミックスとしては、金属と比べるとアーチファクト(Artifact)の少ないアルミナジルコニアイットリウム-ジルコニア(YTZ)のアロイなどが使用される。
そして、X線不透過性で且つ生体活性なバイオセラミックスとしては、焼成もしくは仮焼成のハイドロキシアパタイト、ジカルシウムフォスフェートトリカルシウムフォスフェートテトラカルシウムフォスフェート、オクタカルシウムフォスフェート、カルサイトセラバイタルジオプサイトなどが使用され、その中でも生体活性が大きく、優れた骨伝導性を有する焼成もしくは仮焼成のハイドロキシアパタイトやβ−トリカルシウムフォスフェートなどが好ましく使用される。

0048

また、凸子2の材料となる前記複合体としては、X線不透過性で且つ生体活性な生体内吸収性バイオセラミックスの粉体、例えば、非焼成のハイドロキシアパタイト、焼成もしくは仮焼成のジカルシウムフォスフェート、トリカルシウムフォスフェート、テトラカルシウムフォスフェート、オクタカルシウムフォスフェート、カルサイト、セラバイタル、ジオプサイトなどの粉体と、結晶性ポリL−乳酸その他の乳酸系の生体内分解吸収性ポリマーとの複合体が使用される。生体内分解吸収性ポリマーの分子量は特に限定されないが、粘度平均分子量が10万〜60万程度のものが適当であり、場合によっては、鍛造延伸によりポリマー分子結晶配向させて強度を高めたものを使用するのもよい。

0049

複合体における生体内吸収性バイオセラミックス粉体の含有量は、20〜50質量%の範囲内とするのが適当である。20質量%以上であれば、レントゲン撮影によって凸子2が明瞭に映るようになり、また、凸子2の分解吸収が速やかに行われるので骨組織との置換にそれほど長期間を要しない。一方、90質量%以下であれば、凸子2が脆弱化する心配もない。バイオセラミックス粉体の更に好ましい含有量は、25〜50質量%の範囲である。

0050

凸子2の設置個数は特に限定されないが、一般的に頸椎用の人工椎間板の場合は上下両表面に2つずつ、これより大きい胸椎や腰椎用の人工椎間板の場合は上下両表面に3つずつ設置するのが適当である。ただし、それらは上下の表面において同じ位置に設置されるのが普通である。組織構造体1の上下両表面に凸子2を2つずつ設置する場合は、図1図2に示すように凸子2を横並びに設置してもよいし、縦並びに設置してもよい。また、組織構造体1の上下両表面に凸子2を3つずつ設置する場合は、左右対称二等辺三角形の各頂点に設置するのがよい。

0051

組織構造体1の上下の表面層(上下の表面から0.5〜1.5mmの深さまでの部分)には、上述したX線不透過性で且つ生体活性なバイオセラミックス粉体を吹き付けるか、或いは、該バイオセラミックス粉体と生体内分解吸収性ポリマーとの複合体をコーティングするなどの処理を行うことによって、椎体20との結合性を付与することが望ましく、特に、凸子2が骨組織と全置換して消失するものである場合は、上記の処理を行うと自立固定性の信頼性が高まる。なお、図3図5における符号5は、上記のバイオセラミックス粉体の吹き付け層、又は、複合体のコーティング層を示している。

0052

上記のように組織構造体1の上下の表面層に生体活性なバイオセラミックスの粉体が吹き付けられていると、バイオセラミックス粉体の骨伝導能によって椎体20,20から骨組織が組織構造体1の上下両面の表層に伝導形成され、骨組織が組織構造体1の上下両面の表層の有機繊維と絡んで椎体20,20と組織構造体1が結合されるため、人工椎間板10の自立固定が完全となり、椎間から脱転する危惧がなくなる。

0053

また、組織構造体1の上下両表面層が、生体活性なバイオセラミックスの粉体と生体内分解吸収性ポリマーとの複合体でコーティングされていると、生体内分解吸収性ポリマーの加水分解の進行に伴って露出するバイオセラミックス粉体の骨伝導能によって、椎体20,20から骨組織が組織構造体1の上下両表面層に伝導(誘導)形成されて該ポリマーと置換し、骨組織が組織構造体1の上下両表面層の有機繊維に絡んで椎体20,20と組織構造体1が結合されるため、人工椎間板10の自立固定性の信頼性が高まって椎間から脱転する危惧が解消される。

