図面 (/)

技術 ごみ数推定装置並びにこれを具備するごみ収集地点の作業効率算出システムおよび地図作成システム

出願人 日立造船株式会社
発明者 佐藤亨牧恒男山本昇
出願日 2020年1月30日 (1年9ヶ月経過) 出願番号 2020-013097
公開日 2021年8月12日 (3ヶ月経過) 公開番号 2021-119430
状態 未査定
技術分野 複合演算 教示用装置
主要キーワード 装着品 収集ルート 単回帰分析 車両形式 収集体 動作センサ 腕バンド 投げ入れ
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2021年8月12日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (12)

課題

作業者により収集されたごみの数を高精度に推定し得るごみ数推定装置並びにこれを具備するごみ収集地点作業効率算出システムおよび地図作成システムを提供する。

解決手段

ごみ数推定装置1は、状況取得部2、収集判定部3、動作センサ4およびごみ数推定部5を備える。状況取得部2は、作業者Wの状況を取得する。収集判定部3は、作業者Wの状況に基づき作業者WによるごみGの収集中かを判定する。動作センサ4は、ごみGの収集に伴う作業者Wの動作を取得する。ごみ数推定部5は、収集判定部3でごみGの収集中と判定されると、取得された動作の量に基づきごみ数推定モデル6により収集されたごみGの数を推定する。ごみ数推定モデル6は、過去のごみGの収集に伴う作業者Wの動作の量と、過去の当該動作により収集されたごみGの数との相関関係から作成されたモデルである。

概要

背景

家庭および事業所からのごみは、ごみ袋に詰められるなどして所定の収集地点に出される。各収集地点に出されたごみは、ごみ収集車により収集されてごみ焼却設備まで運搬される。各収集地点に出されるごみの数は、適切に把握されることで、ごみ収集車による最適なごみ収集ルートを算出するなど、様々に応用されることが可能である。このため、ごみ収集車に光電センサを搭載し、当該光電センサにより各収集地点でごみ収集車に投げ入れられるごみの数を計測するようにした改造ごみ収集車も利用されている。

このような改造ごみ収集車は、ごみ収集車の車両形式に合わせて改造が必要になるので、必然的に複雑な構成になる。このため、ごみ収集車を改造するのではなく、ごみ収集車に各収集地点でごみ袋を投げ入れる作業者靴底ロードセルを取り付けて、当該ロードセルで計測される重量の変化でごみ袋の数を計測するようにした発明が提案されている(例えば、特許文献1参照)。

この発明では、ロードセルで計測される重量が急激に減少すると、前記作業者がごみから手を離した、つまり前記作業者がごみをごみ収集車に1回投げ入れたと判断している。例えば、ある収集地点で、ロードセルで計測される重量の急激な減少がN回であれば、N個のごみをごみ収集車に投げ入れたと判断される。

概要

作業者により収集されたごみの数を高精度に推定し得るごみ数推定装置並びにこれを具備するごみ収集地点の作業効率算出システムおよび地作成システムを提供する。ごみ数推定装置1は、状況取得部2、収集判定部3、動作センサ4およびごみ数推定部5を備える。状況取得部2は、作業者Wの状況を取得する。収集判定部3は、作業者Wの状況に基づき作業者WによるごみGの収集中かを判定する。動作センサ4は、ごみGの収集に伴う作業者Wの動作を取得する。ごみ数推定部5は、収集判定部3でごみGの収集中と判定されると、取得された動作の量に基づきごみ数推定モデル6により収集されたごみGの数を推定する。ごみ数推定モデル6は、過去のごみGの収集に伴う作業者Wの動作の量と、過去の当該動作により収集されたごみGの数との相関関係から作成されたモデルである。

目的

本発明は、作業者により収集されたごみの数を高精度に推定し得るごみ数推定装置並びにこれを具備するごみ収集地点の作業効率算出システムおよび地図作成システムを提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

作業者によるごみ収集中であるかを判定するための当該作業者の状況を取得する状況取得部と、前記状況取得部で取得された作業者の状況に基づいて、作業者によるごみの収集中であるかを判定する収集判定部と、ごみの収集に伴う作業者の動作を取得する動作センサと、前記収集判定部で作業者によるごみの収集中であると判定されると、前記動作センサで取得された動作の量に基づいて、ごみ数推定モデルにより、当該作業者により収集されたごみの数を推定するごみ数推定部とを備え、前記ごみ数推定モデルが、過去のごみの収集に伴う作業者の動作の量と、過去の当該動作により収集されたごみの数との相関関係から作成されたモデルであることを特徴とするごみ数推定装置

請求項2

ごみ数推定モデルは、過去のごみの収集に伴う作業者の動作の量と、過去の当該動作により収集されたごみの数との実測値群に基づいて、機械学習により当該作業者により収集されたごみの数を推定するモデルであることを特徴とする請求項1に記載のごみ数推定装置。

