図面 (/)

技術 フレーム構造タイプ2をサポートする狭帯域IoTシステムにおいてNPRACHプリアンブルを送信する方法及びそのための装置

出願人 エルジーエレクトロニクスインコーポレイティド
発明者 シンソクミンパクチャンファンアンチュンキファンテソンファンソンケ
出願日 2018年6月25日 (2年4ヶ月経過) 出願番号 2020-520414
公開日 2020年8月27日 (2ヶ月経過) 公開番号 2020-526148
状態 未査定
技術分野 交流方式デジタル伝送 時分割方式以外の多重化通信方式 移動無線通信システム
主要キーワード 特定時間区間 周波数ギャップ 目標帯域 指示識別子 スタンドアローンモード 繰り返し区間 スケーリング要素 周波数跳躍
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2020年8月27日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題・解決手段

本明細書は、フレーム構造タイプ(frame structure type)2をサポートするNB(Narrow Band)−IoT(Internet of Things)システムにおいてNPRACH(Narrowband Physical Random Access Channel)プリアンブル(preamble)を送信する方法を提供する。具体的に、端末により行われる上記方法は、アップリンクダウンリンク構成(uplink-downlink configuration)に関する制御情報基地局から受信するステップと、前記受信した制御情報と関連したNPRACHプリアンブル送信に関するパラメータに基づいて前記NPRACHプリアンブルを前記基地局に送信するステップとを含むことを特徴とする。

概要

背景

移動通信システムは、ユーザの活動性保障しながら音声サービスを提供するために開発された。しかしながら、移動通信システムは、音声だけでなくデータサービスまで領域を拡張し、現在では、爆発的なトラフィックの増加によって資源不足現象が引き起こされ、ユーザがより高速サービスを要求するので、より発展した移動通信システムが要求されている。

世代移動通信システム要求条件は、大きく爆発的なデータトラフィックの収容、ユーザ当たりの送信率の画期的な増加、大幅増加した接続デバイス数の収容、非常に低いエンドツーエンド遅延(End-to-End Latency)、高エネルギー効率を支援できなければならない。このために、多重続性(Dual Connectivity)、大規模多重入出力(MassiveMIMO:Massive Multiple Input Multiple Output)、全二重(In-band Full Duplex)、非直交多重接続(NOMA:Non-Orthogonal Multiple Access)、超広帯域(Super wideband)支援、端末ネットワーキング(Device Networking)等、多様な技術が研究されている。

概要

本明細書は、フレーム構造タイプ(frame structure type)2をサポートするNB(Narrow Band)−IoT(Internet of Things)システムにおいてNPRACH(Narrowband Physical Random Access Channel)プリアンブル(preamble)を送信する方法を提供する。具体的に、端末により行われる上記方法は、アップリンクダウンリンク構成(uplink-downlink configuration)に関する制御情報基地局から受信するステップと、前記受信した制御情報と関連したNPRACHプリアンブル送信に関するパラメータに基づいて前記NPRACHプリアンブルを前記基地局に送信するステップとを含むことを特徴とする。

目的

移動通信システムは、ユーザの活動性を保障しながら音声サービスを提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

フレーム構造タイプ(frame structure type)2をサポートするNB(Narrow Band)−IoT(Internet of Things)システムにおいてNPRACH(Narrowband Physical Random Access Channel)プリアンブル(preamble)を送信する方法であって、端末により行われる方法は、アップリンクダウンリンク構成(uplink-downlink configuration)に関する制御情報基地局から受信するステップと、前記受信した制御情報と関連したNPRACHプリアンブル送信に関するパラメータに基づいて前記NPRACHプリアンブルを前記基地局に送信するステップとを含み、前記NPRACHプリアンブルは、1つ又はそれ以上のシンボルグループ(symbol group)を含み、1つのシンボルグループは、1つのCP(Cyclic Prefix)と少なくとも1つのシンボルを含み、前記NPRACHプリアンブル送信に関するパラメータは、1つのシンボルグループに含まれるシンボルの数を示す第1パラメータ及び1つのシンボルグループに含まれるCP(cyclic prefix)の長さを示す第2パラメータを含み、前記第1パラメータ及び前記第2パラメータは、前記第1パラメータ及び前記第2パラメータにそれぞれ対応する第3パラメータ及び第4パラメータと異なるように設定され、前記第3パラメータ及び前記第4パラメータは、フレーム構造タイプ(frame structure type)1においてサポートされるNPRACHプリアンブル送信に関するパラメータであることを特徴とする方法。

