図面 (/)

技術 コードブロックの分割を実現する方法及び装置

出願人 中興通訊股ふん有限公司
発明者 シュージンシュージュンリーリーグアン
出願日 2020年9月9日 (1年1ヶ月経過) 出願番号 2020-151080
公開日 2021年1月7日 (9ヶ月経過) 公開番号 2021-002843
状態 未査定
技術分野 交流方式デジタル伝送
主要キーワード チェックユニット 参照ユニット 指令語 指示ユニット 削除ユニット ハードウェアパラメータ 分割ユニット ソフトウェア機能モジュール
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2021年1月7日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (11)

課題

コードブロック分割の方法及び装置を提供する。

解決手段

コードブロック分割フローは、取得した分割関連パラメータに基づいて、コードブロック参照情報ブロック長を決定し600、決定した参照情報ブロック長及びハードウェアパラメータに基づいて、最大の情報ブロック長を決定し601、取得した分割関連パラメータ、ハードウェアパラメータ及び決定した最大の情報ブロック長に基づいて、最大の情報ブロック長を超えたトランスポートブロックを2つ以上のコードブロックに分割する602。コードブロックの分割数は、最大の情報ブロック長及びトランスポートブロックサイズ符号化ブロック巡回冗長検査符号ビットの長さにより決定する。

概要

背景

図1は、関連技術におけるデジタル通信システム構造ブロック図であり、図1に示されるように、デジタル通信システムは送信側と受信側とを備え、送信側と受信側とがチャネルを介して通信する。一般、送信側は、主として、情報源ソースエンコーダチャネルエンコーダ及び変調器を含み、受信側は、主として、復調器チャネルデコーダソースデコーダ及びシンクを含む。チャネルエンコーダは、主として、受信側のチャネルデコーダが一定の程度で、情報がチャネルで伝送される時に発生した誤り訂正できるように、一定の規則に従って情報ビット冗長情報を導入する機能を担う。

ベースバンド処理は、無線インターネット技術において重要な役割を果たし、物理チャネルマッピングまでのベースバンド処理は、主として、チャネルエンコーダにおいてチャネルコーディングチェーンを処理することである。図2は、関連技術におけるチャネルコーディングチェーンの処理のフローチャートであり、図2に示されるように、チャネルコーディングチェーンの処理は、入力されたトランスポートブロックコードブロックの分割を行い、即ち、チャネルエンコーダに入ったトランスポートブロックを、最大の符号化ブロックのサイズに従って符号化ブロックに分割し、トランスポートブロックはチャネルコーディングチェーンの基本の入力であり、一般的には、1つのトランスポートブロックのデータは、符号化変調方式が大体同じである。そして、得られた複数の符号化ブロックに対して巡回冗長検査符号(CyclicRedundancyCheck、単にCRCという)、チャネル
コーディング(coding)、レートマッチング変調、物理チャネルマッピング等の操作を付加する。

図3は、関連技術におけるコードブロックの分割を示す図であり、図3に示されるように、チャネルエンコーダで符号化する場合、トランスポートブロックの情報ビットを一定の長さの符号化ブロックに分割して符号化し、図3において、トランスポートブロックをコードブロック1、コードブロック2、及びコードブロック3という3つのコードブロックに分割する。一般的には、符号化ブロックが大きいほど、誤り訂正性能が優れている。一方、コードブロックが大きくなると、符号化/復号複雑度が増加し、復号遅延時間が増加するため、チャネルエンコーダを設計する時に、最大のコードブロックのサイズを制限する必要があり、即ち、最大のコードブロックの最大値を設定する必要がある。チャネルコーディングでは、許可される最大のコードブロックのサイズが制約されており、1つのトランスポートブロックは、複数のコードブロックに分割されていなければ、チャネルコーディングを行われることができない。現在、トランスポートブロックを複数のコードブロックに分割する過程(即ち、コードブロックの分割技術)において、1つのトランスポートブロックをサイズがほぼ同じである複数のコードブロックに分割する必要がある。例えば、第三世代協力パートナーシッププロジェクト(3GPP)の長期的進化(LongTerm Evolution、単にLTEという)及びLTEの拡張(LTE−A)システムにおいて
、コードブロックの分割は、6144ビットを単位とした分割であり、トランスポートブロック(CRCを含む)の長さが6144ビットを超えていれば、1つのトランスポートブロックは複数のコードブロックに分割される。また、符号化ブロック及びCRCは、長さが、ターボ符号(Turbo)チャネルエンコーダがサポートする符号長の範囲内のものでなければならず、チャネルエンコーダがサポートする符号長の範囲外のコードブロックは、直接符号化されることができないため、これらのコードブロックに対してさらにスタッフビットを付加する必要がある。

LTE及びLTE−Aシステムは、直交周波数分割多重技術(Orthogonal FrequencyDivision Multiplexing、単にOFDMという)に基づくシステムであり、OFDMシステ
ムにおいて、リソースブロック略称される物理時間周波数リソースブロック(Resource
Block、単にRBという)は、時間上連続する複数のOFDMシンボル及び周波数上連続する複数のサブキャリアからなる時間周波数次元ユニットである。図4は、OFDMシステムにおける時間長が1つのタイムスロットであるリソースブロックを示す図であり、図4に示されるように、1つのリソースブロックは周波数領域において12個のサブキャリアを占有する。LTE及びLTE−Aにおいて、リソース割り当て用の基本的な時間粒状度は、1つのサブフレーム(subframe)の整数倍であり、周波数領域粒状度は1つのRB(即ち、12サブキャリア)の整数倍であり、図4のRB構造において、1つのタイムスロットは7つの連続するOFDMシンボルを含み、1つのサブフレームは2つのタイムスロットを含み、即ち、14個の連続するOFDMシンボルを含む。また、図4におけるそれぞれの小さい四角形は、1つのリソースエレメント(ResourceElement、単にREと
いう)を表し、1つのタイムスロット内の1つのRB上に12*7=84個のREがある。それぞれのタイムスロットの長さが0.5ミリ秒である場合、2つの連続するタイムスロットで1つのサブフレーム(Subframe)が構成されるため、それぞれのサブフレームの長さが1ミリ秒である。1つのトランスポートブロックが時間領域において少なくとも1つのサブフレームを占用するため、1つのトランスポートブロックが時間領域において複数のOFDMシンボルを占用する。制御チャネル(例えば、PDCCチャネル)も一部のOFDMシンボルを占用することを考慮し、1つのトランスポートブロックが実際に占用するOFDMシンボルの数は、14個未満であるが、通常10個を超えている。

図5は、関連技術のLTEシステムにおける物理チャネルマッピング方法を示す図であり、図5に示されるように、OFDMシステムにおいて、情報伝送は通常、1つのトランスポートブロック(TransferBlock、単にTB)を単位とし、1つのTBには、通常、1つ又は複数のコードブロックが含まれ、それぞれのコードブロックは符号化及びレートマッチングが施された後、1つの符号化済みコードブロックを生成し、それぞれの符号化済みコードブロックは変調された後、1つのシンボルストリームを生成し、即ち、1つのトランスポートブロックは、複数のシンボルストリーム:J1,J2,・・・,Jnに対応す
ることができる。LTE及びLTE−Aにおいて、1つのトランスポートブロックが多くとも4レイヤを占用し、且つそれぞれのレイヤにおいて同じ時間周波数リソースエリアを占用する。トランスポート層は、LTE及びLTE−Aにおけるマルチアンテナ「レイヤ」の概念であり、空間多重化における有効な独立したチャネルの数を示し、「レイヤ」は時間及び周波数以外の次元を表す。

LTE及びLTE−Aにおいて、データ伝送について9つの異なる伝送モードが定義され、異なる伝送モードがそれぞれ、シングルアンテナ伝送、アンテナダイバーシティビームフォーミング及び空間多重化等による伝送に対応し、異なる伝送モードにおいて、送信側は異なる送信ポリシーパラメータを使用する。下り制御情報フォーマット(DCI
format)は、伝送モードに関わる指令語である。DCIは、下りスケジューリング割り当て及び上りスケジューリング要求に関するシグナリング物理チャネルリソース割り当て情報伝送フォーマット(例えば、レート、変調次数等)、空間多重化(例えば、プリコーディングマトリクス空間レイヤ数等)、ハイブリッド自動再送要求HARQ)に関する情報、及びパワー制御に関する情報を含む。DCIは、一般的には、下り物理制御チャネル(PDCCH)で伝送される。

無線ネットワーク一時識別子(RadioNetwork TemporaryIdentifier、単にRNTIと
いう)は、LTEにおいて、その機能によって複数種のRNTIに分けられ、それぞれのUEは同時に複数のRNTIに対応することができる。RNTIでPDCCH制御メッセージスクランブルすることにより、システムブロードキャスト、特定のユーザスケジューリング等の機能を実現する。

ブロック符号化は、データパケット間の符号化技術であり、即ち、複数のソースデータパケットを符号化してチェックデータパケットを生成する過程である。ソースデータパケットにおける対応する位置上の情報系列から、チェックデータパケットにおける対応する位置上の検査系列を生成する過程がブロック符号化である。それぞれのチェックデータパケットごとに、それぞれの検査系列における対応する位置上のデータが含まれる。ブロック符号化の方法は様々であり、例えば、それぞれのソースデータパケットに対してXOR演算リードソロモン符号ファウンテンコード、ネットワーク符号を実行することによりチェックデータパケットを生成することができ、ブロック符号化によりそれぞれのデータパケット間の符号化制限が増加されるため、より優れた伝送性能を提供できる。

コードブロックの分割は、チャネルコーディングチェーン処理プロセスにおける不可欠な処理過程であるが、しかし、コードブロックの分割は応用される中、遅延時間に十分に配慮しておらず、同様に、3GPPLTEのコードブロックの分割方法を例に説明するが、コードブロックの分割後、それぞれのコードブロックの長さは、一般、3000ビット乃至6120ビットであり、帯域幅が小さい場合、それぞれのコードブロックが時間領域において、連続する複数のOFDMシンボルを占用し、受信側は、これらのOFDMシンボルを受信し切っていなければ、コードブロックを復号することができず、システムが遅延時間に敏感であれば(例えば、InternetofVehicles)、コードブロックの分割後の
データを復号すると、システムに許容されない遅延時間が発生する傾向があり、このため、関連技術のコードブロックの分割技術は、遅延時間要求が高いシステムにとって、システムの動作を妨害するものとなる。

概要

コードブロック分割の方法及び装置を提供する。コードブロック分割フローは、取得した分割関連パラメータに基づいて、コードブロックの参照情報ブロック長を決定し600、決定した参照情報ブロック長及びハードウェアパラメータに基づいて、最大の情報ブロック長を決定し601、取得した分割関連パラメータ、ハードウェアパラメータ及び決定した最大の情報ブロック長に基づいて、最大の情報ブロック長を超えたトランスポートブロックを2つ以上のコードブロックに分割する602。コードブロックの分割数は、最大の情報ブロック長及びトランスポートブロックサイズ、符号化ブロック巡回冗長検査符号ビットの長さにより決定する。

目的

ベースバンド処理は、無線インターネット技術において重要な役割を果たし、物理チャネルマッピングまでのベースバンド処理は、主として、チャネルエンコーダにおいてチャネルコーディングチェーンを処理することである

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

明細書に記載された発明。

技術分野

0001

本発明は通信符号化技術に関するが、これには限定されず、特に、コードブロックの分割を実現する方法及び装置に関する。

背景技術

0002

図1は、関連技術におけるデジタル通信システム構造ブロック図であり、図1に示されるように、デジタル通信システムは送信側と受信側とを備え、送信側と受信側とがチャネルを介して通信する。一般、送信側は、主として、情報源ソースエンコーダチャネルエンコーダ及び変調器を含み、受信側は、主として、復調器チャネルデコーダソースデコーダ及びシンクを含む。チャネルエンコーダは、主として、受信側のチャネルデコーダが一定の程度で、情報がチャネルで伝送される時に発生した誤り訂正できるように、一定の規則に従って情報ビット冗長情報を導入する機能を担う。

0003

ベースバンド処理は、無線インターネット技術において重要な役割を果たし、物理チャネルマッピングまでのベースバンド処理は、主として、チャネルエンコーダにおいてチャネルコーディングチェーンを処理することである。図2は、関連技術におけるチャネルコーディングチェーンの処理のフローチャートであり、図2に示されるように、チャネルコーディングチェーンの処理は、入力されたトランスポートブロックのコードブロックの分割を行い、即ち、チャネルエンコーダに入ったトランスポートブロックを、最大の符号化ブロックのサイズに従って符号化ブロックに分割し、トランスポートブロックはチャネルコーディングチェーンの基本の入力であり、一般的には、1つのトランスポートブロックのデータは、符号化変調方式が大体同じである。そして、得られた複数の符号化ブロックに対して巡回冗長検査符号(CyclicRedundancyCheck、単にCRCという)、チャネル
コーディング(coding)、レートマッチング変調、物理チャネルマッピング等の操作を付加する。

