図面 (/)

技術 試料中のプロトン性溶媒の易動性を局所的に測定する方法、試料中のプロトン性溶媒の易動性を局所的に測定する装置、磁気共鳴法を用いて試料中のプロトン性溶媒の挙動を局所的に測定する測定装置、測定方法、プログラム

出願人 学校法人慶應義塾
発明者 小川邦康拝師智之伊藤衡平
出願日 2006年4月11日 (15年10ヶ月経過) 出願番号 2007-513015
公開日 2008年11月20日 (13年2ヶ月経過) 公開番号 WO2006-109803
状態 特許登録済
技術分野 マイクロ波、NMR等による材料の調査
主要キーワード 標準コイル 短時間計測 固定コンデンサー 内側面積 局所値 円筒型コイル コンピュータ制御プログラム 遮蔽シールド
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2008年11月20日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題・解決手段

勾配磁場MR法を用いて試料115中のプロトン性溶媒易動性局所的に測定する装置において、試料115を載置する試料載置台116、試料115に対して静磁場印加する磁石113、試料115に対して勾配磁場を印加する第1Gコイル151および第2Gコイル153、第1Gコイル151に対して励起用振動磁場を印加するとともに、励起用振動磁場および勾配磁場に対応するNMR信号を取得する、第1Gコイル151より小さい小型RFコイル114、勾配磁場および励起用振動磁場の印加を所定のパルスシーケンスにしたがって実行させるパルス制御部108、および、異なる勾配磁場に対応して得られたNMR信号の情報に基づいて、第1Gコイル151の特定箇所の易動性を算出する演算部130を備える。

概要

背景

ある種の機能材料においては、材料中の溶媒分子の移動がその材料の性能を支配することがある。このような材料の設計開発にあっては、溶媒分子の移動のしやすさを局所的に計測することが重要な技術的課題となる。こうした機能材料の例として、燃料電池に用いられる固体高分子電解質膜が挙げられる。

固体高分子電解質膜を用いた燃料電池では、発電特性や効率が高分子膜イオン伝導性に強く依存する。発電特性を高く維持するためには、高分子膜のイオン伝導性を高く維持する必要がある。膜のイオン伝導性は、膜内水素イオンが移動することで引き起こされ、水素イオンの移動のしやすさが高分子膜のイオン伝導性を支配する。この水素イオンは単独で膜内を移動するのではなく、その周囲に数個水分子を配置し、極性を持つ水分子によって電荷を相殺させて、安定に水素イオンが膜内で存在できるように保護させながら、膜内を水分子と共に移動する。水素イオンとともに移動する水分子は「随伴水」と呼ばれ、高分子膜のイオン伝導性を高く保つために重要な役割を担っている。

これら高分子膜内の輸送機構より、高分子膜内のイオン伝導性は、膜が含有する水分子の量(膜の湿潤量)と、膜内での水分子の移動のしやすさ(水分子の易動性)によって決定されることが知られている。すなわち、固体高分子電解質膜中で移動する水の量Mは、膜中の水の量m、水分子の移動しやすさvとを用いて、
M=mv
であらわされる。

ここで、mを局所的に測定する技術については、既に本発明者により提案がなされている(特願2004−265535)。

一方、「高分子膜内での水分子の移動のしやすさ(水分子の易動性)」を局所的に計測する手法は、高分子材料のイオン伝導性にとって重要であるにも関わらず、一部を除き、これまでに提案されてはいない。特に、燃料電池発電時発電量が急激に低下する問題を解決するためには「水分子の易動性」の計測が不可欠である。現在、発電量の低下原因として、高分子膜内のイオン伝導性の低下や触媒劣化が考えられているが、未だ確定的な証拠は挙げられておらず、発電時の膜性状のモニタリング技術が必要とされている。この際、膜の湿潤量のみを計測する手法だけでは情報不足であり、膜内の「水分子の易動性」も同時に計測しないと「イオン伝導性の低下原因」を究明できない。この低下原因を究明してこそ、対処方法を考えるための指針となり得る。

以上、燃料電池に用いられる固体高分子電解質膜の例をあげて説明したが、これ以外にも、固体マトリックスゲル中における水などの溶媒分子の移動のしやすさを測定する技術に対するニーズは大きく、こうした測定技術が材料開発のキーテクノロジーとなりえる。

固体中の溶媒分子の移動度計測技術として、従来いくつかの技術が開発されている。

これまでに、高分子膜の「水分子の移動度」を計測する手法として、
(i)「圧力をかけた液体を膜に印加し、膜を透過した量から膜の移動度」を計測する方法(非特許文献1)がある。ところが、この方法では、膜の両側面を水に漬けてしまうために「湿潤状態を変えた高分子膜の移動度を計測できない」という欠点がある。燃料電池発電時では高分子膜が水に漬かっている状況のみだけではなく、加湿状態に依存して変化する「湿潤状態が異なった高分子膜の水分移動度」が必要であり、この手法では湿潤状態を変えることはできない。また、短時間・局所計測とは言いがたい。

また、「水分子の移動度」の従来計測法として、核磁気共鳴(NMR)法を用いて、
(ii)「水分子の移動度を自己拡散係数として計測」する方法、および、核磁気共鳴画像MRI)法を用いて、
(iii)「水分子の移動度を自己拡散係数の分布画像として計測」する方法、
がある。上記(ii)の方法は、非特許文献2に記載された公知の方法であり、試料全体を計測して、平均的な水分子の移動度を算出する手法である。

また、上記(iii)「自己拡散係数の分布画像を計測する」手法は、MRIと上記(ii)とを組み合わせて分布画像化した手法であり、「拡散イメージング」(非特許文献3)、または、「水の分子拡散強調MR画像」(非特許文献4)と呼ばれ、上記(ii)の手法と同様に、公知の手法である。
高分子学会編、「高分子と水」、共立出版、第3章
E.O. Stejskal and J.E. Tanner、「Spin diffusion measurements: Spin Echoes in the Presence of a Time−Dependent Field Gradient」、Journal of chemical physics、vol.42、No.1、1965、pp.288−292
NMRイメージング、巨勝美著、共立出版、(2004)、p.176
第13回日本医用画像工学セミナー(1992年10月東京開催)、Med. Imag. Tech.、 Vol.11、 No.1、1993年、pp.12−21

概要

勾配磁場NMR法を用いて試料115中のプロトン性溶媒の易動性を局所的に測定する装置において、試料115を載置する試料載置台116、試料115に対して静磁場を印加する磁石113、試料115に対して勾配磁場を印加する第1Gコイル151および第2Gコイル153、第1Gコイル151に対して励起用振動磁場を印加するとともに、励起用振動磁場および勾配磁場に対応するNMR信号を取得する、第1Gコイル151より小さい小型RFコイル114、勾配磁場および励起用振動磁場の印加を所定のパルスシーケンスにしたがって実行させるパルス制御部108、および、異なる勾配磁場に対応して得られたNMR信号の情報に基づいて、第1Gコイル151の特定箇所の易動性を算出する演算部130を備える。

目的

本発明は、上記事情に鑑みなされたものであって、物質中の特定箇所の局所的なプロトン性溶媒の易動性を比較的短時間で測定する技術を提供する

効果

実績

技術文献被引用数
2件
牽制数
1件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

勾配磁場磁気共鳴法を用いて試料中のプロトン性溶媒易動性局所的に測定する装置であって、前記試料に対して静磁場印加する静磁場印加部と、前記試料に対して勾配磁場を印加する勾配磁場印加部と、前記試料に対して励起用振動磁場を印加するとともに、前記励起用振動磁場および前記勾配磁場に対応する磁気共鳴信号を取得する、前記試料より小さい小型RFコイルと、前記勾配磁場および前記励起用振動磁場の印加を所定のパルスシーケンスにしたがって実行させる制御部と、異なる勾配磁場に対応して得られた前記磁気共鳴信号の情報に基づいて、前記試料の特定箇所の前記易動性を算出する演算部と、を備えることを特徴とする易動性測定装置

請求項2

請求項1に記載の易動性測定装置において、前記磁気共鳴信号はNMR信号であることを特徴とする易動性測定装置。

請求項3

前記試料は、固体またはゲルからなるマトリクスを含み、前記演算部は、前記マトリクス中に含まれる前記プロトン性溶媒の前記易動性を算出することを特徴とする請求項2に記載の易動性測定装置。

請求項4

前記勾配磁場印加部が、前記小型RFコイルを挟んで配置された一対の勾配磁場印加コイルを含むことを特徴とする請求項2に記載の易動性測定装置。

請求項5

前記一対の勾配磁場印加コイルが、前記小型RFコイルと同一平面内に設けられた平面型コイルであることを特徴とする請求項4に記載の易動性測定装置。

請求項6

前記一対の勾配磁場印加コイルの平面形状が略半月状であって、半月の弦同士を前記小型RFコイル側に向けて対向配置されたことを特徴とする請求項4に記載の易動性測定装置。

請求項7

前記小型RFコイルを複数備え、該複数の小型RFコイルが、前記試料の複数箇所に対し、前記励起用振動磁場を印加するとともに、前記励起用振動磁場および前記勾配磁場に対応するNMR信号を取得し、前記演算部が、前記試料の前記複数箇所における前記易動性を算出するように構成されていることを特徴とする請求項2に記載の易動性測定装置。

請求項8

前記演算部が、異なる勾配磁場に対応して得られた前記NMR信号の強度から易動性計算値を計算する計算部と、前記易動性計算値に対し、前記小型RFコイルのサイズに応じた補正を施し、前記易動性を算出する補正部と、を含むことを特徴とする請求項2に記載の易動性測定装置。

請求項9

請求項8に記載の易動性測定装置において、前記計算部で計算された前記易動性計算値に対し、前記小型RFコイルのサイズに応じた補正をするための補正パラメータあるいは補正式が記憶された記憶部を有し、前記補正部では、前記記憶部から補正パラメータあるいは補正式を読み出し、前記易動性を算出することを特徴とする易動性測定装置。

請求項10

請求項1に記載の易動性測定装置において、前記小型RFコイル及び前記勾配磁場印加部を支持する支持体を有することを特徴とする易動性測定装置。

請求項11

請求項10に記載の易動性測定装置において、前記静磁場印加部は、前記支持体に取り付けられていることを特徴とする易動性測定装置。

請求項12

請求項10に記載の易動性測定装置において、前記支持体は、スティック状であり、その先端部に前記小型RFコイル及び前記勾配磁場印加部が取り付けられていることを特徴とする易動性測定装置。

請求項13

請求項10に記載の易動性測定装置において、前記小型RFコイルは、前記勾配磁場印加部よりも前記試料側に突出していることを特徴とする易動性測定装置。

請求項14

請求項10に記載の易動性測定装置において、前記小型RFコイルに対する前記勾配磁場印加部の相対位置が調整可能に構成されたことを特徴とする易動性測定装置。

請求項15

請求項14に記載の易動性測定装置において、前記小型RFコイル及び前記勾配磁場印加部が取り付けられた支持体を備え、前記支持体は、前記試料側に位置する先端部に前記勾配磁場印加部が取り付けられた本体部と、この本体部の前記先端部に形成された孔内を進退する可動部材とを備え、前記可動部材の前記試料側に位置する先端部に、前記小型RFコイルが設けられたことを特徴とする易動性測定装置。

請求項16

請求項1に記載の易動性測定装置において、複数の前記小型RFコイルを備え、前記勾配磁場印加部は、複数の勾配磁場印加コイルを有し、前記勾配磁場印加コイルと、前記小型RFコイルとが、交互に配置されていることを特徴とする易動性測定装置。

請求項17

請求項16に記載の易動性測定装置において、少なくとも一つの前記小型RFコイルと、一つの前記勾配磁場印加コイルとを有するユニットを備え、前記ユニットを複数配列させて、前記勾配磁場印加コイルと、前記小型RFコイルとを交互に配置したことを特徴とする易動性測定装置。

請求項18

前記小型RFコイルは、(a)90°パルス、および、(b)(a)のパルスの時間τ経過後に印加される180°パルスからなるパルスシーケンスで、前記励起用振動磁場を印加することを特徴とする請求項2に記載の易動性測定装置。

請求項19

前記パルスシーケンスは、前記90°パルスより時間τだけ前の時刻に印加される180°パルスを含むことを特徴とする請求項18に記載の易動性測定装置。

請求項20

前記小型RFコイルに前記励起用振動磁場を発生させるRF信号を生成するRF信号生成部と、前記小型RFコイルにより取得されたNMR信号を検出するとともに、該NMR信号を前記演算部に送出するNMR信号検出部と、前記小型RFコイル、前記RF信号生成部および前記NMR信号検出部を接続する分岐部に設けられ、前記小型RFコイルと前記RF信号生成部とが接続された状態と、前記小型RFコイルと前記NMR信号検出部とが接続された状態とを切り替えスイッチ回路と、をさらに備えることを特徴とする請求項2に記載の易動性測定装置。

請求項21

請求項1に記載の易動性測定装置において、前記小型RFコイルは、平面型コイルであり、小型RFコイルの内径外径が0.65以上、1以下であることを特徴とする易動性測定装置。

請求項22

請求項1に記載の易動性測定装置において、前記演算部は、前記試料中のプロトン性溶媒が一方向に定常的に移動している場合における自己拡散係数、および、前記試料中のプロトン性溶媒が一方向に定常的に移動していない場合における自己拡散係数を算出する自己拡散係数演算部と、前記自己拡散係数演算部で算出した自己拡散係数を記憶する自己拡散係数記憶部と、前記自己拡散係数記憶部に記憶された自己拡散係数の差に基づいて、移動度を算出する移動度計算部とを備えることを特徴とする易動性測定装置。

請求項23

勾配磁場磁気共鳴法を用いて試料の特定箇所の易動性を局所的に測定する方法であって、前記試料に対する励起用振動磁場の印加を所定のパルスシーケンスにしたがって実行する第1ステップと、前記第1ステップのパルスシーケンスに対応する磁気共鳴信号を取得する第2ステップと、前記試料に対する励起用振動磁場および勾配磁場の印加を所定のパルスシーケンスにしたがって実行する第3ステップと、前記第3ステップのパルスシーケンスに対応する磁気共鳴信号を取得する第4ステップと、前記第2ステップで得られた磁気共鳴信号の情報と、前記第4ステップで得られた磁気共鳴信号の情報とに基づいて、前記試料の特定箇所の易動性を算出する第5ステップと、を含み、前記第1ステップおよび前記第3ステップにおいて、前記試料より小さい小型RFコイルを用い、前記試料の特定箇所に局所的な磁場を印加し、前記第2ステップおよび前記第4ステップにおいて、前記試料より小さい小型RFコイルを用い、前記試料の特定箇所から前記磁気共鳴信号を取得する、ことを特徴とする易動性測定方法

請求項24

請求項23に記載の易動性測定方法において、前記磁気共鳴信号は、NMR信号であることを特徴とする易動性測定方法。

請求項25

前記第1ステップにおいて、前記試料に対する勾配磁場の印加を所定のパルスシーケンスにしたがって実行するとともに、前記第3ステップにおいて、前記第1ステップと異なる大きさの前記勾配磁場の印加を所定のパルスシーケンスにしたがって実行することを特徴とする請求項24に記載の易動性測定方法。

請求項26

前記第1ステップおよび前記第3ステップにおいて、前記小型RFコイルは、(a)90°パルス、および、(b)(a)のパルスの時間τ経過後に印加される180°パルスからなるパルスシーケンスで前記励起用振動磁場を印加することを特徴とする請求項24に記載の易動性測定方法。

請求項27

前記第1ステップおよび前記第3ステップにおける前記パルスシーケンスは、前記90°パルスより時間τだけ前の時刻に印加される180°パルスを含むことを特徴とする請求項26に記載の易動性測定方法。

請求項28

磁気共鳴法を用いて試料中の特定箇所のプロトン性溶媒の挙動を測定する装置であって、前記試料に対して静磁場を印加する静磁場印加部と、前記試料に対して勾配磁場を印加する勾配磁場印加部と、前記試料に対して励起用振動磁場を印加するとともに、前記試料中の特定箇所で発生した磁気共鳴信号を取得する、前記試料よりも小さい小型RFコイルと、前記試料中の特定箇所のプロトン性溶媒量を測定する第一の測定モードと、前記試料中の特定箇所のプロトン性溶媒の易動性を測定する第二の測定モードとを含む複数の測定モードのうちいずれかを選択する測定モード選択部と、前記測定モード選択部により選択された測定モードに応じて前記小型RFコイルおよび前記勾配磁場印加部の動作を制御する制御部と、前記第一の測定モードにおいて取得された磁気共鳴信号に基づいて前記試料中の特定箇所のプロトン性溶媒量を算出する第一の算出部と、前記第二の測定モードにおいて取得された磁気共鳴信号に基づいて前記試料中の特定箇所のプロトン性溶媒の易動性を算出する第二の算出部と、を備え、前記制御部は、前記第一の測定モードにあるとき、前記試料の特定箇所に対し、前記小型RFコイルにより励起用振動磁場を印加するとともに、前記励起用振動磁場に対応して前記特定箇所に発生する磁気共鳴信号を前記小型RFコイルにより取得し、前記第二の測定モードにあるとき、前記試料の特定箇所に対し、前記小型RFコイルにより励起用振動磁場を印加するとともに前記勾配磁場印加部により勾配磁場を印加し、これらの磁場に対応して発生する磁気共鳴信号を前記小型RFコイルにより取得するように構成されたことを特徴とする測定装置。

請求項29

請求項28に記載の測定装置において、前記第一の算出部で算出したプロトン性溶媒量と、前記第二の算出部で算出したプロトン性溶媒の易動性とに基づいて、プロトン性溶媒の移動量を算出する第三の算出部を備えることを特徴とする測定装置。

請求項30

請求項28に記載の測定装置において、前記小型RFコイル及び前記勾配磁場印加部を支持する支持体を有することを特徴とする測定装置。

請求項31

請求項30に記載の測定装置において、前記静磁場印加部は、前記支持体に取り付けられていることを特徴とする測定装置。

請求項32

請求項30に記載の測定装置において、前記支持体は、スティック状であり、その先端部に前記小型RFコイル及び前記勾配磁場印加部が取り付けられていることを特徴とする測定装置。

請求項33

請求項28に記載の測定装置において、前記小型RFコイルは、前記勾配磁場印加部よりも前記試料側に突出していることを特徴とする測定装置。

請求項34

請求項28に記載の測定装置において、前記小型RFコイルに対する前記勾配磁場印加部の相対位置が調整可能に構成されたことを特徴とする測定装置。

請求項35

請求項34に記載の測定装置において、前記小型RFコイル及び前記勾配磁場印加部が取り付けられた支持体を備え、前記支持体は、前記試料側に位置する先端部に前記勾配磁場印加部が取り付けられた本体部と、この本体部の前記先端部に形成された孔内を進退する可動部材とを備え、前記可動部材の前記試料側に位置する先端部に、前記小型RFコイルが設けられたことを特徴とする測定装置。