請求項2

前記基地局においてサポートされるアップリンク−ダウンリンク構成情報に応じて前記NPRACHプリアンブルに関するパラメータは異なるように設定されることを特徴とする請求項1に記載の方法。

請求項3

前記第1パラメータ及び前記第2パラメータは、それぞれ前記第3パラメータ及び前記第4パラメータより小さい値を有することを特徴とする請求項1に記載の方法。

請求項4

前記第1パラメータの値は、5より小さい自然数であることを特徴とする請求項3に記載の方法。

請求項5

前記シンボルグループは、第1周波数ホッピング(frequency hopping)及び第2周波数ホッピングにより送信されることを特徴とする請求項1に記載の方法。

請求項6

前記第2周波数ホッピングの値は前記第1周波数ホッピングの値の6倍であることを特徴とする請求項5に記載の方法。

請求項7

前記NPRACHプリアンブル送信に関するパラメータは、1つのプリアンブル(preamble)に含まれる連続するシンボルグループ(symbol group)の数を示す第5パラメータ及び1つのプリアンブル(preamble)に含まれるシンボルグループ(symbol group)の全体数を示す第6パラメータをさらに含むことを特徴とする請求項1に記載の方法。

請求項8

前記第5パラメータの値は2であり、前記第6パラメータの値は4であることを特徴とする請求項7に記載の方法。

請求項9

フレーム構造タイプ(frame structure type)2をサポートするNB(Narrow Band)−IoT(Internet of Things)システムにおいてNPRACH(Narrowband Physical Random Access Channel)プリアンブル(preamble)を送信する端末であって、無線信号送受信するためのRF(Radio Frequency)モジュールと、前記RFモジュールを制御するプロセッサとを含み、前記プロセッサは、アップリンク−ダウンリンク構成(uplink-downlink configuration)に関する制御情報を基地局から受信し、前記受信した制御情報と関連したNPRACHプリアンブル送信に関するパラメータに基づいて前記NPRACHプリアンブルを前記基地局に送信するように設定され、前記NPRACHプリアンブルは、1つ又はそれ以上のシンボルグループ(symbol group)を含み、1つのシンボルグループは、1つのCP(Cyclic Prefix)と少なくとも1つのシンボルを含み、前記NPRACHプリアンブル送信に関するパラメータは、1つのシンボルグループに含まれるシンボルの数を示す第1パラメータ及び1つのシンボルグループに含まれるCP(cyclic prefix)の長さを示す第2パラメータを含み、前記第1パラメータ及び前記第2パラメータは、前記第1パラメータ及び前記第2パラメータにそれぞれ対応する第3パラメータ及び第4パラメータと異なるように設定され、前記第3パラメータ及び前記第4パラメータは、フレーム構造タイプ(frame structure type)1においてサポートされるNPRACHプリアンブル送信に関するパラメータであることを特徴とする端末。

請求項10

前記基地局においてサポートされるアップリンク−ダウンリンク構成情報に応じて前記NPRACHプリアンブルに関するパラメータは異なるように設定されることを特徴とする請求項9に記載の端末。

技術分野

0001

本発明は、狭帯域IoTステムに関し、より詳細には、フレーム構造タイプ2(frame structure type 2)をサポートする狭帯域IoTシステムにおいてNPRACHプリアンブル(preamble)を送信する方法及びそのための装置に関する。

