図面 (/)

技術 ポリグリセリルエーテル誘導体の製造方法

出願人 花王株式会社
発明者 齋藤明良
出願日 2006年12月7日 (14年5ヶ月経過) 出願番号 2007-549174
公開日 2009年5月21日 (11年11ヶ月経過) 公開番号 WO2007-066723
状態 特許登録済
技術分野 触媒 洗浄性組成物 有機低分子化合物及びその製造 触媒を使用する低分子有機合成反応 ポリエーテル
主要キーワード ポリグリセリンエーテル 一次化合物 デシレングリコール 希土類系触媒 ポリグリセリル基 ドデシロキシ基 未反応グリセリン ポリグリセリルエーテル
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2009年5月21日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (0)

図面はありません

課題・解決手段

本発明は、アルコール類グリシドールとを反応させて、ポリグリセリルエーテル誘導体を製造するに際し、触媒として希土類元素の単純金属塩を用いるポリグリセリルエーテル誘導体の製造方法であり、アルコール類とグリシドールとの高選択的付加反応を実現し、かつアルコール類の転化率を向上させることができる。

概要

背景

ポリグリセリルエーテル誘導体は、例えば溶剤乳化剤分散剤洗浄剤増泡剤などとして有用な化合物である。
このポリグリセリルエーテル誘導体の製造方法としては、アルコール類グリシドールを反応させる方法が知られている。この方法においては、従来、アルコール類に主にアルカリを作用させた後、グリシドールを滴下して反応させていた。
しかしながら、アルカリを用いる方法では、反応に用いたアルコール類の転化率が低く、未反応のアルコール類を除去するための精製負荷が高いという問題点があった。
一方、ランタントリフラートイッテルビウムトリフラートなどの希土類元素の単純金属塩を触媒とする反応として、例えば芳香族ケトンの製造方法(特許文献1参照)や、糖エーテルの製造方法(特許文献2参照)などが知られている。
しかしながら、希土類元素の単純金属塩を触媒とし、アルコール類とグリシドールとの反応によりポリグリセリルエーテル誘導体を製造する方法については知られていない。

特開平10−298131号公報
特開平9−157287号公報

概要

本発明は、アルコール類とグリシドールとを反応させて、ポリグリセリルエーテル誘導体を製造するに際し、触媒として希土類元素の単純金属塩を用いるポリグリセリルエーテル誘導体の製造方法であり、アルコール類とグリシドールとの高選択的付加反応を実現し、かつアルコール類の転化率を向上させることができる。

目的

効果

実績

技術文献被引用数
3件
牽制数
1件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

アルコール類グリシドールとを反応させて、ポリグリセリルエーテル誘導体を製造するに際し、触媒として希土類元素の単純金属塩を用いるポリグリセリルエーテル誘導体の製造方法。

請求項2

アルコール類が、一般式(1)R1−(OA)n−OH(1)(式中、R1は炭素数1〜36の炭化水素基、Aは炭素数2〜4のアルカンジイル基、nは平均値で0〜100の数を示す。)で表される化合物である、請求項1に記載のポリグリセリルエーテル誘導体の製造方法。