0054

そして、バイオセラミックス粉体の吹き付け処理の場合も、複合体のコーティング処理の場合も、組織構造体1の上下両表面層に存在するX線不透過性のバイオセラミックス粉体によって、組織構造体1の上下両表面層がレントゲン撮影の際に映し出されるので、椎体20,20と組織構造体1の上下両表面との接触状態や結合状態をより良く観察することができる。

0055

上記の吹き付け処理に用いる生体活性なバイオセラミックスの粉体は、骨組織と完全に置換される前記の生体内吸収性バイオセラミックスの粉体が好適であり、吹き付けのし易さや生体への吸収性を考慮すると、30μm以下、好ましくは10μm以下、更に好ましくは0.1〜5μm(平均粒径:3〜5μm)程度の粒径を有するものが使用される。特に、0.1〜5μm程度の粒径を有するものは、生体への吸収性が良好であるので好ましく使用される。

0056

バイオセラミックス粉体の吹き付け処理は、例えば次の方法で行われる。70〜100℃に加熱した閉鎖された空間に、組織構造体1を設置すると共に、バイオセラミックス粉体よりも細かい網目をもつ金属ネットの上にバイオセラミックス粉体を載せて、組織構造体1の下側に設置する。そして、組織構造体1とバイオセラミックス粉体が加熱された時点で、100〜130℃に加熱された空気をドライヤーを用いて吹き付けると、バイオセラミックス粉体が組織構造体1の表層に突き刺さり、脱落しないように付着する。必要ならばこの操作を何度か繰り返し、付着するバイオセラミックス粉体の量を調節する。なお、表層に突き刺さらないで単に付着しているだけのバイオセラミックス粉体は、エタノールや水などを用いて洗い流すことで、表層に食い込んで容易に脱落しない状態の表面処理が完了する。

0057

吹き付け処理によって付着させるバイオセラミックス粉体の量は特に限定されないが、単位表面積(1cm2)当たり0.2〜3mgとすることが好ましい。0.2mg以上であれば、組織構造体1の上下両表面層への骨組織の伝導形成が適度に早くなって、上下の椎体20,20と早期に結合し易くなる。一方、3mg以下であれば、上下両表面層に突き刺さらないで単に付着しているだけのバイオセラミックス粉体が増えず脱落し難くなる。より好ましい範囲は0.5〜1mgである。

0058

前記のコーティング処理に用いる複合体としては、吹き付け処理に用いるのと同じ生体活性な生体内吸収性バイオセラミックスの粉体と、分解が比較的速く、弾力性があって脆くない、非晶質又は結晶と非晶の混在したポリ−D,L−乳酸、L−乳酸とD,L−乳酸の共重合体、乳酸とグリコール酸の共重合体、乳酸とp−ジオキサノンの共重合体、乳酸とエチレングリコールの共重合体、乳酸とカプロラクトンの共重合体などの生体内分解吸収性ポリマーとの複合体が好適である。上記ポリマーの分子量は特に限定されないが、コーティング膜の強度や分解吸収の速さなどを考慮すると、3万〜10万程度の粘度平均分子量を有するものが好ましく使用される。粘度平均分子量が3万以上であれば、椎体20の圧力や動きによってコーティング膜が組織構造体1の上下両表層の有機繊維から剥がれ難くなり、一方、10万以下であれば、分解吸収の期間が長くなり過ぎず組織構造体1の上下両表層への骨組織の伝導形成が適度に速くなり、椎体20,20との結合が速やかに行われ易いので好ましい。生体内分解吸収性ポリマーのより好ましい粘度平均分子量は、一般に3万〜5万を選択すればよい。

0059

コーティング用の複合体におけるバイオセラミックス粉体の含有量は、50〜95質量%とすることが好ましく、この範囲内で含有させると、バイオセラミックス粉体の骨伝導能によって、速やかに骨組織が組織構造体1の上下両表面層に伝導形成され、椎体20と早期に結合されて固定される。含有量が50質量%以上であれば、骨組織の伝導(誘導)形成が適度に速くなり、95質量%以下であれば、コーティング膜が脆弱化し難く過剰のバイオセラミックス粉体がこぼれ落ちる虞がないので好ましい。バイオセラミックス粉体の更に好ましい含有量は60〜80質量%である。