背景技術

0002

移動通信システムは、ユーザの活動性保障しながら音声サービスを提供するために開発された。しかしながら、移動通信システムは、音声だけでなくデータサービスまで領域を拡張し、現在では、爆発的なトラフィックの増加によって資源不足現象が引き起こされ、ユーザがより高速サービスを要求するので、より発展した移動通信システムが要求されている。

0003

世代移動通信システム要求条件は、大きく爆発的なデータトラフィックの収容、ユーザ当たりの送信率の画期的な増加、大幅増加した接続デバイス数の収容、非常に低いエンドツーエンド遅延(End-to-End Latency)、高エネルギー効率を支援できなければならない。このために、多重続性(Dual Connectivity)、大規模多重入出力(MassiveMIMO:Massive Multiple Input Multiple Output)、全二重(In-band Full Duplex)、非直交多重接続(NOMA:Non-Orthogonal Multiple Access)、超広帯域(Super wideband)支援、端末ネットワーキング(Device Networking)等、多様な技術が研究されている。

発明が解決しようとする課題

0004

本明細書は、NB−IoTシステムにおいてTDDをサポートする場合、レガシー(legacy)LTEのUL/DL構成(UL/DL configuration)を用いてNPRACHプリアンブルを送信するためのNPRACHプリアンブル設定方法を提供することに目的がある。

0005

本発明で達成しようとする技術的課題は以上で言及した技術的課題に制限されず、言及しない更に他の技術的課題は以下の記載から本発明が属する技術分野で通常の知識を有する者に明確に理解できるはずである。

課題を解決するための手段

0006

本明細書は、フレーム構造タイプ(frame structure type)2をサポートするNB(Narrow Band)−IoT(Internet of Things)システムにおいてNPRACH(Narrowband Physical Random Access Channel)プリアンブル(preamble)を送信する方法であって、端末により行われる方法は、アップリンクダウンリンク構成(uplink-downlink configuration)に関する制御情報基地局から受信するステップと、前記受信した制御情報と関連したNPRACHプリアンブル送信に関するパラメータに基づいて前記NPRACHプリアンブルを前記基地局に送信するステップとを含み、前記NPRACHプリアンブルは、1つ又はそれ以上のシンボルグループ(symbol group)を含み、1つのシンボルグループは、1つのCP(Cyclic Prefix)と少なくとも1つのシンボルを含み、前記NPRACHプリアンブル送信に関するパラメータは、1つのシンボルグループに含まれるシンボルの数を示す第1パラメータ及び1つのシンボルグループに含まれるCP(cyclic prefix)の長さを示す第2パラメータを含み、前記第1パラメータ及び前記第2パラメータは、前記第1パラメータ及び前記第2パラメータにそれぞれ対応する第3パラメータ及び第4パラメータと異なるように設定され、及び前記第3パラメータ及び前記第4パラメータは、フレーム構造タイプ(frame structure type)1においてサポートされるNPRACHプリアンブル送信に関するパラメータであることを特徴とする。

0007

また、本明細書において、前記基地局においてサポートされるアップリンク−ダウンリンク構成情報に応じて前記NPRACHプリアンブルに関するパラメータは異なるように設定されることを特徴とする。

0008

さらに、本明細書において、前記第1パラメータ及び前記第2パラメータは、それぞれ前記第3パラメータ及び前記第4パラメータより小さい値を有することを特徴とする。

0009

さらに、本明細書において、前記第1パラメータの値は5より小さい自然数であることを特徴とする。

0010

さらに、本明細書において、前記シンボルグループは第1周波数ホッピング(frequency hopping)及び第2周波数ホッピングにより送信されることを特徴とする。