請求項3

ごみ数推定モデルは、過去のごみの収集に伴う作業者の動作の量と、過去の当該動作により収集されたごみの数との実測値群から得られた回帰直線を使用するモデルであることを特徴とする請求項1に記載のごみ数推定装置。

請求項4

ごみ数推定モデルは、回帰直線を得るための実測値群のうち、過去のごみの収集に伴う作業者の歩数所定範囲から外れる値に補正掛けたものであることを特徴とする請求項3に記載のごみ数推定装置。

請求項5

状況取得部で取得される作業者の状況が、作業者の歩数を含み、ごみ数推定部は、前記作業者の歩数が所定範囲から外れた場合、動作センサで取得された動作の量を増加または減少させた上で、ごみ数推定モデルにより、当該作業者により収集されたごみの数を推定するものであることを特徴とする請求項1乃至4のいずれか一項に記載のごみ数推定装置。

請求項6

請求項5に記載のごみ数推定装置と、前記ごみ数推定装置のごみ数推定部で増加または減少させる動作の量に基づいて作業者の作業効率を算出する作業効率算出部とを具備することを特徴とするごみ収集地点の作業効率算出システム

請求項7

請求項1乃至5のいずれか一項に記載のごみ数推定装置を具備し、前記ごみ数推定装置の状況取得部は、作業者の状況として作業者の位置を取得するGNSS受信機を有し、前記GNSS受信機で取得された作業者の位置に基づいて、地図のデータにごみ収集地点を追加する地図作成部を具備することを特徴とするごみ収集地点の地図作成システム

技術分野

0001

本発明は、ごみ推定装置並びにこれを具備するごみ収集地点作業効率算出システムおよび地図作成システムに関するものである。

背景技術

0002

家庭および事業所からのごみは、ごみ袋に詰められるなどして所定の収集地点に出される。各収集地点に出されたごみは、ごみ収集車により収集されてごみ焼却設備まで運搬される。各収集地点に出されるごみの数は、適切に把握されることで、ごみ収集車による最適なごみ収集ルートを算出するなど、様々に応用されることが可能である。このため、ごみ収集車に光電センサを搭載し、当該光電センサにより各収集地点でごみ収集車に投げ入れられるごみの数を計測するようにした改造ごみ収集車も利用されている。

0003

このような改造ごみ収集車は、ごみ収集車の車両形式に合わせて改造が必要になるので、必然的に複雑な構成になる。このため、ごみ収集車を改造するのではなく、ごみ収集車に各収集地点でごみ袋を投げ入れる作業者靴底ロードセルを取り付けて、当該ロードセルで計測される重量の変化でごみ袋の数を計測するようにした発明が提案されている(例えば、特許文献1参照)。

0004

この発明では、ロードセルで計測される重量が急激に減少すると、前記作業者がごみから手を離した、つまり前記作業者がごみをごみ収集車に1回投げ入れたと判断している。例えば、ある収集地点で、ロードセルで計測される重量の急激な減少がN回であれば、N個のごみをごみ収集車に投げ入れたと判断される。

先行技術

0005

特許第3062118号公報

発明が解決しようとする課題

0006

ところで、実際にごみを収集する作業において、作業者は、時間に追われているので、慌ただしく動くことが多い。この動きにより前記特許文献1のロードセルで計測される重量の増減(増加または減少)は、作業者がごみをごみ収集車に投げ入れたことによる重量の増減と似ている場合もある。この場合、前記特許文献1の発明では、作業者がごみをごみ収集車に投げ入れていないにもかかわらず、ごみをごみ収集車に投げ入れたと判断されてしまう。したがって、前記特許文献1の発明だと、計測されるごみの数に多くの誤差が生じていた。

0007

そこで、本発明は、作業者により収集されたごみの数を高精度に推定し得るごみ数推定装置並びにこれを具備するごみ収集地点の作業効率算出システムおよび地図作成システムを提供することを目的とする。

課題を解決するための手段

0008

前記課題を解決するため、第1の発明に係るごみ数推定装置は、作業者によるごみの収集中であるかを判定するための当該作業者の状況を取得する状況取得部と、
前記状況取得部で取得された作業者の状況に基づいて、作業者によるごみの収集中であるかを判定する収集判定部と、
ごみの収集に伴う作業者の動作を取得する動作センサと、
前記収集判定部で作業者によるごみの収集中であると判定されると、前記動作センサで取得された動作の量に基づいて、ごみ数推定モデルにより、当該作業者により収集されたごみの数を推定するごみ数推定部とを備え、
前記ごみ数推定モデルが、過去のごみの収集に伴う作業者の動作の量と、過去の当該動作により収集されたごみの数との相関関係から作成されたモデルである。

