図面 (/)

技術 列車乗車率管理システムおよび列車乗車率管理方法

出願人 株式会社日立製作所
発明者 牧健太郎木村祥太徳山和男
出願日 2019年9月24日 (2年3ヶ月経過) 出願番号 2019-172423
公開日 2021年4月1日 (9ヶ月経過) 公開番号 2021-049813
状態 未査定
技術分野 鉄道交通の監視、制御、保安
主要キーワード 光学系センサ 規定重量 都市鉄道 車両動揺 ドア開閉情報 車内表示装置 走行検知 運行条件
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2021年4月1日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (8)

課題

列車編成する車両の乗車率を、季節時間帯および号車などの環境条件に依らず精度良く算出する。

解決手段

計数部、測定部混雑状況推定部、乗車人数推定部、算出部および記憶部を備え、計数部は列車を編成する車両の乗車人数として第1の乗車人数を計数し、測定部は車両の荷重を測定し、混雑状況推定部は車両の内部の混雑状況を推定し、乗車人数推定部は、混雑状況推定部が推定した混雑状況が混雑なしの場合に、第1の乗車人数と車両の荷重とから推定される乗客一人当たりの重量と車両の荷重とから車両の乗車人数として第2の乗車人数を推定し、算出部は、車両の乗車人数として、混雑状況推定部が推定した混雑状況が、混雑なしの場合には第1の乗車人数を、混雑ありの場合には第2の乗車人数を採用し、採用した方の車両の乗車人数から当該車両の定員に占める割合を車両の乗車率として算出し、記憶部は算出部が算出した車両の乗車率を蓄積する。

概要

背景

車両の乗車率、すなわち、車両の乗車定員に占める乗車人数の割合を把握することで、鉄道事業者は、ダイヤ改正の検討材料にでき、また、混雑状況に関する情報として利用客に提供することができる。それにより、列車混雑平準化が可能となり、乗降時間の短縮による列車運行の安定性向上や車内環境改善にもつながると考えられる。

車両ごとに乗車率を算出する方法として、目視観測荷重検知または光学系センサなどによって算出する方法が知られている。

目視観測による方法は、非特許文献1に示されるように、調査員等が列車内の様子を駅ホームなど車外から観察し、予め定められた基準と照らし合わせて車両の乗車率を推定する。この基準として、例えば、座席が全て埋まっていたら混雑率35%、新聞等が読めない満員の状況であれば混雑率230%、といったものが挙げられる。目視観測による方法は、簡便である一方で、客観性に欠けるために精度が保証できない点と、人手に頼った測定であるため即時性網羅性の点において課題がある。

荷重検知による方法は、特許文献1に示されるように、車両の台車に設置された空気ばね内圧の変化から車両の乗車率を算出する方法が一般的である。空気ばねは、車両と台車部の間に装着され、車輪から車両に伝わる振動を軽減する役目を果たし、乗り心地を改善する部品である。空車から満車まで様々な荷重がかかる状況下で、車両の高さが維持されるように空気ばねの内圧が調整される仕組みであるため、その圧力を測定および変換することで荷重が算出可能である。
この方法では、荷重検知結果を一人当たりの重量で除算することによって乗車人数を求めるが、一人当たりの重量の仮定が正しくないと乗車人数の精度が悪化する。一人当たりの重量は、季節時間帯および号車などの環境条件で変動するため、適切な値を仮定することが難しいという課題がある。

光学系センサによる方法は、画像認識で車内に存在する乗客の頭部の数を数えることや、レーザレーダを用いて車両ドア部分における乗客の通過を検知することで、乗車人数を計測する。この方法は、センサ部から見たときの人の重なりを判別することが難しく、混雑時に精度が悪化する傾向にある。また、精度を向上するために多角度からセンシングを処理するには、センサの種類や数を増やす必要があり、コストが増加するという課題がある。

概要

列車を編成する車両の乗車率を、季節、時間帯および号車などの環境条件に依らず精度良く算出する。計数部、測定部、混雑状況推定部、乗車人数推定部、算出部および記憶部を備え、計数部は列車を編成する車両の乗車人数として第1の乗車人数を計数し、測定部は車両の荷重を測定し、混雑状況推定部は車両の内部の混雑状況を推定し、乗車人数推定部は、混雑状況推定部が推定した混雑状況が混雑なしの場合に、第1の乗車人数と車両の荷重とから推定される乗客一人当たりの重量と車両の荷重とから車両の乗車人数として第2の乗車人数を推定し、算出部は、車両の乗車人数として、混雑状況推定部が推定した混雑状況が、混雑なしの場合には第1の乗車人数を、混雑ありの場合には第2の乗車人数を採用し、採用した方の車両の乗車人数から当該車両の定員に占める割合を車両の乗車率として算出し、記憶部は算出部が算出した車両の乗車率を蓄積する。

目的

車両の乗車率、すなわち、車両の乗車定員に占める乗車人数の割合を把握することで、鉄道事業者は、ダイヤ改正の検討材料にでき、また、混雑状況に関する情報として利用客に提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

計数部、測定部混雑状況推定部、乗車人数推定部、算出部および記憶部を備え、前記計数部は、列車編成する車両の乗車人数として第1の乗車人数を計数し、前記測定部は、前記車両の荷重を測定し、前記混雑状況推定部は、前記車両の内部の混雑状況を推定し、前記乗車人数推定部は、前記混雑状況推定部が推定した前記混雑状況が混雑なしの場合に、前記第1の乗車人数と前記車両の荷重とから推定される乗客一人当たりの重量と前記車両の荷重とから前記車両の乗車人数として第2の乗車人数を推定し、前記算出部は、前記車両の乗車人数として、前記混雑状況推定部が推定した前記混雑状況が、混雑なしの場合には前記第1の乗車人数を採用し、混雑ありの場合には前記第2の乗車人数を採用し、採用した方の前記車両の乗車人数から前記車両の定員に占める割合を前記車両の乗車率として算出し、前記記憶部は、前記算出部が算出した前記車両の乗車率を蓄積することを特徴とする列車乗車率管理システム

