図面 (/)

技術 建設機械

出願人 日立建機株式会社
発明者 宇田川勉山本純司櫻井茂行鈴木幸仁
出願日 2019年12月16日 (1年10ヶ月経過) 出願番号 2019-226756
公開日 2021年6月24日 (4ヶ月経過) 公開番号 2021-095861
状態 未査定
技術分野 建設機械の構成部品 容積形ポンプの制御
主要キーワード 損傷度合 形状先端 ヘッドケーシング センタシャフト 傾転機構 他側端面 凹湾曲状 規定流量
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2021年6月24日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (11)

課題

傾転型可変容量式油圧ポンプ微小漏れ流量を測定することが可能な建設機械を提供する。

解決手段

建設機械100は、油圧ポンプ21の圧力Ppを検出する圧力センサ27と、油圧ポンプ21のブリードオフ流量を調整可能なブリードオフ調整装置25と、油圧ポンプ21の漏れ流量Qleakの測定を指示する入力装置とを備え、コントローラ40は、操作装置51が非操作状態にあると判定しかつ入力装置52から測定指令が入力された場合に、油圧ポンプ21の流量を保持した状態で、ブリードオフ調整装置25の制御指令値を変化させながら油圧ポンプ21の圧力Ppを計測し、油圧ポンプ21の圧力Ppが所定の圧力で安定したときのブリードオフ調整装置25の制御指令値に基づいて油圧ポンプ21の漏れ流量Qleakを算出する。

概要

背景

油圧ポンプ故障診断する方法として特許文献1が知られている。

特許文献1には、レギュレータにより吐出量が制御される複数の可変容量油圧ポンプと、これら可変容量油圧ポンプの1つ又は複数から吐出される圧油により駆動される複数の油圧アクチュエータと、前記各油圧アクチュエータの駆動を制御する複数の流量制御弁と、1つ又は複数の前記可変容量油圧ポンプを中立位置にある1つ又は複数の前記流量制御弁を経てタンクに接続する管路とを備えた作業機械において、前記各可変容量油圧ポンプと前記流量制御弁との間に介在する差圧センサ付きチェック弁と、前記可変容量油圧ポンプが前記管路と接続された状態で前記レギュレータに可変容量油圧ポンプの最大吐出量を指示する最大吐出量指示手段と、この最大吐出量指示手段による最大流量を吐出している可変容量油圧ポンプについての前記差圧センサ付きチェック弁の検出圧力を格納する記憶手段と、前記検出圧力に基づいて前記各可変容量油圧ポンプの良否の判定を行う故障判定手段とを設けたことを特徴とする作業機械の油圧ポンプ故障診断装置が記載されている。

概要

傾転型可変容量式油圧ポンプの微小漏れ流量を測定することが可能な建設機械を提供する。建設機械100は、油圧ポンプ21の圧力Ppを検出する圧力センサ27と、油圧ポンプ21のブリードオフ流量を調整可能なブリードオフ調整装置25と、油圧ポンプ21の漏れ流量Qleakの測定を指示する入力装置とを備え、コントローラ40は、操作装置51が非操作状態にあると判定しかつ入力装置52から測定指令が入力された場合に、油圧ポンプ21の流量を保持した状態で、ブリードオフ調整装置25の制御指令値を変化させながら油圧ポンプ21の圧力Ppを計測し、油圧ポンプ21の圧力Ppが所定の圧力で安定したときのブリードオフ調整装置25の制御指令値に基づいて油圧ポンプ21の漏れ流量Qleakを算出する。

目的

本発明は、上記の課題に鑑みてなされたものであり、その目的は、片傾転型可変容量式油圧ポンプの微小な漏れ流量を測定することが可能な建設機械を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

原動機と、作動油貯留するタンクと、前記原動機によって駆動され、前記タンクから吸い込んだ作動油を吐出する片傾転型可変容量式の第1油圧ポンプと、前記第1油圧ポンプから供給される作動油によって駆動される複数の油圧アクチュエータと、前記複数のアクチュエータの動作を指示する操作装置と、前記原動機の回転数および前記第1油圧ポンプの傾転を制御するコントローラとを備えた建設機械において、前記第1油圧ポンプの圧力を検出する第1圧力センサと、前記第1油圧ポンプのブリードオフ流量を調整可能な第1ブリードオフ調整装置と、前記第1油圧ポンプの漏れ流量の測定を指示する入力装置とを備え、前記コントローラは、前記操作装置、前記第1圧力センサ、前記第1ブリードオフ調整装置、および前記入力装置に接続され、前記操作装置からの入力信号を基に前記操作装置の操作状態を判定し、前記第1圧力センサの検出信号圧力値換算し、制御指令値に応じた制御信号を前記第1ブリードオフ調整装置へ出力できるようにプログラムされており、前記操作装置が非操作状態にあると判定しかつ前記入力装置から測定指令が入力された場合に、前記第1油圧ポンプの流量を保持した状態で、前記第1ブリードオフ調整装置の制御指令値を変化させながら前記第1油圧ポンプの圧力を計測し、前記第1油圧ポンプの圧力が所定の圧力で安定したときの前記第1ブリードオフ調整装置の制御指令値に基づいて前記第1油圧ポンプの漏れ流量を算出することを特徴とする建設機械。

請求項2

請求項1に記載の建設機械において、前記コントローラは、前記操作装置が非操作状態にあると判定しかつ前記測定指令が入力された場合に、前記第1油圧ポンプの流量を所定の流量に調整し、前記第1油圧ポンプの流量を前記所定の流量に保持した状態で、前記第1ブリードオフ調整装置の制御指令値を変化させながら前記第1油圧ポンプの圧力を計測し、前記第1油圧ポンプの圧力が前記所定の圧力で安定したときの前記第1ブリードオフ調整装置の制御指令値に基づいて前記第1油圧ポンプの漏れ流量を算出することを特徴とする建設機械。

請求項3

請求項1に記載の建設機械において、前記コントローラは、前記操作装置が非操作状態にあると判定しかつ前記測定指令が入力された場合に、前記第1油圧ポンプの流量を現在の流量に保持した状態で、前記第1ブリードオフ調整装置の制御指令値を変化させながら前記第1油圧ポンプの圧力を計測し、前記第1油圧ポンプの圧力が前記所定の圧力と一致したときの前記第1ブリードオフ調整装置の制御指令値を前記第1油圧ポンプの圧力および前記現在の流量と対応づけて記憶することを特徴とする建設機械。