0009

また、第2の発明に係るごみ数推定装置は、第1の発明に係るごみ数推定装置におけるごみ数推定モデルが過去のごみの収集に伴う作業者の動作の量と、過去の当該動作により収集されたごみの数との実測値群に基づいて、機械学習により当該作業者により収集されたごみの数を推定するモデルである。

0010

また、第3の発明に係るごみ数推定装置は、第1の発明に係るごみ数推定装置におけるごみ数推定モデルが、過去のごみの収集に伴う作業者の動作の量と、過去の当該動作により収集されたごみの数との実測値群から得られた回帰直線を使用するモデルである。

0011

さらに、第4の発明に係るごみ数推定装置は、第3の発明に係るごみ数推定装置におけるごみ数推定モデルが、回帰直線を得るための実測値群のうち、過去のごみの収集に伴う作業者の歩数所定範囲から外れる値に補正掛けたものである。

0012

加えて、第5の発明に係るごみ数推定装置は、第1乃至第4のいずれかの発明に係るごみ数推定装置において、状況取得部で取得される作業者の状況が、作業者の歩数を含み、
ごみ数推定部は、前記作業者の歩数が所定範囲から外れた場合、動作センサで取得された動作の量を増加または減少させた上で、ごみ数推定モデルにより、当該作業者により収集されたごみの数を推定するものである。

0013

また、第6の発明に係るごみ収集地点の作業効率算出システムは、
第5の発明に係るごみ数推定装置と、
前記ごみ数推定装置のごみ数推定部で増加または減少させる動作の量に基づいて作業者の作業効率を算出する作業効率算出部とを具備するものである。

0014

また、第7の発明に係るごみ収集地点の地図作成システムは、
第1乃至第5のいずれかの発明に係るごみ数推定装置を具備し、
前記ごみ数推定装置の状況取得部は、作業者の状況として作業者の位置を取得するGNSS受信機を有し、
前記GNSS受信機で取得された作業者の位置に基づいて、地図のデータにごみ収集地点を追加する地図作成部を具備するものである。

発明の効果

0015

前記ごみ数推定装置並びにこれを具備するごみ収集地点の作業効率算出システムおよび地図作成システムによると、作業者により収集されたごみの数を高精度に推定することができる。

図面の簡単な説明

0016

本発明の実施の形態に係るごみ数推定装置のブロック図である。
同ごみ数推定装置のごみ数推定部におけるごみ数推定モデルの好ましい形態を説明するグラフである。
同ごみ数推定モデルのより好ましい形態を説明するグラフである。
同ごみ数推定モデルで使用する回帰直線を得るための補正の量を算出する例(第1の例)である。
同補正の量を算出する例(第2の例)である。
同補正の量を算出する例(第3の例)である。
同ごみ数推定モデルに入力される動作の量を増加または減少させる補正を説明するグラフである。
同ごみ数推定装置の使用方法を説明するフローチャートである。
同ごみ数推定装置を具備するごみ収集地点の作業効率算出システムのブロック図である。
同ごみ数推定装置を具備するごみ収集地点の地図作成システムのブロック図である。
同ごみ収集地点の作業効率算出システムおよび地図作成システムの機能を有するシステムのブロック図である。

実施例

0017

以下、本発明の実施の形態に係るごみ数推定装置並びにこれを具備するごみ収集地点の作業効率算出システムおよび地図作成システムについて図面に基づき説明する。

0018

まず、前記ごみ数推定装置について説明する。このごみ数推定装置は、概略的に、予め作成されたごみ数推定モデルを使用することにより、作業者の動作の量から当該作業者がごみ収集車に収めたごみの数を推定する装置である。ここで、ごみの数とは、掴むことが可能なごみの単位(例えば、ごみ袋またはごみ塊など)の数である。