請求項3

アルコール類がヒドロキシル基2〜6個を有するポリオールである、請求項1に記載のポリグリセリルエーテル誘導体の製造方法。

請求項4

希土類元素がランタン及び/又はサマリウムである、請求項1〜3のいずれかに記載のポリグリセリルエーテル誘導体の製造方法。

請求項5

希土類元素の単純金属塩が無機酸塩及び/又は有機酸塩である、請求項1〜4のいずれかに記載のポリグリセリルエーテル誘導体の製造方法。

請求項6

希土類元素の無機酸塩が過塩素酸塩である、請求項5に記載のポリグリセリルエーテル誘導体の製造方法。

請求項7

希土類元素の有機酸塩がスルホン酸塩である、請求項5に記載のポリグリセリルエーテル誘導体の製造方法。

請求項8

希土類元素の単純金属塩の使用量が、アルコール類に対して0.001〜0.2モル倍である、請求項1〜7のいずれかに記載のポリグリセリルエーテル誘導体の製造方法。

請求項9

触媒として希土類元素の単純金属塩の存在下、アルコール類とグリシドールとを反応させて得られるポリグリセリルエーテル誘導体。

技術分野

0001

本発明は、ポリグリセリルエーテル誘導体の製造方法に関する。

背景技術

0002

ポリグリセリルエーテル誘導体は、例えば溶剤乳化剤分散剤洗浄剤増泡剤などとして有用な化合物である。
このポリグリセリルエーテル誘導体の製造方法としては、アルコール類グリシドールを反応させる方法が知られている。この方法においては、従来、アルコール類に主にアルカリを作用させた後、グリシドールを滴下して反応させていた。
しかしながら、アルカリを用いる方法では、反応に用いたアルコール類の転化率が低く、未反応のアルコール類を除去するための精製負荷が高いという問題点があった。
一方、ランタントリフラートイッテルビウムトリフラートなどの希土類元素の単純金属塩を触媒とする反応として、例えば芳香族ケトンの製造方法(特許文献1参照)や、糖エーテルの製造方法(特許文献2参照)などが知られている。
しかしながら、希土類元素の単純金属塩を触媒とし、アルコール類とグリシドールとの反応によりポリグリセリルエーテル誘導体を製造する方法については知られていない。

0003

特開平10−298131号公報
特開平9−157287号公報

0004

本発明は、アルコール類とグリシドールとを反応させて、ポリグリセリルエーテル誘導体を製造するに際し、触媒として希土類元素の単純金属塩を用いるポリグリセリルエーテル誘導体の製造方法に関する。

発明を実施するための最良の形態

0005

本発明は、アルコール類とグリシドールとの付加反応によるポリグリセリルエーテル誘導体の製造において、原料高選択的付加反応を実現し、かつアルコール類の転化率を向上させ得るポリグリセリルエーテル誘導体の製造方法に関する。
本発明者らは、希土類元素の単純金属塩を触媒に用いることにより、アルコール類とグリシドールとの高選択的な反応を実現でき、かつ該アルコール類の転化率を向上させ得ることを見出した。ここで、高選択的付加反応とは、本反応において、グリシドール同士の重合によるポリグリシドールの生成が抑制され、グリシドールがアルコール類と選択的に反応してポリグリセリルエーテル誘導体が優先的に得られる反応をいう。

0006

本発明のポリグリセリルエーテル誘導体の製造方法においては、希土類元素の単純金属塩からなる触媒の存在下に、アルコール類とグリシドールとを反応させて、ポリグリセリルエーテル誘導体を製造する。
本発明において、原料の一つであるアルコール類としては、分子内にヒドロキシル基1個を有するモノアルコール(a)、及びヒドロキシル基2〜6個を有するポリオール(b)を用いることができる。
前記(a)のモノアルコールとしては、例えば一般式(1)
R1−(OA)n−OH (1)
(式中、R1は炭素数1〜36の炭化水素基、Aは炭素数2〜4のアルカンジイル基、nは平均値で0〜100の数を示す。)
で表される化合物を用いることができる。
一般式(1)において、R1は、好ましくは炭素数1〜36の飽和又は不飽和の直鎖、分岐鎖又は環状の炭化水素基である。このような炭化水素基としては、炭素数が1〜36、好ましくは4〜24、より好ましくは8〜18の直鎖、分岐鎖又は環状のアルキル基;炭素数2〜36、好ましくは4〜24、より好ましくは8〜18の直鎖、分岐鎖又は環状のアルケニル基などを挙げることができる。

0007

前記の直鎖、分岐鎖又は環状のアルキル基の例としては、メチル基エチル基、n−プロピル基イソプロピル基、各種ブチル基、各種ペンチル基、各種ヘキシル基、各種オクチル基、各種デシル基、各種ドデシル基、各種テトラデシル基、各種ヘキサデシル基、各種オクタデシル基、各種イコシル基、各種テトラコシル基、各種トリアコンチル基シクロペンチル基、シクロヘキシル基シクロオクチル基などが挙げられる。
また、前記の直鎖、分岐鎖又は環状のアルケニル基の例としては、プロペニル基アリル基、1−ブテニル基イソブテニル基、各種ヘキセニル基、各種オクテニル基、各種デセニル基、各種ドデセニル基オレイル基、シクロペンテニル基、シクロヘキセニル基、シクロオクテニル基などが挙げられる。