0004

図3は、関連技術におけるコードブロックの分割を示す図であり、図3に示されるように、チャネルエンコーダで符号化する場合、トランスポートブロックの情報ビットを一定の長さの符号化ブロックに分割して符号化し、図3において、トランスポートブロックをコードブロック1、コードブロック2、及びコードブロック3という3つのコードブロックに分割する。一般的には、符号化ブロックが大きいほど、誤り訂正性能が優れている。一方、コードブロックが大きくなると、符号化/復号複雑度が増加し、復号遅延時間が増加するため、チャネルエンコーダを設計する時に、最大のコードブロックのサイズを制限する必要があり、即ち、最大のコードブロックの最大値を設定する必要がある。チャネルコーディングでは、許可される最大のコードブロックのサイズが制約されており、1つのトランスポートブロックは、複数のコードブロックに分割されていなければ、チャネルコーディングを行われることができない。現在、トランスポートブロックを複数のコードブロックに分割する過程(即ち、コードブロックの分割技術)において、1つのトランスポートブロックをサイズがほぼ同じである複数のコードブロックに分割する必要がある。例えば、第三世代協力パートナーシッププロジェクト(3GPP)の長期的進化(LongTerm Evolution、単にLTEという)及びLTEの拡張(LTE−A)システムにおいて
、コードブロックの分割は、6144ビットを単位とした分割であり、トランスポートブロック(CRCを含む)の長さが6144ビットを超えていれば、1つのトランスポートブロックは複数のコードブロックに分割される。また、符号化ブロック及びCRCは、長さが、ターボ符号(Turbo)チャネルエンコーダがサポートする符号長の範囲内のものでなければならず、チャネルエンコーダがサポートする符号長の範囲外のコードブロックは、直接符号化されることができないため、これらのコードブロックに対してさらにスタッフビットを付加する必要がある。

0005

LTE及びLTE−Aシステムは、直交周波数分割多重技術(Orthogonal FrequencyDivision Multiplexing、単にOFDMという)に基づくシステムであり、OFDMシステ
ムにおいて、リソースブロック略称される物理時間周波数リソースブロック(Resource
Block、単にRBという)は、時間上連続する複数のOFDMシンボル及び周波数上連続する複数のサブキャリアからなる時間周波数次元ユニットである。図4は、OFDMシステムにおける時間長が1つのタイムスロットであるリソースブロックを示す図であり、図4に示されるように、1つのリソースブロックは周波数領域において12個のサブキャリアを占有する。LTE及びLTE−Aにおいて、リソース割り当て用の基本的な時間粒状度は、1つのサブフレーム(subframe)の整数倍であり、周波数領域粒状度は1つのRB(即ち、12サブキャリア)の整数倍であり、図4のRB構造において、1つのタイムスロットは7つの連続するOFDMシンボルを含み、1つのサブフレームは2つのタイムスロットを含み、即ち、14個の連続するOFDMシンボルを含む。また、図4におけるそれぞれの小さい四角形は、1つのリソースエレメント(ResourceElement、単にREと
いう)を表し、1つのタイムスロット内の1つのRB上に12*7=84個のREがある。それぞれのタイムスロットの長さが0.5ミリ秒である場合、2つの連続するタイムスロットで1つのサブフレーム(Subframe)が構成されるため、それぞれのサブフレームの長さが1ミリ秒である。1つのトランスポートブロックが時間領域において少なくとも1つのサブフレームを占用するため、1つのトランスポートブロックが時間領域において複数のOFDMシンボルを占用する。制御チャネル(例えば、PDCCチャネル)も一部のOFDMシンボルを占用することを考慮し、1つのトランスポートブロックが実際に占用するOFDMシンボルの数は、14個未満であるが、通常10個を超えている。

0006

図5は、関連技術のLTEシステムにおける物理チャネルマッピング方法を示す図であり、図5に示されるように、OFDMシステムにおいて、情報伝送は通常、1つのトランスポートブロック(TransferBlock、単にTB)を単位とし、1つのTBには、通常、1つ又は複数のコードブロックが含まれ、それぞれのコードブロックは符号化及びレートマッチングが施された後、1つの符号化済みコードブロックを生成し、それぞれの符号化済みコードブロックは変調された後、1つのシンボルストリームを生成し、即ち、1つのトランスポートブロックは、複数のシンボルストリーム:J1,J2,・・・,Jnに対応す
ることができる。LTE及びLTE−Aにおいて、1つのトランスポートブロックが多くとも4レイヤを占用し、且つそれぞれのレイヤにおいて同じ時間周波数リソースエリアを占用する。トランスポート層は、LTE及びLTE−Aにおけるマルチアンテナ「レイヤ」の概念であり、空間多重化における有効な独立したチャネルの数を示し、「レイヤ」は時間及び周波数以外の次元を表す。

0007

LTE及びLTE−Aにおいて、データ伝送について9つの異なる伝送モードが定義され、異なる伝送モードがそれぞれ、シングルアンテナ伝送、アンテナダイバーシティビームフォーミング及び空間多重化等による伝送に対応し、異なる伝送モードにおいて、送信側は異なる送信ポリシーパラメータを使用する。下り制御情報フォーマット(DCI
format)は、伝送モードに関わる指令語である。DCIは、下りスケジューリング割り当て及び上りスケジューリング要求に関するシグナリング物理チャネルリソース割り当て情報伝送フォーマット(例えば、レート、変調次数等)、空間多重化(例えば、プリコーディングマトリクス空間レイヤ数等)、ハイブリッド自動再送要求HARQ)に関する情報、及びパワー制御に関する情報を含む。DCIは、一般的には、下り物理制御チャネル(PDCCH)で伝送される。

0008

無線ネットワーク一時識別子(RadioNetwork TemporaryIdentifier、単にRNTIと
いう)は、LTEにおいて、その機能によって複数種のRNTIに分けられ、それぞれのUEは同時に複数のRNTIに対応することができる。RNTIでPDCCH制御メッセージスクランブルすることにより、システムブロードキャスト、特定のユーザスケジューリング等の機能を実現する。

0009

ブロック符号化は、データパケット間の符号化技術であり、即ち、複数のソースデータパケットを符号化してチェックデータパケットを生成する過程である。ソースデータパケットにおける対応する位置上の情報系列から、チェックデータパケットにおける対応する位置上の検査系列を生成する過程がブロック符号化である。それぞれのチェックデータパケットごとに、それぞれの検査系列における対応する位置上のデータが含まれる。ブロック符号化の方法は様々であり、例えば、それぞれのソースデータパケットに対してXOR演算リードソロモン符号ファウンテンコード、ネットワーク符号を実行することによりチェックデータパケットを生成することができ、ブロック符号化によりそれぞれのデータパケット間の符号化制限が増加されるため、より優れた伝送性能を提供できる。

0010

コードブロックの分割は、チャネルコーディングチェーン処理プロセスにおける不可欠な処理過程であるが、しかし、コードブロックの分割は応用される中、遅延時間に十分に配慮しておらず、同様に、3GPPLTEのコードブロックの分割方法を例に説明するが、コードブロックの分割後、それぞれのコードブロックの長さは、一般、3000ビット乃至6120ビットであり、帯域幅が小さい場合、それぞれのコードブロックが時間領域において、連続する複数のOFDMシンボルを占用し、受信側は、これらのOFDMシンボルを受信し切っていなければ、コードブロックを復号することができず、システムが遅延時間に敏感であれば(例えば、InternetofVehicles)、コードブロックの分割後の
データを復号すると、システムに許容されない遅延時間が発生する傾向があり、このため、関連技術のコードブロックの分割技術は、遅延時間要求が高いシステムにとって、システムの動作を妨害するものとなる。

発明が解決しようとする課題

0011

以下は、本発明を詳しく説明する主題概要である。本概要は請求項の保護範囲を限定することは意図していない。

0012

本発明の実施例は、コードブロックの分割を行うとともに、コードブロックの復号に起因するシステムの遅延時間が発生しないように保証することができるコードブロックの分割を実現する方法及び装置を提供する。

課題を解決するための手段

0013

本発明の実施例によれば、
取得した分割関連パラメータに基づいて、コードブロックの参照情報ブロック長を決定することと、
前記参照情報ブロック長及びハードウェアパラメータに基づいて、最大の情報ブロック長を決定することと、
取得した分割関連パラメータ、ハードウェアパラメータ、及び決定した最大の情報ブロック長に基づいて、最大の情報ブロック長を超えたトランスポートブロックを2つ以上のコードブロックに分割することと、を含み、
前記コードブロックの分割後の情報長さが、前記決定した最大の情報ブロック長よりも小さい
コードブロックの分割を実現する方法が提供される。

0014

オプションとして、分割関連パラメータは、物理チャネルリソースパラメータ、及び/又はスペクトル効率パラメータを少なくとも含んでもよい。

0015

オプションとして、スペクトル効率パラメータは、伝送信号変調方式M、トランスポートブロックのコーディングレートR、及び伝送信号が占用する空間レイヤ数Nlayerの
うちの1
つ又は複数のパラメータを少なくとも含み、
物理チャネルリソースパラメータは、すべてのコードブロックが時間領域において占用することが許可される最大の直交周波数分割多重技術OFDMシンボルの数Ncb及び伝送信号が占用する周波数領域におけるサブキャリアの数Nsubcarrierを少なくとも含み、
前記参照情報ブロック長を決定することは、
前記物理チャネルリソースパラメータ及び前記スペクトル効率パラメータに基づいてコードブロックの参照情報ブロック長KRを決定することを含むようにしてもよい。

0016

オプションとして、コードブロックの参照情報ブロック長KRは、式


によって取得され、
前記伝送信号が占用する周波数領域におけるサブキャリアの数Nsubcarrierは、伝送信号が占用するリソースブロックの数NRBとそれぞれのリソースブロックに含まれるサブキャリアの数NSPとの積に等しいようにしてもよい。

0017

オプションとして、物理チャネルリソースパラメータは、トランスポートブロックが占用する時間領域におけるOFDMシンボルの数Ntb及びそれぞれのコードブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncbを少なくとも含み、前記分割関連パラメータは、トランスポートブロックのサイズB、符号化ブロックCRCの長さLをさらに含み、
前記コードブロックの参照情報ブロック長KRを決定することは、
トランスポートブロックのサイズB、符号化ブロックCRCの長さL及び物理チャネルリソースパラメータによってコードブロックの参照情報ブロック長KRを決定することを
含むようにしてもよい。

0018

オプションとして、コードブロックの参照情報ブロック長KRは、式


によって取得されてもよい。

0019

オプションとして、分割関連パラメータは、ハードウェアパラメータをさらに含み、前記ハードウェアパラメータは、端末バッファサイズを示すことができる品種パラ
ータユーザ機器カテゴリーUE Categoryであり、
前記物理チャネルリソースパラメータは、トランスポートブロックが占用する時間領域におけるOFDMシンボルの数Ntb、それぞれのコードブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncbを少なくとも含み、
前記コードブロックの参照情報ブロック長KRを決定することは、
端末のバッファサイズを示すことができる品種別パラメータUE Category
に基づいて、トランスポートブロックが占用可能な最大のソフトビット数NSoftbitsを取得することと、
トランスポートブロックが占用する時間領域におけるOFDMシンボルの数Ntb、それぞれのコードブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncbに基づいて、前記トランスポートブロック中に含まれる最小のコードブロック数CBNumである、


を取得することと、



によって参照情報ブロック長KRを取得することと、を含み、
ただし、

は、Xを切り上げることを示すようにしてもよい。

0020

オプションとして、前記ハードウェアパラメータは、エンコーダがサポートする最大の情報ブロック長Kencoder、及び/又はエンコーダがサポートする情報ブロック長の集合{K}interleaverであり、
トランスポートブロックの符号化方法畳み込み符号であれば、前記最大の情報ブロック長Kmaxが


として決定され、
トランスポートブロックの符号化方法がTurbo符号であれば、
参照情報ブロック長KRが、前記エンコーダがサポートする最大の情報ブロック長Kencoderよりも小さい場合、エンコーダがサポートする情報ブロック長の集合{K}interleaverから、コードブロックの参照情報ブロック長KR以上であり且つKRに最も近い情報ブロ
ック長を選んでコードブロックの最大の情報ブロック長Kmaxとし、
前記参照情報ブロック長KRが、前記エンコーダがサポートする最大の情報ブロック長
Kencoder以上である場合、前記エンコーダがサポートする最大の情報ブロック長Kencoderを選んでコードブロックの最大の情報ブロック長Kmaxとするように、前記最大の情報
ブロック長Kmaxが決定され、
ただし、関数min()は、最小値を取ることを示すようにしてもよい。

0021

オプションとして、トランスポートブロックの符号化方法がTurbo符号であれば、前記最大の情報ブロック長Kmaxは、式


によって取得され、


は、F(X)が最小値を取得することを示すようにしてもよい。

0022

オプションとして、分割関連パラメータ及び/又はハードウェアパラメータは、伝送モード指示、下り制御情報フォーマットDCIformat及び無線ネットワーク一時識別子RNTIのうち任意の1つ又は複数の方式によって取得されてもよい。