0060

なお、この吹き付け用やコーティング用のバイオセラミック粉体、または複合体には、骨誘導能をもつ各種の骨形成成長誘導因子であるサイトカイン薬剤(EP4)、或いは、BMP(Bone Morphogenetic Protein)、PRP(Platelet-Rich-Plasma)、BMC(Bone Mallow Cell)などを適量含有させてもよく、その場合は骨誘導が顕著になり、組織構造体1の上下両表面層における骨組織の成長,置換が著しく促進されて、組織構造体1と椎体20が早期に結合する利点がある。同様に、前述したバイオセラミックス粉体と生体内分解吸収性ポリマーとの複合体からなる凸子2に、上記のものを適量含有させてもよい。

0061

コーティング処理は、エタノール、ジクロロエタンメタン)、クロロホルムなどの揮発性溶媒に、上記の生体内分解吸収性ポリマーを溶解すると共に、バイオセラミックス粉体を上記含有量で均一に混合して懸濁液を調製し、この懸濁液を組織構造体1の上下両表面に塗布するか、或いは、この懸濁液を組織構造体1の上下両表面にスプレー(吹き付け)するか、或いは、この懸濁液に組織構造体1の上下両表面層を浸漬することによって行われる。その場合、組織構造体1の上下両表面にコロナ放電プラズマ処理過酸化水素処理などの酸化処理を予め行うことによって濡れ特性を改善し、骨細胞侵入、成長を効果的にするのもよい。

0062

組織構造体1の上下両表面層に複合体をコーティングする厚さ(複合体が上下両表面から浸透する厚さ)は上下の表面から0.5〜1.5mmの深さまでであることが好ましく、この程度の厚さであれば、繊維構造体1と椎体20,20が強固に結合し、しかも、骨組織が組織構造体1の内層部1aにまで侵入するのを防ぎ、繊維構造体1が生体の椎間板と同様の動き(Biomimetic)をして変形し、人工椎間板としての役目を十分に果たす。コーティングする厚さが0.5mm以上であれば、伝導(誘導)形成される骨組織の層が薄くなり過ぎず、上下両面の有機繊維と骨組織の絡み合いが充分となり、組織構造体1と椎体30との結合強度を確保できる。一方、コーティングする厚さが1.5mm以下であれば、骨組織が伝導形成されることのない生体不活性な組織構造体1本体の内層部の厚みが相対的に薄くなりすぎず、繊維構造体1がバイオミメティックに充分変形して人工椎間板としての機能を確保できる。複合体をコーティングする更に好ましい厚さは0.7〜1.0mmである。なお、複合体をコーティングする厚さの調整は、前述のコーティング用懸濁液の粘度を調整したり、塗布量等を調整したりすることによって容易に行うことができる。

0063

組織構造体1の上下両表面層に、上述した生体活性なバイオセラミックス粉体の吹き付け処理や複合体のコーティング処理を行い、且つ、凸子2として骨組織と全置換して消失するものを組織構造体1の両表面に設置して連結糸4で連結する場合は、連結糸4として、組織構造体1と上下の椎体20,20が結合した後に生体内で分解吸収されるポリ乳酸ポリグリコール酸、乳酸とグリコール酸との共重合体、ポリジオキサノン等の生体内分解吸収性ポリマーからなる連結糸を使用してもよい。かかる連結糸4が分解吸収され、凸子2が消失しても、組織構造体1は上下の椎体20,20と結合しているので、組織構造体1の位置ズレや脱転が生じる惧れはなく、組織構造体1が単独で椎間板の役目を果たせるからである。また、これにより連結糸4と凸子2が異物として生体内に残存しない利点がある。ポリジオキサノンの連結糸は伸縮性があるので、椎間の圧縮方向の伸縮を考慮する場合には有効である。