0008

一般式(1)において、Aは、好ましくは炭素数2〜4の直鎖又は分岐鎖のアルカンジイル基である。このアルカンジイル基の例としては、エチレン基トリメチレン基プロパン−1,2−ジイル基テトラメチレン基、1−メチルトリメチレン基、2−メチルトリメチレン基などが挙げられる。これらの中でエチレン基、トリメチレン基、プロパン−1,2−ジイル基が好ましい。
また、nは、好ましくは0〜20、より好ましくは0〜6の数である。(OA)が複数ある場合、複数の(OA)は同一でも異なっていてもよい。

0009

一般式(1)で表されるモノアルコール(a)の具体例としては、メチルアルコールエチルアルコールプロピルアルコールイソプロピルアルコールブチルアルコール、sec−ブチルアルコール、ペンチルアルコールイソペンチルアルコールヘキシルアルコールシクロヘキシルアルコール2−エチルヘキシルアルコールオクチルアルコールデシルアルコールラウリルアルコールミリスチルアルコールパルミチルアルコールステアリルアルコールイソステアリルアルコールオレイルアルコールエチレングリコールモノメチルエーテルエチレングリコールモノエチルエーテルエチレングリコールモノプロピルエーテルエチレングリコールモノブチルエーテルプロピレングリコールモノメチルエーテルプロピレングリコールモノエチルエーテルプロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテルポリエチレングリコールモノメチルエーテルポリエチレングリコールモノエチルエーテル、ポリエチレングリコールモノプロピルエーテル、ポリエチレングリコールモノブチルエーテルポリプロピレングリコールモノメチルエーテルポリプロピレングリコールモノエチルエーテル、ポリプロピレングリコールモノプロピルエーテル、ポリプロピレングリコールモノブチルエーテルなどが挙げられる。
これらのモノアルコール(a)は、一種単独で又は二種以上を任意に混合して用いることができる。これらの中では、得られるポリグリセリルエーテル誘導体の利用可能性の観点から、ラウリルアルコール、2−エチルヘキシルアルコール、イソステアリルアルコールが特に好ましい。

0010

一方、前記のヒドロキシル基2〜6個を有するポリオール(b)としては、例えばエチレングリコールジエチレングリコール、ポリエチレングリコール、プロピレングリコールジプロピレングリコール、ポリプロピレングリコール、1,4−ブチレングリコール、1,6−ヘキシレングリコール、1,8−オクチレングリコール、1,10−デシレングリコールネオペンチルグリコールトリメチロールエタントリメチロールプロパングリセリンジグリセリンペンタエリスリトールソルビトールなどが挙げられる。これらのポリオール(b)は、一種単独で又は二種以上を任意に混合して用いることができる。
これらの中では、得られるポリグリセリルエーテル誘導体の利用可能性の観点から、トリメチロールプロパン、グリセリンが好ましく、特にグリセリンが好ましい。

0011

本発明においては、触媒として、希土類元素の単純金属塩(以下、「希土類系触媒」ということがある)が用いられる。ここで、単純金属塩とは複塩錯塩を除く一次化合物金属塩をいう。
希土類元素の単純金属塩としては、通常、無機酸塩及び/又は有機酸塩が用いられる。高選択的付加反応の実現及びアルコール類の転化率向上の観点から、無機酸塩としては過塩素酸塩が好適であり、有機酸塩としてはスルホン酸塩が好適である。
この単純金属塩を構成する希土類元素としては、スカンジウムイットリウムや、ランタン、セリウムプラセオジムネオジムサマリウムユウロピウムガドリニウムテルビウムジスプロシウムホルミウムエルビウムツリウム、イッテルビウム、ルテチウム等のランタノイドが好ましく、スカンジウム、ランタン、サマリウム、ユウロピウム、エルビウム、ルテチウム、イッテルビウムがより好ましく、スカンジウム、ランタン、サマリウム、イッテルビウムが更に好ましく、ランタン及び/又はサマリウムが特に好ましい。

0012

希土類元素のスルホン酸塩としては、例えば一般式(2)
M(OSO2R2)X (2)
(式中、Mは希土類元素、R2は、一部もしくは全部の水素原子フッ素原子置換されていてもよい炭化水素基、アルコキシル基、又は置換基を有していてもよいアリール基を示し、xはMの原子価に等しい整数値を示す。)
で表される化合物を挙げることができる。