0023

オプションとして、該方法は、
伝送モード指示、下り制御情報フォーマットDCIformat、又は無線ネットワーク一時識別子RNTIで直接指示することにより、前記最大の情報ブロック長Kmaxを取得すること、をさらに含んでもよい。

0024

オプションとして、前記分割関連パラメータは、トランスポートブロックのサイズB、符号化ブロックCRCの長さLをさらに含み、
前記ハードウェアパラメータは、エンコーダがサポートする情報ブロック長の集合{K}interleaverを少なくとも含み、
前記コードブロックの分割は、
トランスポートブロックのサイズB、符号化ブロックCRCの長さL、及び前記最大の情報ブロック長Kmaxに基づいて、分割されるコードブロック数Cを決定することと、
エンコーダがサポートする情報ブロック長の集合{K}interleaver、コードブロック数
C、トランスポートブロックのサイズB、及び符号化ブロックCRCの長さLに基づいて、それぞれのコードブロックの情報ブロック長を決定することと、
決定したそれぞれのコードブロックの情報ブロック長に基づいて、コードブロックの分割を行うことと、を含むようにしてもよい。

0025

オプションとして、前記分割されるコードブロック数Cが、


として決定され、
ただし、


は、xを切り上げることを示すようにしてもよい。

0026

オプションとして、それぞれのコードブロックの情報ブロック長を決定することは、
トランスポートブロックのサイズBが(Kmax−L)又はコードブロック数Cで割れ
れることができれば、それぞれのコードブロックの情報ブロック長はいずれもB/Cであることと、
トランスポートブロックのサイズBが(Kmax−L)又はコードブロック数Cで割れ切
れることができなければ、符号化ブロックCの符号化ブロックを、コードブロック情報ブロック長が異なる第1のタイプのコードブロック及び第2のタイプのコードブロックに分けることと、を含み、
第1のタイプのコードブロックのコードブロック情報ブロック長KIは、エンコーダが
サポートする情報ブロック長の集合{K}interleaverのうち、コードブロック数Cに第1
のタイプのコードブロックのコードブロック情報ブロック長KIを乗じたものがトランス
ポートブロックのサイズB以上であることを満たすKの最小値であり、
第2のタイプのコードブロックのコードブロック情報ブロック長KIIは、エンコーダがサポートする情報ブロック長の集合{K}interleaverのうち、第2のタイプのコードブ
ックのコードブロック情報ブロック長KIIが第1のタイプのコードブロックのコードブロック情報ブロック長KIよりも小さいことを満たすKの最大値であるようにしてもよい。

0027

オプションとして、第1のタイプのコードブロックのコードブロック情報ブロック長KIは、


であり、
第2のタイプのコードブロックのコードブロック情報ブロック長KIIは、


であり、
第1のタイプのコードブロック数CI及び第2のタイプのコードブロックCIIは、





、を満たし、
ただし、


は、xを切り下げることを示すようにしてもよい。

0028

オプションとして、該方法は、コードブロックの分割が終了した後、前CII個のコードブロックを前記第2のタイプのコードブロックとし、後CI個のコードブロックを前記第
1のタイプのコードブロックとすること、をさらに含んでもよい。

0029

オプションとして、該方法は、
分割後のそれぞれのコードブロックに対してCRCを付加し、チャネルコーディング及びレートマッチングを行った後、対応する符号化済みコードブロックを得、得られた符号化済みコードブロックのコードブロック結合を行うこと、をさらに含んでもよい。

0030

オプションとして、該方法は、
分割された2つ以上のコードブロックをブロック符号化し、チェックデータブロックを生成すること、をさらに含んでもよい。

0031

オプションとして、該方法は、
それぞれの前記符号化済みコードブロックにおける任意位置の一部のビット、及びブロック符号化で生成したそれぞれの前記チェックデータブロックにおける任意位置の前記一部のビットを削除すること、をさらに含み、
前記一部のビットのサイズの算出は、
すべての符号化済みコードブロックとすべてのブロック符号化で生成したチェックデータブロックとのビットの和、及びブロック符号化前のすべての符号化済みコードブロックのビット数の和を算出し、
すべての符号化済みコードブロックとすべてのブロック符号化で生成したチェックデータブロックとのビットの和から、ブロック符号化前のすべての符号化済みコードブロックのビット数の和を減算して、ビットの差を取得し、
符号化済みコードブロックのコードブロック数と、ブロック符号化で生成したチェックデータブロックのデータブロック数とを加算して、情報ブロックの総和を取得し、
取得された前記ビットの差を前記取得された情報ブロックの総和で割った商が、前記一部のビットの値になるステップによって行われるようにしてもよい。

0032

オプションとして、該方法は、
一部のビットが削除された前記符号化済みコードブロックと、一部のビットが削除された前記ブロック符号化で生成したチェックデータブロックとをコードブロック結合すること、をさらに含み、
前記コードブロック結合とは、一部のビットが削除された前記符号化済みコードブロックと一部のビットが削除された前記ブロック符号化で生成したチェックデータブロックとのビットを縦列連接するとともに、一部のビットが削除された前記ブロック符号化で生成したチェックデータブロックを、一部のビットが削除された前記符号化済みコードブロックより後に置くことであるようにしてもよい。

0033

一方、本願によれば、
取得した分割関連パラメータに基づいて、コードブロックの参照情報ブロック長を決定する参照ユニットと、
参照情報ブロック長及びハードウェアパラメータに基づいて、最大の情報ブロック長を決定する決定ユニットと、
取得した分割関連パラメータ、ハードウェアパラメータ、及び決定した最大の情報ブロック長に基づいて、最大の情報ブロック長を超えたトランスポートブロックを2つ以上のコードブロックに分割する分割ユニットと、を備え、
前記コードブロックの分割後の情報長さが、前記決定した最大の情報ブロック長よりも小さい
コードブロックの分割を実現する装置がさらに提供される。

0034

オプションとして、参照ユニットは、
取得した物理チャネルリソースパラメータ、及び/又はスペクトル効率パラメータに基づいてコードブロックの参照情報ブロック長を決定するようにしてもよい。

0035

オプションとして、参照ユニットは、
伝送信号の変調方式M、トランスポートブロックのコーディングレートR、及び伝送信号が占用
する空間レイヤ数Nlayerのうちの任意の1つ又は複数のパラメータを含む取得したスペ
クトル効率パラメータと、すべてのコードブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncb及び伝送信号が占用する周波数領域におけるサブキャリアの数Nsubcarrierを含む取得した物理チャネルリソースパラメータに基づいて、コードブロックの参照情報ブロック長KRを決定するようにしてもよい。

0036

オプションとして、参照ユニットは、
取得した物理チャネルリソースパラメータ、及び/又はスペクトル効率パラメータに基づいて、式


によって前記コードブロックの参照情報ブロック長KRを算出するようにしてもよい。

0037

オプションとして、参照ユニットは、さらに、
トランスポートブロックのサイズB、符号化ブロックCRCの長さLを取得し、
トランスポートブロックが占用する時間領域におけるOFDMシンボルの数Ntb及びそれぞれのコードブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncbを含む取得した物理チャネルリソースパラメータに基づいて、コードブロックの参照情報ブロック長KRを決定するようにしてもよい。

0038

オプションとして、参照ユニットは、さらに、
トランスポートブロックのサイズB、符号化ブロックCRCの長さLを取得し、取得した物理チャネルリソースパラメータに基づいて、式


によってコードブロックの参照情報ブロック長KRを決定するようにしてもよい。

0039

オプションとして、参照ユニットは、さらに、
端末のバッファサイズを示すことができる品種別パラメータUE Category
を少なくとも含むハードウェアパラメータを取得し、
端末のバッファサイズを示すことができる品種別パラメータUE Category
に基づいて、トランスポートブロックが占用可能な最大のソフトビット数NSoftbitsを取得し、
トランスポートブロックが占用する時間領域におけるOFDMシンボルの数Ntb及びそれぞれのコードブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncbを含む取得した物理チャネルリソースパラメータに基づいて、前記トランスポートブロック中に含まれる最小のコードブロック数CBNumである、


を取得し、



によって参照情報ブロック長KRを取得するようにしてもよい。

0040

オプションとして、ハードウェアパラメータは、エンコーダがサポートする最大の情報ブロック長Kencoder、及び/又はエンコーダがサポートする情報ブロック長の集合{K}interleaverであり、
決定ユニットが参照情報ブロック長及びハードウェアパラメータに基づいて、最大の情報ブロック長を決定することは、以下のように行われ、
トランスポートブロックの符号化方法が畳み込み符号であれば、前記最大の情報ブロック長Kmaxが


として決定され、
トランスポートブロックの符号化方法がTurbo符号であれば、
参照情報ブロック長KRが、前記エンコーダがサポートする最大の情報ブロック長Kencoderよりも小さい場合、エンコーダがサポートする情報ブロック長の集合{K}interleaverから、コードブロックの参照情報ブロック長KR以上であり且つKRに最も近い情報ブロ
ック長を選んでコードブロックの最大の情報ブロック長Kmaxとし、
前記参照情報ブロック長KRが、前記エンコーダがサポートする最大の情報ブロック長
Kencoder以上である場合、前記エンコーダがサポートする最大の情報ブロック長Kencoderを選んでコードブロックの最大の情報ブロック長Kmaxとするように、前記最大の情報
ブロック長Kmaxが決定され、
ただし、関数min()は、最小値を取ることを示すようにしてもよい。

0041

オプションとして、ハードウェアパラメータは、エンコーダがサポートする最大の情報ブロック長Kencoder、及び/又はエンコーダがサポートする情報ブロック長の集合{K}interleaverであり、
前記決定ユニットが参照情報ブロック長及びハードウェアパラメータに基づいて、最大の情報ブロック長を決定することは、以下のように行われ、
トランスポートブロックの符号化方法が畳み込み符号であれば、前記最大の情報ブロック長Kmaxが


として決定され、
トランスポートブロックの符号化方法がTurbo符号であれば、前記最大の情報ブロック長Kmaxが


として決定されるようにしてもよい。

0042

オプションとして、該装置は、伝送モード指示、下り制御情報フォーマットDCIformat、及び無線ネットワーク一時識別子RNTIのうちの任意の1つ又は複数の方式によって、前記分割関連パラメータ及び/又はハードウェアパラメータを取得する取得ユニットをさらに備えてもよい。

0043

オプションとして、該装置は、伝送モード指示、DCIformat、及びRNTIで直接指示する方式のうちの任意の1つ又は複数の方式によって、前記最大の情報ブロック長Kmaxを取得する指示ユニットをさらに備えてもよい。

0044

オプションとして、分割関連パラメータは、トランスポートブロックのサイズB、符号化ブロックCRCの長さLをさらに含み、
前記ハードウェアパラメータは、エンコーダがサポートする情報ブロック長の集合{K}interleaverを少なくとも含み、
前記分割ユニットは、
トランスポートブロックのサイズB、符号化ブロックCRCの長さL、及び最大の情報ブロック長Kmaxに基づいて、分割されるコードブロック数Cを決定し、
エンコーダがサポートする情報ブロック長の集合{K}interleaver、コードブロック数
C、トランスポートブロックのサイズB、及び符号化ブロックCRCの長さLに基づいて、それぞれのコードブロックの情報ブロック長を決定し、
決定したそれぞれのコードブロックの情報ブロック長に基づいて、コードブロックの分割を行うようにしてもよい。

0045

オプションとして、分割ユニットは、



によって、分割されるコードブロック数Cを決定し、ただし、


は、xを切り上げることを示し、
エンコーダがサポートする情報ブロック長の集合{K}interleaver、コードブロック数
C、トランスポートブロックのサイズB、及び符号化ブロックCRCの長さLに基づいて、それぞれのコードブロックの情報ブロック長を決定し、
決定したそれぞれのコードブロックの情報ブロック長に基づいて、コードブロックの分割を行うようにしてもよい。

0046

オプションとして、分割ユニットは、
トランスポートブロックのサイズB、符号化ブロックCRCの長さL、及び最大の情報ブロック長Kmaxに基づいて、分割されるコードブロック数Cを決定し、
トランスポートブロックのサイズBが(Kmax−L)又はコードブロック数Cで割れ切
れることができれば、それぞれのコードブロックの情報ブロック長はいずれもB/Cであり、
トランスポートブロックのサイズBが(Kmax−L)又はコードブロック数Cで割れ切
れることができなければ、符号化ブロックCの符号化ブロックを、コードブロック情報ブロック長が異なる第1のタイプのコードブロック及び第2のタイプのコードブロックに分け、
第1のタイプのコードブロックのコードブロック情報ブロック長KIは、エンコーダが
サポートする情報ブロック長の集合{K}interleaverのうち、コードブロック数Cに第1
のタイプのコードブロックのコードブロック情報ブロック長KIを乗じたものがトランス
ポートブロックのサイズB以上であることを満たすKの最小値であり、
第2のタイプのコードブロックのコードブロック情報ブロック長KIIは、エンコーダがサポートする情報ブロック長の集合{K}interleaverのうち、第2のタイプのコードブロ
ックのコードブロック情報ブロック長KIIが第1のタイプのコードブロックのコードブロック情報ブロック長KIよりも小さいことを満たすKの最大値であり、
決定したそれぞれのコードブロックの情報ブロック長に基づいて、コードブロックの分割を行うようにしてもよい。