0019

以下、前記ごみ数推定装置の構成を図1に基づき具体的に説明する。

0020

図1に示すように、前記ごみ数推定装置1は、状況取得部2、収集判定部3、動作センサ4、および、ごみ数推定部5を備える。

0021

前記状況取得部2は、作業者WによるごみGの収集中であるかを判定するための当該作業者Wの状況を取得する。なお、作業者WによるごみGの収集とは、作業者Wがごみ収集地点に置かれたごみGを持上げてごみ収集車Tに収める作業であり、必要に応じて、当該作業に加えて作業者Wがごみ収集車Tからごみ収集地点まで往復する歩行も含む。ここで、当該作業者Wの状況は、例えば、当該作業者Wの歩数、姿勢および/または位置であり、必要に応じて時刻も含む。前記作業者Wの状況が作業者Wの歩数および/または姿勢の場合、例えば、前記状況取得部2は歩数カウンタおよび/または姿勢センサである。前記歩数カウンタおよび/または姿勢センサは、スマートデバイススマートフォンスマートウォッチまたはタブレット端末など)に搭載されたものでもよい。前記スマートデバイスに搭載された姿勢センサは、加速度、角速度および/または角度(姿勢)などを取得するモーションセンサを使用するものでもよい。なお、前記状況取得部2は、姿勢センサを有する場合、特に当該姿勢センサがモーションセンサを使用するものである場合、作業者Wの姿勢を正確に把握するためにも、作業者Wのに装着される(例えばズボン脇ポケットPに収容される)ものであることが好ましい。また、前記作業者Wの状況が作業者Wの位置の場合、例えば、前記状況取得部2はGNSS受信機である。さらに、前記作業者Wの状況が時刻を含む場合、例えば、前記状況取得部2は時計を含む。このように、前記状況取得部2は、歩数カウンタ、姿勢センサおよび/またはGNSS受信機などであり、必要に応じて時計を含むので、スマートデバイスに搭載された機器であることが好ましい。これにより、前記状況取得部2は、作業者Wにとって携帯が容易となり、且つ、スマートデバイスの機能により前記収集判定部3に作業者Wの状況を伝達可能となる。

0022

前記収集判定部3は、前記状況取得部2で取得された作業者Wの状況に基づいて、作業者WによるごみGの収集中であるかを判定する。例えば、作業者Wの複数の状況ごとに暫定的な判定結果を得て、これらの暫定的な判定結果を組み合わせることで、作業者WによるごみGの収集中であるかを最終的に判定する。以下、前記暫定的な判定結果、および、前記最終的な判定について説明する。

0023

前記作業者Wの状況が作業者Wの歩数の場合、前記収集判定部3での判定の基準は、例えば、作業者Wの歩行が所定数以上で連続しているか、または、所定時間での歩数が所定以上かである。作業者Wの歩行が所定数以上、または、所定時間での歩数が所定以上であれば、作業者Wはごみ収集地点またはその近くで歩いている、という暫定的な判定結果(以下、歩数に基づく暫定的な判定結果)となる。

0024

前記作業者Wの状況が作業者Wの姿勢の場合、前記収集判定部3での判定の基準は、例えば、作業者Wの姿勢が所定時間で鉛直上方に向いているかである。作業者Wの姿勢が所定時間で鉛直上方に向いていれば、作業者Wはごみ収集車Tに着席していない、という暫定的な判定結果(以下、姿勢に基づく暫定的な判定結果)となる。前記判定の基準は、作業者Wの姿勢が所定時間で鉛直上方に向いているか以外にも、スマートデバイスのモーションセンサで取得された加速度、角速度および/または角度(姿勢)などの時間平均値および/または標準偏差に基づいてもよい。これにより、作業者Wは着席していないか、または、作業者Wはごみ収集車Tの外にいるかが、姿勢に基づく暫定的な判定結果として得られる。

0025

前記作業者Wの状況が作業者Wの位置の場合、前記収集判定部3での判定の基準は、例えば、作業者Wがごみ収集地点の近くにいるかである。作業者Wがごみ収集地点の近くにいれば、作業者Wはごみ収集地点の近くで作業中、という暫定的な判定結果(以下、位置に基づく暫定的な判定結果)となる。なお、ごみ収集地点の近くとは、ごみ収集地点からの距離が、例えば、20〜30m以内であり、好ましくは10〜20m以内であり、さらに好ましくは5〜10m以内である。

0026

こうして得られた複数の暫定的な判定結果(歩数、姿勢および位置に基づく暫定的な判定結果)を組み合わせる(ANDの処理をする)ことにより、作業者WによるごみGの収集中であるかが最終的に判定される。

0027

前記収集判定部3による判定は、前述したもの以外に、機械学習によるものがある。前記判定が機械学習によるものの場合、図示しないが、スマートデバイス(例えば、GNSS受信機など)で得られたごみ収集車Tの位置(緯度および経度)を利用して、機械学習により、作業者WによるごみGの収集中であるかが判定される。