請求項4

請求項1に記載の建設機械において、前記コントローラは、前記第1油圧ポンプの漏れ流量を算出する前に、前記第1ブリードオフ調整装置の制御指令値に対して平準化処理を行うことを特徴とする建設機械。

請求項5

請求項1に記載の建設機械において、前記第1油圧ポンプから前記複数の油圧アクチュエータに供給される作動油の流れを制御する第1方向切換弁ユニットを備え、前記第1ブリードオフ調整装置は、前記第1方向切換弁ユニットと前記タンクとを接続するバイパスラインに設けられ、前記コントローラからのバルブ制御信号に応じて開閉するブリードオフバルブであることを特徴とする建設機械。

請求項6

請求項1に記載の建設機械において、前記原動機によって駆動され、前記タンクから吸い込んだ作動油を吐出する片傾転型可変容量式の第2油圧ポンプと、前記第2油圧ポンプの圧力を検出する第2圧力センサと、前記第2油圧ポンプのブリードオフ流量を調整可能な第2ブリードオフ調整装置と、作動油の温度を検出する温度センサとを更に備え、前記複数の油圧アクチュエータは、前記第2油圧ポンプから供給される作動油によって駆動可能であり、前記コントローラは、前記第2圧力センサ、前記第2ブリードオフ調整装置、および前記温度センサに接続され、前記第2圧力センサの検出信号を圧力値に換算し、制御指令値に応じた制御信号を前記第2ブリードオフ調整装置へ出力し、前記温度センサの検出信号を温度値に変換できるようにプログラムされており、前記操作装置が非操作状態にあると判定しかつ前記測定指令が入力された場合に、前記第2油圧ポンプの流量を保持した状態で、前記第2ブリードオフ調整装置の制御指令値を変化させながら前記第2油圧ポンプの圧力を計測し、前記第2油圧ポンプの圧力が前記所定の圧力で安定したときの前記第2ブリードオフ調整装置の制御指令値に基づいて前記第2油圧ポンプの漏れ流量を算出し、前記作動油の温度に応じて前記第1油圧ポンプの漏れ流量および前記第2油圧ポンプの漏れ流量を補正することを特徴とした建設機械。

技術分野

0001

本発明は、片傾転型可変容量式油圧ポンプを搭載した油圧ショベルクレーン等の建設機械に関する。

背景技術

0002

油圧ポンプの故障診断する方法として特許文献1が知られている。

0003

特許文献1には、レギュレータにより吐出量が制御される複数の可変容量油圧ポンプと、これら可変容量油圧ポンプの1つ又は複数から吐出される圧油により駆動される複数の油圧アクチュエータと、前記各油圧アクチュエータの駆動を制御する複数の流量制御弁と、1つ又は複数の前記可変容量油圧ポンプを中立位置にある1つ又は複数の前記流量制御弁を経てタンクに接続する管路とを備えた作業機械において、前記各可変容量油圧ポンプと前記流量制御弁との間に介在する差圧センサ付きチェック弁と、前記可変容量油圧ポンプが前記管路と接続された状態で前記レギュレータに可変容量油圧ポンプの最大吐出量を指示する最大吐出量指示手段と、この最大吐出量指示手段による最大流量を吐出している可変容量油圧ポンプについての前記差圧センサ付きチェック弁の検出圧力を格納する記憶手段と、前記検出圧力に基づいて前記各可変容量油圧ポンプの良否の判定を行う故障判定手段とを設けたことを特徴とする作業機械の油圧ポンプ故障診断装置が記載されている。

先行技術

0004

特許第3857361号公報

発明が解決しようとする課題

0005

特許文献1に記載の油圧ポンプ故障診断装置では、差圧センサ付チェック弁を用いているが、以下の理由により、流量が小さい領域で十分な精度が得られない。

0006

チェック弁とは順方向の流れを許容し、逆方向の流れを阻止するものであり、差圧が所定の圧力(クラッキング圧)を超えない限り閉弁状態を維持する。チェック弁は、差圧がクラッキング圧を超えると開弁し、差圧が大きくなるに従って開度が大きくなることにより、大きな流量を流すことができる。このように、チェック弁の流量は差圧に応じて大きく変化するため、差圧から流量を高い精度で求めることは困難である。特許文献1の図5(圧力と流量との変換マップの特性図)がこのことを示している。この図5によれば、特に圧力(チェック弁の差圧)が低い領域での流量変化が大きいため、小流量領域での流量の変換算出精度が大きく低下してしまう。

0007

ここで、変換算出精度を高めるために、チェック弁の開口量を小さくすることで圧力に対する流量変化が小さくすることが考えられるが、診断時以外の通常動作時においてチェック弁による圧力損失が大きくなり、エネルギロスが発生するという問題が生じる。

0008

本発明は、上記の課題に鑑みてなされたものであり、その目的は、片傾転型可変容量式油圧ポンプの微小漏れ流量を測定することが可能な建設機械を提供することにある。

課題を解決するための手段

0009

上記目的を達成するために、本発明は、原動機と、作動油貯留するタンクと、前記原動機によって駆動され、前記タンクから吸い込んだ作動油を吐出する片傾転型可変容量式の油圧ポンプと、前記油圧ポンプから供給される作動油によって駆動される複数の油圧アクチュエータと、前記複数のアクチュエータの動作を指示する操作装置と、前記原動機の回転数および前記油圧ポンプの傾転を制御するコントローラとを備えた建設機械において、前記油圧ポンプの圧力を検出する圧力センサと、前記油圧ポンプのブリードオフ流量を調整可能なブリードオフ調整装置と、前記油圧ポンプの漏れ流量の測定を指示する入力装置とを備え、前記コントローラは、前記操作装置、前記圧力センサ、前記ブリードオフ調整装置、および前記入力装置に接続され、前記操作装置からの入力信号を基に前記操作装置の操作状態を判定し、前記圧力センサの検出信号圧力値に換算し、制御指令値に応じた制御信号を前記ブリードオフ調整装置へ出力できるようにプログラムされており、前記操作装置が非操作状態にあると判定しかつ前記入力装置から測定指令が入力された場合に、前記第1油圧ポンプの流量を保持した状態で、前記第1ブリードオフ調整装置の制御指令値を変化させながら前記第1油圧ポンプの圧力を計測し、前記油圧ポンプの圧力が所定の圧力で安定しているときの前記ブリードオフ調整装置の制御指令値に基づいて前記油圧ポンプの漏れ流量を算出するものとする。