請求項36

請求項28に記載の測定装置において、複数の前記小型RFコイルを備え、前記勾配磁場印加部は、複数の勾配磁場印加コイルを有し、前記勾配磁場印加コイルと、前記小型RFコイルとが、交互に配置されていることを特徴とする測定装置。

請求項37

請求項36に記載の測定装置において、少なくとも一つの前記小型RFコイルと、一つの前記勾配磁場印加コイルとを有するユニットを備え、前記ユニットを複数配列させて、前記勾配磁場印加コイルと、前記小型RFコイルとを交互に配置したことを特徴とする測定装置。

請求項38

請求項28に記載の測定装置において、前記第一の算出部が、前記磁気共鳴信号の強度からプロトン性溶媒量の見積値を算出する見積部と、前記プロトン性溶媒量の見積値に対し、前記小型RFコイルのサイズに応じた補正を施し、前記プロトン性溶媒量を算出する補正部とを含むことを特徴とする測定装置。

請求項39

請求項38に記載の測定装置において、前記見積部で算出されたプロトン性溶媒量の見積値に対し、前記小型RFコイルのサイズに応じた補正を施すための補正パラメータあるいは補正式が記憶された記憶部を有し、前記補正部では、前記記憶部から補正パラメータあるいは補正式を読み出し、前記プロトン性溶媒量の見積値を補正して、前記プロトン性溶媒量を算出することを特徴とする測定装置。

請求項40

請求項28に記載の測定装置において、前記第二の算出部が、前記励起用振動磁場及び前記勾配磁場を印加することにより、得られた磁気共鳴信号に基づいて、易動性の見積値を算出する見積部と、前記易動性の見積値に対し、前記小型RFコイルのサイズに応じた補正を施し、前記易動性を算出する補正部とを含むことを特徴とする測定装置。

請求項41

請求項40に記載の測定装置において、前記見積部で算出された易動性の見積値に対し、前記小型RFコイルのサイズに応じた補正を施すための補正パラメータあるいは補正式が記憶された記憶部を有し、前記補正部では、前記記憶部から補正パラメータあるいは補正式を読み出し、前記易動性の見積値を補正して、前記易動性を算出することを特徴とする測定装置。

請求項42

請求項28に記載の測定装置において、前記小型RFコイルに前記励起用振動磁場を発生させるRF励起パルスを生成するRF励起パルス生成部と、前記小型RFコイルにより取得された磁気共鳴信号を検出するとともに、該磁気共鳴信号を前記第一の算出部又は第二の算出部に送出する磁気共鳴信号検出部と、前記小型RFコイル、前記RF励起パルス生成部および前記磁気共鳴信号検出部を接続する分岐部に設けられ、前記小型RFコイルと前記RF励起パルス生成部とが接続された状態と、前記小型RFコイルと前記磁気共鳴信号検出部とが接続された状態とを切り替えるスイッチ回路とを備えることを特徴とする測定装置。

請求項43

請求項28に記載の測定装置において、前記小型RFコイルは、平面型コイルであり、小型RFコイルの内径/外径が0.65以上、1以下であることを特徴とする測定装置。

請求項44

請求項28に記載の測定装置において、前記第二の算出部は、前記試料中のプロトン性溶媒が一方向に定常的に移動している場合における自己拡散係数、および、前記試料中のプロトン性溶媒が一方向に定常的に移動していない場合における自己拡散係数を算出する自己拡散係数演算部と、前記自己拡散係数演算部で算出した自己拡散係数を記憶する自己拡散係数記憶部と、前記自己拡散係数記憶部に記憶された自己拡散係数の差に基づいて、移動度を算出する移動度計算部とを備えることを特徴とする測定装置。

請求項45

試料に対して静磁場を印加する静磁場印加部と、前記試料に対して勾配磁場を印加する勾配磁場印加部と、前記試料に対して励起用振動磁場を印加するとともに、前記励起用振動磁場及び前記勾配磁場に対応する磁気共鳴信号を取得する、前記試料よりも小さい小型RFコイルと、を備えた測定装置を使用し、磁気共鳴法を用いて試料中の特定箇所のプロトン性溶媒量及び前記特定箇所のプロトン性溶媒の易動性を測定する方法であって、プロトン性溶媒量を測定する第一の測定モードを選択し、前記励起用振動磁場を印加して、プロトン性溶媒量を測定するステップと、前記プロトン性溶媒の易動性を測定する第二の測定モードを選択し、所定のパルスシーケンスに従って前記勾配磁場および前記励起用振動磁場を印加してプロトン性溶媒の易動性を測定するステップとを含み、前記プロトン性溶媒量を測定する前記ステップは、静磁場におかれた前記試料の特定箇所に対し、前記小型RFコイルを用いて、励起用振動磁場を複数回、順次印加するとともに前記励起用振動磁場に対応する複数の磁気共鳴信号を取得するステップと、前記磁気共鳴信号の強度から、前記試料中の特定箇所における前記プロトン性溶媒量を求めるステップとを含み、前記易動性を測定するステップは、静磁場におかれた前記試料の特定箇所に対して、前記小型RFコイルを用いて、励起用振動磁場の印加を所定のパルスシーケンスにしたがって実行する第1ステップと、前記第1ステップのパルスシーケンスに対応する磁気共鳴信号を、前記小型RFコイルを使用して取得する第2ステップと、前記試料の特定箇所に対して、励起用振動磁場および勾配磁場の印加を所定のパルスシーケンスにしたがって実行する第3ステップと、前記第3ステップのパルスシーケンスに対応する磁気共鳴信号を前記小型RFコイルを使用して取得する第4ステップと、前記第2ステップで得られた磁気共鳴信号と、前記第4ステップで得られた磁気共鳴信号とに基づいて、前記試料の特定箇所におけるプロトン性溶媒の易動性を算出する第5ステップとを含むことを特徴とする測定方法。

請求項46

請求項45に記載の測定方法において、プロトン性溶媒量を測定する前記ステップで得られたプロトン性溶媒量と、プロトン性溶媒の易動性を測定する前記ステップで得られたプロトン性溶媒の易動性とに基づいて、プロトン性溶媒の移動量を算出するステップを含むことを特徴とする測定方法。

請求項47

試料に対して静磁場を印加する静磁場印加部と、前記試料に対して勾配磁場を印加する勾配磁場印加部と、前記試料に対して励起用振動磁場を印加するとともに、前記励起用振動磁場及び前記勾配磁場に対応する磁気共鳴信号を取得する、前記試料よりも小さい小型RFコイルと、を備えた測定装置を制御して、前記試料のプロトン性溶媒量を測定する第一の測定モードを選択し、前記励起用振動磁場を印加して、プロトン性溶媒量を測定するステップと、前記試料のプロトン性溶媒の易動性を測定する第二の測定モードを選択し、所定のパルスシーケンスに従って前記勾配磁場および前記励起用振動磁場を印加してプロトン性溶媒の易動性を測定するステップとを実行させるプログラムであって、前記プロトン性溶媒量を測定する前記ステップは、静磁場におかれた前記試料の特定箇所に対し、前記小型RFコイルを用いて、励起用振動磁場を複数回、順次印加するとともに前記励起用振動磁場に対応する複数の磁気共鳴信号を取得するステップと、前記磁気共鳴信号の強度から、前記試料中の特定箇所における前記プロトン性溶媒量を求めるステップとを含み、プロトン性溶媒の易動性を測定する前記ステップは、静磁場におかれた前記試料の特定箇所に対して、前記小型RFコイルを用いて、励起用振動磁場の印加を所定のパルスシーケンスにしたがって実行する第1ステップと、前記第1ステップのパルスシーケンスに対応する磁気共鳴信号を、前記小型RFコイルを使用して取得する第2ステップと、前記試料の特定箇所に対して、励起用振動磁場および勾配磁場の印加を所定のパルスシーケンスにしたがって実行する第3ステップと、前記第3ステップのパルスシーケンスに対応する磁気共鳴信号を前記小型RFコイルを使用して取得する第4ステップと、前記第2ステップで得られた磁気共鳴信号と、前記第4ステップで得られた磁気共鳴信号とに基づいて、前記試料の特定箇所におけるプロトン性溶媒の易動性を算出する第5ステップとを含むことを特徴とするプログラム。

請求項48

請求項47に記載のプログラムにおいて、プロトン性溶媒量を測定する前記ステップで得られたプロトン性溶媒量と、プロトン性溶媒の易動性を測定する前記ステップで得られたプロトン性溶媒の易動性とに基づいて、プロトン性溶媒の移動量を算出するステップを含むことを特徴とするプログラム。

技術分野

0001

本発明は、試料中のプロトン性溶媒易動性局所的に測定する方法、試料中のプロトン性溶媒の易動性を局所的に測定する装置、磁気共鳴法を用いて試料中のプロトン性溶媒の挙動を局所的に測定する測定装置測定方法プログラムに関するものである。

背景技術

0002

ある種の機能材料においては、材料中の溶媒分子の移動がその材料の性能を支配することがある。このような材料の設計開発にあっては、溶媒分子の移動のしやすさを局所的に計測することが重要な技術的課題となる。こうした機能材料の例として、燃料電池に用いられる固体高分子電解質膜が挙げられる。

0003

固体高分子電解質膜を用いた燃料電池では、発電特性や効率が高分子膜イオン伝導性に強く依存する。発電特性を高く維持するためには、高分子膜のイオン伝導性を高く維持する必要がある。膜のイオン伝導性は、膜内水素イオンが移動することで引き起こされ、水素イオンの移動のしやすさが高分子膜のイオン伝導性を支配する。この水素イオンは単独で膜内を移動するのではなく、その周囲に数個水分子を配置し、極性を持つ水分子によって電荷を相殺させて、安定に水素イオンが膜内で存在できるように保護させながら、膜内を水分子と共に移動する。水素イオンとともに移動する水分子は「随伴水」と呼ばれ、高分子膜のイオン伝導性を高く保つために重要な役割を担っている。

0004

これら高分子膜内の輸送機構より、高分子膜内のイオン伝導性は、膜が含有する水分子の量(膜の湿潤量)と、膜内での水分子の移動のしやすさ(水分子の易動性)によって決定されることが知られている。すなわち、固体高分子電解質膜中で移動する水の量Mは、膜中の水の量m、水分子の移動しやすさvとを用いて、
M=mv
であらわされる。

0005

ここで、mを局所的に測定する技術については、既に本発明者により提案がなされている(特願2004−265535)。

0006

一方、「高分子膜内での水分子の移動のしやすさ(水分子の易動性)」を局所的に計測する手法は、高分子材料のイオン伝導性にとって重要であるにも関わらず、一部を除き、これまでに提案されてはいない。特に、燃料電池発電時発電量が急激に低下する問題を解決するためには「水分子の易動性」の計測が不可欠である。現在、発電量の低下原因として、高分子膜内のイオン伝導性の低下や触媒劣化が考えられているが、未だ確定的な証拠は挙げられておらず、発電時の膜性状のモニタリング技術が必要とされている。この際、膜の湿潤量のみを計測する手法だけでは情報不足であり、膜内の「水分子の易動性」も同時に計測しないと「イオン伝導性の低下原因」を究明できない。この低下原因を究明してこそ、対処方法を考えるための指針となり得る。

0007

以上、燃料電池に用いられる固体高分子電解質膜の例をあげて説明したが、これ以外にも、固体マトリックスゲル中における水などの溶媒分子の移動のしやすさを測定する技術に対するニーズは大きく、こうした測定技術が材料開発のキーテクノロジーとなりえる。

0008

固体中の溶媒分子の移動度計測技術として、従来いくつかの技術が開発されている。

0009

これまでに、高分子膜の「水分子の移動度」を計測する手法として、
(i)「圧力をかけた液体を膜に印加し、膜を透過した量から膜の移動度」を計測する方法(非特許文献1)がある。ところが、この方法では、膜の両側面を水に漬けてしまうために「湿潤状態を変えた高分子膜の移動度を計測できない」という欠点がある。燃料電池発電時では高分子膜が水に漬かっている状況のみだけではなく、加湿状態に依存して変化する「湿潤状態が異なった高分子膜の水分移動度」が必要であり、この手法では湿潤状態を変えることはできない。また、短時間・局所計測とは言いがたい。

0010

また、「水分子の移動度」の従来計測法として、核磁気共鳴(NMR)法を用いて、
(ii)「水分子の移動度を自己拡散係数として計測」する方法、および、核磁気共鳴画像MRI)法を用いて、
(iii)「水分子の移動度を自己拡散係数の分布画像として計測」する方法、
がある。上記(ii)の方法は、非特許文献2に記載された公知の方法であり、試料全体を計測して、平均的な水分子の移動度を算出する手法である。

0011

また、上記(iii)「自己拡散係数の分布画像を計測する」手法は、MRIと上記(ii)とを組み合わせて分布画像化した手法であり、「拡散イメージング」(非特許文献3)、または、「水の分子拡散強調MR画像」(非特許文献4)と呼ばれ、上記(ii)の手法と同様に、公知の手法である。
高分子学会編、「高分子と水」、共立出版、第3章
E.O. Stejskal and J.E. Tanner、「Spin diffusion measurements: Spin Echoes in the Presence of a Time−Dependent Field Gradient」、Journal of chemical physics、vol.42、No.1、1965、pp.288−292
NMRイメージング、巨勝美著、共立出版、(2004)、p.176
第13回日本医用画像工学セミナー(1992年10月東京開催)、Med. Imag. Tech.、 Vol.11、 No.1、1993年、pp.12−21

0012

ところが、以上の計測方法のうち、(i)では、高分子膜単体での性状評価を前提としており、発電しながらのモニタリングはできないという欠点がある。さらには、膜全体での平均的な値を計測しており、局所計測はできない。

0013

また、上記(ii)の方法により、発電しながらの計測が可能であったとしても、水分子移動度を発電状況連動させて計測できるほどの短時間計測はできず、発電性能の低下原因の解明最適制御用のモニタリング法としては上記方法を使用することはできない。これらの手法では、局所的に変化する膜の性状(湿潤量と易動性)を短時間で計測することはできない。
従って、物質中の特定箇所の局所的なプロトン性溶媒の易動性を比較的短時間で測定する技術が求められている。
これに加え、燃料電池の発電量の低下の原因となる膜内でのイオン伝導性の低下の要因を、より正確に把握するためには、膜内の「水分子の量」と、「水分子の易動性」とを同じ位置で計測することが必要であり、「水分子の量」と、「水分子の易動性」とを同じ位置で計測することができる技術も望まれている。

0014

本発明は、上記事情に鑑みなされたものであって、物質中の特定箇所の局所的なプロトン性溶媒の易動性を比較的短時間で測定する技術を提供するものである。
さらに、本発明は、「プロトン性溶媒の量」と、「プロトン性溶媒の易動性」とを試料の同じ位置で計測することができ、試料の局所的なプロトン性溶媒の挙動を正確に把握することができる測定装置、測定方法及びプログラムをも提供する。

0015

本発明によれば、
勾配磁場磁気共鳴法を用いて試料中のプロトン性溶媒の易動性を局所的に測定する装置であって、
前記試料に対して静磁場を印加する静磁場印加部と、
前記試料に対して勾配磁場を印加する勾配磁場印加部と、
前記試料に対して励起用振動磁場を印加するとともに、前記励起用振動磁場および前記勾配磁場に対応する磁気共鳴信号を取得する、前記試料より小さい小型RFコイルと、
前記勾配磁場および前記励起用振動磁場の印加を所定のパルスシーケンスにしたがって実行させる制御部と、
異なる勾配磁場に対応して得られた前記磁気共鳴信号の情報に基づいて、前記試料の特定箇所の前記易動性を算出する演算部と、
を備えることを特徴とする易動性測定装置が提供される。

0016

また、本発明によれば、
勾配磁場磁気共鳴法を用いて試料の特定箇所の易動性を局所的に測定する方法であって、
前記試料に対する励起用振動磁場の印加を所定のパルスシーケンスにしたがって実行する第1ステップと、
前記第1ステップのパルスシーケンスに対応する磁気共鳴信号を取得する第2ステップと、
前記試料に対する励起用振動磁場および勾配磁場の印加を所定のパルスシーケンスにしたがって実行する第3ステップと、
前記第3ステップのパルスシーケンスに対応する磁気共鳴信号を取得する第4ステップと、
前記第2ステップで得られた磁気共鳴信号の情報と、前記第4ステップで得られた磁気共鳴信号の情報とに基づいて、前記試料の特定箇所の前記パラメータを算出する第5ステップと、
を含み、
前記第1ステップおよび前記第3ステップにおいて、前記試料より小さい小型RFコイルを用い、前記試料の特定箇所に局所的な磁場を印加し、
前記第2ステップおよび前記第4ステップにおいて、前記試料より小さい小型RFコイルを用い、前記試料の特定箇所から前記磁気共鳴信号を取得する、
ことを特徴とする易動性測定方法が提供される。

0017

本発明においては、小型RFコイルを用いて、(i)局所的に励起用振動磁場および勾配磁場を印加するとともに、(ii)励起用振動磁場および勾配用磁場を印加した箇所から発せられる磁気共鳴信号(例えば、NMR信号)を取得し、異なる勾配磁場に対応して得られた磁気共鳴信号から試料の特定箇所における易動性を測定する。小型RFコイルにより測定対象となる部位を限定してスピンエコー法および勾配磁場磁気共鳴信号法を適用しているため、試料の所定の領域におけるプロトン性溶媒の局所的な易動性を短時間で測定することができる。

0018

本発明により測定される「易動性」とは、試料中におけるプロトン性溶媒の移動のしやすさを表す物性値をいう。こうした物性値としては、自己拡散係数、および移動度(移動速度)等のパラメータが挙げられる。本発明によれば、これらのいずれかのパラメータが得られる。
また、本発明における「磁気共鳴」は、核磁気共鳴(NMR)および電子スピン共鳴ESR)の両方を含むものである。このうち、核磁気共鳴を利用する測定を用いれば、実施形態の項で後述するように試料中の特定箇所のプロトン性溶媒の挙動を安定的に測定することができる。

0019

本発明において、試料は固体またはゲルからなるマトリクスを含むものとし、演算部は、マトリクス中に含まれるプロトン性溶媒の易動性を算出する構成とすることができる。このような試料として、水分を含有する膜、たとえば、燃料電池等に用いられる固体電解質膜等が挙げられる。こうした膜中における易動性を測定することにより、膜の性能を的確に把握することが可能となる。特に、燃料電池の固体電解質膜の測定に適用した場合、発電状態において固体電解質膜中のプロトン性溶媒分子の易動性を測定することが可能となる。また、本発明において、試料は、プロトン性溶媒を含む液体とし、演算部は、液体中のプロトン性溶媒の易動性を算出する構成とすることもできる。