0047

オプションとして、分割ユニットは、
トランスポートブロックのサイズB、符号化ブロックCRCの長さL、及び最大の情報ブロック長Kmaxに基づいて、分割されるコードブロック数Cを決定し、
トランスポートブロックのサイズBが(Kmax−L)又はコードブロック数Cで割れ切れることができれば、それぞれのコードブロックの情報ブロック長はいずれもB/Cであり、
トランスポートブロックのサイズBが(Kmax−L)又はコードブロック数Cで割れ切
れることができなければ、符号化ブロックCの符号化ブロックを、コードブロック情報ブロック長が異なる第1のタイプのコードブロック及び第2のタイプのコードブロックに分け、



から第1のタイプのコードブロックのコードブロック情報ブロック長KIを算出し、



から第2のタイプのコードブロックのコードブロック情報ブロック長KIIを算出し、
第1のタイプのコードブロック数CI及び第2のタイプのコードブロックCIIは、





を満たし、
決定したそれぞれのコードブロックの情報ブロック長に基づいて、コードブロックの分割を行うようにしてもよい。

0048

オプションとして、該装置は、分割ユニットでのコードブロックの分割が終了した後、前CII個のコードブロックを第2のタイプのコードブロックとし、後CI個のコードブロ
ックを第1のタイプのコードブロックとする設定ユニットをさらに備えてもよい。

0049

オプションとして、該装置は、分割後のそれぞれのコードブロックに対してCRCを付加し、チャネルコーディング及びレートマッチングを行った後、対応する符号化済みコードブロックを得、得られた符号化済みコードブロックのコードブロック結合を行う結合ユニットをさらに備えてもよい。

0050

オプションとして、該装置は、分割された2つ以上のコードブロックをブロック符号化し、チェックデータブロックを生成するチェックユニットをさらに備えようにしてもよい。

0051

オプションとして、該装置は、
それぞれの前記符号化済みコードブロックにおける任意位置の一部のビット、及びブロック符号化で生成したそれぞれの前記チェックデータブロックにおける任意位置の前記一部のビットを削除する削除ユニットをさらに備え、
前記一部のビットは、
すべての符号化済みコードブロックとすべてのブロック符号化で生成したチェックデータブロックとのビットの和、及びブロック符号化前のすべての符号化済みコードブロックのビット数の和を算出し、
すべての符号化済みコードブロックとすべてのブロック符号化で生成したチェックデータブロックとのビットの和から、ブロック符号化前のすべての符号化済みコードブロックのビット数の和を減算して、ビットの差を取得し、
符号化済みコードブロックのコードブロック数と、ブロック符号化で生成したチェックデータブロックのデータブロック数とを加算して、情報ブロックの総和を取得し、
取得された前記ビットの差を前記取得された情報ブロックの総和で割った商が、前記一部のビットの値になるステップによって算出されるようにしてもよい。

0052

オプションとして、該装置は、一部のビットが削除された前記符号化済みコードブロックと、一部のビットが削除された前記ブロック符号化で生成したチェックデータブロックとをコードブロック結合するチェック結合ユニットをさらに備え、
コードブロック結合とは、一部のビットが削除された前記符号化済みコードブロックと一部のビットが削除された前記ブロック符号化で生成したチェックデータブロックとのビットを縦列連接するとともに、一部のビットが削除された前記ブロック符号化で生成したチェックデータブロックを、一部のビットが削除された前記符号化済みコードブロックより後に置くことであるようにしてもよい。
本願明細書は、例えば、以下の項目も提供する。
(項目1)
取得した分割関連パラメータに基づいて、コードブロックの参照情報ブロック長を決定することと、
前記参照情報ブロック長及びハードウェアパラメータに基づいて、最大の情報ブロック長を決定することと、
取得した分割関連パラメータ、ハードウェアパラメータ、及び決定した最大の情報ブロック長に基づいて、最大の情報ブロック長を超えたトランスポートブロックを2つ以上のコードブロックに分割することと、を含み、
前記コードブロックの分割後の情報長さが、前記決定した最大の情報ブロック長よりも小さい、
コードブロックの分割を実現する方法。
(項目2)
前記分割関連パラメータは、物理チャネルリソースパラメータ、及び/又はスペクトル効率パラメータを含む、
項目1に記載の方法。
(項目3)
前記スペクトル効率パラメータは、伝送信号の変調方式M、トランスポートブロックのコーディングレートR、及び伝送信号が占用する空間レイヤ数Nlayerのうちの1つ又は複数のパラメータを含み、
前記物理チャネルリソースパラメータは、すべてのコードブロックが時間領域において占用することが許可される最大の直交周波数分割多重技術OFDMシンボルの数Ncb及び伝送信号が占用する周波数領域におけるサブキャリアの数Nsubcarrierを含み、
前記参照情報ブロック長を決定することは、
前記物理チャネルリソースパラメータ及び前記スペクトル効率パラメータに基づいてコードブロックの参照情報ブロック長KRを決定することを含む、
項目2に記載の方法。
(項目4)
前記コードブロックの参照情報ブロック長KRは、式


によって取得され、
前記伝送信号が占用する周波数領域におけるサブキャリアの数Nsubcarrierは、伝送信号が占用するリソースブロックの数NRBとそれぞれのリソースブロックに含まれるサブキャリアの数NSPとの積に等しい、
項目3に記載の方法。
(項目5)
前記物理チャネルリソースパラメータは、トランスポートブロックが占用する時間領域における直交周波数分割多重技術OFDMシンボルの数Ntb及びそれぞれのコードブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncbを含み、前記分割関連パラメータは、トランスポートブロックのサイズB、符号化ブロック巡回冗長検査符号CRCの長さLをさらに含み、
前記コードブロックの参照情報ブロック長KRを決定することは、
トランスポートブロックのサイズB、符号化ブロックCRCの長さL及び物理チャネルリソースパラメータによってコードブロックの参照情報ブロック長KRを決定することを
含む、
項目2に記載の方法。
(項目6)
前記コードブロックの参照情報ブロック長KRは、式


によって取得される、
項目5に記載の方法。
(項目7)
前記分割関連パラメータは、ハードウェアパラメータをさらに含み、前記ハードウェアパラメータは、端末のバッファサイズを示すことができる品種別パラメータユーザ機器
カテゴリーUE Categoryであり、
前記物理チャネルリソースパラメータは、トランスポートブロックが占用する時間領域における直交周波数分割多重技術OFDMシンボルの数Ntb、それぞれのコードブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncbを含み、
前記コードブロックの参照情報ブロック長KRを決定することは、
前記端末のバッファサイズを示すことができる品種別パラメータUE Catego
ryに基づいて、トランスポートブロックが占用可能な最大のソフトビット数NSoftbitsを取得することと、
トランスポートブロックが占用する時間領域におけるOFDMシンボルの数Ntb、それぞれのコードブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncbに基づいて、前記トランスポートブロック中に含まれる最小のコードブロック数CBnumである、


を取得することと、



によって参照情報ブロック長KRを取得することと、を含み、
ただし、


は、Xを切り上げることを示す、
項目2に記載の方法。
(項目8)
前記ハードウェアパラメータは、エンコーダがサポートする最大の情報ブロック長Kencoder、及び/又はエンコーダがサポートする情報ブロック長の集合{K}interleaverであり、
トランスポートブロックの符号化方法が畳み込み符号であれば、前記最大の情報ブロック長Kmaxが


として決定され、
トランスポートブロックの符号化方法がターボTurbo符号であれば、
参照情報ブロック長KRが、前記エンコーダがサポートする最大の情報ブロック長Kencoderよりも小さい場合、エンコーダがサポートする情報ブロック長の集合{K}interleaverから、コードブロックの参照情報ブロック長KR以上であり且つKRに最も近い情報ブロック長を選んでコードブロックの最大の情報ブロック長Kmaxとし、
前記参照情報ブロック長KRが、前記エンコーダがサポートする最大の情報ブロック長
Kencoder以上である場合、前記エンコーダがサポートする最大の情報ブロック長Kencoderを選んでコードブロックの最大の情報ブロック長Kmaxとするように、前記最大の情報ブロック長Kmaxが決定され、
ただし、関数min()は、最小値を取ることを示す、
項目3乃至7のうち何れか一項に記載の方法。
(項目9)
トランスポートブロックの符号化方法がTurbo符号であれば、前記最大の情報ブロック長Kmaxは、式


によって取得され、


は、F(X)が最小値を取得することを示す、
項目8に記載の方法。
(項目10)
前記分割関連パラメータ及び/又はハードウェアパラメータは、伝送モード指示、下り制御情報フォーマットDCIformat及び無線ネットワーク一時識別子RNTIのうち任意の1つ又は複数の方式によって取得される、
項目1乃至7のうち何れか一項に記載の方法。
(項目11)
伝送モード指示、下り制御情報フォーマットDCI format、又は無線ネットワーク一時識別子RNTIで直接指示することにより、前記最大の情報ブロック長Kmaxを
取得すること、をさらに含む、
項目1乃至7のうち何れか一項に記載の方法。
(項目12)
前記分割関連パラメータは、トランスポートブロックのサイズB、符号化ブロック巡回冗長検査符号CRCの長さLをさらに含み、
前記ハードウェアパラメータは、エンコーダがサポートする情報ブロック長の集合{K}interleaverを含み、
前記コードブロックの分割は、
トランスポートブロックのサイズB、符号化ブロックCRCの長さL、及び前記最大の情報ブロック長Kmaxに基づいて、分割されるコードブロック数Cを決定することと、
エンコーダがサポートする情報ブロック長の集合{K}interleaver、コードブロック数
C、トランスポートブロックのサイズB、及び符号化ブロックCRCの長さLに基づいて、それぞれのコードブロックの情報ブロック長を決定することと、
決定したそれぞれのコードブロックの情報ブロック長に基づいて、コードブロックの分割を行うことと、を含む、
項目2に記載の方法。
(項目13)
前記分割されるコードブロック数Cが、


として決定され、
ただし、


は、xを切り上げることを示す、
項目12に記載の方法。
(項目14)
それぞれのコードブロックの情報ブロック長を決定することは、
トランスポートブロックのサイズBが(Kmax−L)又はコードブロック数Cで割れ切
れることができれば、それぞれのコードブロックの情報ブロック長はいずれもB/Cであることと、
トランスポートブロックのサイズBが(Kmax−L)又はコードブロック数Cで割れ切
れることができなければ、符号化ブロックCの符号化ブロックを、コードブロック情報ブロック長が異なる第1のタイプのコードブロック及び第2のタイプのコードブロックに分けることと、を含み、
前記第1のタイプのコードブロックのコードブロック情報ブロック長KIは、エンコー
ダがサポートする情報ブロック長の集合{K}interleaverのうち、コードブロック数Cに
前記第1のタイプのコードブロックのコードブロック情報ブロック長KIを乗じたものが
トランスポートブロックのサイズB以上であることを満たすKの最小値であり、
前記第2のタイプのコードブロックのコードブロック情報ブロック長KIIは、エンコーダがサポートする情報ブロック長の集合{K}interleaverのうち、前記第2のタイプのコ
ードブロックのコードブロック情報ブロック長KIIが前記第1のタイプのコードブロックのコードブロック情報ブロック長KIよりも小さいことを満たすKの最大値である、
項目12に記載の方法。
(項目15)
前記第1のタイプのコードブロックのコードブロック情報ブロック長KIは、