0010

以上のように構成した本発明によれば、油圧ポンプの流量を保持した状態で、ブリードオフ調整装置の操作量を変化させながら油圧ポンプの圧力を計測し、油圧ポンプの圧力が所定の圧力で安定しているときのブリードオフ調整装置の制御指令値に基づいて油圧ポンプの漏れ流量を算出することができる。これにより、油圧ポンプの微小な漏れ流量を測定することが可能となる。

発明の効果

0011

本発明に係る建設機械によれば、片傾転型可変容量式油圧ポンプの微小な漏れ流量を測定することが可能となる。

図面の簡単な説明

0012

本発明の第1の実施例に係る油圧ショベルの側面図である。
図1に示す油圧ショベルに搭載された油圧駆動装置概略構成図である。
可変容量型斜軸式油圧ポンプの構造図である。
図3に示すコントローラの機能ブロック図である。
図3に示すコントローラによって実行されるポンプ漏れ流量の測定フローを示す図である。
ブリードオフバルブを用いたポンプ圧力の制御を示す図である。
分析サーバ側で診断処理を行う場合の構成例を示す図である。
本発明の第2の実施例における油圧駆動装置の回路図である。
本発明の第3の実施例における油圧駆動装置の概略構成図である。
本発明の第3の実施例におけるポンプ漏れ流量の補正演算処理を示す図である。

0013

以下、本発明の実施の形態に係る建設機械として油圧ショベルを例に挙げ、図面を参照して説明する。なお、各図中、同等の部材には同一の符号を付し、重複した説明は適宜省略する。

0014

図1は、本発明の第1の実施例に係る油圧ショベルの側面図である。

0015

図1において、油圧ショベル100は、走行体101、走行体101上に旋回可能に取り付けられた旋回体102と、旋回体102の前側に上下方向に回動可能に取り付けられた作業装置103とを備えている。

0016

作業装置103は、旋回体102の前側に上下方向に回動可能に取り付けられたブーム104と、ブーム104の先端部に上下または前後方向に回動可能に取り付けられたアーム105と、アーム105の先端部に上下または前後方向に回動可能に取り付けられたバケット106とを備えている。ブーム104は、油圧アクチュエータであるブームシリンダ107によって駆動され、アーム105は油圧アクチュエータであるアームシリンダ108によって駆動され、バケット106は油圧アクチュエータであるバケットシリンダ109によって駆動される。旋回体102上の前側位置には、オペレータ搭乗する運転室110が設けられている。

0017

図2に油圧ショベル100に搭載された油圧駆動装置の概略構成を示す。

0018

図2において、油圧駆動装置200は、原動機としてのエンジン20と、エンジン20によって駆動される片傾転型可変容量式の油圧ポンプ21と、油圧ポンプ21のポンプ押しのけ容積ポンプ傾転)qpを制御する油圧パイロット式傾転制御装置22と、パイロット油圧源(図示せず)からの一次圧減圧して生成したパイロット圧を傾転制御装置22に出力する電磁比例弁23と、油圧アクチュエータ107〜109と、油圧アクチュエータ107〜109の動作を指示する操作装置51と、方向切換弁ユニット24と、ブリードオフバルブ25と、リリーフ弁26と、圧力センサ27と、モニタ50と、油圧ポンプ21の漏れ流量の測定を指示する入力装置52と、エンジン20、電磁比例弁23、ブリードオフバルブ25、モニタ50等を制御するコントローラ40とを備えている。コントローラ40は、各機器からの信号を入力する入力インターフェース40aと、中央演算処理装置(CPU)及びその周辺回路等から構成され、所定のプログラムに従って各種演算を行う演算装置40bと、プログラムや各種データを記憶する記憶装置40cと、各機器へ制御信号を出力する出力インターフェース40dとを有する。

0019

方向切換弁ユニット24は、油圧ポンプ21の吐出ポートに接続された吐出油路ポンプ吐出油路)28に接続され、操作装置51の操作に応じて、油圧ポンプ21から油圧アクチュエータ107〜109に供給される圧油の流れを制御する。

0020

ブリードオフバルブ25は、ポンプ吐出油路28の方向切換弁ユニット24よりも上流側に設けられ、コントローラ40からのバルブ制御信号に応じて開閉し、ポンプ吐出油路28を連通または遮断する。

0021

リリーフ弁26は、ポンプ吐出油路28の圧力を制限する安全弁であり、ポンプ吐出油路28のブリードオフバルブ25よりも上流側に設けられ、ポンプ吐出油路28の圧力(=ポンプ圧力Pp)が所定の圧力(リリーフ設定圧)Prを超えると開弁し、ポンプ吐出油路28の圧油をタンク29に排出する。

0022

圧力センサ27は、ポンプ吐出油路28のブリードオフバルブ25よりも上流側に設けられ、ポンプ吐出油路28の圧力(=ポンプ圧力Pp)を圧力信号に変換し、コントローラ40に出力する。

0023

コントローラ40は、入力装置52からの測定指令を受けて、ブリードオフバルブ25、エンジン20の回転数(エンジン回転数)Neng、ポンプ傾転qpを制御し、圧力センサ27で検出したポンプ圧力Ppに基づいて、油圧ポンプ21の漏れ流量Qleakを算出し、記憶装置40cに記憶させ、またはモニタ50等へ出力する。

0024

建設機械用の油圧ポンプとしてはアキシャルピストンタイプのポンプが多く用いられており、可変容量機構として斜軸タイプと斜板タイプとがある。どちらもピストンストローク工程を変化させて押しのけ容積を変化させることで可変容量を実現している。

0025

片傾転型可変容量式の油圧ポンプ21の一例として、図3に可変容量型斜軸式油圧ポンプの構造を示す。

0026

図3において、筒状のケーシング1は、一端側が軸受部分となった略円筒状のケーシング本体1Aと、ケーシング本体1Aの他端側を閉塞したヘッドケーシング1Bとから構成されている。