0020

また、本明細書において、プロトン性溶媒とは、自分自身解離してプロトンを生じる溶媒をいう。プロトン性溶媒としては、たとえば、水;
メタノールおよびエタノール等のアルコール
酢酸等のカルボン酸
フェノール
液体アンモニア
が挙げられる。このうち、水やアルコールは本発明における易動性をさらに安定的に測定可能である。

0021

また、本発明において、「異なる勾配磁場」とは、一方の勾配磁場がゼロ、つまり勾配磁場を印加せずに行った測定である場合も含む。

0022

また、本発明において、「パルスシーケンス」とは、励起用振動磁場と勾配磁場を印加する時刻とその間隔とを設定するタイミングダイアグラムを規定するシーケンスである。ここで、タイミングダイアグラムは、時系列的に必要な操作を行う手順表も含んでいる。

0023

本発明における勾配磁場印加部は、種々の態様を採り得る。たとえば、小型RFコイルから離間して配置された勾配磁場印加コイルとすることができ、小型RFコイルと同一平面内に設けられた平面型コイルとしてもよい。また、小型RFコイルを挟んで配置された一対の勾配磁場印加コイルとしてもよい。あるいは、これらの構成を任意に組み合わせたものとしてもよい。

0024

本発明において、前記一対の勾配磁場印加コイルの平面形状が略半月状であって、半月の弦同士を前記小型RFコイル側に向けて対向配置された構成としてもよい。こうすることにより、省スペース化を図りつつ、高精度の局所的測定が可能となる。なお、本明細書において、略半月状とは、一対の平面コイル弦状直線領域を有し、これらを対向配置することにより、直線領域に垂直な方向に傾斜する勾配磁場を試料に印加することが可能な構成であることをいい、このような勾配磁場の印加が可能であれば、コイルの月型の平面形状が半月より大きくても小さくてもよい。

0025

本発明において、前記小型RFコイルを複数備え、該複数の小型RFコイルが、前記試料の複数箇所に対し、前記励起用振動磁場を印加するとともに、前記励起用振動磁場および前記勾配磁場に対応するNMR信号を取得し、前記演算部が、前記試料の前記複数箇所における前記易動性を算出する構成としてもよい。かかる構成によれば、簡易な構成で多点同時測定が可能となる。複数の小型RFコイルの配置は任意であり、測定対象の形状等に応じてアレイ化することができる。

0026

本発明において、前記小型RFコイルは、
(a)90°パルス、および、
(b)(a)のパルスの時間τ経過後に印加される180°パルス
からなるパルスシーケンスで、前記励起用振動磁場を印加する構成とすることができる。こうすることにより、易動性をさらに正確に求めることができる。

0027

また、上記パルスシーケンスにくわえ、90°パルス(a)より時間τだけ前の時刻に、180°パルスを印加するステップを加えた別のシーケンスを実行するようにしてもよい。90°パルス(a)で取得したNMR信号の強度と、180°パルス(b)での時間τを適宜選んで取得したNMR信号の強度とを比較することで、RFコイルから照射する励起用振動磁場の強度が、正確に90°、180°に対応しているかを判断することができる。二つのパルスの強度が1対2の関係にあり、磁化ベクトルをそれぞれ90°および180°に励起することが測定値の確からしさと再現性を向上させる重要な要因となる。この結果、装置の異常または調整の未熟さにより二つのパルスの関係が不適切になった場合でも、測定を行う前の段階で異常を検知でき、測定値をより確からしいものとすることができる。

0028

本発明によれば、小型コイルを用い、試料の特定箇所に対して局所的にスピンエコー法および勾配磁場NMR法を適用する構成を採用しているため、試料中の特定箇所の局所的なプロトン性溶媒の易動性を短時間で測定することができる。

0029

以上のような本発明は、試料中の局所的なプロトン性溶媒の易動性を測定するものであり、そのような要請のある種々の技術分野に応用することができる。たとえば、水素供給型燃料電池駆動制御において、固体電解質膜の局所的なプロトン性溶媒の易動性をリアルタイムで計測する技術、計測されたプロトン性溶媒の易動性に基づいて燃料中の水分供給量を制御したり、燃料電池の運転条件を制御したりする技術等に好適に適用することができる。

0030

さらに、
本発明によれば、
磁気共鳴法を用いて試料中の特定箇所のプロトン性溶媒の挙動を測定する装置であって、
前記試料に対して静磁場を印加する静磁場印加部と、
前記試料に対して勾配磁場を印加する勾配磁場印加部と、
前記試料に対して励起用振動磁場を印加するとともに、前記試料中の特定箇所で発生した磁気共鳴信号を取得する、前記試料よりも小さい小型RFコイルと、
前記試料中の特定箇所のプロトン性溶媒量を測定する第一の測定モードと、前記試料中の特定箇所のプロトン性溶媒の易動性を測定する第二の測定モードとを含む複数の測定モードのうちいずれかを選択する測定モード選択部と、
前記測定モード選択部により選択された測定モードに応じて前記小型RFコイルおよび前記勾配磁場印加部の動作を制御する制御部と、
前記第一の測定モードにおいて取得された磁気共鳴信号に基づいて前記試料中の特定箇所のプロトン性溶媒量を算出する第一の算出部と、
前記第二の測定モードにおいて取得された磁気共鳴信号に基づいて前記試料中の特定箇所のプロトン性溶媒の易動性を算出する第二の算出部と、を備え、
前記制御部は、
前記第一の測定モードにあるとき、前記試料の特定箇所に対し、前記小型RFコイルにより励起用振動磁場を印加するとともに、前記励起用振動磁場に対応して前記特定箇所に発生する磁気共鳴信号を前記小型RFコイルにより取得し、
前記第二の測定モードにあるとき、前記試料の特定箇所に対し、前記小型RFコイルにより励起用振動磁場を印加するとともに前記勾配磁場印加部により勾配磁場を印加し、これらの磁場に対応して発生する磁気共鳴信号を前記小型RFコイルにより取得する
ように構成されたことを特徴とする測定装置が提供される。

0031

また、本発明によれば、試料に対して静磁場を印加する静磁場印加部と、前記試料に対して勾配磁場を印加する勾配磁場印加部と、前記試料に対して励起用振動磁場を印加するとともに、前記励起用振動磁場及び前記勾配磁場に対応する磁気共鳴信号を取得する、前記試料よりも小さい小型RFコイルと、を備えた測定装置を使用し、磁気共鳴法を用いて試料中の特定箇所のプロトン性溶媒量及び前記特定箇所のプロトン性溶媒の易動性を測定する方法であって、
プロトン性溶媒量を測定する第一の測定モードを選択し、前記励起用振動磁場を印加して、プロトン性溶媒量を測定するステップと、
前記プロトン性溶媒の易動性を測定する第二の測定モードを選択し、所定のパルスシーケンスに従って前記勾配磁場および前記励起用振動磁場を印加してプロトン性溶媒の易動性を測定するステップとを含み、
前記プロトン性溶媒量を測定する前記ステップは、静磁場におかれた前記試料の特定箇所に対し、前記小型RFコイルを用いて、励起用振動磁場を複数回、順次印加するとともに前記励起用振動磁場に対応する複数の磁気共鳴信号を取得するステップと、
前記磁気共鳴信号の強度から、前記試料中の特定箇所における前記プロトン性溶媒量を求めるステップとを含み、
前記易動性を測定するステップは、静磁場におかれた前記試料の特定箇所に対して、前記小型RFコイルを用いて、励起用振動磁場の印加を所定のパルスシーケンスにしたがって実行する第1ステップと、
前記第1ステップのパルスシーケンスに対応する磁気共鳴信号を、前記小型RFコイルを使用して取得する第2ステップと、
前記試料の特定箇所に対して、励起用振動磁場および勾配磁場の印加を所定のパルスシーケンスにしたがって実行する第3ステップと、
前記第3ステップのパルスシーケンスに対応する磁気共鳴信号を小型RFコイルを使用して取得する第4ステップと、
前記第2ステップで得られた磁気共鳴信号と、前記第4ステップで得られた磁気共鳴信号とに基づいて、前記試料の特定箇所におけるプロトン性溶媒の易動性を算出する第5ステップとを含むことを特徴とする測定方法が提供される。

0032

さらに、本発明によれば、試料に対して静磁場を印加する静磁場印加部と、前記試料に対して勾配磁場を印加する勾配磁場印加部と、前記試料に対して励起用振動磁場を印加するとともに、前記励起用振動磁場及び前記勾配磁場に対応する磁気共鳴信号を取得する、前記試料よりも小さい小型RFコイルと、を備えた測定装置を制御して、
前記試料のプロトン性溶媒量を測定する第一の測定モードを選択し、前記励起用振動磁場を印加して、プロトン性溶媒量を測定するステップと、
前記プロトン性溶媒の易動性を測定する第二の測定モードを選択し、所定のパルスシーケンスに従って前記勾配磁場および前記励起用振動磁場を印加してプロトン性溶媒の易動性を測定するステップとを実行させるプログラムであって、
前記プロトン性溶媒量を測定する前記ステップは、静磁場におかれた前記試料の特定箇所に対し、前記小型RFコイルを用いて、励起用振動磁場を複数回、順次印加するとともに前記励起用振動磁場に対応する複数の磁気共鳴信号を取得するステップと、
前記磁気共鳴信号の強度から、前記試料中の特定箇所における前記プロトン性溶媒量を求めるステップとを含み、
プロトン性溶媒の易動性を測定する前記ステップは、静磁場におかれた前記試料の特定箇所に対して、前記小型RFコイルを用いて、励起用振動磁場の印加を所定のパルスシーケンスにしたがって実行する第1ステップと、
前記第1ステップのパルスシーケンスに対応する磁気共鳴信号を、前記小型RFコイルを使用して取得する第2ステップと、
前記試料の特定箇所に対して、励起用振動磁場および勾配磁場の印加を所定のパルスシーケンスにしたがって実行する第3ステップと、
前記第3ステップのパルスシーケンスに対応する磁気共鳴信号を小型RFコイルを使用して取得する第4ステップと、
前記第2ステップで得られた磁気共鳴信号と、前記第4ステップで得られた磁気共鳴信号とに基づいて、前記試料の特定箇所におけるプロトン性溶媒の易動性を算出する第5ステップとを含むことを特徴とするプログラムが提供される。

0033

以上のような本発明によれば、プロトン性溶媒量を測定する測定モードでは、試料よりも小さい小型RFコイルを用いて、測定対象となる部位を限定し、特定箇所におけるプロトン性溶媒量を測定することができる。また、易動性を測定する測定モードにおいても、勾配磁場印加部及び小型RFコイルを使用して、測定対象となる部位を限定し、前記特定箇所における易動性を測定することができる。
したがって、プロトン性溶媒量と、プロトン性溶媒の易動性とを試料の同じ位置で計測することができるので、試料の局所的なプロトン性溶媒の挙動を正確に把握することができる。

0034

ここで、本発明により測定される「プロトン性溶媒の挙動」としては、プロトン性溶媒量、プロトン性溶媒の易動性、プロトン性溶媒の移動量が挙げられる。
また、本発明により測定される「易動性」とは、試料中におけるプロトン性溶媒の移動のしやすさを表す物性値をいう。こうした物性値としては、自己拡散係数、および移動度(移動速度)等のパラメータが挙げられる。

0035

なお、前述したように、本明細書において、プロトン性溶媒とは、自分自身で解離してプロトンを生じる溶媒をいうが、プロトン性溶媒を水やアルコールとした場合には、本発明におけるプロトン性溶媒量、プロトン性溶媒の易動性をより、安定的に測定することができる。

0036

さらに、本発明における静磁場は、磁気共鳴信号の取得を安定的に行うことが可能な程度に時間的に安定な磁場であれば、完全に安定な磁場でなくてもよく、その範囲内で多少の変動があってもよい。
また、第一の測定モードにおける磁場の印加は、小型RFコイルによる励起用振動磁場の印加のみに限られるものではない。例えば、ゼロに近い程度のわずかな勾配磁場を印加してもよい。
また、例えば、Carr-Purcell-Meiboom-Gill法 (以下では、これをCPMG法と略す。)により、プロトン性溶媒量の計測を行う場合、試料に励起用振動磁場が理想的に適切な強度で、一様に印加されなかった場合には「FIDの流れ込み」(励起用振動磁場を印加する際に、90°パルス、180°パルスを印加するが、180°パルスを印加した後に受信される不要な磁気共鳴信号)が観測されることがある。これを消去するためには180°パルスの前後に短い勾配磁場を印加して、不要な信号の磁化ベクトルの位相をわざと乱して「流れ込みを消す(スポイル)」操作が有効となる。特に、磁気共鳴信号が良く出てくる水を多く含む試料や、小型RFコイルを使用する場合には、この操作が有効である。
小型RFコイルを用いた場合には、コイルから照射される励起用振動磁場の強度は小型RFコイルからの距離によって異なり、試料全体が均一に励起されることはない。このため、180°パルスの後に不要な磁気共鳴信号が、均一励起可能なソレノイドコイルに比べて強く観測されてしまう。これを低減させる方法として、180°パルスの前後に短い勾配磁場を印加する操作(スポイル)を行うことは有効なのである。

0037

また、第二の測定モードにおいて、勾配磁場及び励起用振動磁場を印加する所定のパルスシーケンスとは、励起用振動磁場及び勾配磁場を印加する時刻とその間隔を設定するタイミングダイアグラムを規定するシーケンスである。

0038

ここで、本発明の測定装置は、前記第一の算出部で算出したプロトン性溶媒量と、前記第二の算出部で算出したプロトン性溶媒の易動性とに基づいて、プロトン性溶媒の移動量を算出する第三の算出部を備えるものであってもよい。
第三の算出部を設けることで、局所的なプロトン性溶媒の移動量を把握することが可能となる。

0039

また、本発明の測定装置は、前記小型RFコイル及び前記勾配磁場印加部を支持する支持体を有するものであってもよい。
小型RFコイルと、勾配磁場印加部とを同じ支持体により支持させることで、支持体を試料に対し接近させれば、試料のプロトン性溶媒量等の測定が可能となる。そのため、測定装置の使い勝手を向上させることができる。

0040

さらに、本発明では、前記静磁場印加部は、前記支持体に取り付けられていてもよい。
小型RFコイル、勾配磁場印加部に加え、静磁場印加部を前記支持体に取り付けることで、より使い勝手のよい測定装置とすることができる。

0041

また、本発明では、前記支持体は、スティック状であり、その先端部に前記小型RFコイル及び前記勾配磁場印加部が取り付けられていてもよい。
ここで、スティック状の支持体とは、一直線状に延びるものに限らず、例えば、L字型、コ字型に屈曲したものであってもよい。
支持体をスティック状とすることで、作業者が支持体を把持し、この支持体の先端部を試料の特定箇所に接近させるだけで、測定を行うことができる。

0042

さらに、本発明では、小型RFコイルは、前記勾配磁場印加部よりも前記試料側に突出していてもよい。
また、本発明では、前記小型RFコイルに対する前記勾配磁場印加部の相対位置が調整可能に構成されていてもよい。例えば、測定装置は、小型RFコイル及び前記勾配磁場印加部が取り付けられた支持体を備え、前記支持体は、前記試料側に位置する先端部に勾配磁場印加部が取り付けられた本体部と、この本体部の前記先端部に形成された孔内を進退する可動部材とを備え、前記可動部材の前記試料側に位置する先端部には、小型RFコイルが設けられる構造であってもよい。

0043

また、本発明では、複数の前記小型RFコイルを備え、前記勾配磁場印加部は、複数の勾配磁場印加コイルを有し、前記勾配磁場印加コイルと、前記小型RFコイルとは、交互に配置されていてもよい。
複数の小型RFコイルと、複数の勾配磁場印加コイルとを配置することで、試料におけるプロトン性溶媒量等の分布を測定することが可能となる。
また、複数の小型RFコイルと、勾配磁場印加コイルとを交互に配置することで、一対の小型RFコイル間に配置される勾配磁場印加コイルは、一対の小型RFコイルに対し、勾配磁場を与えることができる。

0044

さらに、本発明の測定装置は、少なくとも一つの小型RFコイルと、一つの勾配磁場印加コイルとを有するユニットを備え、前記ユニットを複数配列させて、前記勾配磁場印加コイルと、前記小型RFコイルとを交互に配置したものであってもよい。

0045

また、本発明の測定装置は、前記第一の算出部が、前記磁気共鳴信号の強度からプロトン性溶媒量の見積値を算出する見積部と、前記プロトン性溶媒量の見積値に対し、前記小型RFコイルのサイズに応じた補正を施し、前記プロトン性溶媒量を算出する補正部とを含むものであってもよい。この際、前記見積部で算出されたプロトン性溶媒量の見積値に対し、前記小型RFコイルのサイズに応じた補正を施すための補正パラメータあるいは補正式が記憶された記憶部を有し、前記補正部では、前記記憶部から補正パラメータあるいは補正式を読み出し、前記プロトン性溶媒量の見積値を補正して、前記プロトン性溶媒量を算出することが好ましい。

0046

さらに、前記第二の算出部が、前記励起用振動磁場及び前記勾配磁場を印加することにより、得られた磁気共鳴信号に基づいて、易動性の見積値を算出する見積部と、前記易動性の見積値に対し、前記小型RFコイルのサイズに応じた補正を施し、前記易動性を算出する補正部とを含むものであってもよい。この際、前記見積部で算出された易動性の見積値に対し、前記小型RFコイルのサイズに応じた補正を施すための補正パラメータあるいは補正式が記憶された記憶部を有し、前記補正部では、前記記憶部から補正パラメータあるいは補正式を読み出し、前記易動性の見積値を補正して、前記易動性を算出することが好ましい。
小型RFコイルを用いて磁気共鳴信号を取得する際には、不要な磁気共鳴信号と計測すべきエコー信号干渉することで、計測の確からしさが低下し、計測のばらつきが大きくなると考えられる。このため、小型RFコイルのサイズや、幾何学形状、例えば、小型RFコイルの外径内径と外径の比などによって易動性、プロトン性溶媒量が増減したりする結果が観測されると考えられる。
これに対し、上記構成では、易動性の見積量、プロトン性溶媒量の見積値に対し、小型RFコイルのサイズに応じた補正を行なっているので、正確な易動性、プロトン性溶媒量を把握することができる。