請求項2

請求項1に記載の列車乗車率管理システムであって、前記混雑状況推定部は、前記混雑状況を推定するに際し、前記列車の運行条件が、前記車両の乗車率を算出する対象となる前記列車の列車番号、前記列車の位置情報から得られる駅間情報および前記列車を運転する曜日情報組合せから定義される混雑条件に該当する場合に、混雑ありを推定することを特徴とする列車乗車率管理システム。

請求項3

請求項1または2に記載の列車乗車率管理システムであって、前記混雑状況推定部は、前記混雑状況を推定するに際し、前記車両の乗車率を算出する対象となる前記列車の停車駅における改札流入人数が規定の閾値よりも多い場合に、混雑ありを推定することを特徴とする列車乗車率管理システム。

請求項4

請求項1または2に記載の列車乗車率管理システムであって、前記混雑状況推定部は、前記混雑状況を推定するに際し、混雑ありの手動入力がなされた場合に、混雑ありを推定することを特徴とする列車乗車率管理システム。

請求項5

請求項1または2に記載の列車乗車率管理システムであって、前記混雑状況推定部は、前記混雑状況を推定するに際し、前記第1の乗車人数が既定の閾値よりも多い場合に、混雑ありを推定することを特徴とする列車乗車率管理システム。

請求項6

請求項1または2に記載の列車乗車率管理システムであって、前記混雑状況推定部は、前記混雑状況を推定するに際し、前記車両の荷重が既定の閾値よりも大きい場合に、混雑ありを推定することを特徴とする列車乗車率管理システム。

請求項7

請求項1〜6のいずれか1項に記載の列車乗車率管理システムであって、前記混雑状況推定部は、前記混雑状況を推定する処理を前記車両のドア閉状態のタイミングで実行することを特徴とする列車乗車率管理システム。

請求項8

請求項1〜7のいずれか1項に記載の列車乗車率管理システムであって、前記計数部は、前記第1の乗車人数を当該車両に設置された撮像装置による画像認識結果に基づいて計数することを特徴とする列車乗車率管理システム。

請求項9

請求項1〜7のいずれか1項に記載の列車乗車率管理システムであって、前記計数部は、前記第1の乗車人数を当該車両に設置された光学検知装置による人の存在検知に基づいて計数することを特徴とする列車乗車率管理システム。

請求項10

請求項1〜9のいずれか1項に記載の列車乗車率管理システムであって、前記第1の乗車人数と前記車両の荷重とから前記乗客一人当たりの重量を推定する一人当たり重量推定部を備え、前記一人当たり重量推定部は、前記計数部から当該計数部の動作状態を示す情報および前記測定部から当該測定部の動作状態を示す情報を取得し、両方の前記動作状態の少なくともいずれかが正常でない場合に、前記乗客一人当たりの重量として無効値を設定することを特徴とする列車乗車率管理システム。

請求項11

請求項1〜9のいずれか1項に記載の列車乗車率管理システムであって、前記第1の乗車人数と前記車両の荷重とから前記乗客一人当たりの重量を推定する一人当たり重量推定部を備え、前記一人当たり重量推定部は、前記混雑状況推定部が推定した前記混雑状況が混雑ありの場合、前記乗客一人当たりの重量を推定する際に、前回推定した重量の値が有れば当該値を保持し、当該前回推定した重量の値が無ければ無効値を設定することを特徴とする列車乗車率管理システム。

請求項12

請求項10または11に記載の列車乗車率管理システムであって、前記一人当たり重量推定部が前記乗客一人当たりの重量として前記無効値を設定した場合、前記乗車人数推定部は、前記車両の乗車人数を推定する際に、前記乗客一人当たりの重量として前記列車の他車両が推定した当該他車両の乗客一人当たりの重量を使用することを特徴とする列車乗車率管理システム。

請求項13

請求項12に記載の列車乗車率管理システムであって、前記乗車人数推定部は、前記他車両が推定した当該他車両の乗客一人当たりの重量が無効である場合に、前記列車と同一路線内を走行する他列車が推定した乗客一人当たりの重量を使用することを特徴とする列車乗車率管理システム。

請求項14

請求項1〜13のいずれか1項に記載の列車乗車率管理システムであって、前記車両に設置される車内表示装置に、前記記憶部に蓄積した前記列車を編成する車両別の乗車率が表示されることを特徴とする列車乗車率管理システム。

請求項15

請求項1〜14のいずれか1項に記載の列車乗車率管理システムであって、前記列車が走行する路線内のに設置される駅構内表示装置に、前記路線内の各列車が備える前記記憶部に蓄積した当該各列車を編成する車両別の乗車率が表示されることを特徴とする列車乗車率管理システム。

請求項16

列車を編成する車両の乗車人数として第1の乗車人数を計数する第1のステップと、前記車両の荷重を測定する第2のステップと、前記車両の内部の混雑状況を推定する第3のステップと、前記第3のステップで推定した前記混雑状況が混雑なしの場合に、前記第1の乗車人数と前記車両の荷重とから乗客一人当たりの重量を推定する第4のステップと、前記乗客一人当たりの重量と前記車両の荷重とから前記車両の乗車人数として第2の乗車人数を推定する第5のステップと、前記車両の乗車人数として、前記第3のステップで推定した前記混雑状況が、混雑なしの場合には前記第1の乗車人数を採用し、混雑ありの場合には前記第2の乗車人数を採用し、採用した方の前記車両の乗車人数から前記車両の定員に占める割合を前記車両の乗車率として算出する第6のステップと、前記第6のステップで算出した前記車両の乗車率を蓄積する第7のステップとを有する列車乗車率管理方法

技術分野

0001

本発明は、列車編成する車両の乗車率を管理する列車乗車率管理システムおよび列車乗車率管理方法に関し、列車内混雑状況の把握や、鉄道利用客への混雑に関する情報提供に対して好適である。