0013

一般式(2)において、R2である炭化水素基、アルコキシル基としては、炭素数1〜12のものが好ましい。その具体例としては、メチル基、エチル基、ブチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、メトキシ基エトキシ基ブトキシ基ヘキシロキシ基、オクチロキシ基、デシロキシ基、ドデシロキシ基トリフルオロメチル基ペンタフルオロエチル基、ノナフルオロブチル基、トリフルオロメトキシ基ペンタフルオロエトキシ基、ノナフルオロブトキシ基などが挙げられる。これらの中では、トリフルオロメチル基が特に好ましい。
また、R2である置換基を有していてもよいアリール基としては、全炭素数が6〜25のものが好ましい。その具体例としては、フェニル基トリル基キシリル基エチルフェニル基、ブチルフェニル基オクチルフェニル基、ドデシルフェニル基、ナフチル基、メチルナフチル基、ジメチルナフチル基などが挙げられる。これらの中では、ドデシルフェニル基、トリル基が特に好ましい。

0014

一般式(2)で表される希土類元素のスルホン酸塩としては、例えばスカンジウム、ランタン、サマリウム、イッテルビウムのトリフラート(トリフルオロメタンスルホン酸塩)及びドデシルベンゼンスルホネートトルエンスルホネートが好ましく、ランタン、サマリウムのトリフラート及びドデシルベンゼンスルホネート、トルエンスルホネートがより好ましい。
本発明においては、触媒として、前記希土類元素の単純金属塩を一種単独で又は二種以上を組み合わせて用いることができる。

0015

本発明においては、希土類系触媒の存在下に、アルコール類とグリシドールとを反応させることにより、ポリグリセリルエーテル誘導体が得られるが、アルコール類が一般式(1)で表されるモノアルコールである場合、下記の反応式で示されるように、式(3)で表されるグリシドールとの反応によって、一般式(4)で表されるポリグリセリルエーテル誘導体が得られる。

0016

0017

(式中、mは平均縮合度を示し、R1、R2、A、M、n及びxは前記と同じである。)
一般式(4)において、(C3H6O2)はポリグリセリル単位を示す。
ここで、ポリグリセリル単位の取りうる構造としては、下記式からなる群から選ばれる1種以上の構造が挙げられる。

0018

0019

上記の構造は、その一部に、下記式から選ばれる1種又は2種の構造を有することができる。

0020

(式中、p、q、r、sは1以上の整数を示し、(C3H6O2)は前記と同じである。)

0021

この反応においては、一般式(1)で表されるモノアルコール(a)と式(3)で表されるグリシドールの使用割合は、得られる一般式(4)のポリグリセリルエーテル誘導体における所望の平均縮合度mの値によって、適宜選定される。ここで、平均縮合度mとは、反応に使用されたグリシドールのモル数からグリシドール同士の重合にて消費されたモル数を引いた値を反応に使用されたアルコール類のモル数で除した値として定義する。この平均縮合度mは、通常1〜20、好ましくは1〜12であるので、式(3)で表されるグリシドールは、一般式(1)で表されるモノアルコール(a)1モルに対して、通常0.1〜40モル、好ましくは0.5〜24モル、より好ましくは1〜20モル、特に好ましくは1〜12モルの割合で用いられる。
また、アルコール類が、ヒドロキシル基2〜6個を有するポリオール(b)である場合、該ポリオール(b)とグリシドールの使用割合は、ポリオール(b)における複数のヒドロキシル基に付加されるポリグリセリル基の所望の割合、及び該ポリグリセリル基の所望の平均縮合度によって、適宜選定される。
なお、ポリオールとしてグリセリンを用いる場合は、下記の反応式で示されるように、一般式(5)で表されるポリグリセリンが得られる。

0022

(式中、kは平均縮合度を示し、M、R2、x及び(C3H6O2)は前記と同じである。)

0023

この反応においては、式(6)のグリセリンと式(3)のグリシドールの使用割合は、得られる一般式(5)のポリグリセリンにおける所望平均縮合度kの値によって適宜選定される。この平均縮合度kは、通常1〜20、好ましくは、2〜10であるので、式(3)のグリシドールは、式(6)のグリセリン1モルに対して、通常1〜20モル、好ましくは2〜10モルの割合で用いられる。