0047

また、前記小型RFコイルに前記励起用振動磁場を発生させるRF励起パルスを生成するRF励起パルス生成部と、前記小型RFコイルにより取得された磁気共鳴信号を検出するとともに、該磁気共鳴信号を前記第一の算出部又は第二の算出部に送出する磁気共鳴信号検出部と、前記小型RFコイル、前記RF励起パルス生成部および前記磁気共鳴信号検出部を接続する分岐部に設けられ、前記小型RFコイルと前記RF励起パルス生成部とが接続された状態と、前記小型RFコイルと前記磁気共鳴信号検出部とが接続された状態とを切り替えスイッチ回路とを備えるものであってもよい。
このような構成とすることにより、小型RFコイルから試料に印加される励起用高周波パルスの損失を防止することができる。
さらには、本発明においては、前記小型RFコイルは、平面型コイルであり、小型RFコイルの内径/外径が0.65以上、1以下であることが好ましい。

0048

以上のような本発明によれば、「プロトン性溶媒の量」と、「プロトン性溶媒の易動性」とを試料の同じ位置で計測し、試料の局所的なプロトン性溶媒の挙動を正確に把握することができる。たとえば、水素供給型燃料電池の駆動制御において、固体電解質膜の局所的なプロトン性溶媒の易動性、プロトン性溶媒の量をリアルタイムで計測する技術、計測されたプロトン性溶媒の易動性、プロトン性溶媒の量に基づいて燃料中の水分供給量を制御したり、燃料電池の運転条件を制御したりする技術等に好適に適用することができる。

図面の簡単な説明

0049

上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。

0050

局所的水分量測定方法概要を示すフローチャートである。
スピンエコー法の補償機能について説明するための図である。
スピンエコー法によりT2緩和時定数を測定する原理を説明するための図である。
勾配磁場分布を説明する図である。
正負一対パルス勾配磁場を説明する図である。
磁化ベクトルMの時間変化を示す図である。
磁化ベクトルMの時間変化を示す図である。
磁化ベクトルMの時間変化を示す図である。
磁化ベクトルMの時間変化を示す図である。
自己拡散係数計測のパルスシーケンスの例を示す図である。
局所的易動性測定方法の概要を示すフローチャートである。
本発明の第一実施形態の測定装置の構成を示すブロック図である。
本実施形態に係る易動性測定装置のデータ処理部の概略構成を示す図である。
本実施形態に係る易動性測定装置の小型RFコイルの一例を示す図である。
本実施形態に係る易動性測定装置の励起用振動磁場の印加およびNMR信号の検出を行うLC回路の一例を示す図である。
本実施形態に係る易動性測定装置のスイッチ部の構成を示す図である。
本実施形態に係る易動性測定装置の第1Gコイルおよび第2Gコイルの配置を説明する図である。
図12に示した装置の制御部の周辺の構成を示す図である。
第二実施形態に係る易動性測定装置の概略構成を示す図である。
第三実施形態に係る易動性測定装置の一対のGコイルの配置を説明する図である。
第三実施形態に係る易動性測定装置の一対のGコイルの配置を説明する図である。
第三実施形態に係る易動性測定装置のGコイルの配置を説明する図である。
第四実施形態のセンサ部の構成の例を示す図である。
図23に示したセンサ部を試料の一方の面の上部に配置した様子を示す図である。
図23の変形例を示す図である。
第五実施形態にかかる測定装置の構成を示す図である。
第五実施形態の測定装置のGコイルと、小型RFコイルとの配置を示す模式図である。
第五実施形態の測定装置のGコイルと、小型RFコイル、磁石との配置を示す模式図である。
第五実施形態の測定装置の制御部の構成を示すブロック図である。
第五実施形態の測定装置の水分量算出部の構成を示すブロック図である。
第五実施形態の測定装置の水分量計算部の構成を示すブロック図である。
第五実施形態の測定装置の易動性算出部の構成を示すブロック図である。
第五実施形態の測定装置の自己拡散係数計算部の構成を示すブロック図である。
第五実施形態の測定装置の移動量算出部の構成を示すブロック図である。
第六実施形態にかかる測定装置の要部を示す模式図である。
第六実施形態にかかる測定装置の要部を示す模式図である。
第七実施形態にかかる測定装置の要部を示す模式図である。
第七実施形態にかかる測定装置の要部を示す模式図である。
第七実施形態にかかる測定装置の要部を示す模式図である。
第七実施形態にかかる測定装置の易動性計算部を示すブロック図である。
第八実施形態にかかる測定装置の要部を示す模式図である。
第八実施形態にかかる小型RFコイルを示す模式図である。
第八実施形態にかかる測定装置の要部を示す模式図である。
第九実施形態にかかる測定装置の要部を示す模式図である。
第十実施形態にかかる測定装置のGコイルと、小型RFコイルの配置を示す図である。
(A)及び(B)は、第十実施形態にかかるユニットの平面図である。
実施例1における自己拡散係数の測定結果を示す図である。
実施例2における自己拡散係数の測定結果を示す図である。
実施例3における自己拡散係数の測定結果を示す図である。
実施例4のメタノール含有量30mgの固体高分子膜からCPMG法で取得されたエコー信号を示す図である。
実施例4のメタノール含有量30mgの固体高分子膜から得られたグラフを示す図である。
実施例4のメタノール含有量115mgの固体高分子膜からCPMG法で取得されたエコー信号を示す図である。
実施例4のメタノール含有量115mgの固体高分子膜から得られたグラフを示す図である。
高分子膜中に含まれるメタノール量と、T2緩和時定数との関係を示す図である。
単位体積あたりのメタノール量(mg/mm3)と、T2緩和時定数との関係を示す図である。
高分子膜中に含まれるメタノール量と、自己拡散係数との関係を示す図である。
単位体積あたりのメタノール量(mg/mm3)と、自己拡散係数との関係を示す図である。
実施例5の結果を示す図である。
実施例6における固体高分子電解質膜と、ソレノイド型コイルとを示す図である。
実施例6におけるソレノイド型コイルを用いた場合の自己拡散係数の測定結果を示す図である。
実施例6におけるソレノイド型コイルを用いた場合の自己拡散係数の測定結果を示す図である。
実施例6におけるソレノイド型コイルを用いた場合のT2(CPMG)緩和時定数の測定結果を示す図である。
実施例6における固体高分子電解質膜と、小型RFコイルとを示す図である。
実施例6における小型RFコイルを用いた場合の自己拡散係数の測定結果を示す図である。
自己拡散係数の測定例を示す図である。
回巻きの小型RFコイル(外径1mm、内径1mm、内径/外径=1)を使用した場合のエコー信号受信強度分布を示す図である。
3回巻きの小型RFコイル(外径1mm、内径0.5mm、内径/外径=0.5)を使用した場合のエコー信号受信強度分布を示す図である。

発明を実施するための最良の形態

0051

次に、本発明の内容を実施の形態に基づいて説明する。実施の形態で参照するすべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。

0052

測定原理
はじめに、後述する各実施形態における水分量(プロトン性溶媒量)及び水分子の移動のしやすさ(易動性)の測定原理について、例を挙げて説明する。
まず、水分量の算出について説明する。
(A)水分量の算出
図1は、水分量の算出の概要を示すフローチャートである。
まず、はじめに、試料を磁石が配置された空間に置き、試料に静磁場を印加する(S102)。
この状態で、試料に対して、励起用振動磁場を印加し、これに対応するNMR信号(エコー信号)を取得する(S104)。励起用振動磁場は、試料内の計測対象核に照射する高周波パルスであり、NMR信号は、上記励起用振動磁場による核磁気共鳴現象によって試料内の計測対象核から放出された信号である。
次いで、このエコー信号からT2緩和時定数を算定する(S106)。
このT2緩和時定数から、試料中の局所的水分量を測定する(S108)。具体的には、試料中の水分量とT2緩和時定数との相関関係を示すデータを取得し、このデータと上記T2緩和時定数とから、試料中の特定箇所における局所的な水分量を求める。その後、結果を出力する(S110)。

0053

以下にステップ104〜ステップ108について詳細に説明する。
(i)ステップ104(励起用高周波パルスの印加およびNMR信号の取得)
ステップ104について、以下、詳細に説明する。ステップ104では、試料に対し励起用高周波パルスを印加するが、この励起用高周波パルスは、複数のパルスからなるパルスシーケンスとし、これに対応するエコー信号群を取得するようにすることが好ましい。こうすることにより、T2緩和時定数を正確に求めることができる。パルスシーケンスは、以下の(a)、(b)からなるものとすることが好ましい。
(a)90°パルス、および、
(b)(a)のパルスの時間τ経過後からはじまり、時間2τの間隔で印加されるn個の180°パルス

0054

本実施形態では、CPMG法を用いて、T2(横)緩和時定数を算出する。
静磁場中に置かれた水素原子核は静磁場に沿った方向(便宜上、Z方向とする)に正味の磁化ベクトルを持っている。特定の周波数(これを共鳴周波数と呼ぶ)のRF波を、外部からZ軸に垂直なX軸方向に沿って、照射することで磁化ベクトルはY軸の正方向に傾斜し、核磁気共鳴信号(NMR信号と呼ぶ)を観測することができる。

0055

まず、磁化ベクトルを90°パルスによってY軸の正方向に傾斜させた後、τ時間後に「Y軸方向」に外部から180°励起パルスを照射して、磁化ベクトルを「Y軸を対称軸として」反転させる。この結果、2τ時間後には磁化ベクトルがY軸の「正の方向」上で収束し、大きな振幅を持つエコー信号が観測される。さらに、3τ時間後に磁化ベクトルに「Y軸方向」に外部から180°励起パルスを照射して、再度、Y軸の「正の方向」上で収束させて、4τ時間後に大きな振幅を持つエコー信号を観測する。さらに、同様の2τ間隔で、180°パルスを照射し続ける。この間、2τ,4τ,6τ,・・・の偶数番目のエコー信号のピーク強度を抽出し、指数関数フィッティングすることで、CPMG法によるT2(横)緩和時定数を算出することができる。

0056

このように、本実施形態では、磁化ベクトルを「Y軸を対称軸として」反転させるため、以下の補償機能が発現する。図2は、本実施形態のCPMG法の補償機能を説明する図である。なお、図で示される座標は、回転座標系である。試料の中に、静磁場の不均一性が無視できるような小さな領域の核磁化として、PとQを考える。Pにおける磁場がQにおける磁場より強いものとする。このとき、図2(a)に示すように、90°パルスをx'軸方向へ印加すると、P、Qの核磁化は、回転座標系で同じ場所(y'軸)から歳差運動を始め、時間の経過とともに、Pの位相がQの位相より進んだものとなる(図2(b))。そこで、90°パルスから時間τ経過した時点でy'軸方向に180°パルスを印加すると、P、Qの核磁化はy'軸の周りに180°回転し、パルスを印加する前とy'軸に関して対称な配置になる(図2(c))。この配置では、より進んだ位相をもっていた核磁化Pが、逆にQより遅れた位相をもつため、これからさらに時間τ経過した時刻では、どちらの核磁化も同時にy′軸に達することになる(図2(d))。このような関係は、試料の中のあらゆる領域の核磁化について成り立つため、すべての核磁化は、この時刻にy'軸に集まり、その結果、大きなNMR信号が得られる。

0057

以上のように、本実施形態では、はじめにx'軸方向へ90°パルスを印加し、次いでy'軸方向に180°パルスを印加しているため、図2(c)で示したように、P、Qの核磁化はx'y'平面内で反転する。この核磁化の反転により、補償機能が良好に発現する。たとえば、磁場の不均一性、RFコイルが照射する励起パルス強度の不均一性等の原因により、P、Qの位置がx'y'平面上方または下方の位置にずれた場合でも、x'y'平面内で核磁化が反転することにより、ずれが補償される。

0058

(ii)ステップ106(T2緩和時定数の測定)
T2緩和時定数は、スピンエコー法を利用することにより的確に測定することができる(図3)。
共鳴励起された磁化ベクトルM−yは時間と共に緩和していく。この際に実際に観測される磁気共鳴信号の時間変化は、スピン−格子緩和時定数T1、スピン−スピン緩和時定数T2のみでは表すことができない別の時定数のT2*により緩和していく。この様子が図3最下段に信号強度の時間変化として90°励起パルスの直後から示されている。T2緩和による減衰曲線よりも実際に観測される減衰信号が速く減衰してしまう原因は静磁場マグネットの作る外部静磁場の不均一性、試料の磁気的性質や形状による試料内磁場の不均一性などにより試料の全体に渡って均一な磁場が確保されていないことによる。
この試料や装置特性としての磁場の不均一性による位相のずれを補正する方法として「スピンエコー」がある。これは90°励起パルスのτ時間後に、その2倍の励起パルス強度を持つ180°励起パルスを印加して、磁化ベクトルMの位相がxy平面上で乱れていく途中でその位相の乱れを反転させ、2τ時間後には位相を収束させてT2減衰曲線上にのるエコー信号を得るという手法である。
スピンエコーを使用した際のエコー信号の強度SSEは、TR>>TEの場合には以下の式(A)で表される。

0059

(数1)

0060

ここで、ρは位置(x,y,z)の関数としての対象核種密度分布、TRは90°励起パルスの繰り返し時間(100msから10s程度)、TEはエコー時間(2t、1msから100ms程度)、AはRFコイル検出感度アンプ等の装置特性を表す定数である。
T2減衰曲線上にのるエコー信号群と、上記式(A)からT2緩和時定数を求めることができる。

0061

(iii)ステップ108(水分量の測定)
ステップ108では、緩和時定数から水分量を算出する。試料中の水分量とT2緩和時定数とは、正の相関を持つ。水分量の増加につれてT2緩和時定数が増大する。この相関関係は、試料の種類や形態等により異なるので、あらかじめ、水分濃度がわかっている測定対象試料と同種の試料について検量線を作成しておくことが望ましい。すなわち、水分量が既知の複数の標準試料に対して水分量とT2緩和時定数との関係を測定し、この関係を表す検量線をあらかじめ求めておくことが望ましい。このようにして作成した検量線を参照することで、T2緩和時定数測定値から試料中の水分量を算出することができる。

0062

次に、易動性の算出について説明する。
(B)易動性の算出
核磁気共鳴(NMR)法を元に、
(a)小型表面コイルを用いた局所計測、および
(b)勾配磁場NMR法による水分子の自己拡散係数の計測、
を行うことにより、高分子膜の性状を示す「プロトン性溶媒分子の移動のしやすさ」を局所的に短時間で計測する。なお、「勾配磁場NMR法」はたとえば、PGSE法、フローエンコードパルス動き検出磁場勾配などの名称で呼ばれることがあり、これらはすべて勾配磁場を利用して分子の動き顕在化させる手法であるが、以下の実施形態においては、これらを代表させてPGSE法と記載しておく。以下、上記(a)および(b)について詳述する。

0063

(a)小型表面コイルを用いた局所計測
核磁気共鳴(NMR)法は、磁場中に置かれた原子核スピン共鳴現象により核磁化の運動をNMR信号として検出することで原子数密度とスピン−スピン緩和時定数、さらには「勾配磁場を印加することで対象分子の自己拡散係数」を計測することができる。1Teslaの磁場中でのスピン共鳴周波数は約43MHz(本実施形態においては、この周波数帯を、適宜、「Radio frequency」と呼ぶ)であり、その周波数帯を高感度に選択的に検出するためにLC共振回路が用いられる。

0064

図14は、第一の実施形態において後述するLC共振回路のコイル部(図15)の構成の一例を示す図である。図14より、共振回路のコイル部(インダクタンス部)を小型表面コイルとし、しかも、図14左側の写真に示すように、平面状の「渦巻き型」のコイルとすることで、計測領域を限定し、局所的な測定を行うことができる。このような渦巻き型のコイルの計測領域は幅がコイルの直径程度、深さがコイル半径程度である。また、このコイルは、通常のソレノイド型コイルと異なり、平面状であるために、図14右側の写真に示すように、平面状の試料の上に貼り付けるだけで、NMR信号を取得することができる。

0065

(b)PGSE(Pulsed−Gradient Spin−Echo)法による水分子の自己拡散係数の計測
自己拡散係数の計測法として、PGSE法を用いる。
液体分子内の特定の核スピンを磁気共鳴により励起させた後に、数10msの間隔を置いて一対の勾配磁場パルス(パルス状の勾配磁場)を印加すると、その間に個々の原子核がブラウン運動や拡散によって移動して、核スピンの位相が収束しなくなるためにNMR信号強度は低下する。この際、段階的に変化させた勾配磁場パルスとNMR信号強度の低下とを関連させることで特定分子種の自己拡散係数を算出することができる。これがPGSE法による自己拡散係数の測定原理である。

0066

PGSE法の測定手順の一例を示す。
(a1)試料の周囲に設置した「勾配磁場印加コイル」に1〜10A程度の正負一対のパルス電流をある一定時間、たとえば、1〜10ms程度だけ流す。
(b1)(a1)によって、空間的、つまりx、y、z方向のいずれかにある一定時間だけ一定の勾配を持つ正負一対の磁場分布を形成する。たとえば、x方向分布ならば、磁場Hは
H=H0+G(x−x0) (I)
である。ここで、Gは磁場の勾配で、単位はT/mである。また、正負一対とは、+G、−Gの勾配を意味する。また、H0は、時間的に安定した一様磁場の強度である。
(c1)(b1)の正負一対の勾配磁場の下でNMR信号を取得し、その信号強度から自己拡散係数Dを算出する。

0067

図4は、上記(b1)における勾配磁場分布を説明する図である。図4においては、x方向の磁場分布を例にとり、x方向に、上記式(I)に示される「正の一定の勾配G」で増加していく勾配磁場分布を示した。また。図4には、対比として、x方向に「負の一定の勾配−G」で減少していく勾配磁場分布をあわせて表した。このとき、磁場Hは、
H=H0−G(x−x0)
である。

0068

図5は、上記(a1)により形成される正負一対の勾配磁場パルスを説明する図である。図5において、勾配磁場は一定時間dだけ保持されて、正の勾配+Gから負の勾配−Gへと変化する。図5では、磁場強度が時間的に変化する様子を、x=x1での磁場強度を例として図示している。PGSE法では、勾配磁場Gを保持している時間dと正負一対の勾配磁場の時間間隔パルス間隔)Δとから自己拡散係数Dを算出することができる。

0069

次に、ある分子集団が作る磁化Mの位置が固定されている(静止している)場合に、PGSE法が適用された「磁化ベクトルM(以下、単に「磁化M」とも呼ぶ。)の位相」の時間的変化について説明する。図6および図7は、磁化ベクトルMの時間変化を示す図である。図6および図7は、図5において、それぞれ、正の勾配+Gおよび負の勾配−Gが印加された場合に対応する。