背景技術

0002

車両の乗車率、すなわち、車両の乗車定員に占める乗車人数の割合を把握することで、鉄道事業者は、ダイヤ改正の検討材料にでき、また、混雑状況に関する情報として利用客に提供することができる。それにより、列車混雑の平準化が可能となり、乗降時間の短縮による列車運行の安定性向上や車内環境改善にもつながると考えられる。

0003

車両ごとに乗車率を算出する方法として、目視観測荷重検知または光学系センサなどによって算出する方法が知られている。

0004

目視観測による方法は、非特許文献1に示されるように、調査員等が列車内の様子を駅ホームなど車外から観察し、予め定められた基準と照らし合わせて車両の乗車率を推定する。この基準として、例えば、座席が全て埋まっていたら混雑率35%、新聞等が読めない満員の状況であれば混雑率230%、といったものが挙げられる。目視観測による方法は、簡便である一方で、客観性に欠けるために精度が保証できない点と、人手に頼った測定であるため即時性網羅性の点において課題がある。

0005

荷重検知による方法は、特許文献1に示されるように、車両の台車に設置された空気ばね内圧の変化から車両の乗車率を算出する方法が一般的である。空気ばねは、車両と台車部の間に装着され、車輪から車両に伝わる振動を軽減する役目を果たし、乗り心地を改善する部品である。空車から満車まで様々な荷重がかかる状況下で、車両の高さが維持されるように空気ばねの内圧が調整される仕組みであるため、その圧力を測定および変換することで荷重が算出可能である。
この方法では、荷重検知結果を一人当たりの重量で除算することによって乗車人数を求めるが、一人当たりの重量の仮定が正しくないと乗車人数の精度が悪化する。一人当たりの重量は、季節時間帯および号車などの環境条件で変動するため、適切な値を仮定することが難しいという課題がある。

0006

光学系センサによる方法は、画像認識で車内に存在する乗客の頭部の数を数えることや、レーザレーダを用いて車両ドア部分における乗客の通過を検知することで、乗車人数を計測する。この方法は、センサ部から見たときの人の重なりを判別することが難しく、混雑時に精度が悪化する傾向にある。また、精度を向上するために多角度からセンシングを処理するには、センサの種類や数を増やす必要があり、コストが増加するという課題がある。

0007

特開平08−230672号公報

先行技術

0008

清水英範、「都市鉄道の混雑率の測定方法」、第3回鉄道整備基礎調査報告シンポジウム予稿集、69−78(2005)

発明が解決しようとする課題

0009

本発明は、列車を編成する車両の乗車率を、季節、時間帯および号車などの環境条件に依らず、精度良く算出できる列車乗車率管理システムおよび列車乗車率管理方法を提供することを課題とする。

課題を解決するための手段

0010

上記課題を解決するために、本発明に係る列車乗車率管理システムは、計数部、測定部、混雑状況推定部、乗車人数推定部、算出部および記憶部を備え、計数部は、列車を編成する車両の乗車人数として第1の乗車人数を計数し、測定部は、車両の荷重を測定し、混雑状況推定部は、車両の内部の混雑状況を推定し、乗車人数推定部は、混雑状況推定部が推定した混雑状況が混雑なしの場合に、第1の乗車人数と車両の荷重とから推定される乗客一人当たりの重量と車両の荷重とから車両の乗車人数として第2の乗車人数を推定し、算出部は、車両の乗車人数として、混雑状況推定部が推定した混雑状況が、混雑なしの場合には第1の乗車人数を採用し、混雑ありの場合には第2の乗車人数を採用し、採用した方の車両の乗車人数から当該車両の定員に占める割合を車両の乗車率として算出し、記憶部は、算出部が算出した車両の乗車率を蓄積することを特徴とする。

発明の効果

0011

本発明によれば、乗員一人当たりの重量を混雑度合いが低い条件下で精度良く推定し、車両の乗車率算出に反映することで、車両荷重に基づく車両の乗車率の算出方法弱点を補い、車両の乗車率の算出精度を向上させることができる。

図面の簡単な説明

0012

本発明の実施例に係る列車乗車率管理システムのシステム構成の一例を示す図である。
混雑状況推定部の内部処理を示すフローチャートの一例を示す図である。
駅間曜日および列番による混雑状況推定に用いるデータベースの一例を示す図である。
車両の乗車率計算の一例を示す図である。
一人当たり重量推定部の内部処理を示すフローチャートの一例を示す図である。
乗車人数推定部の内部処理を示すフローチャートの一例を示す図である。
乗車率算出部の内部処理を示すフローチャートの一例を示す図である。

0013

以下、本発明を実施するための形態として、本発明の実施例について、図を参照しながら説明する

0014

本発明の実施例に係る列車乗車率管理システムは、先ず、駅間、曜日および列番(列車番号)を基本とした条件で、列車内の混雑のありまたはなしを判定する。その上で、行路内の混雑なしの条件下では、カメラや光学系センサなどを用いて乗車人数を計数した結果で車両の乗車率を算出する。それと共に、荷重検知結果と乗車人数計数結果とから乗客一人当たりの重量を推定し、同行路内の混雑ありの条件下では、荷重検知結果と推定した乗客一人当たりの重量とから求めた乗車人数によって車両の乗車率を算出する。

0015

この列車乗車率管理システムによれば、乗車人数の計数結果に基づき、乗客一人当たりの重量を適切な値に設定した上で、同行路内の混雑した環境下でも荷重に基づいて車両の乗車率を算出することが可能となる。そのため、季節、時間帯および号車などの環境条件に依らず、車両の乗車率を精度良く算出することが可能となる。

0016

図1は、本発明の実施例に係る列車乗車率管理システムのシステム構成の一例を示す図である。
列車乗車率管理システムは、大別すると、乗車率算出装置100と乗車率算出装置100に対して情報を入出力する複数の処理部とから構成される。

0017

先ず、乗車率算出装置100に対する情報の入力源となる複数の処理部は、ドア開閉情報管理部101、列番情報管理部102、列車位置管理部103、カレンダ情報管理部104、改札流入人数取得部105、手動切替入力部106、乗車人数計数部107、車両荷重測定部108、路線内一人当たり重量管理部109および自列車内他車両乗車率算出装置100Aである。