であり、
前記第2のタイプのコードブロックのコードブロック情報ブロック長KIIは、


であり、
前記第1のタイプのコードブロック数CI及び前記第2のタイプのコードブロックCIIは、





、を満たし、
ただし、


は、xを切り下げることを示す、
項目14に記載の方法。
(項目16)
コードブロックの分割が終了した後、前CII個のコードブロックを前記第2のタイプのコードブロックとし、後CI個のコードブロックを前記第1のタイプのコードブロックと
すること、をさらに含む、
項目15に記載の方法。
(項目17)
分割後のそれぞれのコードブロックに対して巡回冗長検査符号CRCを付加し、チャネルコーディング及びレートマッチングを行った後、対応する符号化済みコードブロックを得、得られた符号化済みコードブロックのコードブロック結合を行うこと、をさらに含む、
項目1に記載の方法。
(項目18)
分割された2つ以上のコードブロックをブロック符号化し、チェックデータブロックを生成すること、をさらに含む、
項目17に記載の方法。
(項目19)
それぞれの前記符号化済みコードブロックにおける任意位置の一部のビット、及びブロック符号化で生成したそれぞれの前記チェックデータブロックにおける任意位置の前記一部のビットを削除すること、をさらに含み、
前記一部のビットのサイズの算出は、
すべての符号化済みコードブロックとすべてのブロック符号化で生成したチェックデータブロックとのビットの和、及びブロック符号化前のすべての符号化済みコードブロックのビット数の和を算出し、
すべての符号化済みコードブロックとすべてのブロック符号化で生成したチェックデータブロックとのビットの和から、ブロック符号化前のすべての符号化済みコードブロックのビット数の和を減算して、ビットの差を取得し、
符号化済みコードブロックのコードブロック数と、ブロック符号化で生成したチェックデータブロックのデータブロック数とを加算して、情報ブロックの総和を取得し、
取得された前記ビットの差を前記取得された情報ブロックの総和で割った商が、前記一部のビットの値になるステップによって行われる、
項目18に記載の方法。
(項目20)
一部のビットが削除された前記符号化済みコードブロックと、一部のビットが削除された前記ブロック符号化で生成したチェックデータブロックとをコードブロック結合すること、をさらに含み、
前記コードブロック結合とは、一部のビットが削除された前記符号化済みコードブロックと一部のビットが削除された前記ブロック符号化で生成したチェックデータブロックとのビットを縦列連接するとともに、一部のビットが削除された前記ブロック符号化で生成したチェックデータブロックを、一部のビットが削除された前記符号化済みコードブロックより後に置くことである、
項目19に記載の方法。
(項目21)
取得した分割関連パラメータに基づいて、コードブロックの参照情報ブロック長を決定する参照ユニットと、
参照情報ブロック長及びハードウェアパラメータに基づいて、最大の情報ブロック長を決定する決定ユニットと、
取得した分割関連パラメータ、ハードウェアパラメータ、及び決定した最大の情報ブロック長に基づいて、最大の情報ブロック長を超えたトランスポートブロックを2つ以上のコードブロックに分割する分割ユニットと、を備え、
前記コードブロックの分割後の情報長さが、前記決定した最大の情報ブロック長よりも小さい、
コードブロックの分割を実現する装置。
(項目22)
前記参照ユニットは、
取得した物理チャネルリソースパラメータ、及び/又はスペクトル効率パラメータに基づいてコードブロックの参照情報ブロック長を決定する、
項目21に記載の装置。
(項目23)
前記参照ユニットは、
伝送信号の変調方式M、トランスポートブロックのコーディングレートR、及び伝送信号が占用
する空間レイヤ数Nlayerのうちの任意の1つ又は複数のパラメータを含む取得したスペ
クトル効率パラメータと、すべてのコードブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncb及び伝送信号が占用する周波数領域におけるサブキャリアの数Nsubcarrierを含む取得した物理チャネルリソースパラメータに基づいて、コードブロックの参照情報ブロック長KRを決定する、
項目22に記載の装置。
(項目24)
前記参照ユニットは、
取得した物理チャネルリソースパラメータ、及び/又はスペクトル効率パラメータに基づいて、式


によって前記コードブロックの参照情報ブロック長KRを算出する、
項目23に記載の装置。
(項目25)
前記参照ユニットは、さらに、
トランスポートブロックのサイズB、符号化ブロックCRCの長さLを取得し、
トランスポートブロックが占用する時間領域におけるOFDMシンボルの数Ntb及びそれぞれのコードブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncbを含む取得した物理チャネルリソースパラメータに基づいて、コードブロックの参照情報ブロック長KRを決定する、
項目22に記載の装置。
(項目26)
前記参照ユニットは、さらに、
トランスポートブロックのサイズB、符号化ブロックCRCの長さLを取得し、取得した物理チャネルリソースパラメータに基づいて、式


によってコードブロックの参照情報ブロック長KRを決定する、
項目25に記載の装置。
(項目27)
前記参照ユニットは、さらに、
端末のバッファサイズを示すことができる品種別パラメータUE Category
を含むハードウェアパラメータを取得し、
端末のバッファサイズを示すことができる品種別パラメータUE Category
に基づいて、トランスポートブロックが占用可能な最大のソフトビット数NSoftbitsを取得し、
トランスポートブロックが占用する時間領域におけるOFDMシンボルの数Ntb及びそれぞれのコードブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncbを含む取得した物理チャネルリソースパラメータに基づいて、前記トランスポートブロック中に含まれる最小のコードブロック数CBnumである、


を取得し、



によって参照情報ブロック長KRを取得する、
項目22に記載の装置。
(項目28)
前記ハードウェアパラメータは、エンコーダがサポートする最大の情報ブロック長Kencoder、及び/又はエンコーダがサポートする情報ブロック長の集合{K}interleaverであり、
前記決定ユニットが参照情報ブロック長及びハードウェアパラメータに基づいて、最大の情報ブロック長を決定することは、以下のように行われ、
トランスポートブロックの符号化方法が畳み込み符号であれば、前記最大の情報ブロック長Kmaxが


として決定され、
トランスポートブロックの符号化方法がTurbo符号であれば、
参照情報ブロック長KRが、前記エンコーダがサポートする最大の情報ブロック長Kencoderよりも小さい場合、エンコーダがサポートする情報ブロック長の集合{K}interleaverから、コードブロックの参照情報ブロック長KR以上であり且つKRに最も近い情報ブロ

ク長を選んでコードブロックの最大の情報ブロック長Kmaxとし、
前記参照情報ブロック長KRが、前記エンコーダがサポートする最大の情報ブロック長
Kencoder以上である場合、前記エンコーダがサポートする最大の情報ブロック長Kencoderを選んでコードブロックの最大の情報ブロック長Kmaxとするように、前記最大の情報
ブロック長Kmaxが決定され、
ただし、関数min()は、最小値を取ることを示す、
項目23乃至27のうち何れか一項に記載の装置。
(項目29)
前記ハードウェアパラメータは、エンコーダがサポートする最大の情報ブロック長Kencoder、及び/又はエンコーダがサポートする情報ブロック長の集合{K}interleaverであり、
前記決定ユニットが参照情報ブロック長及びハードウェアパラメータに基づいて、最大の情報ブロック長を決定することは、以下のように行われ、
トランスポートブロックの符号化方法が畳み込み符号であれば、前記最大の情報ブロック長Kmaxが


として決定され、
トランスポートブロックの符号化方法がTurbo符号であれば、前記最大の情報ブロック長Kmaxが


として決定される、
項目23乃至27のうち何れか一項に記載の装置。
(項目30)
伝送モード指示、下り制御情報フォーマットDCI format、及び/又は無線ネットワーク一時識別子RNTIによって、前記分割関連パラメータ及び/又はハードウェアパラメータを取得する取得ユニットをさらに備える、
項目21乃至27のうち何れか一項に記載の装置。
(項目31)
伝送モード指示、DCI format、及びRNTIで直接指示する方式のうちの任意の1つ又は複数の方式によって、前記最大の情報ブロック長Kmaxを取得する指示ユニ
ットをさらに備える、
項目21乃至27のうち何れか一項に記載の装置。
(項目32)
前記分割関連パラメータは、トランスポートブロックのサイズB、符号化ブロックCRCの長さLをさらに含み、
前記ハードウェアパラメータは、エンコーダがサポートする情報ブロック長の集合{K}interleaverを含み、
前記分割ユニットは、
トランスポートブロックのサイズB、符号化ブロックCRCの長さL、及び最大の情報ブロック長Kmaxに基づいて、分割されるコードブロック数Cを決定し、
エンコーダがサポートする情報ブロック長の集合{K}interleaver、コードブロック数
C、トランスポートブロックのサイズB、及び符号化ブロックCRCの長さLに基づいて、それぞれのコードブロックの情報ブロック長を決定し、
決定したそれぞれのコードブロックの情報ブロック長に基づいて、コードブロックの分割を行う、
項目22に記載の装置。
(項目33)
前記分割ユニットは、



によって、分割されるコードブロック数Cを決定し、ただし、


は、xを切り上げることを示し、
エンコーダがサポートする情報ブロック長の集合{K}interleaver、コードブロック数
C、トランスポートブロックのサイズB、及び符号化ブロックCRCの長さLに基づいて、それぞれのコードブロックの情報ブロック長を決定し、
決定したそれぞれのコードブロックの情報ブロック長に基づいて、コードブロックの分割を行う、
項目32に記載の装置。
(項目34)
前記分割ユニットは、
トランスポートブロックのサイズB、符号化ブロックCRCの長さL、及び最大の情報ブロック長Kmaxに基づいて、分割されるコードブロック数Cを決定し、
トランスポートブロックのサイズBが(Kmax−L)又はコードブロック数Cで割れ切
れることができれば、それぞれのコードブロックの情報ブロック長はいずれもB/Cであり、
トランスポートブロックのサイズBが(Kmax−L)又はコードブロック数Cで割れ切
れることができなければ、符号化ブロックCの符号化ブロックを、コードブロック情報ブロック長が異なる第1のタイプのコードブロック及び第2のタイプのコードブロックに分け、
前記第1のタイプのコードブロックのコードブロック情報ブロック長KIは、エンコー
ダがサポートする情報ブロック長の集合{K}interleaverのうち、コードブロック数Cに
前記第1のタイプのコードブロックのコードブロック情報ブロック長KIを乗じたものが
トランスポートブロックのサイズB以上であることを満たすKの最小値であり、
前記第2のタイプのコードブロックのコードブロック情報ブロック長KIIは、エンコーダがサポートする情報ブロック長の集合{K}interleaverのうち、前記第2のタイプのコ
ードブロックのコードブロック情報ブロック長KIIが前記第1のタイプのコードブロックのコードブロック情報ブロック長KIよりも小さいことを満たすKの最大値であり、
決定したそれぞれのコードブロックの情報ブロック長に基づいて、コードブロックの分割を行う、
項目32に記載の装置。
(項目35)
前記分割ユニットは、
トランスポートブロックのサイズB、符号化ブロックCRCの長さL、及び最大の情報ブロック長Kmaxに基づいて、分割されるコードブロック数Cを決定し、
トランスポートブロックのサイズBが(Kmax−L)又はコードブロック数Cで割れ切
れることができれば、それぞれのコードブロックの情報ブロック長はいずれもB/Cであり、
トランスポートブロックのサイズBが(Kmax−L)又はコードブロック数Cで割れ切
れることができなければ、符号化ブロックCの符号化ブロックを、コードブロック情報ブロック長が異なる第1のタイプのコードブロック及び第2のタイプのコードブロックに分け、



から前記第1のタイプのコードブロックのコードブロック情報ブロック長KIを算出し、



から前記第2のタイプのコードブロックのコードブロック情報ブロック長KIIを算出し、
前記第1のタイプのコードブロック数CI及び前記第2のタイプのコードブロックCII
は、





を満たし、
決定したそれぞれのコードブロックの情報ブロック長に基づいて、コードブロックの分割を行う、
項目32に記載の装置。
(項目36)
分割ユニットでのコードブロックの分割が終了した後、前CII個のコードブロックを前記第2のタイプのコードブロックとし、後CI個のコードブロックを前記第1のタイプの
コードブロックとする設定ユニットをさらに備える、
項目35に記載の装置。
(項目37)
分割後のそれぞれのコードブロックに対してCRCを付加し、チャネルコーディング及びレートマッチングを行った後、対応する符号化済みコードブロックを得、得られた符号化済みコードブロックのコードブロック結合を行う結合ユニットをさらに備える、
項目21に記載の装置。
(項目38)
分割された2つ以上のコードブロックをブロック符号化し、チェックデータブロックを生成するチェックユニットをさらに備える、
項目37に記載の装置。
(項目39)
それぞれの前記符号化済みコードブロックにおける任意位置の一部のビット、及びブロック符号化で生成したそれぞれのチェックデータブロックにおける任意位置の前記一部のビットを削除する削除ユニットをさらに備え、
前記一部のビットは、
すべての符号化済みコードブロックとすべてのブロック符号化で生成したチェックデータブロックとのビットの和、及びブロック符号化前のすべての符号化済みコードブロックのビット数の和を算出し、
すべての符号化済みコードブロックとすべてのブロック符号化で生成したチェックデータブロックとのビットの和から、ブロック符号化前のすべての符号化済みコードブロックのビット数の和を減算して、ビットの差を取得し、
符号化済みコードブロックのコードブロック数と、ブロック符号化で生成したチェックデータブロックのデータブロック数とを加算して、情報ブロックの総和を取得し、
取得された前記ビットの差を前記取得された情報ブロックの総和で割った商が、前記一部のビットの値になるステップによって算出される、
項目38に記載の装置。
(項目40)
一部のビットが削除された前記符号化済みコードブロックと、一部のビットが削除された前記ブロック符号化で生成したチェックデータブロックとをコードブロック結合するチェック結合ユニットをさらに備え、
前記コードブロック結合とは、一部のビットが削除された前記符号化済みコードブロックと一部のビットが削除された前記ブロック符号化で生成したチェックデータブロックとのビットを縦列連接するとともに、一部のビットが削除された前記ブロック符号化で生成したチェックデータブロックを、一部のビットが削除された前記符号化済みコードブロックより後に置くことである、
項目39に記載の装置。