0070

まず、図5において、正の勾配+Gが印加された場合、図6に示したように、磁化Mの回転周波数ωは、各位置xでの磁場強度Hに比例して決定される。勾配磁場が印加されている一定時間dの間に、高磁場位置ではあるdΦ(図中Δφ)だけ位相が進むが、逆に、低磁場位置ではあるdΦだけ位相が遅れる。

0071

さらに具体的には、静磁場H0に比較して高い磁場Hが印加された磁化Mでは、dΦ+だけ位相が進む。式で記述すれば、
dΦ+=γ×(H−H0)×d[rad]
=γ×G×(xa−x0)×d[rad]
となる。dΦが正であれば、位相は進む。

0072

一方、図5において、負の勾配−Gが印加された場合には、静磁場H0に比較して低い磁場Hが印加され、磁化Mでは、dΦ-だけ位相が遅れる。式で記述すれば、
dΦ-=γ×(H−H0)×d[rad]
=γ×(−G)×(x-a−x0)×d[rad]
となる。dΦが負なので、位相は遅れる。

0073

その後、図5において、負の勾配−Gが印加されると、図7に示したように、磁場強度Hに比例した回転周波数ωで磁化Mは回転するが、正の勾配+Gが印加された場合とは勾配が逆であるため、位相が進んでいたところは遅れ始め、遅れていたところは位相が進み始める。

0074

以上により、一定時間dが経つと、位相はすべて同じ位相となり、「パルス勾配磁場」をかけていない場合と全く同じ結果となる。

0075

次に、試料中のプロトン性溶媒分子が、通常の分子のように熱振動をして、その位置が絶えずランダムに移動している場合について説明する。図8および図9は、磁化ベクトルMの時間変化を示す図である。図8および図9は、図5において、それぞれ、正の勾配+Gおよび負の勾配−Gが印加された場合に対応する。

0076

ランダムに動く分子集団が作る磁化Mを考える。静磁場H0に比較して高い磁場Hが印加された磁化Mでは、dΦ+(random)だけ位相が進む。式で記述すれば、
dΦ+(random)=γ×(H−H0)×d[rad]
=γ×G×{x(t=0からd)−x0}×d[rad]
となる。dΦが正であれば、位相は進む。ここで、tは、勾配磁場を印加した時間を表す。

0077

一方、図5において、負の勾配−Gが印加された場合には、静磁場H0に比較して低い磁場Hが印加され、磁化Mでは、dΦ-だけ位相が遅れる。式で記述すれば、
dΦ-(random)=γ×(H−H0)×d[rad]
=γ×(−G)×{x(t=Δから(Δ+d))−x0}×d[rad]
となる。dΦが負なので、位相は遅れる。

0078

ここで、x(t=0からd)とx(t=Δから(Δ+d))とは等しくないため、dΦ+(random)とdΦ-(random)も等しくならない。このため、分子が熱振動によるランダムなブラウン運動をしている場合には、PGSE法による磁化Mの位相は相殺されず、その合成ベクトルであるNMR信号の強度は低下する。

0079

このようなNMR信号が低下する現象を利用して、勾配磁場を印加しない場合のNMR信号に対する勾配磁場を印加した場合のNMR信号の低下を検出することにより、試料中のプロトンの自己拡散係数Dを求めることができる。

0080

図10は、自己拡散係数Dを計測するために用いるPulsed−Gradient Spin−Echoシーケンスの例を示す図である。図10におけるシーケンスでは、通常のスピンエコーシーケンスに、180°励起パルスを対称軸として、印加時間と強度が等しい一対の勾配磁場パルスGzをz方向に加えて、NMR信号として、たとえばスピンエコー信号を取得する。NMR信号のピーク強度Sは,印加するパルス勾配磁場強度Gz[gauss/m]、印加時間d、パルス間隔Δに依存し、以下のような関係式でz方向の自己拡散係数Dz[m2/s]と関係付けられる。
ln(S/S0)=−γ2DzΔ2dGz2 (II)

0081

上記式(II)において、S0は、Gz=0とした時の通常のNMR信号強度を示す。また、d、ΔおよびGzは、それぞれ、勾配磁場パルスのパルス幅、一対の勾配磁場パルスの時間間隔、および勾配磁場パルスの磁場勾配(z方向)を示す。また、γは、磁気回転比を示し、核に固有の値である。S0は勾配磁場を印加しないGz=0の時のNMR信号のピーク強度、γは計測対象とする水素原子核1Hの磁気回転比42.577×102[1/gauss・s]である。

0082

なお、図10には、d=1.5ms、Δ=34.5msの場合のシーケンスが例示されている。たとえばこのようなパルスシーケンスで試料に磁場を印加することにより、NMR信号のピーク強度Sを用いて、自己拡散係数Dzを安定的に算出することができる。

0083

図11は、以上の測定の流れを総括するフローチャートである。図11のフローは、PGSE法を用いて試料の特定箇所の易動性を局所的に測定するものであり、以下のステップを含む。

0084

はじめに、試料を磁石などによって作られた静磁場中に置き、試料に静磁場を印加する。この状態で、試料に対して励起用振動磁場を印加し、これに対応するNMR信号を取得する(S201)。勾配磁場は無印加とする。ステップ201は、以下のステップを含む。
・試料に対する励起用振動磁場の印加を所定のパルスシーケンスにしたがって実行する第1ステップ、および、
・第1ステップのパルスシーケンスに対応するNMR信号を取得する第2ステップ。

0085

次に、試料中の同じ領域について、勾配磁場を印加して、ステップ202を実行し、NMR信号を取得する。ステップ202では、以下の第3ステップおよび第4ステップを一回または複数回実行する。
・励起用振動磁場および勾配磁場の印加を所定のパルスシーケンスにしたがって実行する第3ステップ、および、
・第3ステップのパルスシーケンスに対応するNMR信号を取得する第4ステップ。

0086

第1ステップおよび第3ステップにおいては、試料より小さい小型RFコイルを用い、試料の特定箇所に局所的な磁場を印加する(S202)。また、第2ステップおよび第4ステップにおいては、試料より小さい小型RFコイルを用い、試料の特定箇所からNMR信号を取得する。

0087

また、第1ステップにおいて、試料に対する勾配磁場の印加を所定のパルスシーケンスにしたがって実行するとともに、第3ステップにおいて、第1ステップと異なる大きさの勾配磁場の印加を所定のパルスシーケンスにしたがって実行することもできる。

0088

なお、図11においては、第1ステップにおいては、勾配磁場を印加しない例を示したが、第1ステップにおいて、第3ステップと異なる大きさの所定の勾配磁場を印加してもよい。このとき、たとえば、第1ステップにおける勾配磁場の大きさをゼロに近い値とすることが好ましい。勾配磁場をゼロに近い値とすることにより、
(1)勾配をゼロに近くすることで、NMR信号強度が最も大きくなり、信号対雑音比が高くなって、ノイズによる影響をできる限り小さく抑えることができ、
(2)勾配をゼロにしないことで、小型表面コイルの励起領域が一様ではなく、一部の領域では180°パルスがそれ以下の強度を持つパルスになってしまう場合に、不完全な180°パルスが印加されてしまう領域から発せられるNMR信号と、NMR信号が干渉して、信号が低下することを防ぐことができ、
これらの効果によって、より正確な自己拡散係数Dを測定することができる。

0089

つづいて、パルス勾配磁場の勾配を段階的に変えて得られた複数のNMR信号から自己拡散係数Dを算定する(S203)。ステップ203では、第2ステップで得られたNMR信号の情報と、前記第4ステップで得られたNMR信号の情報とに基づいて、試料の特定箇所の自己拡散係数Dを算出する。

0090

なお、ステップ203の手順の後、ステップ203で算出された自己拡散係数Dに基づいて、試料中におけるプロトン性溶媒の他の易動性を示すパラメータ算出してもよい。その後、結果を出力する(S204)。

0091

以下、各ステップの詳細について説明する。

0092

(i)ステップ201およびステップ202(励起用振動磁場の印加、勾配磁場の印加およびNMR信号の取得)
ステップ201およびステップ202では、試料に対し励起用振動磁場および勾配磁場を所定のシーケンスにしたがって印加する。具体的には、前述したように、ステップ201では勾配磁場をゼロまたはゼロに近い値とし、ステップ202では所定の勾配磁場を印加する。

0093

励起用振動磁場は、複数のパルスからなるパルスシーケンスであり、勾配磁場は、励起用振動磁場に対応する一対のパルスシーケンスである。パルスシーケンスは、以下の(a2)〜(d2)からなるものとすることが好ましい。
(a2)励起用振動磁場の90°パルス、
(b2)(a2)のパルス時間の経過後からはじまり、一定時間d印加される、勾配磁場パルス、
(c2)(a2)のパルスの時間τ経過後に印加される励起用振動磁場の180°パルス、および、
(d2)(c2)のパルス時間の経過後からはじまり、一定時間d印加される、勾配磁場パルス。

0094

そして、パルスシーケンスに対応するNMR信号を測定する。NMR信号のピーク強度Sは、図3に示したように、スピンエコー法により測定される。

0095

図8図9を参照して説明したように、本実施形態では、勾配磁場を段階的に印加して、磁場勾配を大きくした場合に対応したNMR信号の低下の程度を検出することにより、試料中のプロトンの自己拡散係数Dを算出する。ところが、実際の測定においては、試料や装置特性に起因する磁場の不均一が生じ、これにより、自己拡散係数Dの値が正確に得られないことがある。

0096

そこで、本実施形態では、スピンエコー法により、上記(a2)および(c2)のパルスシーケンスに従う励起用振動磁場を印加することにより、こうした磁場の不均一に起因する測定誤差を効果的に低減する。以下、この点について説明する。

0097

静磁場中に置かれた水素原子核は、静磁場に沿った方向(便宜上、Z方向とする)に正味の磁化ベクトルを持ち、特定の周波数(これを共鳴周波数と呼ぶ)のRF波をZ軸に垂直なX軸方向で外部から照射することで磁化ベクトルはY軸の正方向に傾斜し、核磁気共鳴信号(NMR信号と呼ぶ)を観測することができる。この際、最大強度のNMR信号を取得するために照射されたX軸方向の励起パルスを90°パルスと呼ぶ。そして、磁化ベクトルを90°パルスによってY軸の正方向に傾斜させた後、τ時間後に「Y軸方向」に外部から180°励起パルスを照射して、磁化ベクトルを「Y軸を対称軸として」反転させる。この結果、2τ時間後には磁化ベクトルがY軸の「正の方向」上で収束し、大きな振幅を持つNMR信号が観測される。このNMR信号のピーク強度Sを測定し、後述する勾配磁場との関係を求めることにより、自己拡散係数Dを算出することができる。

0098

このように磁化ベクトルを「Y軸を対称軸として」反転させるため、図2で示したCPMG法の補償機能と同様の補償機能が発現する。従って、(a2)〜(d2)からなるパルスシーケンスを採用した場合、磁場の不均一に起因する測定誤差を効果的に低減することができる。

0099

(ii)ステップ203(自己拡散係数Dの測定)
ステップ203では、NMR信号のピーク強度から自己拡散係数Dを求める。プロトンの自己拡散係数Dは、上述したように、PGSE法で取得されたNMR信号のピーク強度Sを用いて、式(II)で表される。勾配磁場Gを印加しなかった時のNMR信号のピーク強度S0と勾配磁場Gを印加した場合のNMR信号のピーク強度Sとから、上記式(II)を用いて、試料中のプロトンの自己拡散係数Dを求めることができる。たとえば、試料中の同じ勾配磁場Gの大きさを変えて測定を行い、ln(S/S0)と−γ2DΔ2dG2との関係をプロットすることにより、プロットの勾配から自己拡散係数Dを求めることができる。

0100

図65は、自己拡散係数Dの測定例を示す図である。ここでは、勾配磁場の大きさを変化させ蒸留水のNMR信号のピーク強度を測定した際のNMR信号強度の低下量を計測した。測定温度は25℃とした。式(II)より、ln(S/S0)−γ2DΔ2dG2の直線の勾配から自己拡散係数Dを求めることができる。

0101

以下、上述の原理による局所的易動性測定方法およびこの方法を実現する装置の例を第一実施形態〜第四実施形態で説明する。
また、上述の原理による局所的水分量および局所的易動性(本実施形態では易動性として自己拡散係数を測定する)測定方法、水分量及び水分子の易動性に基づく移動量の測定方法およびこれらの方法を実現する装置の例について、第五実施形態〜第十実施形態で説明する。

0102

(第一の実施形態)
図12は、本実施形態に係る易動性測定装置100の概略構成を示す図である。また、図13は、図12の装置のデータ処理部179およびパラメータテーブル127をさらに詳細に示す図である。
この装置は、勾配磁場NMR法を用いて試料(試料115)中のプロトン性溶媒の易動性を局所的に測定する装置であり、
試料115を載置する試料載置台116、
試料115に対して静磁場を印加する静磁場印加部(磁石113)、
試料115に対して勾配磁場を印加する勾配磁場印加部(第1Gコイル151、第2Gコイル153)、
試料115に対して励起用振動磁場を印加するとともに、励起用振動磁場および勾配磁場に対応するNMR信号を取得する、試料115より小さい小型RFコイル114、
勾配磁場および励起用振動磁場の印加を所定のパルスシーケンスにしたがって実行させる制御部(パルス制御部108)、および、
異なる勾配磁場に対応して得られたNMR信号の情報に基づいて、第1Gコイル151の特定箇所の易動性を算出する演算部130を備える。
第1Gコイル151および第2Gコイル153は、小型RFコイル114から離間して配置された勾配磁場印加コイルである。また、第1Gコイル151および第2Gコイル153は、いずれも平面型コイルであり、小型RFコイル114を挟んで上下に配置されている。
易動性測定装置100は、試料115の種類毎に、試料115中のプロトン性溶媒の易動性と自己拡散係数との相関関係を示す情報を保有する記憶部(パラメータテーブル127)を備えている。演算部130は、パラメータテーブル127から測定対象の試料に対応する情報を取得し、この情報に基づいて易動性を算出するように構成されている。
また、図13は、演算部130のデータ処理部179の詳細構造を示す図である。データ処理部179は、計算部173と補正部175とにより構成されている。計算部173は、異なる勾配磁場に対応して得られたNMR信号の強度から易動性計算値を計算する。補正部175は、計算部173により得られた易動性計算値を取得し、この計算値に対し、小型RFコイル114のサイズに応じ、必要に応じて補正を施す。補正の方法については後述する。
小型RFコイル114は、(a)90°パルス、および、(b)(a)のパルスの時間τ経過後に印加される180°パルスからなるパルスシーケンスで、励起用振動磁場を印加する。このパルスシーケンスは、90°パルスより時間τだけ前の時刻に印加される180°パルスを含んでもよい。また、(a)90°パルスが第1位相にあり、(b)180°パルスが、第1位相と90°ずれた第2位相にある構成とすることもできる。

0103

試料載置台116は、試料115を載置する台であり、所定の形状、材質のものを用いることができる。

0104

試料115は、測定対象となる試料中にプロトン性溶媒が保持された構成である。試料115を構成する試料は、膜、塊状物質等の固体、液体、寒天ゲル等のゼリー状物質等のゲル等、種々の形態のものとすることができる。膜状物質の場合、局所的なプロトン性溶媒の易動性の測定結果が安定的に得られる。特に、固体電解質膜等のように、膜中に水分を保持する性質の膜を試料とした場合、測定結果が一層、安定的に得られる。

0105

磁石113は、試料115全体に対して静磁場を印加する。この静磁場が印加された状態で励起用振動磁場および勾配磁場パルスが試料に印加され、自己拡散係数Dの測定がなされる。

0106

小型RFコイル114は、試料115の特定箇所に対し、励起用振動磁場を印加するとともに、励起用振動磁場に対応するNMR信号を取得する。NMR信号は、具体的には、励起用振動磁場が核磁気共鳴を発生させるための高周波パルスである。

0107

小型RFコイル114は、試料全体の大きさの1/2以下とすることが好ましく、1/10以下とすることがより好ましい。このようなサイズとすることにより、試料中のプロトン性溶媒の局所的易動性を短時間で正確に測定することが可能となる。なお、試料の大きさとは、たとえば、試料を載置したときの投影面積とすることができ、小型RFコイル114の専有面積を、上記投影面積の好ましくは1/2以下、より好ましくは、1/10以下とすることで、短時間で正確な測定が可能となる。小型RFコイル114の大きさは、たとえば、直径10mm以下とすることが好ましい。

0108

小型RFコイル114は、たとえば前述した図14に示すようなものを用いることができる。図示したような平面型コイルを用いることで、計測領域を限定することができる。
また、小型RFコイル114として平面型の小型コイルを使用する場合、小型RFコイル114の内径と外径との比(内径/外径)は、1に近いことが好ましく、具体的には、0.5以上、1以下、特には0.65以上、1以下であることが好ましい。
ここで、内径/外径が1である場合とは、小型RFコイルを1回巻きとし、小型RFコイルの線径をゼロとした場合である。
このように、小型RFコイルの内径と外径との比を0.5以上とすることで、小型RFコイルを使用した計測範囲を小型RFコイルの外形に対応した範囲とすることができる。
図66には、1回巻きの小型RFコイル(外径1mm、内径1mm、内径/外径=1)を使用した場合の小型RFコイル中心軸上でのエコー信号受信強度分布を示す。図66中、白丸はコイルの位置を示している。
また、図67には、3回巻きの小型RFコイル(外径1mm、内径0.5mm、内径/外径=0.5)を使用した場合の小型RFコイル中心軸上でのエコー信号受信強度分布を示す。図67中、白丸はコイルの位置を示している。
図66および図67においてz軸方向とは試料の厚み方向であり、x軸方向は試料の表面に沿った方向である。
図66および図67から、内径/外径が1である1回巻きの小型RFコイルの計測範囲は、小型RFコイルの外形に対応した範囲であることがわかる。これに対し、内径/外径が0.5である3回巻きの小型RFコイルの計測範囲は、小型RFコイルの外形から推測される計測範囲よりも狭いことがわかる。
なお、図66および図67のエコー信号受信強度分布を算出する際には、以下のように仮定した。
・コイルの線径はゼロとする。(無限小の線径)
導電時に表皮効果はないとする。(線径がゼロとしたことから、コイルの表面のみで電流が流れる効果も無視したこととなる。)
・3回巻きコイルでは、直径の異なる三つの円を同心円状に配置する。(渦巻状にはしない。)
・コイルは導線のみでできており、被覆膜は無視する。(誘電率、透磁率真空の値を使用する。)
リード部(コイル以外の配線部)は無視する。