0011

さらに、本明細書において、前記第2周波数ホッピングの値は前記第1周波数ホッピングの値の6倍であることを特徴とする。

0012

さらに、本明細書において、前記NPRACHプリアンブル送信に関するパラメータは、1つのプリアンブル(preamble)に含まれる連続するシンボルグループ(symbol group)の数を示す第5パラメータ及び1つのプリアンブル(preamble)に含まれるシンボルグループ(symbol group)の全体数を示す第6パラメータをさらに含むことを特徴とする。

0013

さらに、本明細書において、前記第5パラメータの値は2であり、前記第6パラメータの値は4であることを特徴とする。

0014

さらに、本明細書は、フレーム構造タイプ(frame structure type)2をサポートするNB(Narrow Band)−IoT(Internet of Things)システムにおいてNPRACH(Narrowband Physical Random Access Channel)プリアンブル(preamble)を送信する端末であって、無線信号送受信するためのRF(Radio Frequency)モジュールと、前記RFモジュールを制御するプロセッサとを含み、前記プロセッサは、アップリンク−ダウンリンク構成(uplink-downlink configuration)に関する制御情報を基地局から受信し、及び前記受信した制御情報と関連したNPRACHプリアンブル送信に関するパラメータに基づいて前記NPRACHプリアンブルを前記基地局に送信するように設定され、前記NPRACHプリアンブルは、1つ又はそれ以上のシンボルグループ(symbol group)を含み、1つのシンボルグループは、1つのCP(Cyclic Prefix)と少なくとも1つのシンボルを含み、前記NPRACHプリアンブル送信に関するパラメータは、1つのシンボルグループに含まれるシンボルの数を示す第1パラメータ及び1つのシンボルグループに含まれるCP(cyclic prefix)の長さを示す第2パラメータを含み、前記第1パラメータ及び前記第2パラメータは、前記第1パラメータ及び前記第2パラメータにそれぞれ対応する第3パラメータ及び第4パラメータと異なるように設定され、及び前記第3パラメータ及び前記第4パラメータは、フレーム構造タイプ(frame structure type)1においてサポートされるNPRACHプリアンブル送信に関するパラメータであることを特徴とする。

発明の効果

0015

本明細書は、NB−IoTシステムにおいてTDDをサポートする場合、新しいNPRACHプリアンブルフォーマットを定義することにより、レガシー(legacy)LTEのUL/DL構成(UL/DL configuration)を利用できるという効果がある。

0016

本発明で得ることができる効果は、以上で言及した効果に制限されず、言及しない更に他の効果は以下の記載から本発明が属する技術分野で通常の知識を有する者に明確に理解できるはずである。