0064

次に、本実施形態の人工椎間板10を上下の椎体20,20間に挿入し、圧迫密着させて設置する操作方法について説明する。

0065

先ず、他の治療法では修復不可能なまでに痛んだ椎間板を掻爬して椎間を整備し、上下の椎体20,20のエンドプレートにパンチャーで穴20a,20aをあける。そして、組織構造体1の厚みが上下の椎体間距離(椎間を拡げる前の距離)よりも少し厚い人工椎間板、好ましくは片側で0.5mm程度、両側で1.0mm程度厚い人工椎間板10を選択し、図3に示すように、この人工椎間板10を挿入治具の厚さ0.5mm程度の二枚のステンレス製ブレード3,3で挟んで、図4に示すように上下から圧迫する。すると、組織構造体1の上下両表面に設置された凸子2,2は、図4に示すように、組織構造体1の上下両表面の糸と糸との隙間に貫入することなく、組織構造体1を形成している糸の上に乗って上下の柔軟な表層部1b,1bを凹ませながら直立姿勢で押し込まれ、連結糸4は凸子2,2が押し込まれた分だけ弛みを生じ、凸子2,2の先端と組織構造体1の上下両表面が面一になる深さまで凸子2,2が沈むことになる。その場合、凸子2,2は連結糸4で連結されて設置されているために倒れることなく表面に対して垂直に沈み込む。また、ブレ−ド3,3からの圧迫力が直接加わるのはスポット的に点在する凸子2,2に対してのみであり、組織構造体1の全表面に対するものではないので、0.5mm程度の薄いステンレス製ブレード3,3によってこの押し込み操作を容易に行うことができる。組織構造体1の全表面を押さえ込で圧縮する場合に極めて大きな圧縮力を要するのは立体3軸三次元状に織られたX,Y,Z軸の糸が圧縮変形時に互いに引っ張り合って変形の抑制力として働くためである。これは全面を圧縮するときに発現するが、スポット的に点在する凸子を押さえ込む場合には、全体の互いに牽制された糸の動きではなく、凸子2の下のスポット的な糸の変形で済むので、凸子2に小さな加重を与えるだけで変形して容易に表面から内側に沈み込む事ができるのである。

0066

例えば、椎体20の表面地形に沿って密着するように配慮して、整復後の椎間の真の間隔よりも片側で各々0.5mm、両側で1.0mm厚い組織構造体1を0.5mm厚のブレード3,3で上下から挟み込んで椎間に挿入する場合には、理論的には真の椎間よりも2.0mmだけ椎間を広げる必要がある。実際には、挿入しやすいようにこれよりも0.5〜1.0mm程度余裕をもって拡げて操作すればし易いので、大きく見ても2.5〜3.0mmの拡張が必要であるが、この程度の小さな拡張であれば、隣接椎間板に異常な圧迫が伝わる事はないので、隣接椎間板が術中に壊死に至る事はない。このように本発明の人工椎間板を用いると、椎間拡張を小さくすることができるので挿入時の手術操作が低侵襲に行われ、隣接椎間板が圧迫されて壊死、損傷する危険性がなくなり、また、椎間拡張のために特別な拡張器具や方法を採用する必要もなくなる。一方、先述の如く組織構造体1の上下両表面の全面を押さえ込むには経験的に3.5mm以上のブレードの厚みが必要であるから、挿入時の両側で1.0mmの間隙をみても8.0mm以上の椎間拡張が要るので、術中に隣接椎間板が壊死、損傷する危険性が極めて高くなる。

0067

上記のように人工椎間板10を挿入治具の二枚のブレード3,3で圧迫して少し拡張された椎間に挿入し、人工椎間板10の組織構造体1を挿入治具のストッパー後戻りしないように押したまま、二枚のブレード3,3を椎間から引き抜くと、組織構造体1の上下の表層部1b,1bが弾性復元力で元の状態に膨張、復元し、凸子2,2は直立姿勢まま表層部1b,1bの凹みから押し出されて組織構造体1の上下両表面から突き出した状態に戻り、凸子2,2の先端部が上下の椎体20,20のエンドプレート表面の穴20a,20aに嵌まり込む。そして、椎体より上部の頭部等の荷重を加えて椎間を圧迫し元の椎体間距離に戻すと、図5に示すように、組織構造体1の上下の表層部1b,1bは椎体20,20によってそれぞれ0.5mm程度ずつ圧縮されて椎体20,20のエンドプレートの表面地形に沿って圧迫密着すると共に、上下両表面の凸子2,2はエンドプレート表面の穴20a,20aに完全に嵌まり込み、これによって人工椎間板10は椎間に自立固定され、位置ズレや脱転を生じる心配が解消される。なお、ブレード3,3の引き抜きを容易にするために、ブレード3,3の表面をフッ素処理して滑り易くしておくことが望ましい。

0068

このように本発明の人工椎間板を椎間に挿入、設置すると、組織構造体が生体の椎間板に酷似したバイオミメティックな動きをして、椎間板の役目を十分に果たすことができる。つまり、この人工椎間板は、組織構造体1の上下両表面の凸子2,2を、組織構造体を上下方向に貫通する連結糸4で連結した構造であり、左右の曲げ運動や前後屈運動のときに該連結糸4が組織構造体1の構成糸を引っ張って拘束することがないので、組織構造体1本来の生体模倣的な変形を妨げたり、組織構造体1の厚みの中間部において内側に向けて座屈現象を起こしたりする惧を解消することができる。