0109

ここで、小型RFコイルの巻き数を少なくし、内径/外径を1に近づけると、小型RFコイルの外形に対応した計測領域が得られるものの、NMR信号を検出する感度が弱くなる。
一方、太い導線を使用し、小型RFの巻き数を多くすると、NMR信号の検出感度は高くなるものの、内径/外径が小さくなり、小型RFコイルの外形に対応した計測領域を得にくくなる。また、計測領域が小さくなって、NMR信号強度が低下し、信号対雑音比が低下する可能性もある。
従って、高い電気伝導率を維持しつつ、できるだけ細い導線を使用し、巻き数を多くしながら、内径/外径を1に近づけることが好ましい。
なお、小型RFコイルを太い導線で製造する場合の利点と欠点、小型RFコイルを細い導線で製造する場合の利点と欠点について以下に述べておく。
(a)小型RFコイルを太い導線で製造する際の利点と欠点
・導線の電気伝導率が高くなり、信号対雑音比が向上する。
・製造が容易となる。導線をめっき法、または、エッチングで製造する際に導線が太い線であるほど、導線に微細な穴が生じても、または輪郭凹凸があったとしても導線自体は導通し、不良品とはならない。
・導線が太くなるほど、大きな巻き数の小型コイルの直径は大きくなる。または、内径が小さくなる。また、直径を固定した場合には、巻き数が制限される。
(b)小型RFコイルを細い導線で製造する際の利点と欠点
・導線の電気伝導率が低くなり、信号対雑音比が低下する。
・製造が困難となる。導線をめっき法、または、エッチングで製造する際に導線が細い線であるほど、導線に微細な穴があれば、導通しなくなる。また、導線の輪郭にわずかな凹凸があれば、隣の導線と接合して、コイルとしての役割を果たさなくなる。不良品がでる確率が高くなる。
・導線が細くなるほど、大きな巻き数の小型コイルであっても、コイル直径は小さくできる。その際の内径と外径の比も1に近くすることができる。直径を固定しても巻き数を多くできる。

0110

また、小型RFコイル114は、平面型の渦巻き型コイルに限られず、種々の形態のものを用いることができる。たとえば、平面型の8の字コイル等も利用可能である。8の字コイルは、右巻きおよび左巻きの2つの渦巻き型コイルを含むものであり、いずれかの渦巻き型コイルを用いることで、磁石の主磁場の方向に向いている磁場と、その逆の方向に向いている磁場の両方を検知することができる。また、渦巻き型コイルは巻いたコイルの軸方向に感度を有するのに対し、8の字コイルは巻いたコイルと同じ平面内で感度を有する。

0111

小型RFコイル114は、単数でも複数でもよい。複数とすれば、試料115中のプロトン性溶媒の易動性の分布を測定することが可能となる。この場合、試料115の表面に沿って2次元的に配置すれば、試料表面における2次元の易動性分布を求めることができる。また、試料115中に3次元的に配置すれば、試料中における3次元の易動性分布を求めることができる。
ここで、平面型の渦巻きコイルである小型RFコイル114により印加される励起用振動磁場は、磁石113により印加される静磁場に対し垂直になる必要がある。

0112

図12戻り、小型RFコイル114により印加される振動磁場(励起用振動磁場)は、RF発振器102、変調器104、RF増幅器106、パルス制御部108、スイッチ部161および小型RFコイル114の連携により生成される。すなわち、RF発振器102から発振した励起用振動磁場は、パルス制御部108による制御に基づいて変調器104にて変調され、パルス形状となる。生成されたRFパルスはRF増幅器106により増幅された後、小型RFコイル114へ送出される。小型RFコイル114は、このRFパルスを試料載置台116上に載置される試料の特定箇所に印加する。そして、印加されたRFパルスのNMR信号を小型RFコイル114が検出する。このNMR信号は、プリアンプ112により増幅された後、位相検波器110へ送出される。位相検波器110は、このNMR信号を検波し、A/D変換器118へ送出する。A/D変換器118はNMR信号をA/D変換した後、演算部130へ送出する。

0113

以上、励起用振動磁場の印加およびNMR信号の検出について述べたが、これらは、小型コイルを含むLC回路により実現することができる。図15は、このようなLC回路の一例を示す図である。共振回路のコイル部(インダクタンス部)は、直径1.1mmの小型RFコイルとしている。核磁気共鳴(NMR)法においては、磁場中に置かれた原子核のスピン共鳴現象により核磁化の運動をNMR信号として検出することで原子数密度とスピン緩和時定数を計測することができる。1Teslaの磁場中でのスピン共鳴周波数は約43MHzであり、その周波数帯を高感度に選択的に検出するために、図15に示すようなLC共振回路が用いられる。

0114

小型RFコイル114が試料115に印加する励起用振動磁場は、たとえば、
(a)90°パルス、および、
(c)(a)のパルスの時間τ経過後に印加される180°パルス
からなるパルスシーケンスとすることができる。

0115

ここで、90°パルスが第1位相にあり、180°パルスが、第1位相と90°ずれた第2位相にあるパルスシーケンスとしても、スピン−スピンに基づくNMR信号のピーク強度と試料中のプロトン性溶媒の自己拡散係数Dとの相関関係を取得することもできる。

0116

なお、小型RFコイル114を用いる場合、上記(a)および(b)の励起パルス強度の調整が困難となる場合がある。たとえば、測定対象の領域、つまり小型RFコイル114で囲まれた領域のうち、中央部と周縁部とで励起のされかたに差異が生じてしまい、全体を均一の励起角度となるように、つまり(a)および(b)における励起磁場強度比が一定となるように励起することが困難となる場合がある。(a)および(b)における励起角度比がばらつくと、適切なスピンエコー信号の取得ができず、易動度の計測が困難となる。

0117

そこで、このような場合には、パルス制御部108が、上記パルスシーケンスにくわえ、90°パルス(a)より時間τだけ前の時刻に、180°パルスを印加するステップを加えた別のシーケンスを実行するようにする。そして、これら2つのシーケンスに対応する180°パルス(b)の減衰曲線の挙動を比較することにより、90°パルス(a)および180°パルス(b)の励起パルス強度が正確であるか否かを判別できる。この結果、装置の異常等により励起パルス強度がずれた場合でも、測定を行う前の段階で異常を検知でき、測定値をより正確なものとすることができる。

0118

スイッチ部161は、小型RFコイル114、RF信号生成部およびNMR信号検出部を接続する分岐部に設けられている。

0119

RF信号生成部は、RF発振器102、変調器104およびRF増幅器106からなり、小型RFコイル114に励起用振動磁場を発生させるRF信号を生成する。NMR信号検出部は、プリアンプ112、位相検波器110およびA/D変換器118から構成され、小型RFコイル114により取得されたNMR信号を検出するとともに、NMR信号を演算部130に送出する。

0120

スイッチ部161は、
小型RFコイル114とRF信号生成部(RF増幅器106)とが接続された第1状態、および、
小型RFコイル114とNMR信号検出部(位相検波器110)とが接続された第2状態
を切り替える機能を有する。

0121

スイッチ部161は、このような「送受信切り替えスイッチ」の役目を果たす。この役目は、RF power−ampで増幅された励起パルスを小型RFコイル114に伝送する際には、受信系のプリアンプ112を切り離して大電圧から保護し、励起後にNMR信号を受信する際には、RF増幅器106から漏れてくる増幅用大型トランジスタが発するノイズを受信系のプリアンプ112に伝送しないように遮断することである。小型RFコイル114を用いて計測する場合には、微弱な信号を取り扱うため、以下の理由でスイッチ部161が必要となる。一方、小型RFコイル114を用いない大型計測システムでは、「クロスダイオード」を用いれば充分に対処ができる。なお、クロスダイオードは、所定値以上の電圧が印加された際にオン状態となり、所定値未満の場合にはオフ状態となるダイオードである。

0122

小型RFコイル114を用いる場合に特に「送受信切り替えスイッチ」すなわちスイッチ部161が必要な理由は以下の通りである。
(i)本計測システムの小型コイルで検出できる試料体積は、大型コイルに比べて小さくなる。この検出可能な試料体積は、おおよそ、(コイルの内側面積×コイル半径の深さ)である。体積に比例して減少する微弱なNMR信号を、低ノイズ、高感度で計測するためには、送信系において、RF増幅器106の増幅用大型トランジスタから漏れてくるノイズを遮断することが必要となる。また、受信系では高感度のプリアンプ112を使用する必要がある。高感度のプリアンプ112の使用に当たっては、送信時に小型コイルに送られる大電圧の励起パルスからプリアンプ112を保護できるように、プリアンプ112を切断しなければならない。
(ii)試料体積内の核磁化を励起する際に、適切な励起パルスパワーで、具体的には、90度パルスと180度パルスの強度が1:2となるように、核磁化を励起する必要がある。励起パルスパワーの調整を適切に行うことができないと、目標としているスピンエコー法のパルス系列とならず、その結果、適切なスピンエコー信号の取得ができないために、易動度の計測の信頼性が低下する。この現象は、従来のクロスダイオードを用いて、小型コイルの送受信切り替えを行う際には顕著に現れる。大型コイルでは、励起パルス強度が非常に大きく、クロスダイオードでの損失が無視できるほど小さいとみなせるが、小型コイルの場合には、励起パルス強度が大型コイルのそれよりも小さいために、クロスダイオードでの損失が無視できない。このため、適切な励起パルス強度とするためには損失が極力少ない「送受信切り替えスイッチ」が必要となる。

0123

上記分岐部にスイッチ部161を設けることにより、小型RFコイル114から試料115に印加される励起用振動磁場信号の損失を低減し、この結果、90°パルスおよび180°パルスのパルス角を正確に制御することが可能となる。パルス角の正確な制御は、スピンエコー法における補償効果を確実に得る上で重要な技術的課題であり、本実施形態では、かかる課題をスイッチ部161の配設により解決している。

0124

また、局所計測のためのRF検出コイル微小化し、NMR受信時の低ノイズ化が、計測の確からしさを確実なものとするためには重要な因子となる。NMR信号を受信する際に、プリアンプ112に入り込むノイズには、RF波の送信系が主にあり、励起用パルスを増幅するRF増幅器106からの「RF波の漏れ」や「大電力増幅器が発するノイズ」がある。NMR信号の受信時には、送信側から漏れてくる励起波をスイッチ部161で確実に遮断し、低ノイズでNMR信号を受信する必要がある。本実施形態では、かかる課題についても、スイッチ部161の配設により解決している。

0125

スイッチ部161は、種々の構成を採用することができる。図16はスイッチ部161の構成の一例を示す回路図である。
スイッチ部161には、PINダイオードを使用することができる。

0126

第1Gコイル151および第2Gコイル153は、試料115に勾配磁場を印加できるように配置される。第1Gコイル151および第2Gコイル153の形状は種々のものを採用し得るが、本実施形態では平板状コイルを用いる。第1Gコイル151および第2Gコイル153は、小型RFコイル114を含む平面の上部および下部に、小型RFコイル114を挟んで対向して設けられる。本例では試料115の形状が板状であり、各Gコイルが試料115の各面の側に一つずつ、試料115の面に平行に配置される。

0127

図17は、第1Gコイル151および第2Gコイル153の配置を示す図である。図17において、試料115は、x−y平面に平行に配置される。各Gコイルは平板状コイルであり、x−y平面を挟んで平行に配置され、z方向に傾斜する勾配磁場Gzを印加する。

0128

RF発振器102から変調器104を介した小型RFコイル114への高周波パルスの印加ならびに電流駆動電源159を介した第1Gコイル151および第2Gコイル153へのパルス電流の供給は、制御部169により制御される。
図18は、制御部の構成例を示す図である。制御部169は、RF増幅器106の動作を制御するパルス制御部108および電流駆動用電源159の動作を制御する勾配磁場制御部171により構成されている。パラメータテーブル127には、核磁気共鳴を発生させる高周波パルスおよび勾配磁場を発生させるパルス電流のシーケンスを決定するシーケンスデータが格納される。制御部169は、パラメータテーブル127から上記シーケンスデータを取得し、これに基づいて所定のコイルへパルス電流を供給する。

0129

以上、試料周辺の装置構成について説明した。つづいて、NMR信号の処理ブロックについて説明する。

0130

図12に示すように、演算部130は、データ処理部179を有する。データ処理部179は、NMR信号の強度から、上記式(II)を用いて自己拡散係数Dを算出し、算出した自己拡散係数Dから、試料中の特定箇所におけるプロトン性溶媒の易動性を算出する。

0131

演算部130の内部では、まず、データ受付部120によりNMR信号が取得され、次いで、データ処理部179にて自己拡散係数Dが算出される。自己拡散係数Dの算出方法については後述する。

0132

データ処理部179にて算出されたプロトン性溶媒の易動性、ここでは自己拡散係数Dは、出力部132によりユーザに提示される。提示の形式は様々な態様が可能であり、ディスプレイ上の表示、プリンタ出力ファイル出力等、特に制限はない。

0133

本実施形態において、試料内部、試料表面または試料近傍に小型RFコイル114を複数個配置してもよい。これにより、試料の複数箇所に対して、励起用振動磁場の印加およびこれに対応するNMR信号の取得を行うことができるように構成されている。易動性分布算定部129は、試料中の複数箇所における易動性に基づき、試料中のプロトン性溶媒の易動性の分布を算出する。出力部132は、この易動性分布を出力する。

0134

また、図13に示すように、データ処理部179は、プロトン性溶媒の自己拡散係数を算出する計算部173、および計算部173で算出された値を、小型RFコイル114の大きさに応じて補正する補正部175を有する。パラメータテーブル127は、補正部175における補正に関する補正パラメータまたは補正式が記憶された補正パラメータ記憶部177を有する。

0135

計算部173においては、小型RFコイル114で検出されたNMR信号からプロトン性溶媒の自己拡散係数が算出されるが、本実施形態においては、励起磁場を印加する小型RFコイル114が小型であるため、大型のソレノイドコイル等を用いた測定の場合と測定値がずれる場合がある。

0136

このような場合には、補正部175において、必要に応じて自己拡散係数の値を補正することができる。補正パラメータ記憶部177には、小型RFコイル114の大きさに応じた補正パラメータおよび補正方法が記憶されており、補正部175は、補正パラメータ記憶部177からこれらの情報を取得して補正を行う。

0137

後述する実施例に示されるように、本発明によれば、小型RFコイル114を用いた場合、試料よりも大きいRFコイルを用いたときと同等の測定値が得られる。RFコイルを小型化した場合、試料の励起のされ方に差異が生じやすいため、一般的に、磁場の不均一性やSN比の低下等、測定値の誤差をもたらす要因が発生する。これに対し、小型RFコイルの配置やGコイルの形状、配置、さらには、スイッチ部を設ける構成の採用等により、上記要因を排除し、RFコイルのサイズが測定値に与える影響を低減することが可能である。

0138

しかしながら、小型RFコイル114を極小化した場合には、RFコイルのサイズが測定値に与える影響が現れる場合がある。この影響について本発明者らが検討した結果、小型RFコイルで得られた測定値に所定の定数を用いて換算することで、正確な値が得られることが明らかになった。換算は、所定の定数を乗算する、あるいは所定の定数を加算するという態様があり、試料の性質等に応じて選択される。測定対象となる試料を用いた予備実験により、上記定数をあらかじめ求めておくことで、サイズの影響のない正確な測定値を得ることができる。

0139

なお、小型RFコイル114を極小化した際に、測定値に影響を与える場合がある理由は、以下の通りである。

0140

型円筒状コイルの場合には、コイルの内部に試料を挿入することで、励起用振動磁場は試料全体に照射され、磁化を均一にまたはほぼ均一に励起することが可能である。大型円筒型コイルについては、もともと均一に照射できるようにコイルが設計・製造されている。このような大型円筒状コイルを使用した場合には、直径、形状、巻き数等によらず、一定の自己拡散係数を得ることができる。

0141

一方、小型RFコイル114の場合には、試料よりもコイルが小さいために、試料全体を均一には励起できない。コイルの中心付近が最も強く振動磁場を受け、それから遠ざかるにつれて、振動磁場による励起パルス強度は弱くなる。

0142

この不均一な励起によって放出されるNMR信号には、さまざまな励起角度を持つ磁化が混在し、磁化の位相も同一にはそろわない場合がある。このため、それらの総和としてコイルで受信されるNMR信号は、均一励起の場合とは異なる様子となりえる。均一励起の場合とは異なる様子としては、たとえば、左右対称なきれいな山型エコーピークではなかったり、その最大強度位置が時間的に前後にずれたりする様子が挙げられる。

0143

このような「不均一励起パルスから放出されるNMR信号」から勾配磁場印加により自己拡散係数を算出すると、結果として、均一励起の大型コイルとは異なる値となる場合がある。さらには、小型RFコイルを使用した場合には、小型RFコイルの形状、巻き数等により、自己拡散係数が変動してしまうことがある。

0144

(第二実施形態)
図19は、本実施形態の易動性測定装置の構成を示す図である。図19に示した装置の基本構成は第一実施形態(図12)に示した装置と同様であるが、勾配磁場印加用のGコイルの配置が異なる。
第1Gコイル151および第2Gコイル153は、小型RFコイル114を含む平面内の面内方向において小型RFコイル114を挟む位置に設けられている。

0145

(第三実施形態)
図20および図21は、Gコイルの他の例を示す図である。Gコイルを除く装置の基本構成は、図12図19に示したものと同様である。

0146

第1Gコイル155および第2Gコイル157は、いずれも平面型コイルであり、小型RFコイル114と同一平面内に配置される。各Gコイルは、いずれも半月形状を有し、半月の弦同士を小型RFコイル114側に向けて対向配置されている。

0147

試料115は、板状またはシート状の形状を有しており、第1Gコイル155、第2Gコイル157および小型RFコイル114は、それぞれ試料115を含む平面と平行な面上に配置されている。

0148

図20において、試料115は、x−y平面に平行に配置される。第1Gコイル155および第2Gコイル157から構成される一対のGコイルが、試料115の主面に対して同じ側に配置され、z方向に傾斜を有する勾配磁場Gzを印加する。これらのGコイルのそれぞれについて、所定の方向に電流を流すことにより、図20に示したように勾配磁場が形成される。
図20および図21において、図中矢印で示した方向に電流が供給される。図20図21とでは、電流の向きが逆になっており、勾配磁場の勾配の向きが反転している。

0149

上記構成によれば、第1Gコイル155および第2Gコイル157を試料115に対して同じ側に配置されるため、以下の利点が得られる。
第一に、試料115を挟んで上下に二つのGコイルを対向させる第一の実施形態のような構成に比べ、Gコイルと試料115との位置合わせが容易となる。このため、勾配磁場の形成を制御性良く行うことが可能となる。
第二に、勾配磁場印加部を小型化することができ、より局所的な測定が可能となり、一層精密な易動性分布の測定を実現することができる。