図面の簡単な説明

0017

本発明に関する理解を助けるために詳細な説明の一部に含まれる、添付図は、本発明に対する実施例を提供し、詳細な説明と共に本発明の技術的特徴を説明する。

0018

本発明が適用できる無線通信システムにおいて無線フレームの構造を示す図である。
本発明が適用できる無線通信システムにおいて1つのダウンリンクスロットに対するリソースグリッド(resource grid)を例示した図である。
本発明が適用できる線通信システムにおいてダウンリンクサブフレームの構造を示す図である。
本発明が適用できる線通信システムにおいてアップリンクサブフレームの構造を示す図である。
本発明が適用できる無線通信システムにおいてコンポーネントキャリア及びキャリア併合の一例を示す図である。
キャリア併合をサポートするシステムのセル区分を例示した図である。
NPRACHプリアンブルのシンボルグループの一例を示す図である。
NB−IoTシステムにおけるNPRACHプリアンブルフォーマットの一例を示す図である。
NPRACHプリアンブルの繰り返しとランダムホッピング方法の一例を示す図である。
本明細書で提案するNPRACHプリアンブルフォーマットの一例を示す図である。
本明細書で提案するNPRACHプリアンブルシンボルグループに対するホッピングパターンの一例を示す図である。
本明細書で提案するNPRACHプリアンブルフォーマットの一例を示す図である。
本明細書で提案するNPRACHプリアンブルシンボルグループに対するホッピングパターンのまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブルフォーマットの他の一例を示す図である。
本明細書で提案するNPRACHプリアンブルシンボルグループに対するホッピングパターンのまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブルフォーマットのまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブルシンボルグループに対するホッピングパターンのまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブルシンボルグループに対するホッピングパターンのまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブルフォーマットのまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブルシンボルグループに対するホッピングパターンのまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブルフォーマットのまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブルシンボルグループに対するホッピングパターンのまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブルフォーマットのまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブルシンボルグループに対するホッピングパターンのまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブルフォーマットのまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブルシンボルグループに対するホッピングパターンのまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブルフォーマットのまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブルシンボルグループに対するホッピングパターンのまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブルシンボルグループに対するホッピングパターンのまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブルシンボルグループに対するホッピングパターンのまた他の一例を示す図である。
本明細書で提案するマルチトーンNPRACHプリアンブル送信の一例を示す図である。
本明細書で提案するマルチトーンNPRACHプリアンブル送信のまた他の一例を示す図である。
本明細書で提案するマルチトーンNPRACHプリアンブル送信のまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブルフォーマットのまた他の一例を示す図である。
本明細書で提案するショート(short)NPRACHプリアンブルフォーマットの一例を示す図である。
本明細書で提案するマルチトーンNPRACHプリアンブル送信のまた他の一例を示す図である。
本明細書で提案するマルチトーンNPRACHプリアンブル送信のまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブル送信のまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブル送信のまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブル送信のまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブル送信のまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブル送信のまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブル送信のまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブル送信のまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブル送信のまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブル送信のまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブル送信のまた他の一例を示す図である。
本明細書で提案するNPRACHプリアンブル送信のまた他の一例を示す図である。
図48によるシンボルグループ形態の一例を示す図である。
本明細書で提案するNPRACHプリアンブルのシンボルグループ間に送信する順序交換する方法の一例を示す図である。
NPRACHプリアンブルのマルチトーン送信に対する位相事前補償方法の一例を示す図である。
本明細書で提案するNPRACHプリアンブルを送信するための端末の動作を示すフローチャートである。
本明細書で提案する方法が適用できる無線通信装置ブロック構成図を例示する図である。
本発明の一実施形態による通信装置のブロック構成図を例示する図である。
本明細書で提案する方法が適用できる無線通信装置のRFモジュールの一例を示す図である。
本明細書で提案する方法が適用できる無線通信装置のRFモジュールのまた他の一例を示す図である。

実施例

0019

以下、本発明にかかる好ましい実施の形態を添付された図面を参照して詳細に説明する。添付された図面と共に以下に開示する詳細な説明は、本発明の例示的な実施の形態を説明するためのものであり、本発明が実施されうる唯一の実施の形態を示すためのものではない。以下の詳細な説明は、本発明の完全な理解を提供するために具体的細部事項を含む。しかしながら、当業者は、本発明がこのような具体的細部事項がなくても実施できることを理解すべきである。

0020

いくつかの場合、本発明の概念が曖昧になることを避けるために、公知の構造及び装置は省略されるか、または各構造及び装置の核心機能を重心にしたブロック図形式で示されることができる。

0021

本明細書において基地局は、端末と直接的に通信を行うネットワーク終端ノード(terminal node)としての意味を有する。本文書において基地局により行われると説明された特定動作は、場合によっては、基地局の上位ノード(upper node)により行われても良い。