0018

ここで、自列車内他車両乗車率算出装置100Aは、自列車内において他車両向けに存在する乗車率算出装置であり、その内部処理は乗車率算出装置100の内部処理と同じである。

0019

次に、乗車率算出装置100からの情報の出力先となる複数の処理部は、自列車内他車両乗車率算出装置100A、路線内一人当たり重量管理部109および乗車率記憶部110である。

0020

ここで、乗車率記憶部110は、列車内の各号車に設置される車内表示装置111および路線内のに設置される駅構内表示装置112に対して、乗車率情報を出力する。

0021

乗車率算出装置100が実行する内部処理は、列車内の車両ごとに個別に存在する。

0022

乗車率算出装置100の入力側に接続される複数の処理部の内、ドア開閉情報管理部101、列番情報管理部102、列車位置管理部103、カレンダ情報管理部104、改札流入人数取得部105、手動切替入力部106および路線内一人当たり重量管理部109に関しては、一列車内で共通の単一入力である。
一方で、乗車人数計数部107、車両荷重測定部108および自列車内他車両乗車率算出装置100Aに関しては、車両ごとに異なる個別の入力である。

0023

また、乗車率算出装置100の出力側について、乗車率記憶部110は、一列車内に最低限1箇所あればよく、列車内の各車両に対応する乗車率算出装置100からの各出力を集約して記憶する。

0024

さらに、乗車率算出装置100は、独立した装置として車載することが可能である。もしくは、乗車率算出装置100は、その内部処理を既存の車上モニタ装置の内部に実装することでも実現可能である。後述するように、乗車率算出装置100への入力データの多くは、車上モニタ装置の内部に既に存在する情報であることから、車上モニタ装置の内部に処理を実装する方法は、ハード面およびソフト面の両方で新設改修に係る部分が少なく、コストが低く抑えられる。

0025

続いて、乗車率算出装置100の入力側の各処理部について、図1の左上からの順に説明する。
(1)ドア開閉情報管理部101
ドア開閉情報管理部101からの入力情報は、ドア開閉状態151である。すなわち、列車内ドアもしくはホームドアの少なくとも一部のドアが開き乗客の乗降が行われ得る状態であるか、全ドアが閉まり乗降が行われ得ない状態であるか、のいずれであるかを示す情報である。以降では、前者を「ドア開状態」、後者を「ドア閉状態」と記載する。
ここで、ドア開閉情報管理部101は、列車内のドアやホームドアの開閉状態に関する情報を保持する機器であれば、その役割を果たすことが可能であることから、一例として、車上モニタ装置が挙げられる。

0026

なお、ドア開閉状態151の代用として、車上モニタ装置などから取得できる車両速度の情報を使用することも可能である。なぜならば、原則的に、列車はドア閉状態でのみ走行可能、すなわち速度が正になるためである。乗車率算出装置100は、列車速度が、走行検知用速度の所定閾値を上回っているときに「ドア閉状態」、それ以外を「ドア開状態」とみなして、内部処理を行う。この方法であれば、乗車率算出装置100は、ドア開閉状態を直接認識できる機器と接続されない場合であっても、間接的にドア開閉の状態を認識することができる。

0027

(2)列番情報管理部102
列番情報管理部102からの入力情報は、自列車の列車番号152である。ここで、列番情報管理部102は、自列車の列車番号を認識している機器であればその役割を果たすことが可能であることから、一例として、車上モニタ装置が挙げられる。

0028

(3)列車位置管理部103
列車位置管理部103からの入力情報は、列車位置153である。ここで、列車位置管理部103は、自列車の位置を認識している機器であればその役割を果たすことが可能であることから、一例として、車上モニタ装置が挙げられる。

0029

(4)カレンダ情報管理部104
カレンダ情報管理部104からの入力情報は、曜日関連情報154である。乗車率算出装置100を搭載する列車のダイヤが、平日と土日祝日とで分かれている場合、曜日関連情報154は、平日か否かの情報となる。また、列車のダイヤが曜日毎に細かく分かれている場合、曜日関連情報154は、それらの分類に応じて当日のダイヤがいずれであるかを識別可能な形で、乗車率算出装置100に入力される。
ここで、カレンダ情報管理部104は、曜日情報を認識する機器であればその役割を果たすことが可能であることから、一例として、車上モニタ装置が挙げられる。あるいは、乗車率算出装置100の内部でカレンダ情報を管理することも可能であり、その場合外部からの入力としての曜日関連情報154は不要である。

0030

(5)改札流入人数取得部105
改札流入人数取得部105からの入力情報は、自列車の停車駅における改札流入人数155である。ここで、改札流入人数取得部105は、単位時間当たりに改札を通過した人数を把握できる機器であればその役割を果たすことが可能であることから、一例として、駅に設置されている自動改札機制御装置が挙げられる。当該制御装置に無線通信機能を持たせ、駅停車中の列車に対して、直近の所定時間内における改札通過人数155を送信させる。
また、改札流入人数取得部105は、必ずしも先の自動改札機の制御装置である必要はなく、カメラの画像認識やレーザレーダを活用した駅構内の人流監視システムなどであってもよい。

0031

(6)手動切替入力部106
手動切替入力部106からの入力情報は、乗務員駅係員によって手動で設定される手動設定混雑状況156である。この混雑状況信号は、「混雑あり」または「混雑なし」のいずれかである。
乗務員や駅係員は、列車内外の混雑状況を把握し、混雑度合いが大きいと判断する際に、手動切替入力部106に対してその旨の入力を行うことにより、手動設定混雑状況156の信号内容が「混雑あり」となる。
ここで、手動切替入力部106は、駅や列車に設置されている操作端末でもよいし、乗務員や駅係員が乗客案内等の用途で持つタブレット端末でもよい。