0027

回転軸2は、ケーシング本体1A内に回転可能に設けられている。シリンダブロック3は、ケーシング本体1A内に位置して回転軸2と共に回転する。シリンダブロック3には、その軸方向に複数のシリンダ4が穿設されている。そして、各シリンダ4内にはそれぞれピストン5が摺動可能に設けられ、各ピストン5にはコネクティングロッド6が取り付けられている。

0028

また、各コネクティングロッド6の先端には球形部6Aが形成され、各球形部6Aは回転軸2の先端に形成されたドライブディスク7に揺動自在に支持されている。ここで、シリンダブロック3は後述の弁板8と共に回転軸2に対し傾転量としての傾転角θをもって配設され、この傾転角θによってポンプ押しのけ容量が決定される。

0029

弁板8は、その一側端面にシリンダブロック3が摺接し、弁板8の他側端面はヘッドケーシング1Bに形成された凹湾曲状の傾転摺動面9に摺接している。

0030

また、弁板8の中心には貫通孔8Aが穿設され、貫通孔8Aには後述するセンタシャフト10と揺動ピン15の各先端部が両側からそれぞれ挿入されている。そして、弁板8にはシリンダブロック3の回転時に各シリンダ4と間歇的に連通する一対の給排ポート(図示せず)が穿設され、ヘッドケーシング1Bの傾転摺動面9に開口する一対の給排通路(図示せず)はこれらの給排ポートに弁板8の傾転位置(傾転角θ)の如何に拘らず連通するようになっている。

0031

センタシャフト10は、ドライブディスク7と弁板8との間でシリンダブロック3を支持する。センタシャフト10の一端側には球形部10Aが形成され、球形部10Aはドライブディスク7の軸中心位置に揺動自在に支持されている。一方、シリンダブロック3の中心を貫通して突出したセンタシャフト10の他端側は弁板8の貫通孔8A内に摺動可能に挿入され、シリンダブロック3を弁板8に対してセンタリングするようになっている。

0032

傾転機構11は、傾転摺動面9に沿って弁板8を傾転させる。傾転機構11は、ヘッドケーシング1B内に形成され、軸方向両端側に油通孔12A,12Bを有したシリンダ室12と、シリンダ室12内に摺動可能に挿嵌され、シリンダ室12内に液圧室13A,13Bを画成したサーボピストン14と、基端側がサーボピストン14に固着され、先端側が球形状先端部15Aとなって弁板8の貫通孔8Aに揺動可能に挿嵌された揺動ピン15とから構成されている。

0033

制御部16は、傾転機構11を介して弁板8を傾転制御する。制御部16は、ヘッドケーシング1Bの外側に設けられ、パイロットポンプから給排される圧油量(パイロット圧)をフィードバック制御する絞り切換弁(いずれも図示せず)を備えている。そして、この絞り切換弁にはスリーブ(図示せず)が設けられ、このスリーブとサーボピストン14とは、ヘッドケーシング1Bの長孔1Cに挿通されたフィードバックピン17によって一体的に連結されている。

0034

ここで、制御部16の絞り切換弁を操作レバー51等で切換操作すると、このときの切換操作量に応じた圧油(パイロット圧)が前記パイロットポンプから油通孔12A,12Bを介して傾転機構11の液圧室13A,13B内に給排され、液圧室13A,13B間の圧力差でサーボピストン14を摺動変位させることにより、サーボピストン14は揺動ピン15を介して弁板8およびシリンダブロック3を傾転角θをもって矢示A方向に傾転させる。そして、前記絞り切換弁のスリーブはサーボピストン14の変位追従して変位することにより、前記パイロットポンプからの圧油量をフィードバック制御し、サーボピストン14の変位量を絞り切換弁の切換操作量に対応させた状態に保持する。

0035

このような構成を備えたアキシャルピストンタイプの可変容量型油圧ポンプにおいては、斜軸、または斜板ポンプにおいては斜板の傾き量(傾転)を変更可能とすることにより1回転当たりのピストンの押しのけ量を変更して、ポンプの吐出流量を可変とすることができる。

0036

次に、ポンプの吐出漏れについて説明する。

0037

ポンプの主要な可動部、摺動部としては上述したように、軸受けや各ピストン5と各シリンダ4との摺動、シリンダブロック3と弁板8の摺動部、弁板8とヘッドケーシング1Bとの摺動等が挙げられる。ポンプからの吐出油はこのシリンダブロック3から弁板8を経由して吐出ポート(図示しない)に移送されることになり、これら摺動部が摺動に際して潤滑不良等が起きると摩耗等が発生して傾転摺動面の隙間が大きくなる。この隙間が追加され部品クリアランスが正常時の規定量よりも大きくなることになりポンプの吐出油がその隙間から低圧部へ流れ出る(漏れる)ことになる。その結果、ポンプの吐出流量が正常時の吐出流量よりも漏れ流量分減少してしまうことになる。

0038

理論ポンプ流量、漏れ流量、およびポンプ圧力の関係について以下に説明する。ここでいう理論ポンプ流量とは、ポンプの漏れ流量がゼロと仮定した場合のポンプ流量である。

0039

油圧駆動装置200内の各所流量とポンプ圧力Ppとの関係は、以下の式で表される。

0040

0041

Qpref:理論ポンプ流量
Qleak:ポンプ漏れ流量
Qrelief:リリーフ流量
Qcb:センタバイパス流量(ブリードオフ流量)
B:体積弾性係数
V:ポンプ吐出部容積
なお、理論ポンプ流量Qprefは以下の式で表される。

0042

0043

本実施例では、ブリードオフバルブ25の制御によってポンプ圧力Ppが一定に保たれるため、式(1)から以下の式が得られる。

0044

0045

また、ポンプ漏れ流量Qleakの測定はリリーフ弁26が閉じた状態(すなわち、リリーフ流量Qreliefがゼロの状態)で行われるため、式(3)から以下の式が得られる。

0046

0047

式(4)において、センタバイパス流量Qcbにオリフィスの式を適用すると、以下の式が得られる。

0048

0049

C:係数
Acb:ブリードオフ弁開口面積
ΔP:ブリードオフ弁前後圧力差
ρ:作動油密度
式(5)において、ブリードオフ弁前後圧力差ΔPは一定であり、作動油密度ρはほとんど変化しないため、式(5)は以下のように簡略化される。