0028

前記動作センサ4は、ごみGの収集に伴う作業者Wの動作を取得する。前記動作センサ4は、例えば、加速度センサ角速度センサ高度計圧力センサおよび/または筋電位センサなどである。このため、前記動作センサ4は、作業者Wの手袋腕時計および/または腕バンドなどの装着品に取り付けられたウェアラブルなものであることが好ましい。前記動作センサ4が加速度センサ、角速度センサおよび/または高度計の場合、ごみGの収集に伴う作業者Wの動作として、掴んだごみGを持上げる作業者Wの腕(または手)の動きが、加速度、角速度および/または高度として取得される。また、前記動作センサ4が圧力センサの場合、ごみGの収集に伴う作業者Wの動作として、ごみGを掴む作業者Wの手の動きが、圧力として取得される。さらに、前記動作センサ4が筋電位センサの場合、ごみGの収集に伴う作業者Wの動作として、ごみGを掴む(または持上げる)作業者Wの筋肉の動きが取得される。なお、前記加速度センサおよび/または角速度センサは、直交する水平軸(X軸およびY軸)並びに鉛直軸(Z軸)ごとに加速度および/または角速度の成分を取得するものでもよい。このような加速度センサおよび/または角速度センサが動作センサ4であれば、前記ごみ数推定モデル6で使用される動作の量は、次に示す8種類の累積値から採用される。これらの8種類の累積値は、X軸の成分の加速度の累積値、Y軸の成分の加速度の累積値、Z軸の成分の加速度の累積値、各成分を合成した加速度の累積値、X軸の成分の角速度の累積値、Y軸の成分の角速度の累積値、Z軸の成分の角速度の累積値、および、各成分を合成した角速度の累積値である。

0029

前記ごみ数推定部5は、前記収集判定部3で作業者WによるごみGの収集中であると判定されると、前記動作センサ4で取得された動作の量(当該動作量の累積値)に基づいて、ごみ数推定モデル6により、当該作業者Wにより収集されたごみGの数を推定する。すなわち、前記ごみ数推定部5は、前記ごみ数推定モデル6に動作の量を入力し、当該ごみ数推定モデル6から、入力された動作の量に応じたごみGの数を出力として得る。前記ごみ数推定モデル6は、ごみ収集地点における、過去のごみGの収集に伴う作業者Wの動作の量と、過去の当該動作により収集されたごみGの数との相関関係から作成されたモデルである。

0030

次に、前記ごみ数推定モデル6の好ましい形態について説明する。当該好ましい形態としては、機械学習を用いる形態、単回帰分析を用いる形態、および、重回帰分析を用いる形態であり、これらを順に説明する。

0031

機械学習を用いる形態としてのごみ数推定モデル6では、機械学習の手法として、例えば、重回帰分析(例えば、MVRPCRPLS、および、O−PLSなど)、ヒトの神経ネットワークを模したアルゴリズム(例えば、パーセプトロンニューラルネットワーク、畳み込みニューラルネットワーク、ディープラーニングなど)、ロジスティック回帰(例えば、座標降下法、勾配降下法、ニュートン法、および、準ニュートン法など)、および、サポートベクターマシン(例えば、サポートベクターリグレッションなど)が採用される。

0032

単回帰分析を用いる形態としてのごみ数推定モデル6では、図2に示すように、前記ごみ数推定モデル6は、過去のごみGの収集に伴う作業者Wの動作の量と、過去の当該動作により収集されたごみGの数との実測値群(図2の白抜きされた黒丸群)から得られた回帰直線7を使用するモデルであることが好ましい。回帰直線7は実測値群の傾向である動作の量とごみGの数との正の相関関係を現したものであるから、前記ごみ数推定モデル6は、回帰直線7を使用することにより、入力された動作の量に応じたごみGの数を高精度に出力する。

0033

図3に示すように、前記ごみ数推定モデル6は、回帰直線7を得るための実測値群(図3の白抜きされた黒丸群)のうち、過去のごみGの収集に伴う作業者Wの歩数が所定範囲から外れる値v1,v2に、補正(図3の矢印a1,a2を参照)を掛けたものであることが好ましい。前記実測値群のうち、過去のごみGの収集に伴う作業者Wの歩数が所定範囲から外れない値では、動作の量とごみGの数とが強い正の相関関係にある一方、当該歩数が所定範囲から外れる値v1,v2では、正の相関関係が若干弱まる。すなわち、当該歩数が所定範囲から外れない値に対して、当該歩数が所定範囲から外れる値v1,v2は、図3から明らかなように、傾向が若干異なる外れ値となる。これは、作業者Wの歩行もごみGの収集に伴う動作に反映されてしまうからであり、歩数が所定範囲を上回る/下回ることで、動作の量も通常を上回る/下回ることになる。このため、前記ごみ数推定モデル6の回帰直線7を得るのに、前記歩数が所定範囲から外れる値v1,v2は、そのまま使用されるよりも、補正a1,a2を掛けた上で使用される方が、ごみGの数を一層高精度に出力する回帰直線7が得られる。なお、前記歩数が所定範囲から外れる値v1,v2に掛ける補正a1,a2の量は、固定値でもよく、前記所定範囲から外れた歩数に比例するなど変動値でもよい。