0032

(7)乗車人数計数部107
乗車人数計数部107からの入力情報は、自車両内の乗車人数計数結果159と乗車人数計数部動作状態160である。乗車人数計数部107は、カメラのような撮像装置を用いた画像認識やレーザレーダのような光学検知装置による物体検知を活用した計数により、乗車人数計数結果159を積算する。
例えば、カメラのような撮像装置を用いた画像認識による計数方法として、列車内の天井部や部に設置した撮像装置(カメラ)により車内の画像を撮影し、乗客の頭部を画像認識して計数する方法が挙げられる。この方法によれば、痴漢防止などの目的で車内に既設の撮像装置(カメラ)を流用することが可能で、追加設備にかかるコストを低減できる。

0033

また、上記の画像認識による計数方法の他の例として、ホームドア部への接近または取り残し検知用に設置した車側撮像装置(カメラ)の画像を活用し、列車に乗降する人数を計数し積算する方法が挙げられる。この方法も、既設の撮像装置(カメラ)の流用により導入コストの低減が可能である。

0034

さらに、レーザレーダのような光学系検知装置を用いる方法として、例えば、乗客が乗降する車両ドアや車間部に通過検知用の光学系検知装置(レーザレーダ)を設置し、乗客の足や胴体などの通過数を検知し積算する方法が挙げられる。

0035

上記のいずれの方法も、乗客数が少なく乗降が激しくない場面においては、精度良く乗車人数計数結果159を取得できる。しかし、混雑した状況下では、各乗客を切り分けて計数することが困難になるため、乗車人数計数結果159の精度が悪化する。

0036

乗車人数計数部動作状態160の信号内容は、「正常」または「異常」のいずれかの状態を持ち、乗車人数計数部107が自己診断で異常を認識した際に「異常」が出力される。

0037

(8)車両荷重測定部108
車両荷重測定部108からの入力情報は、車両荷重測定結果157と車両荷重測定部動作状態158である。車両荷重測定結果157は、空車状態を基準にして乗客によって増加した分の重さである。

0038

ここで、車両荷重測定部108の例として、車上モニタ装置が挙げられる。車上モニタ装置では、図示しないブレーキ制御装置から受け取った情報により車体を支える空気ばねの内部圧力を把握しているため、空車時からの圧力増分を重さに変換することで車両荷重測定結果157が計算できる。また、車両荷重測定部108としてブレーキ制御装置自体を用いてもよい。

0039

車両荷重測定部動作状態158の信号内容は、「正常」または「異常」のいずれかの状態を持ち、車両荷重測定部108が自己診断で異常を認識した際には「異常」が出力される。

0040

(9)自列車内他車両乗車率算出装置100A
自列車内他車両乗車率算出装置100Aからの入力情報は、自列車内の他車両について推定された自列車内他車両一人当たり重量162Aである。本実施例では便宜上、自列車内の他車両が1車両存在する形式記述しているが、自列車内の他車両が2車両以上存在する場合でも、自列車内の他車両について推定された乗客一人当たりの重量が、乗車率算出装置100に入力される。反対に、自列車内他車両乗車率算出装置100Aに対しては、乗車率算出装置100から乗客一人当たりの重量推定結果162が出力される。

0041

(10)路線内一人当たり重量管理部109
路線内一人当たり重量管理部109は、同一路線内の各列車に関して、各列車内において推定された乗客一人当たりの重量を管理する地上側の設備である。走行する列車とは無線通信によって情報の入出力を行う。

0042

路線内一人当たり重量管理部109は、乗車率算出装置100に対して周期的に、自列車以外の他列車において推定される乗客一人当たりの重量の集計結果を、他列車の乗客一人当たりの重量163として入力する。ここで、集計方法の代表的な例は、平均処理である。

0043

一方で、乗車率算出装置100は、その内部で演算された乗客一人当たりの重量推定結果162を路線内一人当たり重量管理部109に対して送信出力する。

0044

次に、乗車率算出装置100の出力側の処理部について説明する。
(11)乗車率記憶部110
乗車率記憶部110は、車上サーバであり、乗車率算出装置100が算出した乗車率算出結果165を蓄積する。乗車率記憶部110に蓄積されたデータは、鉄道事業者の計画部門などにおいて解析され、混雑状況の把握や将来のダイヤ改正の検討材料として用いられ、また、乗客に対する情報提供にも活用される。

0045

(12)車内表示装置111
車内表示装置111は、自列車内の各号車の乗車率を表示する。そのために、乗車率記憶部110から車内表示装置111に対して、列車内車両別乗車率情報166が出力される。列車内車両別乗車率情報166を車内表示装置111に表示することによって、混雑した車両の乗客が比較的空いている車両へ移動し、列車内の混雑が平準化することが期待できる。

0046

(13)駅構内表示装置112
駅構内表示装置112は、路線内の駅に設置され、路線内の各列車の乗車率記憶部110からの列車別乗車率情報167を表示する。駅構内表示装置112が、路線内の各列車の混雑状況を表示することにより、駅にいる利用客がより空いている列車を選択して乗車することが可能となり、列車間での混雑の平準化が期待できる。
列車内および列車間での混雑の平準化は、車内快適性の向上だけでなく、極端に長い乗降時間の発生を抑制することになり、列車運行の定時性の向上にも寄与する。

0047

次に、乗車率算出装置100の内部構成について、図1を用いて説明する。
乗車率算出装置100は、混雑状況推定部113、一人当たり重量推定部114、乗車人数推定部115および乗車率算出部116から構成される。

0048

(14)混雑状況推定部113
混雑状況推定部113の入力は、ドア開閉状態151、列車番号152、列車位置153、曜日関連情報154、改札流入人数155、手動設定混雑状況156、車両荷重測定結果157、車両荷重測定部動作状態158、乗車人数計数結果159および乗車人数計数部動作状態160である。また、混雑状況推定部113の出力は、混雑状況推定結果161であり、一人当たり重量推定部114と乗車率算出部116とに入力される。