0050

0051

K:係数
式(6)によれば、油圧ポンプ21の漏れ流量Qleakは、理論ポンプ流量Qprefおよびブリードオフバルブ25の開口面積Acbから算出できることが分かる。また、理論ポンプ流量Qprefが一定の下でこの開口面積Acbの変化分を捉えることにより、漏れ流量Qleakの変化分を捉えることが可能となる。なお、ブリードオフバルブ25の制御指令値に対する開口面積特性データはコントローラ40の記憶装置40cが記憶しているため、開口面積Acbはブリードオフバルブ25の制御指令値から容易に求めることができる。さらに、理論ポンプ流量Qprefを一定とすることにより、漏れ流量Qleakが開口面積Acbのみの関数となるため、ブリードオフバルブ25の制御指令値から容易にかつ精度よく漏れ流量Qleakを算出することが可能となる。

0052

図4にコントローラ40の機能ブロックを示す。なお、図4中、油圧ポンプ21の漏れ流量の測定に係わる構成のみを示し、アクチュエータ107〜109の駆動に係わる構成は省略している。

0053

図4において、コントローラ40は、測定制御部41と、ポンプ圧力計測部42と、エンジン回転数制御部43と、ポンプ傾転制御部44と、バルブ制御部45と、漏れ流量算出部46とを備えている。

0054

測定制御部41は、漏れ流量Qleakの測定を開始する測定指令およびレバー中立信号を受けて、エンジン回転数制御部43、ポンプ傾転制御部44、およびバルブ制御部45を制御する。測定指令は、運転室110に配置されたスイッチ52等の入力装置の操作を介して生成させても良いし、油圧ショベル100のエンジン20が始動してコントローラ40の電源が入った直後に自動的に生成させても良い。その場合、コントローラ40の電源装置(図示せず)から入力される電力信号が測定指令に相当する。また、レバー中立信号は、アクチュエータ107〜109の非操作時に発生する信号であり、アクチュエータ107〜109の操作レバー51からの入力信号に応じて生成される。

0055

ポンプ圧力計測部42は、圧力センサ27からの圧力信号を油圧ポンプ21のポンプ圧力Ppに変換し、バルブ制御部45および漏れ流量算出部46に出力する。

0056

エンジン回転数制御部43は、測定制御部41からの指令を受けて、エンジン回転数Nengが所定の回転数(規定回転数)となるようにエンジン20を制御する。

0057

ポンプ傾転制御部44は、測定制御部41からの指令に受けて、油圧ポンプ21の傾転qpが所望の値となるように、電磁比例弁23の開度を調節し、傾転制御装置22を駆動する。

0058

バルブ制御部45は、測定制御部41からの指令を受けて、ポンプ圧力Ppが所定の目標圧力と一致するようにブリードオフバルブ25の開口量(開度)を調整すると共に、バルブ開度を漏れ流量算出部46に出力する。ここでいう目標圧力は、リリーフ設定圧Pr(例えば35MPa)よりも低くかつ比較的高い圧力(例えば30MPa)に設定される。

0059

漏れ流量算出部46は、ポンプ圧力Ppが目標圧力と一致したときのバルブ開度に基づいて漏れ流量Qleakを算出し、運転室110に配置されたモニタ50等に出力する。なお、漏れ流量Qleakは、運転室110の作業者に限らず、車両管理者サービス部門等に通知されるように構成しても良い。

0060

図5にコントローラ40によって実行されるポンプ漏れ流量の測定フローを示す。コントローラ40は、オペレータや管理者、サービス員等の要求に応じたポンプ漏れ流量の測定指令を受けて、通常の制御フロー(図示せず)を中断し、当該測定フローに移行する。以下、当該測定フローを構成する各ステップについて順に説明する。

0061

コントローラ40は、先ず、操作レバー51が中立か否か(非操作状態か否か)を判定する(ステップS1)。

0062

ステップS1でYes(操作レバー51が中立である)と判定した場合は、エンジン回転数を規定回転数とし、油圧ポンプ21aの吐出流量(ポンプ流量)を所定の流量(規定流量)とする。

0063

ステップS2に続き、ポンプ圧力Ppを計測する(ステップS3)。

0064

ステップS3に続き、ポンプ圧力Ppが目標圧力と等しいか否かを判定する(ステップS4)。

0065

ステップS4でNo(ポンプ圧力Ppが目標圧力と等しくない)と判定した場合は、ブリードオフバルブ25の開度を調整し(ステップS5)、ステップS3へ戻る。具体的には、ポンプ圧力Ppが目標圧力よりも低い場合はバルブ閉方向へ開度を補正し、ポンプ圧力Ppが目標圧力よりも高い場合はバルブ開方向へ開度を補正する。

0066

ステップS4でYes(ポンプ圧力Ppが目標圧力と等しい)と判定した場合は、ブリードオフバルブ開度のデータを取得する(ステップS6)。

0067

ステップS6に続き、規定回数分のデータが得られたか否かを判定する(ステップS7)。これはデータにバラツキ等があることを考慮して後に移動平均処理フィルタ処理等の平準化処理を行うためのデータ数を確保するためであり、処理内容やデータの取得レートに応じて規定回数は設定される。

0068

ステップS7でNo(規定回数分のデータが得られていない)と判定した場合は、ステップS3へ戻る。

0069

ステップS7でYes(規定回数分のデータが得られた)と判定した場合は、最新の規定回数分のデータに対して平準化処理を行う(ステップS8)。

0070

ステップS8に続き、ブリードオフバルブ開度Acb、ポンプ傾転qp、およびエンジン回転数Nengを測定フロー開始前の状態へ戻す(ステップS9)。

0071

ステップS9に続き、ステップS9で算出したブリードオフバルブ開口量Acbに基づいてポンプ漏れ流量Qleakを算出し(ステップS10)、当該測定フローを終了する(通常の制御フローに復帰する)。