0034

前記補正をより具体的に説明する。前記実測値群を得るために、フィールド調査として、前記動作センサ4を装着した作業者Wは、ごみGの収集を行う。ごみGの収集が終われば、前記動作センサ4から動作の量を得るとともに、収集されたごみGの数をごみ収集地点ごと人手より数える。前記動作センサ4から得られた動作の量を、前記実測値群における、過去のごみGの収集に伴う作業者Wの動作の量とし、人手により数えられたごみGの数を、前記実測値群における、過去の当該動作により収集されたごみGの数とする。こうして得られた実測値群を、図3の白抜きされた黒丸群としてグラフにプロットする。しかしながら、図3から明らかなように、外れ値v1が生ずることもある。このような外れ値v1では、ごみGを収集するためにごみ収集車Tが停車した位置とごみ収集地点との距離が離れている。すなわち、外れ値v1では、作業者Wの歩数が所定範囲を上回ることになる。このため、この上回った歩数に相当する動作の量(図3でのa1)を外れ値v1から減じ、その後に回帰直線7を得ることで、ごみGの数を一層高精度に出力する回帰直線7が得られる。なお、補正a1として、外れ値v1から動作の量を減ずる以外に、外れ値v1での動作の量に1未満の係数を乗じてもよい。

0035

前記補正の量は、特に限定されないが、例えば、次の第1の例〜第3の例により算出される。これら第1の例〜第3の例について、図4図6に基づき説明する。第1の例として、得られた複数の外れ値を、図4に示すように、一方の軸が作業者Wの歩数であり、他方の軸が動作の量の差であるグラフにプロットする。ここで、動作の量の差とは、図3でのa1に相当する量である。図4に示すように、プロットされた外れ値のデータ群から、別途の回帰直線を得て、当該別途の回帰直線から外れ値での歩数に対応する動作の量の差を算出する。こうして算出された動作の量の差を、外れ値に対する補正の量とする。また、第2の例として、得られた複数の外れ値を、図5に示すように、一方の軸が作業者Wの歩数であり、他方の軸が動作の量の差であるグラフにプロットする。プロットされた外れ値のデータ群を、歩数によって領域に分け、分けられた領域ごとに補正の量を設定する。図5に示す例では、最も歩数が多い領域における補正の量を−100とし、2番目に歩数が多い領域における補正の量を−50とし、3番目に歩数が多い領域における補正の量を0とし、4番目に歩数が多い場合における補正の量を50とする。なお、分けられる領域の数は、図5に示す4個の例に限られず、得られた外れ値のデータ群に適した数が選択される。勿論、分けられる領域の数を5個以上にしてもよい。さらに、第3の例として、得られた複数の外れ値を、図6に示すように、一方の軸が作業者Wの歩数であり、他方の軸が動作に伴う時間であるグラフにプロットする。プロットされた外れ値のデータ群を、歩数および時間によって領域に分け、分けられた領域ごとに補正の量を設定する。図6に示す例では、歩数の軸で4個の領域、時間の軸で4個の領域に分けるので、合計16個(=4×4)の領域に分けられる。最も歩数が多い領域では、時間が大きい領域の順に、補正の量を50,0,−50,−100とし、2番目に歩数が多い領域では、時間が大きい領域の順に、補正の量を100,50,0,−50とし、3番目に歩数が多い領域では、時間が大きい領域の順に、補正の量を150,100,50,0とし、4番目に歩数が多い領域では、時間が大きい領域の順に、補正の量を100,50,0,0とする。なお、分けられる領域の数は、図6に示す16個の例に限られず、得られた外れ値のデータ群に適した数が選択される。勿論、分けられる領域の数を17個以上にしてもよいこのように、前記第3の例では、単に歩数の多少で補正の量を決定する第1および第2の例に比べて、時間の大小による影響も補正の量に考慮されるので、より適切な補正の量となる。

0036

重回帰分析を用いる形態としてのごみ数推定モデル6では、複数の独立変数として、収集判定部3で作業者WによるごみGの収集中であると判定された時間と、この時間における加速度および角速度の前述した累積値と、当該累積値の移動平均が別途設けられたしきい値を超えた回数とが採用される。

0037

以上では、前記ごみ数推定モデル6で使用する回帰直線7を得るための補正、すなわち、前記ごみ数推定装置1を使用する前の段階での補正について説明したが、以下では、前記ごみ数推定装置1を使用している段階でも補正してよいことを説明する。前記ごみ数推定装置1を使用している段階での補正は、前記状況取得部2で取得された作業者Wの状況として、作業者Wの歩数が所定範囲から外れた場合、前記ごみ数推定モデル6に入力される動作の量(前記動作センサ4で取得された動作の量)を増加または減少させる(以下、増減させる)補正である。具体的に説明すると、前記状況取得部2で取得された作業者Wの歩数が所定範囲から外れた場合、図7に示すように、前記ごみ数推定モデル6に入力される動作の量(図7の矢印Iを参照)を、前記所定範囲から外れた歩数に相当する動作の量(図7の矢印Aを参照)だけ増減する(図7では減の例を示す)。こうして増減された動作の量(図7の矢印I’,つまり矢印I−矢印Aを参照)がごみ数推定モデル6に入力されて、当該ごみ数推定モデル6から、入力された動作の量に応じたごみGの数(図7の矢印Oを参照)が出力される。なお、この補正には、作業者Wの歩数を取得する必要があるので、前記状況取得部2は少なくとも歩数カウンタを有する。