0049

ここで、混雑状況推定結果161の取り得る状態は、「混雑あり」および「混雑なし」の2種類である。「混雑あり」とは、乗車人数計数部107においてカメラやレーザレーダによる方法で乗車人数が正しく計数できない程度の混雑度合いであることを示す。具体的な閾値は、乗車人数計数部107として採用する機材の性能や方式の種類によって異なるため、予め実乗車人数と乗車人数計数部107との比較検証試験を行い、閾値となる混雑度合いを決めておく必要がある。
混雑状況推定部113の内部処理については後述する。

0050

(15)一人当たり重量推定部114
一人当たり重量推定部114の入力は、車両荷重測定結果157、車両荷重測定部動作状態158、乗車人数計数結果159、乗車人数計数部動作状態160および混雑状況推定結果161である。一人当たり重量推定部114の出力は、一人当たり重量推定結果162であり、路線内一人当たり重量管理部109と乗車人数推定部115とに入力される。
一人当たり重量推定部114の内部処理については後述する。

0051

(16)乗車人数推定部115
乗車人数推定部115の入力は、車両荷重測定結果157、車両荷重測定部動作状態158、一人当たり重量推定結果162および他列車一人当たり重量163である。乗車人数推定部115の出力は、乗車人数推定結果164であり、乗車率算出部116に入力される。
乗車人数推定部115の内部処理については後述する。

0052

(17)乗車率算出部116
乗車率算出部116の入力は、ドア開閉情報151、乗車人数計数結果159、乗車人数計数部動作状態160、混雑状況推定結果161および乗車人数推定部164からの推定結果である。乗車率算出部116の出力は、乗車率算出結果165であり、乗車率記憶部110に入力される。
乗車率算出部116の内部処理については後述する。

0053

先ず、混雑状況推定部113の内部処理について説明する。
図2は、混雑状況推定部113の内部処理を示すフローチャートの一例を示す図である。このフローチャートの各ステップの処理を実行する主体は、混雑状況推定部113であるが、以下の各ステップでは、その主体の記載を省略する。

0054

STEP201で、ドア開閉状態151(ドア開閉情報管理部101の出力)を使用して乗車率算出タイミングであるか否かを判定する。乗車率算出タイミングは、駅での乗客の乗降が終了したタイミングおよびその後の所定時間内とする。よって、ドア開閉状態151が、「ドア開状態」から「ドア閉状態」に変化したタイミングおよびその後の所定時間内であれば、STEP201の判定結果はYESとなり、STEP202に進む。
ここで、所定時間としては、走行による車両動揺の影響を回避するため、ドアが閉じてから列車が動き始めるまでの平均的な時間に設定する方法を用いることができる。

0055

他方、STEP201の判定結果がNOであれば、STEP209に進む。
STEP209では、混雑状況推定結果161を前回値の保持とする。なお、車両電源起動時は、空車であると想定されることから、混雑状況推定結果161の初期値は、「混雑なし」とする。

0056

STEP202で、列車番号152(列車番号管理部102の出力)、列車位置153(列車位置管理部103の出力)および曜日関連情報154(カレンダ情報管理部104の出力)を入力条件として、駅間、曜日および列番(列車番号)の観点で混雑状況を推定する。この混雑状況の推定は、例えば、データベース検索の形で行う方法が挙げられる。

0057

図3は、駅間、曜日および列番による混雑状況推定に使用するデータベースの一例を示す図である。図3では、A駅からI駅までの路線を仮定し、各駅間、各列番(列車番号101A〜105A)および各曜日(平日または土日祝)の条件で、「混雑あり」の傾向にあるか否かを示している。

0058

図3に示すデータベースの内容については、事前に各条件での通常時における混雑傾向を現地調査などで調査および集計した結果を、乗車率算出装置100が備えるメモリ(図示せず)に保存しておく。同一の路線でも季節によって混雑傾向が変化することが考えられるため、データベースの内容を容易に変更できるよう、外部記録媒体交換等によりメモリの内容を変更できる形態が望ましい。

0059

STEP202で、「混雑あり」と判定された場合(YES)は、STEP207に進む。
STEP207では、混雑状況推定結果161を「混雑あり」に設定する。

0060

他方、「混雑あり」と判定されなかった場合(NO)は、STEP203に進む。
ここで、混雑状況推定部113における推定の考え方は、STEP202における駅間、曜日および列番(列車番号)での混雑状況推定を基本とし、STEP202で「混雑あり」と判定されなかった場合における例外的な「混雑あり」状況の可能性を、以降のSTEP203〜STEP206でカバーするものである。

0061

STEP203では、改札流入人数155(改札流入人数取得部105の出力)を入力として、現在駅の改札流入人数155が規定人数よりも多いか否かを判定する。例えば、駅の近くで大規模イベントなどが開催されるような場合には、平常時では「混雑あり」の傾向になくても特定のタイミングで大きな混雑が発生する可能性があるため、STEP203はそのようなケースを考慮し対処するステップである。

0062

ここで、上記の規定人数は、駅、曜日および列番(列車番号)ごとに平常時の乗車人数の傾向から大きく乖離する値(人数)に設定されることが望ましい。例えば、平常時の乗車人数の傾向が正規分布である場合に、平均値+2σ(σは標準偏差)を規定値(人数)とする方法などを用いることができる。

0063

STEP203での判定が、YESの場合にはSTEP207に進み、NOの場合にはSTEP204に進む。
STEP204では、手動設定混雑状況156(手動切替入力部106の出力)を入力として、乗務員や駅係員が手動により「混雑あり」の切替えを要求する状態にあるか否かを判定する。ここでは、STEP202で判定する平常時の混雑傾向やSTEP203で判定するイベント的なケース以外で、イレギュラーな混雑傾向の変化がある際に、人手を介して混雑状況推定結果161を「混雑あり」に変更することができる。例えば、運行乱れによって平常時と乗客の流動が大きく変わっているような場合や、一部の車両が使用できず他の車両に集中的に乗客が乗車しているような場合が挙げられる。