0072

本実施例では、原動機20と、作動油を貯留するタンク29と、原動機20によって駆動され、タンク29から吸い込んだ作動油を吐出する片傾転型可変容量式の油圧ポンプ21と、油圧ポンプ21から供給される作動油によって駆動される複数の油圧アクチュエータ107〜109と、複数のアクチュエータ107〜109の動作を指示する操作装置51と、原動機20の回転数Nengおよび油圧ポンプ21の傾転qpを制御するコントローラ40とを備えた建設機械100において、油圧ポンプ21の圧力Ppを検出する圧力センサ27と、油圧ポンプ21のブリードオフ流量Qcbを調整可能なブリードオフ調整装置25と、油圧ポンプ21の漏れ流量Qleakの測定を指示する入力装置52とを備え、コントローラ40は、操作装置50、圧力センサ21、ブリードオフ調整装置25、および入力装置52に接続され、操作装置51からの入力信号を基に操作装置51の操作状態を判定し、圧力センサ27の検出信号を圧力値に換算し、制御指令値に応じた制御信号をブリードオフ調整装置25へ出力できるようにプログラムされており、操作装置51が非操作状態にあると判定しかつ入力装置52から測定指令が入力された場合に、油圧ポンプ21の流量Qprefを保持した状態で、ブリードオフ調整装置25の制御指令値を変化させながら油圧ポンプ21の圧力Ppを計測し、油圧ポンプ21の圧力Ppが所定の圧力で安定したときのブリードオフ調整装置25の制御指令値に基づいて油圧ポンプ21の漏れ流量Qleakを算出する。

0073

また、本実施例におけるコントローラ40は、操作装置51からの入力信号を基に操作装置51が非操作状態にあると判定しかつ入力装置52から測定指令が入力された場合に、油圧ポンプ21の流量を所定の流量に調整し、油圧ポンプ21の流量を前記所定の流量に保持した状態で、ブリードオフ調整装置25の制御指令値を変化させながら油圧ポンプ21の圧力Ppを計測し、油圧ポンプ21の圧力Ppが前記所定の圧力で安定したときのブリードオフ調整装置25の制御指令値に基づいて油圧ポンプ21の漏れ流量Qleakを算出する。

0074

以上のように構成した本実施例によれば、油圧ポンプ21の流量Qprefを保持した状態で、ブリードオフ調整装置25の制御指令値を変化させながら油圧ポンプ21の圧力Ppを計測し、油圧ポンプ21の圧力Ppが所定の圧力で安定しているときのブリードオフ調整装置25の制御指令値に基づいて油圧ポンプ21の漏れ流量を算出することができる。これにより、油圧ポンプ21の微小な漏れ流量Qleakを測定することが可能となる。

0075

また、本実施例におけるコントローラ40は、操作装置51からの入力信号を基に操作装置51が非操作状態にあると判定しかつ入力装置52から測定指令が入力された場合に、油圧ポンプ21の流量Qprefを現在の流量に保持した状態で、ブリードオフ調整装置25の制御指令値を調整しながら油圧ポンプ21の圧力Ppを計測し、油圧ポンプ21の圧力Ppが前記目標圧力と一致したときのブリードオフ調整装置25の制御指令値を油圧ポンプ21の圧力Ppおよび現在の流量Qprefと対応づけて記憶しても良い。この場合、漏れ流量測定時の油圧ポンプ21の流量Qprefが測定ごとに変化するものの、同一または一定の範囲内にある圧力Ppおよび流量Qprefに対応づけて記憶されたブリードオフ調整装置25の制御指令値の推移を確認することで、漏れ流量Qleakの変化を把握することが可能となる。また、漏れ流量Qleakの測定前後で油圧ポンプ21の流量Qprefが変化しないため、測定終了後の操作性への影響を抑えることが可能となる。

0076

また、本実施例におけるコントローラ40は、漏れ流量Qleakを算出する前に、ブリードオフ調整装置25の制御指令値に対して平準化処理を行う。これにより、ブリードオフ調整装置25の制御指令値からノイズ等の影響が除去されるため、漏れ流量Qleakの測定精度を向上することが可能となる。

0077

ブリードオフバルブ25を用いたポンプ圧力Ppの制御の補足図6を用いて説明する。当該制御を実行中は、目標圧力が指令としてコントローラ40に入力される。コントローラ40は、圧力センサ27の圧力信号からポンプ圧力Ppを算出し、ポンプ圧力Ppが目標圧力と一致するようなブリードオフバルブ25の制御指令値を算出し、当該制御指令値に応じたバルブ制御信号をブリードオフバルブ25へ出力する。当該制御の非実行中は、コントローラ40は、ブリードオフバルブ25が全開となるような操作指令を出力する。

0078

本実施例では、建設機械側でポンプ漏れ流量Qleakを算出する構成を説明したが、油圧ポンプ21の損傷度合を表す特徴量(ブリードオフバルブ25の制御指令値、ポンプ漏れ流量Qleak等)および時刻情報衛星通信等を利用した通信手段を用いて他の拠点に設置した分析サーバへ転送し、分析サーバ側で診断処理を行っても良い。

0079

分析サーバ側で診断処理を行う場合の構成例を図7に示す。この例では不具合判定のための閾値を分析サーバ側で容易に変更することができる。また、機械1台のみのデータだけではなく、比較対象(同種、同クラス等)の多数の機械のデータを収集できることから、母集団からの乖離具合や外れ具合等の相対値比較で判定閾値を決めても良い。その場合、事前に判定閾値を決定せずとも運用しながら判定閾値を調整していくことで決定されるので設計を簡便にすることができる。

0080

この特徴量と時刻情報を基に予め定められた判定閾値や経時傾向を基にポンプの不具合兆候が診断されることにより、機械外部においてもポンプの不具合兆候を把握することができる。

0081

本発明の第2の実施例について、第1の実施例との相違点を中心に説明する。

0082

第1の実施例では、ブリードオフバルブ25が油圧ポンプ21のすぐ下流に位置しているため、方向切換弁ユニット24等の影響を受けることなく油圧ポンプ21の漏れ流量を測定することができる。しかし、油圧ポンプ21の吐出油でアクチュエータ107〜109を駆動する建設機械100においては、油圧ポンプ21単体ではなく方向切換弁ユニット24も含めて漏れを評価することが好ましい場合もある。これは、油圧アクチュエータ107〜109への圧油供給には油圧ポンプ21だけでなく方向切換弁ユニット24も大きく関わるからである。

0083

図8において、油圧駆動装置200は、エンジン(原動機)20により駆動される可変容量式の第1および第2油圧ポンプ21a,21bと、第1油圧ポンプ21aのポンプ吐出油路28aにパラレル接続される複数の方向切換弁24a1からなる第1方向切換弁ユニット24aと、第2油圧ポンプ21bのポンプ吐出油路28bにパラレル接続される複数の方向切換弁24b1からなる第2方向切換弁ユニット24bとを備えている。