0069

また、この人工椎間板10は、凸子2がX線不透過性のバイオセラミックスなどのX線不透過性材料からなるものであり、組織構造体1の上下両表面層にも、X線不透過性の生体活性なバイオセラミックス粉体を吹き付けたり、該粉体と生体内分解吸収性ポリマーとの複合体をコーティングしたりしているため、この人工椎間板10が挿入、設置された椎間をレントゲン撮影して凸子2,2や組織構造体1の上下両表面層を側面から映し出すと、凸子2,2が椎体20,20のエンドプレート表面の穴20a,20aにうまく嵌まり込んでいるかどうか、或いは、組織構造体1の位置や組織構造体1の上下両表面と椎体20,20との接触状態、結合状態などを観察することができ、しかも、組織構造体1の上下両表面と上下の椎体20,20が既述したように経時的に結合状態を維持して、完全に自立固定されるので、臨床に真に有効であり、高い信頼性を獲得する。

0070

以上の実施形態の人工椎間板10では、組織構造体1の上下両表面の凸子2,2を連結糸4にて少しテンションを加えて連結することにより離脱しないように設置しているが、他の手段、例えば凸子2を好適な糸で組織構造体1の上下両面に直接縫い付けるなどの手段で、組織構造体1の上下両表面に凸子2,2が離脱しないように設置してもよい。

0071

上記の人工椎間板10は、上下の椎体20,20のエンドプレート表面に開けた穴20a,20aに凸子2,2を嵌め込んで組織構造体1を自立固定させるタイプのものであるが、ラスプ(Rasp)で粗面化した椎体20,20のエンドプレート表面に凸子2,2を引っ掛けて組織構造体1を自立固定させるタイプの人工椎間板の場合は、組織構造体1の上下両表面に比較的小さい凸子2,2を少なくとも5個づつ設置し、且つ、凸子2の高さを0.3〜1.0mm、好ましくは0.5mm程度とするのがよい。凸子の高さが0.3mm以上であれば、粗面化された椎体20,20のエンドプレート表面に凸子2,2が確実に引っ掛かって組織構造体1が確実に自立固定され、一方、1.0mm以下であれ、エンドプレート表面と組織構造体1の上下両表面との圧迫密着が損なわれる虞れがなくなる利点がある。また、組織構造体1の上下両表面にそれぞれ設置される凸子2,2の個数が少なくとも5個づつあれば、凸子2,2が椎体20,20のエンドプレート表面に引っ掛かって滑り抵抗が大きくなり、人工椎間板の脱転を確実に阻止することが可能となる。組織構造体1の上下両表面のそれぞれに設置される凸子2,2の個数の上限は、凸子2の大きさや組織構造体1の大きさによっても異なるが、30個程度までとするのが適当である。なお、この場合の凸子2の先端面及び底面の直径は、貫通孔2aの直径と連結糸4の太さを考慮して0.6〜1.0mmの範囲内に設定し、中空の貫通孔2aの直径は連結糸4の太さに応じて0.3〜0.5mmの範囲内に設定するのが好ましい。

0072

次に、図6を参照して、本発明の更に他の実施形態に係る自立型生体模倣性人工椎間板を説明する。

0073

この人工椎間板11は椎間板の半分を置換する部分置換型の人工椎間板であって、前述した全置換型の人工椎間板10を左右に二分割した形状を有している。この人工椎間板11の構成は前述の人工椎間板10と実質的に同一であって、柔軟な上下の表層部を形成した有機繊維の組織構造体1の上下両表面に、凸子2を2つずつ縦並びに設置し、組織構造体1を上下に貫通する連結糸4で上下両面の凸子2,2をテンションが加えられた状態で連結すると共に、組織構造体1の上下両表面層に生体活性なバイオセラミックスの粉体を吹き付けるか、又は、該セラミックスの粉体と生体内分解吸収性ポリマーとの複合体をコーティングして、椎体との結合性を付与したものである。

0074

このような部分置換型の人工椎間板11は、椎体間の片側に背後から挿入できるので、全置換型の人工椎間板10のように椎体間に前方から挿入するものに比べると、簡単に手術を行うことができる。そして、この人工椎間板11も、前記の人工椎間板10と同様の優れた作用効果を奏する。