0150

以上、半月形状のGコイルを用いた例について説明したが、配置の態様は上記に限らず種々のものを採用することができる。たとえば、図20および図21においては、試料115の一方の面の側に一対のGコイルを配置したが、試料115の両面に、それぞれ、一対のGコイルを配置し、計4つのGコイルを配置して試料115に勾配磁場を印加してもよい。図22は、このような構成を示す図である。図22に示した構成とすることにより、試料115への勾配磁場の形成をさらに安定的に行うことができる。

0151

(第四実施形態)
本実施形態は、易動性測定装置の勾配磁場印加用のコイルの形状、数、および配置の他の例に関する。本実施形態では、小型RFコイル114を複数備え、該複数の小型RFコイル114が、試料115の複数箇所に対し、励起用振動磁場を印加するとともに、励起用振動磁場および勾配磁場に対応するNMR信号を取得し、演算部130が、試料115の複数箇所における易動性を算出するように構成されている。

0152

図23は、図19に示した装置のセンサ部の構成の他の例を示す図である。この例では、図20で説明した形状の第1Gコイル155と第2Gコイル157との間に、複数の小型RFコイル114がアレイ状に配置されている。各小型RFコイル114は、絶縁材料からなる基板163上に固定化され、センサシート167を構成している。

0153

図24は、図23に示したセンサシート167を試料115の一方の面の上部に配置した様子を示す図である。実際の測定にあたっては、センサシート167と試料115を図示したような位置関係で配置する。なお、センサシート167と試料115は接していても離間していてもよい。

0154

上述した構成によれば、各小型RFコイル114に対する磁場の印加およびNMR信号取得を単一の処理手段により実行でき、簡易な装置構成で易動性の多点測定を同時に実現することが可能となる。

0155

図25は、センサ部の他の例を示す図である。この例では、試料115の表面に複数のセンサシート165を貼付した構成を採用している。各センサシート165は図25(a)に示す構造を有しており、基板163と、基板163上に配置された第1Gコイル155、第2Gコイル157および小型RFコイル114とにより構成されている。小型RFコイル114は、第1Gコイル155と第2Gコイル157の間に配置されている。

0156

以上、第一〜第四実施形態について説明したが、これらの奏する作用効果について、以下、説明する。

0157

第一に、高分子膜に貼り付けた小型RFコイルにより、そのコイル直径程度の局所領域の膜内の水分子の易動性として、自己拡散係数を計測できる。

0158

第二に、水分子の易動性を計測する時間を数秒以内、たとえば5秒以内に短縮できる。本実施例では、渦巻き型の小型RFコイルを用い、PGSE法により易動性を計測するため、コイル直径程度の局所領域の易動性を高感度でかつ5秒以内程度の短時間で計測することができる。本実施例では、直径2mmの小型RFコイルを示したが、この直径をより小さくすることで、微小領域での高分子膜内のプロトン性溶媒の易動性の計測が可能となる。

0159

第三に、高分子膜が固体高分子電解質型燃料電池等の電池に用いられている際に、発電時であっても高分子膜内の水分子の易動性が計測できる。

0160

第四に、高分子膜が持つ水分含有量に依存したスピン−スピン緩和時定数の変化を利用しているため、従来にない高感度の計測が可能となる。

0161

第五に、水分含有量もあわせて計測できる。同じ計測装置を使用して、パルスシーケンス(コンピュータ制御プログラム)を変えるだけで両者の計測ができる。なお、水分量、水の易動性の双方の計測に関しては後述する第五実施形態〜第十実施形態で詳細に説明する。

0162

第六に、膜内の水分含有量と水分子の易動性とを短時間に計測できることを利用して、膜の水分含有量と易動性を監視し、適切な水分含有量になるように膜を湿潤させる水蒸気、または水の供給量を制御できるようになる。

0163

第七に、小型表面RFコイルを高分子膜の厚さよりも小型化することで、表面近傍のみの膜内水分の易動性の計測が可能となり、厚さ方向についても局所的な測定が可能となる。

0164

第八に、高分子膜の厚さよりも小型のRFコイルを高分子膜の燃料側酸化剤側の両側に貼り付けることで、膜の両側の水分含有量と易動性の監視ができ、発電低下の原因の究明へのデータを提示することができる。

0165

(第五実施形態〜第十実施形態)
次に、局所的水分量および局所的易動性を測定する装置に関して以下の実施形態で説明する。局所的水分量および局所的易動性の実際の測定においては、何らかの原因によって通常とは異なるエコー波形が得られ、適切な値の範囲にある水分量、自己拡散係数が算出できないことがある。
その原因としては、例えば、以下のことがあげられる。
・静磁場の時間的変動と空間的な不均一性による影響がある。
・小型RFコイルから照射される励起用振動磁場の印加が試料内で不均一となる。
・理想的ではない180°励起パルスからのFIDの流れ込みによるエコー波形の乱れがある。
・RF power−amp、プリアンプ、電流駆動用電源などの装置から流入したノイズによる影響がある。
外部ノイズが小型RFコイルや伝送系に入り込んで、エコー信号にノイズが含まれる。
そのため、水分量或いは易動性を求める際には、算出された水分量、易動性を、測定装置の使用者チェックし、エラーデータを削除して、正確な水分量、易動性を把握する必要があった。
これに対し、本実施形態では、測定装置により算出された水分量及び易動性に基づいて移動量を求めるため、測定装置内において、水分量及び易動性のエラーデータを削除することが望まれる。以下の実施形態で開示する測定装置は、このエラーデータの削除という課題を解決した構成となっている。すなわち、本実施形態では、上記のような原因によって生じるエラーデータを削除するために、取得したNMR信号から水分量、易動性を算出するまでの間に、種々のチェック機能を設けることで、ばらつきの少ない確からしい水分量、易動性を算出できる構成となっている。

0166

(第五実施形態)
図26は、本実施形態に係る測定装置1の概略構成を示す図である。
この測定装置1は、NMR法を用いて試料(試料115)中の特定箇所のプロトン性溶媒(本実施形態では水)の易動性(本実施形態では、自己拡散係数)、水分量及び水分子の移動量を測定できる装置であり、
試料115を載置する試料載置台116、
試料115に対して静磁場を印加する静磁場印加部(磁石113)、
試料115に対して勾配磁場を印加する勾配磁場印加部(Gコイル152(第1Gコイル152A、第2Gコイル152B))、
試料115に対して励起用振動磁場を印加するとともに、励起用振動磁場及び勾配磁場に対応するNMR信号を取得する、試料115よりも小さい小型RFコイル114、
励起用振動磁場を印加して水分量を測定する第一の測定モードと、勾配磁場および励起用振動磁場を印加して自己拡散係数を測定する第二の測定モードとを切り替えるための測定モード切替制御部168、
試料115中の特定箇所における水分量を算出する第一の算出部(水分量算出部)132、試料115の特定箇所の自己拡散係数を算出する第二の算出部(易動性算出部)133、試料115の特定箇所の水分子の移動量を算出する第三の算出部(移動量算出部)134を有する演算部136、
を備える。

0167

はじめに、試料115及び試料115周辺の装置構成について説明する。
前記各実施形態と同様、磁石113は、試料115全体に対して静磁場を印加する。本実施形態では、この静磁場が印加された状態で励起用振動磁場が試料115に印加され、水分量の測定がなされる。
また、試料115に対し、静磁場が印加された状態で励起用振動磁場および勾配磁場パルスが試料115に印加され、自己拡散係数の測定がなされる。

0168

小型RFコイル114は、前記各実施形態と同様、試料115の特定箇所に対し、励起用振動磁場を印加する。また、励起用振動磁場に対応するNMR信号、勾配磁場に対応するNMR信号を取得する。

0169

ここで、平面型の渦巻きコイルである小型RFコイル114により印加される励起用振動磁場H1は、磁石113により印加される静磁場H0に対し垂直になる必要がある(図27,28参照)。
なお、ここでは、z軸方向に沿って静磁場H0が印加されているが、x軸方向に沿って静磁場が印加されていてもよい。励起用振動磁場H1がy軸方向に沿って印加されているのであれば、静磁場H0は、y軸に垂直な方向(xz平面に沿った方向)であればよい。すなわち、励起用振動磁場H1と、静磁場H0とが略直交するように印加されていればよい。

0170

小型RFコイル114により印加される振動磁場(励起用振動磁場)は、前記各実施形態と同様にRF発振器102、変調器104、RF増幅器106、パルス制御部108、スイッチ部161および小型RFコイル114の連携により生成される。なお、本実施形態では、A/D変換器118は、NMR信号をA/D変換し、演算部136へ送出する。

0171

小型RFコイル114が試料115に印加する励起用振動磁場は、たとえば、
(a)90°パルス、および、
(b)(a)のパルスの時間τ経過後に印加される180°パルス
からなるパルスシーケンスとすることができる。

0172

ここで、90°パルスが第1位相にあり、180°パルスが、第1位相と90°ずれた第2位相にあるパルスシーケンスとしても、スピン−スピンに基づくNMR信号のピーク強度と試料115中の水の自己拡散係数との相関関係、T2緩和時定数と試料115中の水分量との相関関係を取得することもできる。

0173

なお、第一実施形態でも述べたが、小型RFコイル114を用いる場合、上記(a)および(b)の励起パルス強度の調整が困難となる場合がある。(a)および(b)における励起角度比がばらつくと、正確な水分量、自己拡散係数の計測が困難となる。

0174

そこで、このような場合には、第一実施形態と同様に、パルス制御部108が、上記パルスシーケンスにくわえ、90°パルス(a)より時間τだけ前の時刻に、180°パルスを印加するステップを加えた別のシーケンスを実行するようにする。そして、これら2つのシーケンスで得られるNMR信号(エコー信号)の挙動(位相検波器で得られる位相波形の位相の反転、信号強度が同程度であるか等)を比較することで、90°パルス(a)および180°パルス(b)の励起パルス強度が正確であるか否かを判別できる。

0175

スイッチ部161は、小型RFコイル114、RF励起パルス生成部およびNMR信号検出部を接続する分岐部に設けられている。

0176

RF励起パルス生成部は、第一実施形態のRF信号生成部と同じく、RF発振器102、変調器104およびRF増幅器106からなり、小型RFコイル114に励起用振動磁場を発生させるRF励起パルスを生成する。NMR信号検出部は、第一実施形態と同じく、プリアンプ112、位相検波器110およびA/D変換器118から構成され、小型RFコイル114により取得されたNMR信号を検出するとともに、NMR信号を演算部136に送出する。

0177

スイッチ部161は、第一実施形態と同様、
小型RFコイル114とRF励起パルス生成部(RF増幅器106)とが接続された第1状態、および、
小型RFコイル114とNMR信号検出部(位相検波器110)とが接続された第2状態
を切り替える機能を有する。
なお、スイッチ部161の機能は、第一実施形態と同様である。

0178

図27,28に示すように、第1Gコイル152Aおよび第2Gコイル152Bは、試料115に勾配磁場を印加できるように配置される。第1Gコイル152A、および、第2Gコイル152Bの形状は種々のものを採用し得るが、本実施形態では平板状コイルを用いる。第1Gコイル152Aおよび第2Gコイル152Bは、本実施形態では、半月状であり、半月の弦同士を小型RFコイル114を挟んで対向配置させている。
第1Gコイル152Aおよび第2Gコイル152Bは、試料115の表面(x−z平面)に対し平行に配置される。
また、第1Gコイル152Aおよび第2Gコイル152Bは、小型RFコイル114よりも上方に配置されている。これにより、小型RFコイル114の中心軸上に、y軸方向に磁場の勾配を持つ勾配磁場を形成することができる。
小型RFコイル114と第1Gコイル152Aとの間、小型RFコイル114と第2Gコイル152Bとの間には、図示しない遮蔽シールドが設けられている。この遮蔽シールドにより、第1Gコイル152Aおよび第2Gコイル152Bからのノイズが、小型RFコイル114に影響するのを防止している。遮蔽シールドは、ノイズの通過を防止し、かつ、磁場が通過できるような厚さとなっている。
なお、水分量、自己拡散係数を計測する際には、小型RFコイル114を第1Gコイル152Aおよび第2Gコイル152Bよりも試料115側に突出させて、小型RFコイル114のみを試料115に接触させる。

0179

図26に示すように、RF発振器102から変調器104を介した小型RFコイル114への高周波パルスの印加ならびに電流駆動用電源159を介した第1Gコイル152Aおよび第2Gコイル152Bへのパルス電流の供給は、測定モード切替制御部168により制御される。測定モード切替制御部168は、測定モード選択部168Aと、制御部168Bとを含む。
測定モード選択部168Aは、作業者が入力した要求を受信し、受信した要求に応じた測定モードを選択する。本実施形態では、試料115中の特定箇所の水分量を測定する第一の測定モード、試料115中の特定箇所の水分子の易動性(自己拡散係数)を測定する第二の測定モードのうちから、いずれか一方の測定モードを選択する。

0180

図29は、制御部168Bの構成例を示す図である。制御部168Bは、変調器104の動作を制御するパルス制御部108および電流駆動用電源159の動作を制御する勾配磁場制御部171を備えている。

0181

制御部168Bには、シーケンステーブル126が接続されており、シーケンステーブル126には、水分量を測定する際の高周波パルスのシーケンスデータと、自己拡散係数を測定する際の高周波パルスおよび勾配磁場を発生させるパルス電流のシーケンスを決定するシーケンスデータが記憶されている。すなわち、水分量を測定する場合における高周波パルスを発生させる時刻と、その間隔とが設定された第一タイミングダイアグラム、及び、自己拡散係数を測定する場合における、高周波パルス及び勾配磁場用のパルス電流を発生させる時刻と、その間隔とが設定された第二タイミングダイアグラムが記憶されている。
なお、シーケンステーブル126には、第一タイミングダイアグラムに基づいて印加する高周波パルスの強度が記憶されている。また、第二タイミングダイアグラムに基づいて印加する高周波パルス及び勾配磁場用のパルス電流の強度もシーケンステーブル126に記憶されている。
また、制御部168Bには、計時部128が接続されている。

0182

このような制御部168Bは、シーケンステーブル126から取得した上記シーケンスデータと、計時部128での計測時間とに基づいて、高周波パルス及び勾配磁場用のパルス電流を発生させる。
例えば、作業者が、水分量の測定及び自己拡散係数の測定の双方を行うという要求を入力すると、測定モード切替制御部168に接続された操作信号受付部125が、前記要求を受け付ける。そして、操作信号受付部125がこの要求を測定モード切替制御部168に送出する。測定モード選択部168Aは、水分量を測定する測定モードを選択し、選択した測定モードを特定する情報を制御部168B及びデータ受付部131に送出する。データ受付部131は、この測定モード特定情報を演算部136に送出する。演算部136は、上記測定モード特定情報に基づいて、対応する演算処理を行う。
ここで、測定モード特定情報が水分量を測定する第一の測定モードを示していれば測定データは水分量算出部137に送出され、測定モード特定情報が自己拡散係数を測定する第二の測定モードを示していれば測定データは易動性算出部133に送出され、各算出部において所定の処理が実行される。
水分量を測定するという測定モード特定情報を得た制御部168Bは、シーケンステーブル126から水分量測定用のシーケンスデータを読みだす。そして、制御部168Bのパルス制御部108が、変調器104の動作を制御し、試料115に対して所定のパルスシーケンスで励起用振動磁場を印加する。
次に、測定モード選択部168Aが、自己拡散係数を測定する測定モードを選択し、この選択に応じた測定モード特定情報を制御部168Bおよびデータ受付部131に送出する。データ受付部131は、測定モード選択部168Aで選択した測定モードを示す測定モード特定情報を演算部136に送出し、演算部136の易動性算出部133が測定モード選択部168Aで選択した測定モードを示す測定モード特定情報を受信する。
制御部168Bは、シーケンステーブル126から自己拡散係数測定用のシーケンスデータを読みだす。制御部168Bのパルス制御部108が、変調器104の動作を制御するとともに、勾配磁場制御部171が、電流駆動用電源159の動作を制御する。
試料115に対する励起用振動磁場の印加を所定のパルスシーケンスにしたがって実行し、さらに、励起用振動磁場および勾配磁場の印加を所定のパルスシーケンスにしたがって実行する。

0183

なお、水分量の測定、自己拡散係数の測定の順番は特に限定されるものではなく、自己拡散係数の測定を水分量の測定の前段で行ってもよい。
また、作業者が水分量の測定のみ、或いは、自己拡散係数の測定のみを行うという要求を入力した場合には、この要求に基づいて、測定モード切替制御部168の測定モード選択部168Aは、水分量を測定する第一の測定モード或いは自己拡散係数の測定をする第二の測定モードを選択することができる。

0184

図26に示す電流駆動用電源159は、第1Gコイル152Aおよび第2Gコイル152Bへの電流の供給に使用するものであり、電流駆動用電源159としては、スイッチング電源を使用せず、トランス等を使用している。
また、電流駆動用電源159が駆動していない状態では、ノイズによりトランジスタが微少発振しないように制御されている。
さらに、電流駆動用電源159が駆動していない状態において、第1Gコイル152Aおよび第2Gコイル152Bに接続された導線を遮断する構造を採用することもできる。
このような構成の電流駆動用電源159を使用することにより、NMR信号への電流駆動用電源159からのノイズの影響を防止することができる。

0185

以上、試料周辺の装置構成について説明した。つづいて、NMR信号の処理ブロックについて説明する。

0186

図26に示すように、演算部136は、第一の算出部である水分量算出部137と、第二の算出部である易動性算出部133と、第三の算出部である移動量算出部134とを備える。
まず、図30を参照して、水分量算出部137について説明する。
水分量算出部137は、試料115に対し、励起振動磁場を印加することにより得られるNMR信号の強度から、試料115の特定箇所における水分量を算出する。
水分量算出部137は、データ選別部132Aと、水分量計算部132Bと、データ選別用のパラメータテーブル132Cとを備える。
データ選別部132Aでは、データ選別用のパラメータテーブル132Cを参照しながら、T2緩和時定数の算出に使用するNMR信号を選別する。
まず、データ受付部131で受け付けたNMR信号を、所定の強度以上のNMR信号と、所定の強度未満のNMR信号とに選別する。そして、所定の強度以上のNMR信号のみを選択し、このNMR信号の強度の対数を取り、最小二乗法直線近似する。その後、近似直線と、所定の強度以上のNMR信号の強度の対数との差が所定値以下であるかどうか判別する。
近似直線と、所定の強度以上のNMR信号の強度の対数との差が所定値以下である場合には、この所定の強度以上のNMR信号を水分量計算部132Bに送信し、T2緩和時定数及び水分量を算出する。
なお、NMR信号の強度の対数は指数関数的に減少するため、一定の時間が経過したあとに取得されたNMR信号の強度の対数は、略一定となる。データ選別部132Aでは、対数が一定となったNMR信号を選択せずに、対数が一定となる前のNMR信号のみを選択し、水分量計算部132Bに送信し、T2緩和時定数及び水分量を算出する。