0084

第1方向切換弁ユニット24aを構成する複数の方向切換弁24a1、および第2方向切換弁ユニット24bを構成する複数の方向切換弁24b1はそれぞれ油圧アクチュエータ107〜109,120L,120R,121のいずれかに接続されている。そして、各方向切換弁24a1,24b1はパイロット方式油圧式または電磁式)で切り換わるように構成されており、その切り換え操作は運転室110内に設けられた操作レバー51や操作ペダル等の操作装置51により行われる。また、第1および第2油圧ポンプ21a,21bからの圧油をタンク29にバイパスするバイパスライン60a,60bには、第1および第2ブリードオフバルブ25a,25bが設けられている。第1および第2ブリードオフバルブ25a,25bは、コントローラ40(図4に示す)からの指令によって第1および第2油圧ポンプ21a,21bからタンク29にバイパスされる流量(ブリードオフ流量)を制御する。

0085

ここで、油圧ショベル100に設けられる油圧アクチュエータは、油圧モータからなる左右の走行モータ120R,120L及び旋回モータ121と、ブーム104を駆動するブームシリンダ107と、アーム105を駆動するアームシリンダ108と、バケット106を駆動するバケットシリンダ109とを含む。これら油圧アクチュエータのうち、ブームシリンダ107およびアームシリンダ108については、第1および第2油圧ポンプ21a,21bからの圧油を合流させて供給できるようにしている。なお、本実施例に係る油圧駆動装置200は2台の油圧ポンプ21a,21bを備えているが、油圧ポンプの数は作業負荷等に応じて適宜変更可能である。

0086

第1および第2油圧ポンプ21a,21bとタンク29との間には、油圧回路最高圧力規制するためのリリーフ弁26が設けられており、これにより油圧回路を構成する各部の保護が図られる。

0087

本実施例は、方向切換弁ユニット24の上流側に設けられたブリードオフバルブ25(図2に示す)に代えて、方向切換弁ユニット24a,24bの下流側に設けられたブリードオフバルブ25a,25bを備えている点で第1の実施例と異なる。図8に示すように、アクチュエータへ供給される圧油の流れを制御する方向切換弁24a1,24b1が各ポンプの供給ポートに対して並列に設けられており、これら方向切換弁24a1,24b1からの圧油の漏れがポンプの漏れと同様にアクチュエータの駆動に影響を与える形となっている。

0088

本実施例における油圧駆動装置200の各所流量とポンプ圧力Ppの関係は、以下の式で表される。

0089

0090

Qpref:理論ポンプ流量
Qleak:ポンプ漏れ流量
Qrelief:リリーフ流量
Qcb:センタバイパス流量(ブリードオフ流量)
Qcv:方向制御弁漏れ流量
B:体積弾性係数
V:ポンプ吐出部容積
また、ポンプ漏れ流量Qleakの測定は、ブリードオフバルブ25の制御によってポンプ圧力Ppが一定に保たれ、かつリリーフ弁26が閉じた状態(すなわち、リリーフ流量Qreliefがゼロの状態)で行われるため、式(7)から以下の式が得られる。

0091

0092

式(8)によれば、ポンプ漏れ流量Qleakと方向切換弁漏れ流量Qcvの合計漏れ流量が算出されるため、油圧ポンプ21a,21bおよび方向切換弁ユニット24a,24bを含む圧油供給系統全体の漏れ流量を測定することが可能となる。

0093

ポンプ漏れ流量測定時の動作は第1の実施例と同様であるため説明を省略するが、これにより、圧油供給系統全体の漏れ流量を微小流量領域から測定できると共に、ブリードオフ流量Qcbがゼロ、リリーフ流量Qreliefがゼロとなっている状況下でポンプ圧力Ppが目標圧力(例えば30MPa)を緩やかに超えた時の理論ポンプ流量Qprefを通じて圧油供給系統全体の漏れ流量が精度良く測定され、建設機械の圧油の供給源としての損傷具合を評価することが可能となる。

0094

本実施例におけるブリードオフ調整装置25a,25bは、方向切換弁ユニット24a,24bとタンク29とを接続するバイパスライン60a,60bに設けられ、コントローラ40からのバルブ制御信号に応じて開閉するブリードオフバルブ25a,25bである。

0095

以上のように構成した本実施例によれば、油圧ポンプ21a,21bおよび方向切換弁ユニット24a,24bを含む圧油供給系統全体の微小な漏れ流量を測定することが可能となる。

0096

本発明の第3の実施例について、第1の実施例との相違点を中心に説明する。
説明する。

0097

本実施例は通常の測定環境とは大きく異なる場合に、測定結果の評価、比較が不適当な場合における漏れ流量の評価診断方法を提供することを目的としている。例えば具体的な例としては、極寒地での極寒状態で診断を実施した場合では油温が−20℃などと非常に低い場合もある。この場合、ポンプの環状すきま等から漏れる流量は一般的に油の粘度等の影響を受けるので温度環境が漏れ具合に影響することが想定される。このように作動油の暖気の有無等でも大きく温度が異なる場合では、第1の実施例で算出された漏れ流量を定量的に評価することは適切ではない。本実施例では、このように測定環境が大きく異なる場合において、評価に適した漏れ流量を算出する方法を説明する。

0098

図8油圧回路構成に示すように、油圧ショベルのような建設機械においては左右の走行モータ120L,120Rが存在するため、左右の等価性を得るために同一仕様の2つの油圧ポンプを備えるのが通例である。これら2つの油圧ポンプが損傷等がなく同様な漏れ流量特性を持っている場合であれば、温度等の環境が普段と大きく異なった場合であっても2つの油圧ポンプ21a,21bの漏れ流量は同等になるはずである。逆にいえば、2つの油圧ポンプ21a,2bの漏れ流量が大きく異なる場合は、漏れ流量の大きい方の油圧ポンプが他方の油圧ポンプよりも損傷していると捉えることができる。

0099

従って、このように温度環境が普段と大きく異なっている場合は、2つの油圧ポンプの各漏れ流量を算出する際に2つの油圧ポンプの漏れ流量の偏差の影響を加味することにより、各漏れ流量に対する温度環境の変化による影響を抑えることができより適切な漏れ診断が行えるようになる。