発明の効果

0053

関連技術に比べ、本願の技術案によれば、取得した分割関連パラメータに基づいて、コードブロックの参照情報ブロック長を決定することと、参照情報ブロック長及びハードウェアパラメータに基づいて、最大の情報ブロック長を決定することと、取得した分割関連パラメータ、ハードウェアパラメータ、及び決定した最大の情報ブロック長に基づいて、最大の情報ブロック長を超えたトランスポートブロックを2つ以上のコードブロックに分割することと、を含み、コードブロックの分割後の情報長さが、前記決定した最大の情報ブロック長よりも小さい。本発明の実施例の方法は、取得した分割関連パラメータに基づいて、分割されるコードブロックの最大の情報ブロック長を決定し、それぞれのコードブロックがいずれも決定した最大の情報ブロック長よりも小さくなるようにトランスポートブロックのコードブロックの分割を行うことにより、コードブロックの分割に起因するシステムの遅延時間を低減し、コードブロックの分割で発生した遅延時間によってシステムの動作が妨害されることを回避し、システムの性能を向上させる。

0054

図面及び詳細な説明を読んで理解したうえで、他の態様を理解することができる。

図面の簡単な説明

0055

関連技術におけるデジタル通信システムの構造ブロック図である。
関連技術におけるチャネルコーディングチェーンの処理のフローチャートである。
関連技術におけるコードブロックの分割を示す図である。
OFDMシステムにおける時間長が1つのタイムスロットであるリソースブロックを示す図である。
関連技術のLTEシステムにおける物理チャネルマッピング方法を示す図である。
本発明の実施例のコードブロックの分割を実現する方法のフローチャートである。
本発明の実施例のコードブロックの分割を実現する装置の構造ブロック図である。
本発明の実施例1のコードブロックの分割を示す図である。
本発明の実施例2のコードブロックの分割を示す図である。
本発明の実施例10のコードブロックの分割を示す図である。

実施例

0056

以下、図面を結合して本発明の実施例を詳しく説明する。なお、衝突しない限り、本願の実施例及び実施例中の構成要件を任意に組み合わせることができる。

0057

図6は、本発明の実施例のコードブロックの分割を実現する方法のフローチャートであり、図6に示されるように、以下のステップを含む。

0058

ステップ600:取得した分割関連パラメータに基づいて、コードブロックの参照情報ブロック長を決定する。

0059

このステップにおいて、分割関連パラメータは、物理チャネルリソースパラメータ、及び/又はスペクトル効率パラメータを含む。

0060

このステップにおいて、参照情報ブロック長の決定方式は以下の方式がある。

0061

方式1
スペクトル効率パラメータは、伝送信号の変調方式M、トランスポートブロックのコーディング
レートR、及び伝送信号が占用する空間レイヤ数Nlayerのうちの1つ又は複数のパラメ
ータを少なくとも含む。

0062

物理チャネルリソースパラメータは、すべてのコードブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncb及び伝送信号が占用する周波数領域におけるサブキャリアの数Nsubcarrierを少なくとも含む。

0063

参照情報ブロック長を決定することは、
前記物理チャネルリソースパラメータ及び前記スペクトル効率パラメータに基づいてコードブロックの参照情報ブロック長KRを決定することを含む。

0064

オプションとして、コードブロックの参照情報ブロック長KRは、式


によって取得されてもよい。

0065

伝送信号が占用する周波数領域におけるサブキャリアの数Nsubcarrierは、伝送信号が占用するリソースブロックの数NRBとそれぞれのリソースブロックに含まれるサブキャリアの数NSPとの積に等しい。即ち、コードブロックの参照情報ブロック長KRは、


によって算出されることができる。

0066

なお、LTE及びLTE−Aシステムにおいて、NSPの取りうる値は12である。

0067

方式2
物理チャネルリソースパラメータは、トランスポートブロックが占用する時間領域におけるOFDMシンボルの数Ntb及びそれぞれのコードブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncbを少なくとも含み、前記分割関連パラメータは、トランスポートブロックのサイズB、符号化ブロックCRCの長さLをさらに含む。

0068

決定されたコードブロックの参照情報ブロック長KRは、トランスポートブロックのサ
イズB、符号化ブロックCRCの長さL及び物理チャネルリソースパラメータによって決定されたブロック長である。

0069

オプションとして、コードブロックの参照情報ブロック長KRが


として決定されてもよい。

0070

方式3
分割関連パラメータは、ハードウェアパラメータをさらに含み、ハードウェアパラメータは、端末のバッファサイズを示すことができる品種別パラメータユーザ機器カテゴリ
ー(UE Category)である。

0071

物理チャネルリソースパラメータは、トランスポートブロックが占用する時間領域におけるOFDMシンボルの数Ntb、それぞれのコードブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncbを少なくとも含む。

0072

コードブロックの参照情報ブロック長KRを決定することは、
端末のバッファサイズを示すことができる品種別パラメータUE Category
に基づいて、トランスポートブロックが占用可能な最大のソフトビット数NSoftbitsを取得することと、
トランスポートブロックが占用する時間領域におけるOFDMシンボルの数Ntb、それぞれのコードブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncbに基づいて、前記トランスポートブロック中に含まれる最小のコードブロック数CBNumである、


を取得することと、



によって参照情報ブロック長KRを取得することと、を含む。

0073

このステップにおいて、分割関連パラメータ及び/又はハードウェアパラメータは、伝送モード指示、下り制御情報フォーマット(DCIformat)及び無線ネットワーク一時識別子(RNTI)のうち任意の1つ又は複数の方式によって取得される。

0074

ステップ601:参照情報ブロック長及びハードウェアパラメータに基づいて、最大の情報ブロック長を決定する。

0075

このステップにおいて、ハードウェアパラメータは、エンコーダがサポートする最大の情報ブロック長Kencoder、及び/又はエンコーダがサポートする情報ブロック長の集合{K}interleaverである。

0076

トランスポートブロックの符号化方法が畳み込み符号であれば、前記最大の情報ブロック長Kmaxが


として決定される。

0077

トランスポートブロックの符号化方法がTurbo符号であれば、
参照情報ブロック長KRが、エンコーダがサポートする最大の情報ブロック長Kencoderよりも小さい場合、エンコーダがサポートする情報ブロック長の集合{K}interleaverか
ら、コードブロックの参照情報ブロック長KR以上であり且つKRに最も近い情報ブロック長を選んでコードブロックの最大の情報ブロック長Kmaxとし、
参照情報ブロック長KRが、前記エンコーダがサポートする最大の情報ブロック長Kencoder以上である場合、前記エンコーダがサポートする最大の情報ブロック長Kencoderを
選んでコードブロックの最大の情報ブロック長Kmaxとするように、前記最大の情報ブロ
ック長Kmaxが決定される。

0078

ただし、関数min()は、最小値を取ることを示す。

0079

オプションとして、トランスポートブロックの符号化方法がTurboであれば、最大の情報ブロック長Kmaxが、


として決定される。

0080

本発明の実施例の方法は、
伝送モード指示、DCIformat、又はRNTIで直接指示することにより、前記最大の情報ブロック長Kmaxを取得すること、をさらに含む。

0081

なお、直接の指示によって取得された最大の情報ブロック長Kmaxは、主として、シス
テムの要求によって決定された数値に基づいて、例えば、システムの遅延時間要求に基づいて設定された最大の情報ブロック長Kmaxであり、最大の情報ブロック長Kmaxを直接指示することで、システムの性能を保証することができる。

0082

ステップ602:取得した分割関連パラメータ、ハードウェアパラメータ、及び決定した最大の情報ブロック長に基づいて、最大の情報ブロック長を超えたトランスポートブロックを2つ以上のコードブロックに分割する。

0083

このステップにおいて、分割関連パラメータは、トランスポートブロックのサイズB、符号化ブロックCRCの長さLをさらに含み、
ハードウェアパラメータは、エンコーダがサポートする情報ブロック長の集合{K}interleaverを少なくとも含み、
コードブロックの分割は、
トランスポートブロックのサイズB、符号化ブロックCRCの長さL、及び前記最大の情報ブロック長Kmaxに基づいて、分割されるコードブロック数Cを決定することと、
エンコーダがサポートする情報ブロック長の集合{K}interleaver、コードブロック数
C、トランスポートブロックのサイズB、及び符号化ブロックCRCの長さLに基づいて、それぞれのコードブロックの情報ブロック長を決定することと、
決定したそれぞれのコードブロックの情報ブロック長に基づいて、コードブロックの分割を行うことと、を含むことができる。

0084

オプションとして、分割されるコードブロック数Cが、


として決定されてもよい。

0085

ただし、


は、xを切り上げることを示す。

0086

それぞれのコードブロックの情報ブロック長を決定することは、
トランスポートブロックのサイズBが(Kmax−L)又はコードブロック数Cで割れ切
れることができれば、それぞれのコードブロックの情報ブロック長はいずれもB/Cであることと、
トランスポートブロックのサイズBが(Kmax−L)又はコードブロック数Cで割れ切
れることができなければ、符号化ブロックCの符号化ブロックを、コードブロック情報ブロック長が異なる第1のタイプのコードブロック及び第2のタイプのコードブロックに分けることを含むことができ、
第1のタイプのコードブロックのコードブロック情報ブロック長KIは、エンコーダが
サポートする情報ブロック長の集合{K}interleaverのうち、コードブロック数Cに第1
のタイプのコードブロックのコードブロック情報ブロック長KIを乗じたものがトランス
ポートブロックのサイズB以上であることを満たすKの最小値であり、
第2のタイプのコードブロックのコードブロック情報ブロック長KIIは、エンコーダがサポートする情報ブロック長の集合{K}interleaverのうち、第2のタイプのコードブロ
ックのコードブロック情報ブロック長KIIが第1のタイプのコードブロックのコードブロック情報ブロック長KIよりも小さいことを満たすKの最大値である。

0087

オプションとして、第1のタイプのコードブロックのコードブロック情報ブロック長KIは、


である。

0088

第2のタイプのコードブロックのコードブロック情報ブロック長KIIは、


である。

0089

第1のタイプのコードブロック数CI及び第2のタイプのコードブロックCIIは、





を満たし、ただし、


は、F(X)が最小値を取得することを示し、


は、xを切り下げることを示す。

0090

本発明の実施例の方法は、コードブロックの分割が終了した後、前CII個のコードブロックを第2のタイプのコードブロックとし、後CI個のコードブロックを第1のタイプの
コードブロックとすること、をさらに含む。

0091

本発明の実施例の方法は、
分割後のそれぞれのコードブロックに対してCRCを付加し、チャネルコーディング及びレートマッチングを行った後、対応する符号化済みコードブロックを得、得られた符号化済みコードブロックのコードブロック結合を行うこと、をさらに含む。

0092

本発明の実施例の方法は、
分割された2つ以上のコードブロックをブロック符号化し、チェックデータブロックを生成すること、をさらに含む。

0093

本発明の実施例の方法は、
それぞれの符号化済みコードブロックにおける任意位置の一部のビット、及びブロック符号化で生成したそれぞれのチェックデータブロックにおける任意位置の前記一部のビットを削除すること、をさらに含む。

0094

一部のビットは、以下のステップによって算出される。

0095

すべての符号化済みコードブロックとすべてのブロック符号化で生成したチェックデータブロックとのビットの和、及びブロック符号化前のすべての符号化済みコードブロックのビット数の和を算出し、
すべての符号化済みコードブロックとすべてのブロック符号化で生成したチェックデータブロックとのビットの和から、ブロック符号化前のすべての符号化済みコードブロックのビット数の和を減算して、ビットの差を取得し、
符号化済みコードブロックのコードブロック数と、ブロック符号化で生成したチェックデータブロックのデータブロック数とを加算して、情報ブロックの総和を取得し、
取得された前記ビットの差を前記取得された情報ブロックの総和で割った商が、前記一部のビットの値になる。

0096

なお、削除された一部のビットは、符号化済みコードブロック及びチェックデータブロックのチェックデータであることができ、一般、符号化済みコードブロック及びチェックデータブロックの末尾に位置する。

0097

本発明の実施例の方法は、
一部のビットが削除された符号化済みコードブロックと、一部のビットが削除されたブロック符号化で生成したチェックデータブロックとをコードブロック結合すること、をさらに含み、
コードブロック結合とは、一部のビットが削除された符号化済みコードブロックと一部のビットが削除されたブロック符号化で生成したチェックデータブロックとのビットを縦列連接するとともに、一部のビットが削除されたブロック符号化で生成したチェックデータブロックを、一部のビットが削除された符号化済みコードブロックより後に置くことである。

0098

本発明の実施例の方法は、取得した分割関連パラメータに基づいて、分割されるコードブロックの最大の情報ブロック長を決定し、それぞれのコードブロックがいずれも決定した最大の情報ブロック長よりも小さくなるようにトランスポートブロックのコードブロックの分割を行うことにより、コードブロックの分割に起因するシステムの遅延時間を低減し、コードブロックの分割で発生した遅延時間によってシステムの動作が妨害されることを回避し、システムの性能を向上させる。