0038

以下、前記ごみ数推定装置1の動作、すなわち、前記ごみ数推定装置1の使用方法について説明する。

0039

作業者Wを乗せたごみ収集車Tは、所定のごみ収集地点の近くに到着すると停止し、作業者Wを降ろす。そして、ごみ収集車Tから降りた作業者Wは、ごみ収集地点まで歩き、ごみ収集地点からごみG(例えばごみGの袋)を運んでごみ収集車Tに収めていく。当該ごみ収集地点のごみGが全てごみ収集車Tに収められると、作業者Wは、次のごみ収集地点でごみGを収集するために、再びごみ収集車Tに乗って次のごみ収集地点の近くまで移動する。このようにして、作業者Wは、次々とごみ収集地点でごみGを収集していく。

0040

図8に示すように、このような作業者Wの状況および動作は、状況取得部2および動作センサ4によって取得されていく(STEP1)。そして、一通りの作業者Wの状況および動作が取得された後、取得された作業者Wの状況が順次抽出され(STEP2)、抽出された作業者Wの状況に基づいて、作業者WによるごみGの収集中であるかが判定される(STEP3)。ごみGの収集中であると判定されると、取得された作業者Wの動作が抽出され(STEP4)、抽出された作業者Wの動作に基づいて、ごみ数推定モデル6により、当該作業者Wにより収集されたごみGの数が推定される(STEP5)。取得された作業者Wの状況が全て抽出されるまで、ごみGの数が推定されていく(STEP6)。

0041

このように、前記ごみ数推定装置1によると、過去のごみGの収集に伴う作業者Wの動作の量と、過去の当該動作により収集されたごみGの数との相関関係から作成されたごみ数推定モデル6を使用するので、作業者により収集されたごみGの数を高精度に推定することができる。前記ごみ数推定モデル6が使用されることにより、ごみGの数を計測するためのごみ収集車Tの改造が不要となる。

0042

ところで、前記実施の形態では、前記ごみ数推定装置1における収集判定部3およびごみ数推定部5の配置について説明しなかったが、当該配置については特に限定されない。例えば、前記収集判定部3およびごみ数推定部5は、作業者Wの事務所パソコンまたはクラウドに配置されてもよく、作業者Wが携帯するスマートデバイスの機能として配置されてもよい。

0043

また、前記ごみ数推定装置1は、ごみ収集地点ごとにごみGの数を推定する装置でもよく、ごみ収集地点ごとではなく作業者GがごみGを収集した全てのごみGの数を推定する装置でもよい。

0044

次に、前記ごみ数推定装置1を具備するごみ収集地点の作業効率算出システム11および地図作成システム12について順次説明する。なお、前記作業効率算出システム11および地図作成システム12が具備するごみ数推定装置1は、ごみ収集地点ごとにごみGの数を推定する装置であることが好ましい。

0045

まず、前記ごみ収集地点の作業効率算出システム11を図9に基づき説明する。

0046

図9に示すように、前記ごみ収集地点の作業効率算出システム11は、前記ごみ数推定装置1および作業効率算出部10を具備する。当該ごみ数推定装置1では、作業者Wの状況が、作業者Wの歩数を含むものである。このため、前記ごみ数推定装置1の状況取得部2は、少なくとも歩数カウンタ21を有する。

0047

前記ごみ数推定部5は、図7に基づき説明した通り、作業者Wの歩数が所定範囲から外れた場合、前記ごみ数推定モデル6に入力される動作の量を増減する(図7の矢印Aを参照)。また、図9に示すように、前記ごみ数推定部5は、増減した動作の量を前記作業効率算出部10に伝達する。

0048

前記作業効率算出部10は、前記ごみ数推定部5から伝達された、増減された動作の量に基づいて作業者Wの作業効率を算出する。具体的に説明すると、前記作業効率算出部10は、例えば、前記ごみ数推定部5で増減された動作の量(前記ごみ数推定装置1を使用している段階での補正の量)を作業効率とする。すなわち、前記作業効率算出部10は、前記ごみ数推定部5から伝達された増減された動作の量に基づいて、ごみ収集地点ごとの作業効率を算出する。具体的に説明すると、前記作業効率算出部10は、例えば、前記ごみ数推定部5から伝達された、増減された動作の量(図4の矢印I’,つまり矢印I−矢印A)、すなわち、補正の量(大きさ)を、各ごみ収集地点での作業効率とする。言い換えれば、作業効率は、次の式(1)で算出される。算出された作業効率が正の場合は、作業効率が良いと言え、逆に、算出された作業効率が負の場合は、作業効率が悪いと言える。
[作業効率]=[補正後の動作の量]−[補正前の動作の量]・・・(1)