0075

次に、図7図8を参照して、本発明の更に他の実施形態に係る自立型生体模倣性人工椎間板を説明する。

0076

この部分置換型の人工椎間板12は円弧状に構成されたものであって、その一端(先端)が丸く形成されており、椎体間に左右一対挿入されるものである。この人工椎間板12の標準的な大きさは、例えば成人の腰椎用の部分置換型の人工椎間板として使用する場合には、横幅寸法が9mm程度、厚み寸法が11mm程度、円弧状の中心線の曲率半径が22〜23mm程度、円弧状の中心線に沿った長さ寸法が30mm程度である。

0077

この人工椎間板12は、前述した全置換型の人工椎間板10とは形状が異なるけれども、その構造は実質的に同様である。即ち、柔軟な上下の表層部を形成した有機繊維の組織構造体1の上下両表面に、凸子2を2つずつ設置し、組織構造体1を上下に貫通する連結糸4で上下両面の凸子2,2をテンションが加えられた状態で連結すると共に、組織構造体1の上下両表面層に生体活性なバイオセラミックスの粉体を吹き付けるか、又は、該セラミックスの粉体と生体内分解吸収性ポリマーとの複合体をコーティングして、椎体との結合性を付与したものである。

0078

このような部分置換型の人工椎間板12は、椎体の背後から図8に示すように椎体20間に左右一対挿入されるので、全置換型の人工椎間板10に比べると手術が簡単であり、しかも、人工椎間板12の先端が丸く形成されているので、先端が椎体20に引掛かることなくスムーズに挿入することができる。この挿入固定は現在臨床的に頻繁に使われている脊椎癒合用のケ−ジ(Spinal Fusion Cage)の操作と同様に行うことが出来る。そして、この人工椎間板12も、前記の人工椎間板10と同様の優れた作用効果を奏する。

0079

以上、本発明の自立型生体模倣性人工椎間板の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、特許請求の範囲の記載の本発明の技術的思想を利用した種々の変形例や改良例が存在し、それらが本発明に含まれることは当業者に明白である。例えば、凸子の数や形状は、例えば組織構造体の構成、凸子の寸法や粗面化の程度等に応じて、本発明の効果が得られる範囲で適宜設計変更が可能である。

0080

本発明の自立型生体模倣性人工椎間板は、椎間拡張を極力少なくし椎体をできる限り傷つけない低侵襲の条件を満たして椎間へ容易に挿入でき、組織構造体の上下両表面に設置された凸子が上下の椎体のエンドプレート表面に形成された穴に嵌まり込んで、脱転や位置ずれが生じないように確実に自立固定され、長期に亘って生体模倣的な組織構造体が椎体の動きに追従して生体模倣的に変形して椎間板の役目を果たす信頼性の高いものであり、レントゲン撮影によって凸子の嵌合状態や椎体表面との接触状態、結合状態などを観察できる、臨床に真に有効なものである。

0081

1組織構造体
1a 組織構造体の内層部
1b 組織構造体の上下の表層部
2凸子
2a 凸子の貫通孔
2b 凸子の組織構造体との当接面
4連結糸
5生体活性なバイオセラミックス粉体の吹き付け層、又は、
該粉体と生体内分解吸収性ポリマーとの複合体のコーティング層
10,11,12人工椎間板
20椎体
20a 椎体のエンドプレート表面に形成された穴

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • テルモ株式会社の「 ステント」が 公開されました。( 2019/09/12)

    【課題】ガルバニック腐食によって生じる弊害を緩和または防止でき、かつ、異物による生体への負担を軽減できるステントを提供する。【解決手段】ステント100は、金属によって形成され放射線不透過性を有するマー... 詳細

  • バルブメディカルリミテッドの「 経皮弁を密閉するシステムおよび方法」が 公開されました。( 2019/09/12)

    【課題】固定具と生来の組織との間の密閉を改良する経皮弁装置およびシステムを提供する。【解決手段】固定具は外表面にヒドロゲル等の空間占拠材料を含み、空間占拠材料は、水性の環境に晒されると膨張し、固定具と... 詳細

  • マッケカーディオバスキュラーエルエルシーの「 織られたプロテーゼ及びその製造方法」が 公開されました。( 2019/09/12)

    【課題】埋入可能な織られたプロテーゼ及びその製造方法に関し、その長さに沿って直径が変化する管状のグラフトであるプロテーゼを提供する。【解決手段】例えば、大動脈基部又は上行大動脈の置換として構成される本... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