0099

図7は、本発明の実施例のコードブロックの分割を実現する装置の構造ブロック図であり、図7に示されるように、参照ユニット、決定ユニット、及び分割ユニットを備え、
参照ユニットは、取得した分割関連パラメータに基づいて、コードブロックの参照情報ブロック長を決定する。

0100

参照ユニットは、取得した物理チャネルリソースパラメータ、及び/又はスペクトル効率パラメータに基づいてコードブロックの参照情報ブロック長を決定する。

0101

参照ユニットは、伝送信号の変調方式M、トランスポートブロックのコーディングレートR、及び伝送信号が占用する空間レイヤ数Nlayerのうちの任意の1つ又は複数のパラメータを含む取得したスペクトル効率パラメータと、すべてのコードブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncb及び伝送信号が占用する周波数領域におけるサブキャリアの数Nsubcarrierを少なくとも含む取得した物理チャネルリソースパラメータとに基づいて、コードブロックの参照情報ブロック長KRを決定する。

0102

参照ユニットは、取得した物理チャネルリソースパラメータ、及び/又はスペクトル効率パラメータに基づいて、式


によって前記コードブロックの参照情報ブロック長KRを算出する。

0103

参照ユニットは、さらに、
トランスポートブロックのサイズB、符号化ブロックCRCの長さLを取得し、
トランスポートブロックが占用する時間領域におけるOFDMシンボルの数Ntb、それぞれのコードブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncbを少なくとも含む、取得した物理チャネルリソースパラメータに基づいて、コードブロックの参照情報ブロック長KRを決定する。

0104

参照ユニットは、さらに、トランスポートブロックのサイズB、符号化ブロックCRCの長さLを取得し、取得した物理チャネルリソースパラメータに基づいて、式


によってコードブロックの参照情報ブロック長KRを決定する。

0105

参照ユニットは、さらに、
端末のバッファサイズを示すことができる品種別パラメータUE Category
を少なくとも含むハードウェアパラメータを取得し、
端末のバッファサイズを示すことができる品種別パラメータUE Category
に基づいて、トランスポートブロックが占用可能な最大のソフトビット数NSoftbitsを取得し、
トランスポートブロックが占用する時間領域におけるOFDMシンボルの数Ntb及びそれぞれのコードブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncbを少なくとも含む、取得した物理チャネルリソースパラメータに基づいて、前記トランスポートブロック中に含まれる最小のコードブロック数CBNumである、

を取得し、



によって参照情報ブロック長KRを取得する。

0106

決定ユニットは、参照情報ブロック長及びハードウェアパラメータに基づいて、最大の情報ブロック長を決定する。

0107

ハードウェアパラメータは、エンコーダがサポートする最大の情報ブロック長Kencoder、及び/又はエンコーダがサポートする情報ブロック長の集合{K}interleaverである。[

0108

決定ユニットが参照情報ブロック長及びハードウェアパラメータに基づいて、最大の情報ブロック長を決定することは、以下のように行われ、
トランスポートブロックの符号化方法が畳み込み符号であれば、前記最大の情報ブロック長Kmaxが


として決定され、
トランスポートブロックの符号化方法がTurbo符号であれば、
参照情報ブロック長KRが、エンコーダがサポートする最大の情報ブロック長Kencoderよりも小さい場合、エンコーダがサポートする情報ブロック長の集合{K}interleaverか
ら、コードブロックの参照情報ブロック長KR以上であり且つKRに最も近い情報ブロック長を選んでコードブロックの最大の情報ブロック長Kmaxとし、
前記参照情報ブロック長KRが、エンコーダがサポートする最大の情報ブロック長Kencoder以上である場合、エンコーダがサポートする最大の情報ブロック長Kencoderを選ん
でコードブロックの最大の情報ブロック長Kmaxとするように、前記最大の情報ブロック
長Kmaxが決定され、
ただし、関数min()は、最小値を取ることを示す。

0109

ハードウェアパラメータは、エンコーダがサポートする最大の情報ブロック長Kencoder、及び/又はエンコーダがサポートする情報ブロック長の集合{K}interleaverである。

0110

決定ユニットが参照情報ブロック長及びハードウェアパラメータに基づいて、最大の情報ブロック長を決定することは、以下のように行われ、
トランスポートブロックの符号化方法が畳み込み符号であれば、最大の情報ブロック長Kmaxが


として決定され、
トランスポートブロックの符号化方法がTurbo符号であれば、最大の情報ブロック長Kmaxが、


として決定される。

0111

本発明の実施例の装置は、取得ユニットをさらに備え、取得ユニットは、伝送モード指示、下り制御情報フォーマット(DCIformat)、及び無線ネットワーク一時識別子(RNTI)のうちの任意の1つ又は複数の方式によって、分割関連パラメータ及び/又はハードウェアパラメータを取得する。

0112

本発明の実施例の装置は、指示ユニットをさらに備え、指示ユニットは、伝送モード指示、DCIformat、及びRNTIで直接指示する方式のうちの任意の1つ又は複数の方式によって、最大の情報ブロック長Kmaxを取得する。

0113

分割ユニットは、取得した分割関連パラメータ、ハードウェアパラメータ、及び決定した最大の情報ブロック長に基づいて、最大の情報ブロック長を超えたトランスポートブロックを2つ以上のコードブロックに分割し、
コードブロックの分割後の情報長さが、決定した最大の情報ブロック長よりも小さい。

0114

分割関連パラメータは、トランスポートブロックのサイズB、符号化ブロックCRCの長さLをさらに含む。

0115

ハードウェアパラメータは、エンコーダがサポートする情報ブロック長の集合{K}interleaverを少なくとも含む。

0116

分割ユニットは、
トランスポートブロックのサイズB、符号化ブロックCRCの長さL、及び最大の情報ブロック長Kmaxに基づいて、分割されるコードブロック数Cを決定し、
エンコーダがサポートする情報ブロック長の集合{K}interleaver、コードブロック数
C、トランスポートブロックのサイズB、及び符号化ブロックCRCの長さLに基づいて、それぞれのコードブロックの情報ブロック長を決定し、
決定したそれぞれのコードブロックの情報ブロック長に基づいて、コードブロックの分割を行う。

0117

分割ユニットは、



によって、分割されるコードブロック数Cを決定し、ただし、


は、xを切り上げることを示し、
エンコーダがサポートする情報ブロック長の集合{K}interleaver、コードブロック数
C、トランスポートブロックのサイズB、及び符号化ブロックCRCの長さLに基づいて、それぞれのコードブロックの情報ブロック長を決定し、
決定したそれぞれのコードブロックの情報ブロック長に基づいて、コードブロックの分割を行う。

0118

分割ユニットは、
トランスポートブロックのサイズB、符号化ブロックCRCの長さL、及び最大の情報ブロック長Kmaxに基づいて、分割されるコードブロック数Cを決定し、
トランスポートブロックのサイズBが(Kmax−L)又はコードブロック数Cで割れ切
れることができれば、それぞれのコードブロックの情報ブロック長はいずれもB/Cであり、
トランスポートブロックのサイズBが(Kmax−L)又はコードブロック数Cで割れ切
れることができなければ、符号化ブロックCの符号化ブロックを、コードブロック情報ブロック長が異なる第1のタイプのコードブロック及び第2のタイプのコードブロックに分け、
第1のタイプのコードブロックのコードブロック情報ブロック長KIは、エンコーダが
サポートする情報ブロック長の集合{K}interleaverのうち、コードブロック数Cに第1
のタイプのコードブロックのコードブロック情報ブロック長KIを乗じたものがトランス
ポートブロックのサイズB以上であることを満たすKの最小値であり、
第2のタイプのコードブロックのコードブロック情報ブロック長KIIは、エンコーダがサポートする情報ブロック長の集合{K}interleaverのうち、第2のタイプのコードブロ
ックのコードブロック情報ブロック長KIIが第1のタイプのコードブロックのコードブロック情報ブロック長KIよりも小さいことを満たすKの最大値であり、
決定したそれぞれのコードブロックの情報ブロック長に基づいて、コードブロックの分割を行う。

0119

分割ユニットは、
トランスポートブロックのサイズB、符号化ブロックCRCの長さL、及び最大の情報ブロック長Kmaxに基づいて、分割されるコードブロック数Cを決定し、
トランスポートブロックのサイズBが(Kmax−L)又はコードブロック数Cで割れ切れることができれば、それぞれのコードブロックの情報ブロック長はいずれもB/Cであり、
トランスポートブロックのサイズBが(Kmax−L)又はコードブロック数Cで割れ切
れることができなければ、符号化ブロックCの符号化ブロックを、コードブロック情報ブロック長が異なる第1のタイプのコードブロック及び第2のタイプのコードブロックに分け、



から第1のタイプのコードブロックのコードブロック情報ブロック長KIを算出し、



から第2のタイプのコードブロックのコードブロック情報ブロック長KIIを算出し、
第1のタイプのコードブロック数CI及び第2のタイプのコードブロックCIIは、





を満たし、
決定したそれぞれのコードブロックの情報ブロック長に基づいて、コードブロックの分割を行う。

0120

本発明の実施例の装置は、設定ユニットをさらに備え、設定ユニットは、分割ユニットでのコードブロックの分割が終了した後、前CII個のコードブロックを第2のタイプのコードブロックとし、後CI個のコードブロックを第1のタイプのコードブロックとする。

0121

本発明の実施例の装置は、結合ユニットをさらに備え、結合ユニットは、分割後のそれぞれのコードブロックに対してCRCを付加し、チャネルコーディング及びレートマッチングを行った後、対応する符号化済みコードブロックを得、得られた符号化済みコードブロックのコードブロック結合を行う。

0122

本発明の実施例の装置は、チェックユニットをさらに備え、チェックユニットは、分割された2つ以上のコードブロックをブロック符号化し、チェックデータブロックを生成する。

0123

本発明の実施例の装置は、削除ユニットをさらに備え、削除ユニットは、
それぞれの符号化済みコードブロックにおける任意位置の一部のビット、及びブロック符号化で生成したそれぞれのチェックデータブロックにおける任意位置の一部のビットを削除し、
一部のビットは、以下の算出方式によって取得される。

0124

すべての符号化済みコードブロックとすべてのブロック符号化で生成したチェックデータブロックとのビットの和、及びブロック符号化前のすべての符号化済みコードブロックのビット数の和を算出し、
すべての符号化済みコードブロックとすべてのブロック符号化で生成したチェックデータブロックとのビットの和から、ブロック符号化前のすべての符号化済みコードブロックのビット数の和を減算して、ビットの差を取得し、
符号化済みコードブロックのコードブロック数と、ブロック符号化で生成したチェックデータブロックのデータブロック数とを加算して、情報ブロックの総和を取得し、
取得された前記ビットの差を前記取得された情報ブロックの総和で割った商が、前記一部のビットの値になる。

0125

本発明の実施例の装置は、チェック結合ユニットをさらに備え、チェック結合ユニットは、一部のビットが削除された符号化済みコードブロックと、一部のビットが削除されたブロック符号化で生成したチェックデータブロックとをコードブロック結合し、
コードブロック結合とは、一部のビットが削除された符号化済みコードブロックと一部のビットが削除されたブロック符号化で生成したチェックデータブロックとのビットを縦列連接するとともに、一部のビットが削除されたブロック符号化で生成したチェックデータブロックを、一部のビットが削除された符号化済みコードブロックより後に置くことである。

0126

以下、実施例を通じて本発明の実施例の方法について明確で詳しく説明する。

0127

(実施例1)
3GPPLTE及びその拡張技術に基づく通信システムにおいて、第1のトランスポートノードが第2のトランスポートノードへ長さがB個のビットであるトランスポートブロックを送信し、取得した分割関連パラメータにおける、それぞれのコードブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncb、伝送信号が占用する周波数領域におけるサブキャリアの数Nsubcarrierに基づいて、それぞれのコードブロックが占用することが許可される最大のリソースエレメントの数


を算出する。

0128

それぞれのコードブロックが占用することが許可される最大のリソースエレメントの数NRE、伝送信号の変調方式M、トランスポートブロックのコーディングレートR、及び伝送信号が
占用する空間レイヤ数Nlayerに基づいて、符号化ブロックの第1の情報ブロック長


を決定する。

0129

エンコーダがサポートする最大の情報ブロック長Kencoder、エンコーダがサポートす
る情報ブロック長の集合{K}interleaver、及びコードブロックの第1の情報ブロック長
KRに基づいて、最大の情報ブロック長Kmaxを決定する。最大の情報ブロック長Kencoderは、エンコーダがサポートする情報ブロック長の集合{K}interleaverのうちの最大の
要素である。