0064

STEP204での判定が、YESの場合にはSTEP207に進み、NOの場合にはSTEP205に進む。
STEP205では、乗車人数計数結果159(乗車人数計数部107の出力)が規定人数よりも大きいか否かを判定する。この判定結果が、YESの場合にはSTEP207に進み、NOの場合にはSTEP206に進む。

0065

ここで、乗車人数計数部動作状態160(乗車人数計数部107の出力)が「異常」の場合には、乗車人数計数結果159の値が信頼できないため、STEP205の判定はスキップするという考え方で(すなわち、NO)、STEP206に進む。

0066

また、上記の規定人数は、乗車人数計数部107によって正確な計数ができる限界の人数規模を予め試験等で検証して設定されることが望ましい。

0067

STEP206では、車両荷重測定結果157(車両荷重測定部108の出力)が規定重量より大きいか否かを判定する。この判定結果が、YESの場合にはSTEP207に進み、NOの場合にはSTEP208に進む。

0068

ここで、車両荷重測定部動作状態158(車両荷重測定部108の出力)が「異常」の場合には、車両荷重測定結果157の値が信頼できないため、STEP206の判定はスキップするという考え方で(すなわち、NO)、STEP208に進む。
また、上記の規定重量は、STEP205で用いる規定人数に所定の一人当たりの重量を乗算した値に設定されることが望ましい。

0069

STEP205とSTEP206とは、本来であれば、STEP204からSTEP207に進むべき状況にも拘らず、乗務員や駅係員が手動切替入力部106への入力を怠った場合や手動切替入力部106が故障しているような場合のバックアップ手段として存在するステップである。
STEP208では、混雑状況推定結果161を「混雑なし」に設定する。

0070

以上、混雑状況推定部113の内部処理を図2のフローチャートに沿って説明上記したSTEP203〜STEP206の各判定ステップは、図2に示す順序に固定されるものではなく、順序が入れ替わっても構わない。

0071

また、混雑状況推定部113における推定の考え方として、先のSTEP202における駅間、曜日および列番(列車番号)での混雑状況推定を基本とすることを記したが、上記したSTEP203〜STEP206に示す各状態における混雑状況の推定に特化させる場合も想定して、先のSTEP202なしに上記したSTEP203〜STEP206それぞれを実行するようにしてもよい。

0072

次に、一人当たり重量推定部114の内部処理について説明する。
図5は、一人当たり重量推定部114の内部処理を示すフローチャートの一例を示す図である。このフローチャートの各ステップの処理を実行する主体は、一人当たり重量推定部114であるが、以下の各ステップでは、その主体の記載を省略する。

0073

STEP501で、混雑状況推定結果161(混雑状況推定部113の出力)を入力として、混雑状況が「混雑あり」か否かを判定する。この判定結果が、YESの場合にはSTEP504に進み、NOの場合にはSTEP502に進む。

0074

STEP502で、乗車人数計数部動作状態160(乗車人数計数部107の出力)を入力として、乗車人数計数部107が正常動作しているか否かを判定する。正常動作している場合(YES)は、STEP503に進み、異常である場合(NO)は、STEP506に進む。

0075

STEP503で、車両荷重測定部動作状態158(車両荷重測定部108の出力)を入力として、車両荷重測定部108が正常動作しているか否かを判定する。正常動作している場合(YES)は、STEP505に進み、異常である場合(NO)は、STEP506に進む。

0076

STEP504で、現行路内で一人当たりの重量推定結果162に前回値が存在するか否かを判定する。この判定結果が、YESの場合にはSTEP507に進み、NOの場合にはSTEP506に進む。
STEP507では、一人当たりの重量推定結果162として前回値を保持する。

0077

STEP505で、車両荷重測定結果157(車両荷重測定部108の出力)を乗車人数計数結果159で除算することによって、一人当たりの重量推定結果162を算出する。

0078

STEP506では、一人当たりの重量推定結果162を推定できないため、値を無効値とする。このSTEP506は、一人当たりの重量推定結果162を計算するための車両荷重測定結果157および乗車人数計数結果159の少なくともいずれかが信頼できない場合、または現行路内が始めから「混雑あり」の状況(エラー状態)である場合、に実行されるステップである。

0079

次に、乗車人数推定部115の内部処理について説明する。
図6は、乗車人数推定部115の内部処理を示すフローチャートの一例を示す図である。このフローチャートの各ステップの処理を実行する主体は、乗車人数推定部115であるが、以下の各ステップでは、その主体の記載を省略する。

0080

STEP601で、車両荷重測定部動作状態158(車両荷重測定部108の出力)を入力として、車両荷重測定部108が正常動作しているか否かを判定する。正常動作している場合(YES)は、STEP602に進み、異常である場合(NO)は、STEP607に進む。
STEP607では、乗車人数推定結果165として無効値を設定する。

0081

STEP602で、一人当たりの重量推定結果162(一人当たり重量推定部114の出力)を入力として、その値が有効であるか否かを判定する。この判定結果が、有効である場合(YES)はSTEP608に進み、有効でない(無効である)場合(NO)はSTEP603に進む。

0082

STEP608で、一人当たりの重量基準値に自車両の一人当たりの重量推定結果162を設定し、STEP606に進む。
STEP606で、車両荷重測定結果157を一人当たりの重量基準値で除算することで、乗車人数推定結果164を算出する。

0083

他方、STEP602の判定により一人当たりの重量推定結果162が有効でない(無効である)場合(NO)、STEP603以降において、自車両以外の一人当たりの重量推定結果を採用する。

0084

STEP603で、自列車内他車両一人当たりの重量162A(自列車内他車両乗車率算出装置100Aの出力)を入力として、自列車内の他車両の一人当たりの重量推定結果が有効であるか否かを判定する。この判定結果が、有効である場合(YES)はSTEP605に進み、有効でない(無効である)場合(NO)はSTEP604に進む。

0085

自列車内の他車両の一人当たりの重量推定結果が有効である場合(YES)、STEP605で、当該有効な値(複数ある場合は、平均などの統計処理済みの値)を一人当たりの重量基準値に設定し、STEP606に進む(STEP606での処理は、上述のとおり)。