0024

本発明で用いられる希土類系触媒の量は、反応速度及び経済性バランスなどの面から、アルコール類に対して、通常0.001〜0.2モル倍、好ましくは0.002〜0.1モル倍、より好ましくは0.005〜0.05モル倍である。
反応は、無溶媒で行うこともできるが、原料の混合を助ける目的で有機溶媒を適宜量使用することもできる。かかる有機溶媒としては、ヘキサンジエチルエーテルテトラヒドロフランジクロロメタンアセトニトリルニトロメタンベンゼントルエンキシレンクロロホルムシクロヘキサンジメチルスルホキシドジメチルホルムアミドジメチルアセトアミドなどが挙げられる。また、反応は空気中で行うこともできるが、副生成物の生成を抑える目的で、不活性ガス中、例えば窒素雰囲気下又はアルゴン雰囲気下で行うことが好ましい。

0025

反応温度は、使用するアルコール類の種類や、触媒の種類と量などにより左右されるが、実用的な反応時間、収率製品品質などの面から、通常0〜200℃程度、好ましくは30〜170℃、より好ましくは50〜150℃、特に好ましくは80〜130℃である。また、反応時間は、反応条件によって左右され、一概に定めることはできないが、通常30分〜100時間程度、好ましくは1〜50時間、特に好ましくは1〜30時間である。
反応終了後反応液を必要に応じ洗浄処理したのち、ろ過、蒸留、抽出などの方法により処理し、目的のポリグリセリルエーテル誘導体を得ることができる。また必要に応じて、得られたポリグリセリルエーテル誘導体をシリカゲルカラムクロマトグラフィー、蒸留、再結晶等の常法に従って精製することができる。ここで、使用済みの希土類系触媒は回収して再使用することができるが、そのためには、ポリグリセリルエーテル誘導体の取得は抽出によるのが好ましい。すなわち、ポリグリセリルエーテル誘導体の抽出後、希土類系触媒を含有する水溶液を回収し、水を留去することにより希土類系触媒を単離することができる。更に必要に応じて、単離した希土類系触媒を精製後、本発明方法に再使用することができる。

0026

実施例1
ラウリルアルコール95.1g(0.50mol)、ランタントリフラート2.94g(0.0050mol)を300mL四つ口フラスコに入れ、窒素気流下、攪拌しながら90℃まで昇温した。次に、その温度を保持しながらグリシドール111.12g(1.5mol)を24時間で滴下し、そのまま2時間攪拌を続け、反応生成物209.1gを得た。得られた反応生成物をガスクロマトグラフィーによって、分析した結果、ラウリルポリグリセリンエーテルの存在を確認した(グリシドール転化率:99.9%以上。以下の実施例、比較例においても同様にして確認した。)。反応終了後、反応液中の未反応ラウリルアルコールの残量をガスクロマトグラフィーにより求めたところ、5.9質量%(アルコール転化率:87%)であり、ラウリルポリグリセリルエーテルの平均縮合度は3.3であった。なお反応液中の加えたグリシドールの残量は0.1質量%未満であり、生成物中に含まれるポリグリセリンの含有量は2.2質量%であった。

0027

比較例1
ラウリルアルコール57.0g(0.30mol)、カリウムメチラート4.42g(0.060mol)を300mL四つ口フラスコに入れ、25kPaの減圧条件下、攪拌しながら95℃に昇温しメタノールを留去した。次いで、グリシドール66.7g(0.90mol)を窒素気流下、95℃にて24時間で滴下し、そのまま2時間攪拌を続けた。反応終了後、硫酸3.10g(0.030mol)と水10gを加え、触媒を中和処理し、反応生成物126.6g(グリシドール転化率:99.9%以上)を得た。反応終了後、反応液中の未反応ラウリルアルコールの残量をガスクロマトグラフィーにより求めたところ、20.2質量%(アルコール転化率:55%)であり、ラウリルポリグリセリルエーテルの平均縮合度は4.4であった。なお反応液中の加えたグリシドールの残量は0.1質量%未満であり、生成物中に含まれるポリグリセリンの含有量は10質量%であった。