0130

オプションとして、第1の情報ブロック長KRとエンコーダがサポートする最大の情報ブロック長Kencoderとの大きさを比較し、


になる。

0131




によって、最大の情報ブロック長Kmaxを決定する。

0132

ただし、


である。

0133

トランスポートブロックのサイズB>Kmaxである場合、トランスポートブロックを複
数のコードブロックに分割し、オプションとして、
取得した分割関連パラメータにおけるトランスポートブロックのサイズB、符号化ブロックCRCの長さL、最大の情報ブロック長Kmaxに基づいて、分割後の符号化ブロック
の数Cを決定するようにしてもよい。

0134

本実施例において、Bは(Kmax−L)で割れ切れることができ、符号化ブロックの数
Cは、


で示されることができる。

0135

それぞれのコードブロックの情報ブロック長は、B/Cである。

0136

オプションとして、トランスポートブロックのコードブロックの分割を行った後のC個のコードブロックに対してそれぞれチャネルコーディング及びレートマッチングを行って、C個の符号化済みコードブロックを得、そしてC個の符号化済みコードブロックをコードブロック結合するようにしてもよい。

0137

図8は、本発明の実施例1のコードブロックの分割を示す図である。図8に示されるように、任意の符号化ブロックが時間領域において1つのOFDMシンボルを占用することが許可され、即ち、Ncb=1であり、このように、平均したら、それぞれのコードブロックは時間領域において、時間の長さが1つのOFDMシンボルを超えないように制限され、受信ノードがコードブロックを受信するたびに、すぐにデコードし始めることができる。なお、Ncbは、1を超えてもよく、一般、遅延時間に敏感なサービスは、Ncbの取りうる値が小さくなり(最小値が1である)、遅延時間に敏感でないサービスは、Ncbの取りうる値が大きくなる。このように、Ncbを調整することで、トランスポートノードが遅延時間を制御することを強化し、特に、スーパーリアルタイム及び遅延時間可変な通信場面に適合する。

0138

(実施例2)
3GPPLTE及びその拡張技術に基づく通信システムにおいて、第1のトランスポートノードが第2のトランスポートノードへ長さがB個のビットであるトランスポートブロックを送信し、取得した分割関連パラメータにおける、トランスポートブロックのサイズB、コードブロックCRCの長さL、トランスポートブロックが占用する時間領域におけるOFDMシンボルの数Ntb、それぞれの符号化ブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncbに基づいて、符号化ブロックの第2の情報ブロック長KR


を決定する。

0139

エンコーダがサポートする最大の情報ブロック長Kencoder、エンコーダがサポートす
る情報ブロック長の集合{K}interleaverに基づいて、最大の情報ブロック長Kmaxを決定する。最大の情報ブロック長Kencoderは、エンコーダがサポートする情報ブロック長の
集合{K}interleaverのうちの最大の要素である。

0140




によって、最大の情報ブロック長Kmaxを決定する。

0141

トランスポートブロックのサイズB>Kmaxである場合、トランスポートブロックを複
数のコードブロックに分割する。

0142

取得した分割関連パラメータにおけるトランスポートブロックのサイズB、コードブロックCRCの長さL、最大の情報ブロック長Kmaxに基づいて、分割後の符号化ブロック
の数Cを決定する。

0143

本実施例において、Bは(Kmax−L)で割れ切れることができず、コードブロックの
数Cは、


で示されることができ、
ただし、


はxを切り上げることを示す。

0144

そして、エンコーダがサポートする情報ブロック長の集合{K}interleaverに基づいて
、それぞれのコードブロックの情報ブロック長を決定する。

0145

トランスポートブロックのサイズBは(Kmax−L)又はコードブロック数Cで割れ切
れることができず、符号化ブロックCの符号化ブロックを、コードブロック情報ブロック長が異なる第1のタイプのコードブロック及び第2のタイプのコードブロックに分ける。

0146

第1のタイプのコードブロックのコードブロック情報ブロック長KIは、エンコーダが
サポートする情報ブロック長の集合{K}interleaverのうち、コードブロック数Cに第1
のタイプのコードブロックのコードブロック情報ブロック長KIを乗じたものがトランス
ポートブロックのサイズB以上であることを満たすKの最小値であり、
第2のタイプのコードブロックのコードブロック情報ブロック長KIIは、エンコーダがサポートする情報ブロック長の集合{K}interleaverのうち、第2のタイプのコードブロ
ックのコードブロック情報ブロック長KIIが第1のタイプのコードブロックのコードブロック情報ブロック長KIよりも小さいことを満たすKの最大値である。

0147

オプションとして、第1のタイプのコードブロックのコードブロック情報ブロック長KIは、


である。

0148

第2のタイプのコードブロックのコードブロック情報ブロック長KIIは、


である。

0149

第1のタイプのコードブロック数CI及び第2のタイプのコードブロックCIIは、





を満たす。

0150

オプションとして、トランスポートブロックのコードブロックの分割を行った後のC個のコードブロックに対してそれぞれチャネルコーディング及びレートマッチングを行って、C個の符号化済みコードブロックを得、そして前記C個の符号化済みコードブロックをコードブロック結合し、前CII個のコードブロックがタイプIIのコードブロックであり、後CI個のコードブロックがタイプIのコードブロックである。

0151

図9は、本発明の実施例2のコードブロックの分割を示す図であり、図面における左側の斜め線付きボックス部分の符号化ブロックは、タイプIIのコードブロックである。本実施例では、それぞれのコードブロックが時間領域において占用するOFDMシンボルの数を限定することで、遅延時間を制御する目的を達成する。同時に、本実施例に提供されるコードブロックの分割方法は、トランスポートブロックの長さがコードブロック数で割れ切れることができない場面に対応する。

0152

(実施例3)
本実施例は、すべての符号化ブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncbが伝送モード指示によって指示される点で、実施例1又は実施例2と異なる。

0153

例えば、システムについて、それぞれ、異なる遅延時間要求に対する3つの場面における伝送モードを示す新しい伝送モードA,B,Cを定義し、伝送モードAを用いると、遅延時間要求が最も高く、単一のコードブロックが占用するOFDMシンボルの数が1つを超えることができず、伝送モードBを用いると、遅延時間要求が2番目に高く、単一のコードブロックが占用するOFDMシンボルの数が3つを超えることができず、伝送モードCを用いると、遅延時間要求が最も低く、単一のコードブロックが占用するOFDMシンボルの数が14つを超えることができない。

0154

基地局は、上位層シグナリングにより伝送モードA又はB又はCを準静的に構成し、つまり、伝送モード指示には、単一のコードブロックが占用可能な最大のOFDMシンボルの数が暗に指示されている。

0155

(実施例4)
実施例3に比べ、本実施例のコードブロックの最大の情報ブロック長Kmaxは伝送モー
ドによって指示される。

0156

(実施例5)
本実施例は、すべてのコードブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncbが下り制御情報フォーマット(DCIformat)によって指示される点で、実施例3と異なる。

0157

例えば、システムについて、それぞれ、異なる遅延時間要求に対する3つの場面における伝送モードを示すDCIformat X,Y,Zを定義し、DCI format
Xを用いると、遅延時間要求が最も高く、単一のコードブロックが占用するOFDMシンボルの数が1つを超えることができず、DCI format Yを用いると、遅延時間要求が2番目に高く、単一のコードブロックが占用するOFDMシンボルの数が3つを超えることができず、DCI format Zを用いると、遅延時間要求が最も低く、単一のコードブロックが占用するOFDMシンボルの数が14つを超えることができない。

0158

DCIformatは、物理下り制御チャネルで基地局から中継局又は端末に送信されるか、中継局から端末に送信されることができる。

0159

(実施例6)
本実施例は、コードブロックの最大の情報ブロック長Kmaxが下り制御情報フォーマ
ト(DCIformat)によって指示される点で、実施例5と異なる。

0160

(実施例7)
本実施例は、すべてのコードブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncbが無線ネットワーク一時識別子(RNTI)によって暗に指示される点で、実施例5と異なる。

0161

例えば、システムについて、それぞれ、異なる遅延時間要求に対する3つの場面における伝送モードを示すRNTI 1,2,3を定義し、RNTI 1を用いると、遅延時間要求が最も高く、単一のコードブロックが占用するOFDMシンボルの数が1つを超えることができず、RNTI 2を用いると、遅延時間要求が2番目に高く、単一のコードブロックが占用するOFDMシンボルの数が3つを超えることができず、RNTI 3を用いると、遅延時間要求が最も低く、単一のコードブロックが占用するOFDMシンボルの数が14つを超えることができない。

0162

RNTIは、基地局から中継局又は端末に割り当てられるか、中継局から端末に割り当てられ、そして、物理下り制御チャネルをスクランブルすることができる。

0163

(実施例8)
本実施例は、コードブロックの最大の情報ブロック長Kmaxが無線ネットワーク一時識
別子(RNTI)によって指示される点で、実施例7と異なる。

0164

(実施例9)
本実施例は、端末のバッファサイズを示すことができる品種別パラメータUE Ca
tegory、トランスポートブロックが占用する時間領域におけるOFDMシンボルの数Ntb、すべての符号化ブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncb、及びコーディングレートRに基づいて、符号化ブロックの最大の情報ブ
ロック長Kmaxを決定する点で、実施例1又は2と異なる。

0165

オプションとして、端末のバッファサイズを示すことができる品種別パラメータUE
Categoryに基づいて、1つのトランスポートブロックが占用可能な最大のソフトビット数NSoftbitsを得、トランスポートブロックが占用する時間領域におけるOFDMシンボルの数Ntb、すべての符号化ブロックが時間領域において占用することが許可される最大のOFDMシンボルの数Ncbに基づいて、トランスポートブロックに含まれる最小のコードブロック数


を取得し、さらに、コーディングレートRに基づいて、コードブロックの参照情報ブロック長


を決定するようにしてもよい。

0166

符号化方法が畳み込み符号であれば、Kmax=KRになる。

0167

符号化方法がTurbo符号であれば、エンコーダがサポートする最大の情報ブロック長Kencoder、エンコーダがサポートする情報ブロック長の集合{K}interleaverに基づいて、最大の情報ブロック長Kmaxを決定する。

0168

トランスポートブロックの符号化方法が畳み込み符号であれば、最大の情報ブロック長Kmaxが、


として決定される。

0169

トランスポートブロックの符号化方法がTurbo符号であれば、最大の情報ブロック長Kmaxが、


として決定される。

0170

(実施例10)
本実施例と実施例1及び実施例2とを対比すると、
コードブロックの分割後のC個のコードブロックに対して、チャネルコーディング及びレートマッチングを行った後、C個の符号化済みコードブロックを得、そして、それぞれの符号化済みコードブロック内におけるインデックス位置が同じであるビット又はシンボルを符号化し、S個のチェックデータブロックを生成することと、
C個の元のコードブロックとS個のチェックデータブロックとのビット数の和が、ブロック符号化前のC個の符号化済みコードブロックのビット数の和に等しくなるように、C個の符号化済みコードブロック及びS個のチェックデータブロックにおける一部のビットを削除することと、
一部のビットが削除されたC個の符号化済みコードブロックと、一部のビットが削除されたS個のチェックデータブロックとをコードブロック結合し、コードブロック結合とは、それぞれのコードブロックのビットを縦列連接するとともに、一部のビットが削除されたS個のチェックデータブロックを、一部のビットが削除されたC個の符号化済みコードブロックより後に置くことであることと、において相違する。

0171

図10は、本発明の実施例10のコードブロックの分割を示す図であり、図10に示され
るように、図面における右側の斜め線付きボックス部分で示されるチェックデータブロックは、ブロック符号化で発生したチェックデータブロックである。本実施例の処理により、トランスポートブロック全体の性能を保証する。

0172

上記方法におけるステップの全部又は一部は、プログラムを介して関連ハードウェア(例えば、プロセッサ)を命令することにより完成されることができ、前記プログラムは、コンピュータ読み取り可能な記憶媒体、例えば、リードオンリーメモリ磁気ディスク又は光ディスク等に記憶されることができることは、当業者が理解されるべきである。オプションとして、上記実施例のステップの全部又は一部は、1つ又は複数の集積回路により実現されることもできる。これに応じて、上記実施例におけるそれぞれのモジュール/ユニットは、ハードウェアの形で実現されることもでき、例えば、集積回路を介してその対応する機能を実現することができれば、ソフトウェア機能モジュールの形で実現することもでき、例えば、プロセッサがメモリに記憶されるプログラム/命令を実行することでその対応する機能を実現する。本発明は、如何なる特定の形のハードウェア及びソフトウェアの組み合わせにも制限されていない。

0173

以上、本発明の実施形態を開示したが、上記内容は本発明を理解しやすくするための実施形態にすぎず、本願を限定することは意図していない。当業者であれば、本願で説明した思想や範囲から逸脱しない前提において、実施の形式及び詳細に何らの手直しや変化も可能であるが、記載した特許請求の範囲の保護範囲に基づいて本願の特許保護範囲が定められるべきである。

0174

本願の技術案は、コードブロックの分割に起因するシステムの遅延時間を低減し、コードブロックの分割で発生した遅延時間によってシステムの動作が妨害されることを回避し、システムの性能を向上させる。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