0187

図31に示すように、水分量計算部132Bは、T2緩和時定数を算出する緩和時定数計算部132Dと、T2緩和時定数から、水分量を算出する水分量見積部132Eと、補正部132Fと、検量線テーブル132Gと、補正パラメータ記憶部132Hとを備える。
緩和時定数計算部132DでT2緩和時定数が算出されると、そのデータは、水分量見積部132Eに送出される。水分量見積部132Eは、検量線テーブル132Gにアクセスし、試料115に対応する検量線データを取得する。検量線テーブル132Gには、試料115の種類毎に、試料中の水分量とT2緩和時定数との相関関係を示す検量線データが格納されている。

0188

水分量見積部132Eは、取得された検量線データと、上記のようにして算出されたT2緩和時定数とを用い、試料115中の水分量の見積値を算出する。

0189

水分量見積部132Eで計算された水分量の見積値は、補正部132Fに送出される。補正部132Fでは、小型RFコイル114の大きさに応じて水分量の見積値を補正し、水分量を算出する。

0190

緩和時定数計算部132Dにおいては、小型RFコイル114で検出されたNMR信号からT2緩和時定数が算出されるが、本実施形態においては、励起用振動磁場を印加する小型RFコイル114が小型であるため、大型のソレノイドコイル等を用いた測定の場合と測定値がずれる場合がある。

0191

このような場合には、補正部132Fにおいて、必要に応じて水分量の値を補正することができる。補正パラメータ記憶部132Hには、小型RFコイル114の大きさに応じた補正パラメータおよび補正方法(小型RFコイル114の大きさに応じて所定の定数を加算する、あるいは、所定の定数を乗算する等)が記憶されており、補正部132Fは、補正パラメータ記憶部132Hからこれらの情報を取得して補正を行う。
第一実施形態で前述したように、小型RFコイルを用いて磁気共鳴信号を取得する際には、不要な磁気共鳴信号と計測すべきエコー信号とが干渉することで、計測の確からしさが低下し、計測のばらつきが大きくなると考えられる。このため、小型RFコイルのサイズや、幾何学形状、例えば、小型RFコイルの外径や内径と外径の比などによって、図58に示すようなT2(CPMG)緩和時定数が増減したりする結果が観測されると考えられる。
なお、不要な磁気共鳴信号の干渉を防止させる方法としては、極弱い勾配磁場を常時印加し続けて、静磁場の均一性をわざと低下させ、FID信号のT2*緩和時定数を短くし、
計測すべきエコー信号が発生する前に、不要な磁気共鳴信号の影響をなくすようにする方法も有効である。
この発想は通常のNMR計測が求める「できるだけ高い静磁場の空間的均一性を確保する」という考えとは全く逆である。これは、小型RFコイルを用いた場合には、小型RFコイルが観測できる領域内で静磁場が均一であればよく、小型RFコイルが小さくなればなるほど相対的に静磁場の均一性は増加することに起因する。これにより、FID信号の
T2*緩和時定数が長くなりすぎ、不要な磁気共鳴信号の影響を強く受けてしまう計測方法になってしまうためである。従って、小型RFコイルが計測すべき範囲以外の領域では磁場をわざと不均一にして、不要な磁気共鳴信号が流れ込むことを低減する方が好ましい場合もある。

0192

以上のようにして、算出された水分量は、出力部135によりユーザに提示される。提示の型式は様々な態様が可能であり、ディスプレイ上の表示、プリンタ出力、ファイル出力等、特に制限はない。

0193

次に、図32及び図33を参照して、易動性算出部133について説明する。
易動性とは、前述したように、試料中におけるプロトン性溶媒の移動のしやすさを表す物性値であり、例えば、自己拡散係数、移動度等があるが、本実施形態では、易動性として自己拡散係数を算出する。
易動性算出部133は、試料115に対し、励起用振動磁場の印加を行うことにより得られたNMR信号及び異なる勾配磁場の印加を行うことにより得られたNMR信号に基づいて、試料115の特定箇所における水分子の自己拡散係数を算出する。
易動性算出部133は、データ選別部133Aと、自己拡散係数計算部133Bと、データ選別用のパラメータテーブル133Cとを備える。
データ選別部133Aでは、データ選別用のパラメータテーブル133Cを参照しながら、NMR信号を選別する。ここでの、NMR信号の選別方法は、水分量算出部137のデータ選別部132Aでの選別方法と同じである。
自己拡散係数計算部133Bは、図33に示すように、自己拡散係数を算出する自己拡散係数見積部133Dと、補正部133Fと、補正パラメータ記憶部133Hとを備える。
自己拡散係数見積部133Dは、取得したNMR信号から、上述した式(II)を用いて、自己拡散係数の見積値を算出する。
補正部133Fでは、自己拡散係数見積部133Dで算出した自己拡散係数の見積値を、小型RFコイル114の大きさに応じて補正する。補正パラメータ記憶部133Hには、補正部133Fにおける補正に関する補正パラメータまたは補正式(小型RFコイル114の大きさに応じて所定の定数を加算する、あるいは、所定の定数を乗算する等)が記憶されている。

0194

自己拡散係数見積部133Dにおいては、小型RFコイル114で検出されたNMR信号から水の自己拡散係数の見積値が算出されるが、励起用振動磁場を印加する小型RFコイル114が小型であるため、自己拡散係数の算出においても、大型のソレノイドコイル等を用いた測定の場合と測定値がずれる場合がある。

0195

このような場合には、補正部133Fにおいて、必要に応じて自己拡散係数の値を補正することができる。補正パラメータ記憶部133Hには、小型RFコイル114の大きさに応じた補正パラメータおよび補正方法が記憶されており、補正部133Fは、補正パラメータ記憶部133Hからこれらの情報を取得して補正を行う。

0196

次に、図34を参照して移動量算出部134について説明する。移動量算出部134は、水分量算出部137にて算出した水分量、易動性算出部133にて算出した自己拡散係数に基づいて、水分子の移動量を算出する。
移動量算出部134は、水分子の移動量を算出するためのパラメータが記憶されたパラメータ記憶部134Bと、このパラメータ記憶部134Bに記憶された算出式を読み出して、水分子の移動量を算出する移動量計算部134Aとを備える。
パラメータ記憶部134Bには、各試料115の種類ごとに、自己拡散係数と、水分量とから水分子の移動量を算出するための算出式が記憶されている。
この算出式に基づいて、移動量計算部134Aにて、移動量を算出することができる。

0197

次に、本実施形態の作用効果について説明する。
水分量を測定する測定モードでは、試料115よりも小さい小型RFコイル114を用いて、測定対象となる部位を限定し、特定箇所における水分量を測定している。また、自己拡散係数を測定する測定モードにおいても、第1Gコイル152A、第2Gコイル152B及び小型RFコイル114を使用して、測定対象となる部位を限定し、水分量を測定した特定箇所における自己拡散係数を測定している。
試料115の特定箇所における水分量と、自己拡散係数とを把握することで、試料115におけるイオン伝導性の変動の要因が水分量に起因するものであるか、自己拡散係数に起因するものであるか、自己拡散係数、水分量の双方に起因するものであるかを正確に把握することができる。
そのため、試料115の水分量及び自己拡散係数を監視して、試料115のイオン伝導性を常に高い状態に保つことが可能となる。
また、水分量と、自己拡散係数とを試料115の同じ位置で計測することができるので、水分量と自己拡散係数とに基づいて、試料115の特定箇所における局所的な水分子の移動量を正確に把握することができる。
これに加え、本発明の測定装置1を用いて、試料115の複数箇所を測定すれば、試料115の水分子の移動量の分布を把握することができる。

0198

また、測定装置1では、水分量の測定に要する時間は、1秒程度であり、自己拡散係数の測定に要する時間は5秒程度である。試料115を固体高分子電解質膜とした場合、この固体高分子電解質膜における現象の変化は、測定装置1での測定の数倍以上の時間で生じるため、測定時間は、固体高分子電解質膜での現象の変化時間よりも短く、試料115の現象に変化が生じる前に、水分量及び自己拡散係数の双方の値を把握することができる。すなわち、水分量を測定する際の試料115の状態と、自己拡散係数を測定する際の試料115の状態とはほぼ同じ状態にあるということができるので、水分量、自己拡散係数から、試料115のイオン伝導性を正確に把握することができる。
また、小型RFコイル114の感度範囲は、その内径程度である。この範囲内に勾配磁場を印加すれば、自己拡散係数の計測が可能であるため、第1Gコイル152A、第2Gコイル152Bの大きさは、前記範囲内に勾配磁場を印加できるような大きさとすればよい。従って、第1Gコイル152A、第2Gコイル152Bも小型化することが可能である。

0199

さらに、測定装置1の水分量算出部137では、データ受付部131で受信したNMR信号を選別し、水分量の算出に使用するNMR信号を選択している。また、易動性算出部133においても、データ受付部131で受信したNMR信号を選別し、自己拡散係数の算出に使用するNMR信号を選択している。このように、水分量の算出、自己拡散係数の算出に使用するNMR信号を選別しているため、測定装置1により、正確な水分量、自己拡散係数を求めることができる。そして、このような正確な水分量、自己拡散係数に基づいて、水分子の移動量を正確に算出することが可能となる。
また、小型RFコイル114は、径が数十ミクロンメータとなるまで極小化できるため、小型RFコイル114を設置することによる試料115側への電気じょう乱を最小限に抑制できる。

0200

(第六実施形態)
図35,36を参照して本実施形態の測定装置2について説明する。
本実施形態の測定装置2においては、第1Gコイル152A、小型RFコイル114、第2Gコイル152Bが支持体201に取り付けられている。他の構成は、第五実施形態と同様である。
支持体201は、スティック状であり、本実施形態では、円筒形状である。この支持体201の先端部201Cの端面201Bに、第1Gコイル152A、小型RFコイル114、第2Gコイル152Bが取り付けられている。第1Gコイル152A、第2Gコイル152Bは、小型RFコイル114を挟んで配置されており、小型RFコイル114は、第1Gコイル152A、第2Gコイル152Bよりも試料115側に突出している。
より詳細に説明すると、支持体201の先端部201Cの端面201Bの中央には、試料115側に突出した円柱状の突出部201Aが設けられており、この突出部201Aの端面に小型RFコイル114が取り付けられている。小型RFコイル114の平面中心と、支持体201の中心軸とはほぼ一致している。
また、この突出部201Aを挟んで両側に第1Gコイル152A、第2Gコイル152Bがそれぞれ取り付けられている。
このように、第1Gコイル152A、第2Gコイル152Bを、小型RFコイル114よりも上方に配置することで、小型RFコイル114の中心軸上に、y軸方向に勾配を持つ勾配磁場を安定的に形成することができる。
また、小型RFコイル114を第1Gコイル152A、第2Gコイル152Bよりも試料115側に突出させることで、試料115の水分量、自己拡散係数を計測する際には、小型RFコイル114のみを試料115に接触させることができる。
なお、小型RFコイル114に接続された導線(図示略)、第1Gコイル152Aに接続された導線(図示略)、第2Gコイル152Bに接続された導線(図示略)は、支持体201内部に収容されている。

0201

このような本実施形態によれば、第五実施形態と同様の効果を奏することができるうえ、以下の効果を奏する。
小型RFコイル114の感度範囲は、その内径程度の範囲である。この範囲内に勾配磁場が印加されれば、易動性の計測は十分に可能である。そのため、Gコイルは、前記範囲内に勾配磁場を印加できる大きさであればよいので、第1Gコイル152A、第2Gコイル152Bを小型化することが可能である。そして、第1Gコイル152A、第2Gコイル152Bも小型化することで、本実施形態のように小型RFコイル114と、第1Gコイル152A、第2Gコイル152Bとを支持体201に取り付けて一体化することができる。これにより、試料115に対し、第1Gコイル152A、第2Gコイル152B、小型RFコイル114を設置しやすくなり、測定装置2を使用しやすいものとすることができる。
また、支持体201は、スティック状であるため、使用者が支持体201を把持し、その先端部201Cを試料115に接触させるだけで、測定を行うことができるので、測定装置2の操作性を向上させることができる。
さらに、小型RFコイル114に接続された導線や、第1Gコイル152A、第2Gコイル152Bに接続された導線は、支持体201の内部に配置されているので、物理的な外力から導線を保護することができる。また、導線をノイズのような電気的じょう乱からも保護することができる。
さらに、小型RFコイル114と、第1Gコイル152A、第2Gコイル152Bとを支持体201に取り付けて固定しているので、これらのコイル114,152A,152Bの相対位置を使用者が調整する必要がなく、使用者が容易に測定装置2を使用することができる。
特に、第1Gコイル152A、第2Gコイル152Bを対向配置させ、第1Gコイル152A、第2Gコイル152Bの相対位置を正確にあわせることが難しいため、第1Gコイル152A、第2Gコイル152Bの位置調整が不要となることで、測定装置2を使用する際の手間を大幅に削減することができる。
また、小型RFコイル114を第1Gコイル152A、第2Gコイル152Bよりも試料115側に突出させ、小型RFコイル114と、第1Gコイル152A、第2Gコイル152Bとを異なる平面上に配置することで、以下のような効果がある。
(i)均一な勾配磁場を発生できる。
小型RFコイル114、第1Gコイル152A、第2Gコイル152Bの線径、巻き方の凸凹などは、幾何学的に理想的な状態とはなっていない。このため、小型RFコイル114、第1Gコイル152A、第2Gコイル152Bを同一平面に配置した場合、不可避的に、勾配磁場の不均一性が一定程度、発生する。小型RFコイル114と、第1Gコイル152A、第2Gコイル152Bとを異なる平面上に配置すれば、上記のような幾何学形状が理想的な状態にないことに起因する勾配磁場の不均一性を効果的に低減することができる。
(ii)第1Gコイル152A、第2Gコイル152Bの線径を大きくすることが可能となる。
これらの線径を大きくすると、一般に勾配磁場の均一性が低下しがちになるが、上記構成をとることにより、かかる問題を解消でき、線径を大きくすることが可能となる。線径を大きくすれば、大電流を流したとしてもジュール発熱を小さく抑えられるので、勾配磁場を大きくしたい時に有効である。ジュール発熱が抑えられれば、静磁場、勾配磁場印加の安定性増し、計測がしやすい。
(iii)小型RFコイル114に対して、第1Gコイル152A、第2Gコイル152Bが近すぎると、第1Gコイル152A、第2Gコイル152Bの銅線自体のシールド効果で、小型RFコイル114が受信するNMR信号が弱くなる。したがって、本実施形態のように、小型RFコイル114と、第1Gコイル152A、第2Gコイル152Bとを異なる平面上に配置し、小型RFコイル114と、第1Gコイル152A、第2Gコイル152Bとの距離を置くことで、この問題を解決することができる。

0202

(第七実施形態)
図37〜39を参照して、本実施形態の測定装置3について説明する。
本実施形態の測定装置3では、図37,38に示すように、支持体201に対し、小型RFコイル114、第1Gコイル152A、第2Gコイル152Bに加え、磁石313も取り付けられている。他の構成は、第六実施形態と同様である。
一対の磁石313は、前記五実施形態、第六実施形態の測定装置1,2の磁石113よりも小さい小型の磁石である。前記各実施形態の測定装置1,2では、磁石113により、試料115全体に静磁場を印加していたが、本実施形態では、磁石313を使用することにより、試料115の特定箇所に静磁場を印加することとなる。

0203

本実施形態では、一対の磁石313は、支持体201の内部に配置されており、支持体201の内壁に固着されている。また、この一対の磁石313は、y軸方向から見て、小型RFコイル114を挟むように配置される。
この一対の磁石313により形成される静磁場H0は、支持体201の中心軸に対して垂直となる。この静磁場H0は、小型RFコイル114の励起用振動磁場H1に対し、垂直となるため、小型RFコイル114により、NMR信号を受信できる。
なお、第1Gコイル152A、第2Gコイル152Bは、一対の磁石313よりも試料115側に配置されている。

0204

このような測定装置3では、支持体201に対し、第1Gコイル152A、第2Gコイル152B、小型RFコイル114、磁石313が取り付けられているので、図39に示すように、燃料電池Fのセル内に、これらのコイル114,152A,152B及び磁石313を容易に設置することができる。従って、燃料電池Fの発電を行いながら、燃料電池Fの試料115としての燃料電池用固体高分子電解質膜の水分子の移動度を測定することができる。
これに加え、勾配磁場は、燃料電池用固体高分子電解質膜の膜厚方向に印加されている。燃料電池用固体高分子電解質膜では、膜厚方向の水分子の移動が特に重要である。燃料電池Fの発電を行いながら、この勾配磁場を印加することによって、燃料電池用固体高分子電解質膜の「膜厚方向」の水分子の移動度を測定することができる。

0205

ここで、試料115の移動度を把握するためには、第五実施形態で示した測定装置1の易動性算出部133の自己拡散係数計算部133Bの構成を図40の易動性計算部333Bのようにすればよい。
本実施形態の易動性計算部333Bは、データ解析部333C、データ記憶部333D、移動度計算部333E、移動度算出パラメータ記憶部333Fを備える。

0206

ここで、移動度を算出する原理について説明する。
(i)内部の水分子が一方向に定常的に移動する現象が生じている系と(ii)生じていない系との二つがあるとする。具体的には、(i)は燃料電池が発電しており、水素極から酸素極へ水素イオンと随伴水が移動している状態での固体高分子電解質膜が相当する。また、(ii)は、(i)が発電していない状態での固体高分子電解質膜が相当する。これらは、発電しているか、いないかのみの相違である。
まず、(ii)の場合について、勾配磁場を印加しない状態で、取得したNMR信号と、PGSE法により、勾配磁場をかけた状態でのNMR信号の強度の差(NMR信号低下量)を検出する。
ここでのNMR信号の強度の低下は、熱振動によるブラウン運動に依存したものである。

0207

一方、(i)の状態においても、勾配磁場を印加しない状態で、取得したNMR信号と、PGSE法により、勾配磁場をかけた状態でのNMR信号の強度の差(NMR信号低下量)を検出する。
ここでのNMR信号の低下は、「熱振動によるブラウン運動」と「時間平均して見た時の一方向の運動」との加算によるものである。発電時には、必ず水素イオンと随伴水が水素極から酸素極へと平均的に動くため「時間平均して見た時の一方向の運動」はゼロとならない。
そして、(i)の状態でのNMR信号の強度の低下量と、(ii)の状態でのNMR信号の強度の低下量との差を算出することで、「時間平均して見た時の一方向の運動の程度」が算出でき、この値に基づいて移動度を算出できる。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