0049

前記式(1)で算出されたごみ収集地点での作業効率を作業者Wの人数で除することで、作業者Wの作業効率を算出することも可能である。また、作業者Wの作業効率は、当該作業者Wの役割に応じて調整してもよい。例えば、作業者Wとして、ごみ収集車Tの運転手と、その助手との二人がごみGを収集する場合、次のように作業者Wの作業効率が算出される。助手は、運転手よりもごみ収集車Tから先に降りて当該ごみ収集車Tをごみ収集地点まで誘導することもあり、作業者運転手よりも歩数が多くなりがちである。このため、運転手と助手とで歩数に関し異なる重み付けを設定した上で、それぞれの作業効率が算出される。

0050

このように、前記ごみ収集地点の作業効率算出システム11によると、ごみ収集地点の作業効率を算出することができる。例えば、ごみ収集車Tからごみ収集地点までの距離が大きい場合、増減された動作の量(補正の量)が大きくなり、作業効率は悪くなる。ごみ収集地点の作業効率が算出されることにより、ごみ収集地点でごみGを保管するごみ収集体の適切な改良、および、ごみ収集車Tによる収集ルートの最適化につなげることが可能となる。

0051

次に、前記ごみ収集地点の地図作成システム12を図10に基づき説明する。

0052

図10に示すように、前記ごみ収集地点の地図作成システム12は、前記ごみ数推定装置1および地図作成部20を具備する。当該ごみ数推定装置1では、作業者Wの状況が、作業者Wの位置を含むものである。このため、前記ごみ数推定装置1の状況取得部2は、少なくともGNSS受信機22を有する。このGNSS受信機22およびごみ数推定部5は、前記地図作成部20に必要な情報を伝達する。

0053

前記地図作成部20は、前記ごみ数推定部5およびGNSS受信機22から伝達された情報に基づいて、作業者WによるごみGの収集に伴う動作の際の当該作業者Wの位置を特定する。また、前記地図作成部20は、こうして特定した位置を、ごみ収集地点の位置として地図のデータに追加する。

0054

このように、前記ごみ収集地点の地図作成システム12によると、ごみ収集地点が追加された地図を作成することができる。当該地図と、各ごみ収集地点のごみGの数の情報を用いて、ごみ収集車Tによる収集ルートの最適化につなげることが可能となる。

0055

ところで、ごみ収集地点の作業効率算出システム11および地図作成システム12を別々のシステムとして説明したが、1つのシステムがこれらの機能を有してもよい。図11に示すように、このシステム13は、前記ごみ数推定装置1、前記作業効率算出部10および地図作成部20を具備する。

0056

また、前記実施の形態では、全ての点で例示であって制限的なものではない。本発明の範囲は、上述した説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。前記実施の形態で説明した構成のうち「課題を解決するための手段」での第1の発明として記載した構成以外については、任意の構成であり、適宜削除および変更することが可能である。

0057

1ごみ数推定装置
2状況取得部
3収集判定部
4動作センサ
5 ごみ数推定部
6 ごみ数推定モデル
7回帰直線
10作業効率算出部
11 ごみ収集地点の作業効率算出システム
12 ごみ収集地点の地図作成システム
20地図作成部
21歩数カウンタ
22 GNSS受信機

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 三菱電機株式会社の「 フーリエ変換装置及びフーリエ変換方法」が 公開されました。( 2021/09/30)

    【課題・解決手段】K×M個のデータのうち、1番目のデータを起点とする並び順で((k−1)M+1)(k=1,2)番目のデータがK個のデータ列におけるそれぞれの先頭のデータであり、K個のデータ列が、K×M... 詳細

  • 株式会社MICOTOテクノロジーの「 医療シミュレータ」が 公開されました。( 2021/09/30)

    【課題・解決手段】医療シミュレータは、柔軟性を有し少なくとも一つの管腔臓器を模した形状を有する管腔臓器モデルであって、一つの管腔臓器の一端部又は二つの管腔臓器の接合部に相当する部位を含む第一特定領域に... 詳細

  • 株式会社島津製作所の「 逐次近似計算方法、逐次近似計算装置およびプログラム」が 公開されました。( 2021/09/30)

    【課題】逐次近似計算法で用いる解の初期値を真値に近い値とすることが可能な逐次近似計算方法等を提供する。【解決手段】コンピュータは、ディジタルホログラフィ装置により測定された干渉縞強度データ10等と、推... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