0086

自列車内の他車両の一人当たりの重量推定結果が有効でない(無効である)場合(NO)、STEP604で、同一路線内を走行する他列車の一人当たりの重量163(路線内一人当たり重量管理部109の出力)を入力として、平均化などの統計処理をした上で、一人当たりの重量基準値に設定し、STEP606に進む(STEP606での処理は、上述のとおり)。

0087

次に、乗車率算出部116の内部処理について説明する。
図7は、乗車率算出部116の内部処理を示すフローチャートの一例を示す図である。このフローチャートの各ステップの処理を実行する主体は、乗車率算出部116であるが、以下の各ステップでは、その主体の記載を省略する。

0088

STEP701で、ドア開閉状態151(ドア開閉情報管理部101の出力)を使用して、乗車率算出タイミングであるか否かを判定する。判定方法は、先のSTEP201(図2)と同一である。判定結果が、YESの場合はSTEP702に進み、NOの場合はSTEP709に進む。
STEP709では、乗車率算出結果165として前回値を保持する。

0089

STEP702で、混雑状況推定結果161(混雑状況推定部113の出力)を入力として、混雑状況が「混雑あり」か否かを判定する。この判定結果が、「混雑あり」の場合(YES)はSTEP703に進み、「混雑なし」の場合(NO)はSTEP704に進む。

0090

STEP704で、乗車人数計数部動作状態160(乗車人数計数部107の出力)を入力として、乗車人数計数部107が正常動作しているか否かを判定する(先のSTEP502と同じ処理)。正常動作している場合(YES)は、STEP706に進み、異常である場合(NO)は、STEP703に進む。

0091

STEP703で、乗車人数推定結果164(乗車人数推定部115の出力)が有効であるか否かを判定する。この判定結果が、有効である場合(YES)はSTEP705に進み、有効でない(無効である)場合(NO)はSTEP707に進む。
STEP707では、乗車率算出結果165を無効値とする。

0092

STEP705で、続くSTEP708で使用するための乗車人数基準値に、乗車人数推定結果164を設定し、STEP708に進む。

0093

一方、STEP706で、続くSTEP708で使用するための乗車人数基準値に、乗車人数計数結果159(乗車人数計数部107の出力)を設定し、STEP708に進む。

0094

STEP708で、乗車人数基準値を自車両の定員数で除算することによって乗車率算出結果165を算出する。

0095

最後に、乗車率算出装置100による処理を実行した際の、車両の乗車率の計算例について説明する。
図4は、車両の乗車率計算の一例を示す図である。ここで、対象とする列車は、6両編成(1号車〜6号車)、各車両の乗車定員は、図4に示す「乗車定員[人]」の行に記載の人数、と仮定する。

0096

まず、混雑状況推定部113の推定結果が「混雑なし」の状況下で、乗車人数計数部107による計数結果が、図4に示す「乗車人数計数結果[人]」の行に記載の人数であったとする。この場合には、乗車率算出部116では、乗車人数基準値として当該乗車人数計数結果が設定され、乗車定員に占める割合として車両の乗車率が算出される(図4に示す「車両の乗車率1[%]」の行)。例えば、1号車では、15.0%(=18[人]÷120[人]×100)との計算になる。

0097

また、混雑状況推定部113の推定結果が「混雑なし」の状況下では、更に、一人当たり重量推定部114で、一人当たりの重量推定結果162が計算される。その際には、車両荷重測定部108における測定結果が使用される。すなわち、図4に示す「車両荷重測定結果1[ton]」の行に記載の値が、車両荷重測定結果157である。そこで、計算により求めた一人当たりの重量推定結果162は、図4に示す「一人当たりの重量推定結果[kg]」の行に記載の値である。例えば、1号車では、65kg(=1.17[ton]÷18[人]×1000)との計算になる。

0098

次に、混雑状況推定部113の推定結果が「混雑あり」の状況下で、乗車人数推定部164において、車両荷重測定結果157を一人当たりの重量推定結果162で除算することで、乗車人数推定結果164が算出される(図4に示す「乗車人数推定結果[人]」の行)。すなわち、図4に示す「車両荷重測定結果2[ton]」の行に記載の値を、「一人当たりの重量推定結果[kg]」の行に記載の値で除算することで、「乗車人数推定結果[人]」の行に記載の値が算出される。例えば、1号車では、208.3人(=13.54[ton]÷65[kg]×1000)との計算になる。

実施例

0099

また、混雑状況推定部113の推定結果が「混雑あり」の状況下では、乗車率算出部116において乗車人数基準値として乗車人数推定結果164が設定され、乗車定員に占める割合として車両の乗車率が算出される(図4に示す「車両の乗車率2[%]」の行)。図4に示す「乗車人数推定結果[人]」の行に記載の値を、「乗車定員[人]」で除算する計算となる。例えば、1号車は、173.4%(=208.3[人]÷120[人]×100)との計算になる。

0100

100…乗車率算出装置、100A…自列車内他車両乗車率算出装置、
101…ドア開閉情報管理部、102…列番情報管理部、103…列車位置管理部、
104…カレンダ情報管理部、105…改札流入人数取得部、106…手動切替入力部、
107…乗車人数計数部、108…車両荷重測定部、
109…路線内一人当たり重量管理部、110…乗車率記憶部、111…車内表示装置、
112…駅構内表示装置、113…混雑状況推定部、114…一人当たり重量推定部、
115…乗車人数推定部、116…乗車率算出部、151…ドア開閉状態、
152…列車番号、153…列車位置、154…曜日関連情報、155…改札流入人数、
156…手動設定混雑状況、157…車両荷重測定結果、
158…車両荷重測定部動作状態、159…乗車人数計数結果、
160…乗車人数計数部動作状態、161…混雑状況推定結果、
162…一人当たりの重量推定結果、162A…自列車内他車両一人当たりの重量、
163…他列車一人当たりの重量、164…乗車人数推定結果、
165…乗車率算出結果、166…列車内車両別乗車率情報、167…列車別乗車率情報

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