0100

図9に本実施例における油圧駆動装置200の概略構成を示し、図10に本実施例における油圧ポンプ21a,21bの漏れ流量Qleak1,Qleak2の補正演算処理を示す。なお、油圧ポンプ21a,21bの漏れ流量Qleak1,Qleak2の算出方法は第1の実施例で説明した通りである。

0101

図8に示す例では、漏れ流量Qleak1と漏れ流量Qleak1,Qleak2の偏差(=Qleak1−Qleak2)の絶対値との加重平均を補正後の漏れ流量Qleak1として算出し、漏れ流量Qleak2と漏れ流量Qleak2,Qleak1の差分(=Qleak2−Qleak1)の絶対値との加重平均を油圧ポンプ21aの補正後の漏れ流量Qleak2として算出する。

0102

漏れ流量Qleak1,Qleak2の比重を決定する係数K1および漏れ流量Qleak1,Qleak2の偏差の絶対値の比重を決定する係数K2は、K1+K2=1の条件を満たし、かつ標準温度TNにおいてK1が支配的(例えば0.9)であり、温度が低下するに従って係数K2が支配的(例えば0.9)になるように設定されている。

0103

本実施例における油圧ショベル100は、原動機20によって駆動され、タンク29から吸い込んだ作動油を吐出する片傾転型可変容量式の第2油圧ポンプ21bと、第2油圧ポンプ21bの圧力Pp2を検出する第2圧力センサ27bと、第2油圧ポンプ21bのブリードオフ流量Qcb2を調整可能な第2ブリードオフ調整装置25bと、作動油の温度を検出する温度センサ30とを更に備え、複数の油圧アクチュエータ107〜109は、第2油圧ポンプ21bから供給される作動油によって駆動可能であり、コントローラ40は、第2圧力センサ27b、第2ブリードオフ調整装置25b、および温度センサ30に接続され、第2圧力センサ27bの検出信号を圧力値に換算し、制御指令値に応じた制御信号を第2ブリードオフ調整装置25bへ出力し、温度センサ30の検出信号を温度値に変換できるようにプログラムされており、操作装置51が非操作状態にあると判定しかつ入力装置52から測定指令が入力された場合に、第2油圧ポンプ21bの流量を保持した状態で、第2ブリードオフ調整装置25bの制御指令値を変化させながら第2油圧ポンプ21bの圧力Pp2を計測し、第2油圧ポンプ21bの圧力Pp2が所定の圧力で安定したときの第2ブリードオフ調整装置25bの制御指令値に基づいて第2油圧ポンプ21bの漏れ流量Qleak2を算出し、作動油の温度に応じて第1油圧ポンプ21aの漏れ流量Qleak1および第2油圧ポンプ21bの漏れ流量Qleak2を補正する。

0104

以上のように構成した本実施例によれば、作動油の温度に応じて第1および第2油圧ポンプ21a,21bの漏れ流量Qleak1,Qleak2を補正することにより、温度環境によらず適切な漏れ診断を行うことが可能となる。

実施例

0105

以上、本発明の実施例について詳述したが、本発明は、上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成に他の実施例の構成の一部を加えることも可能であり、ある実施例の構成の一部を削除し、あるいは、他の実施例の一部と置き換えることも可能である。

0106

1…ケーシング、1A…ケーシング本体、1B…ヘッドケーシング、1C…長孔、2…回転軸、3…シリンダブロック、4…シリンダ、5…ピストン、6…コネクティングロッド、6A…球形部、7…ドライブディスク、8…弁板、8A…貫通孔、9…傾転摺動面、10…センタシャフト、11…傾転機構、12…シリンダ室、12A,12B…油通孔、13A,13B…液圧室、14…サーボピストン、15…揺動ピン、15A…球形状先端部、16…制御部、17…フィードバックピン、20…エンジン(原動機)、21…油圧ポンプ(第1油圧ポンプ)、21a…油圧ポンプ(第1油圧ポンプ)、21b…油圧ポンプ(第2油圧ポンプ)、22,22a,22b…傾転制御装置、23…電磁比例弁、24,24a…方向切換弁ユニット(第1方向切換弁ユニット)、24b…方向切換弁ユニット(第2方向切換弁ユニット)、25,25a…ブリードオフバルブ(第1ブリードオフ調整装置)、25b…ブリードオフバルブ(第2ブリードオフ調整装置)、26…リリーフ弁、27,27a…圧力センサ(第1圧力センサ)、27b…圧力センサ(第2圧力センサ)、28,28a,28b…ポンプ吐出油路、29…タンク、30…温度センサ、40…コントローラ、41…測定制御部、42…ポンプ圧力計測部、43…エンジン回転数制御部、44…ポンプ傾転制御部、45…バルブ制御部、46…漏れ流量算出部、50…モニタ、51…操作レバー(操作装置)、52…スイッチ(入力装置)、60a,60b…バイパスライン、100…油圧ショベル(建設機械)、101…走行体、102…旋回体、103…作業装置、104…ブーム、105…アーム、106…バケット、107…ブームシリンダ(油圧アクチュエータ)、108…アームシリンダ(油圧アクチュエータ)、109…バケットシリンダ(油圧アクチュエータ)、110…運転室、120L,120R…走行モータ(油圧アクチュエータ)、121…旋回モータ(油圧アクチュエータ)、200…油圧駆動装置。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 株式会社豊田自動織機の「 ピストン式圧縮機」が 公開されました。( 2021/08/19)

    【課題】吐出圧力の損失の抑制と、構造の簡素化を実現できるとともに、優れた制御能力を発揮可能な空調装置を実現するためのピストン式圧縮機を提供する。【解決手段】本発明のピストン式圧縮機8は、シリンダボアに... 詳細

  • 住友重機械工業株式会社の「 作業機械、情報処理装置」が 公開されました。( 2021/08/19)

    【課題】作業機械の安全性をより向上させることが可能な技術を提供する。【解決手段】本開示の一実施形態に係るショベル100は、ショベル100の周囲の物体に関する情報を取得する撮像装置40と、撮像装置40に... 詳細

  • 日立建機株式会社の「 建設機械」が 公開されました。( 2021/08/19)

    【課題】 アンテナ装置を脱着するときの作業性を向上させる。【解決手段】 油圧ショベル1は、第1のアンテナ装置26が脱着可能に取付けられたアンテナ支持部材30と、一端32Aがリンク支持部材28に回動... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