0028

実施例2
グリセリン46.1g(0.50mol)、ランタントリフラート2.94g(0.0050mol)を300mL四つ口フラスコに入れ、窒素気流下、120℃まで昇温した。次に、その温度を保持しながらグリシドール111.18g(1.5mol)を10時間で滴下し、そのまま2時間攪拌を続け、反応生成物160.2g(グリシドール転化率:99.9%以上)を得た。反応終了後、反応液中の未反応グリセリンの残量をガスクロマトグラフィーにより求めたところ、3.5質量%(グリセリン転化率:88%)であった。なお反応液中の加えたグリシドールの残量は0.1質量%未満であった。

0029

実施例3
ラウリルアルコール95.1g(0.50mol)、ランタントリス(ドデシルベンゼンスルホネート)5.58g(0.0050mol)を300mL四つ口フラスコに入れ、窒素気流下、攪拌しながら120℃まで昇温した。次に、その温度を保持しながらグリシドール111.12g(1.50mol)を10時間かけて滴下し、そのまま2時間攪拌を続け、反応生成物211.1g(グリシドール転化率:99.9%以上)を得た。反応終了後、反応液中の未反応アルコールの残量をガスクロマトグラフィーにより求めたところ、4.1質量%(アルコール転化率:91%)であり、ラウリルポリグリセリルエーテルの平均縮合度は3.1であった。なお、反応液中の加えたグリシドールの残量は0.1質量%未満であり、生成物中に含まれるポリグリセリンの含有率は3.9質量%であった。

0030

実施例4
ラウリルアルコール57.0g(0.30mol)、サマリウムトリフラート1.83g(0.0030mol)を300mL四つ口フラスコに入れ、窒素気流下、攪拌しながら120℃まで昇温した。次に、その温度を保持しながらグリシドール66.67g(0.90mol)を10時間で滴下し、そのまま2時間攪拌を続け、反応生成物123.5g(グリシドール転化率:99.9%以上)を得た。反応終了後、反応液中の未反応ラウリルアルコールの残量をガスクロマトグラフィーにより求めたところ、8.8質量%(アルコール転化率:81%)であり、ラウリルポリグリセリルエーテルの平均縮合度は3.5であった。なお反応液中の加えたグリシドールの残量は0.1質量%未満であり、生成物中に含まれるポリグリセリンの含有率は3.0質量%であった。

0031

実施例5
ラウリルアルコール95.1g(0.50mol)、過塩素酸ランタン六水和物2.73g(0.0050mol)を300mL四つ口フラスコに入れ、窒素気流下、攪拌しながら90℃まで昇温した。次にその温度を保持しながらグリシドール111.12g(1.5mol)を6時間で滴下し、そのまま2時間攪拌を続け、反応生成物208.9g(グリシドール転化率:99.9%以上)を得た。反応終了後、反応液中の未反応ラウリルアルコールの残量をガスクロマトグラフィーにより求めたところ、9.6質量%(アルコール転化率:79%)であり、ラウリルポリグリセリルエーテルの平均縮合度は3.3であった。なお反応液中の加えたグリシドールの残量は0.1質量%未満であり、生成物中に含まれるポリグリセリンの含有率は6.7質量%であった。

0032

実施例6
ジ(エチレングリコール)2−エチルヘキシルエーテル111.4g(0.50mol)、ランタントリフラート2.93g(0.0050mol)を300mL四つ口フラスコに入れ、窒素気流下、攪拌しながら90℃まで昇温した。次にその温度を保持しながらグリシドール111.12g(1.5mol)を6時間で滴下し、そのまま2時間攪拌を続け、反応生成物225.5g(グリシドール転化率:99.9%以上)を得た。反応終了後、反応液中の未反応アルコールの残量をガスクロマトグラフィーにより求めたところ13.3質量%(アルコール転化率:73%)であり、ジ(エチレングリコール)2−エチルヘキシルポリグリセリルエーテルの平均縮合度は3.5であった。なお反応液中の加えたグリシドールの残量は0.1質量%未満であり、生成物中に含まれるポリグリセリンの含有率は7.8質量%であった。

0033

本発明のポリグリセリルエーテル誘導体の製造方法によれば、アルコール類とグリシドールとの高選択的付加反応を実現し、かつアルコール類の転化率を向上させることができる。また、得られたポリグリセリルエーテル誘導体は、例えば溶剤、乳化剤、分散剤、洗浄剤、増泡剤などとして有用である。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