0022

すなわち、基地局を含む多数のネットワークノード(network nodes)からなるネットワークにおいて端末との通信のために行われる多様な動作は、基地局または基地局以外の他のネットワークノードにより行われうることは明らかである。「基地局(BS:Base Station)」は、固定局(fixed station)、Node B、eNB(evolved-NodeB)、BTS(base transceiver system)、アクセスポイントAP:Access Point)などの用語により代替されることができる。また、「端末(Terminal)」は、固定されるか、または移動性を有することができ、UE(User Equipment)、MS(Mobile Station)、UT(user terminal)、MSS(Mobile subscriber Station)、SS(Subscriber Station)、AMS(Advanced Mobile Station)、WT(Wireless terminal)、MTC(Machine-Type Communication)装置、M2M(Machine-to-Machine)装置、D2D(Device-to-Device)装置などの用語に代替されることができる。

0023

以下、ダウンリンク(DL:downlink)は、基地局から端末への通信を意味し、アップリンク(UL:uplink)は、端末から基地局への通信を意味する。ダウンリンクにおける送信機は、基地局の一部で、受信機は、端末の一部でありうる。アップリンクにおける送信機は、端末の一部で、受信機は、基地局の一部でありうる。

0024

以下の説明において用いられる特定用語は、本発明の理解に役立つために提供されたものであり、このような特定用語の使用は、本発明の技術的思想から外れない範囲内で他の形態に変更されることができる。

0025

以下の技術は、CDMA(code division multiple access)、FDMA(frequency division multiple access)、TDMA(time division multiple access)、OFDMA(orthogonal frequency division multiple access)、SC-FDMA(single carrier frequency division multiple access)、NOMA(non-orthogonal multiple access)などのような多様な無線接続システムに利用されることができる。CDMAは、UTRA(universal terrestrial radio access)またはCDMA2000のような無線技術(radio technology)により具現化されることができる。TDMAは、GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)のような無線技術により具現化されることができる。OFDMAは、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802-20、E-UTRA(evolved UTRA)などのような無線技術により具現化されることができる。UTRAは、UMTS(universal mobile telecommunications system)の一部である。3GPP(3rd generation partnership project)LTE(long term evolution)は、E-UTRAを使用するE-UMTS(evolved UMTS)の一部であり、ダウンリンクにおいてOFDMAを採用し、アップリンクにおいてSC-FDMAを採用する。LTE-A(advanced)は、3GPP LTEの進化である。

0026

本発明の実施の形態は、無線接続システムであるIEEE 802、3GPP及び3GPP2のうち、少なくとも一つに開示された標準文書により裏付けられることができる。すなわち、本発明の実施の形態のうち、本発明の技術的思想を明確にあらわすために、説明しないステップまたは部分は、前記文書により裏付けられることができる。また、本文書に開示しているすべての用語は、前記標準文書により説明されることができる。

0027

説明を明確にするために、3GPPLTE/LTE-Aを中心に述べるが、本発明の技術的特徴がこれに制限されることではない。

0028

システム一般

0029

図1は、本発明が適用されることができる無線通信システムにおける無線フレームの構造を示す。

0030

3GPPLTE/LTE-Aでは、FDD(Frequency division Duplex)に適用可能なタイプ1無線フレーム(radio frame)構造とTDD(Time division Duplex)に適用可能なタイプ2の無線フレーム構造を支援する。

0031

図1(a)は、タイプ1無線フレームの構造を例示する。無線フレーム(radio frame)は、10個のサブフレーム(subframe)から構成される。一つのサブフレームは、時間領域(time domain)において2個のスロット(slot)から構成される。一つのサブフレームを送信するのにかかる時間をTTI(transmission time interval)という。例えば、一つのサブフレームの長さは1msで、一つのスロットの長さは、0.5msでありうる。
一つのスロットは、時間領域において複数のOFDM(orthogonal frequency division multiplexing)シンボルを含み、周波数領域において多数の資源ブロック(RB:Resource Block)を含む。3GPPLTEは、ダウンリンクにおいてOFDMAを使用するから、OFDMシンボルは、一つのシンボル区間(symbol period)を表現するためのものである。OFDMシンボルは、一つのSC-FDMAシンボルまたはシンボル区間ということができる。資源ブロック(resource block)は、資源割り当て単位で、一つのスロットにおいて複数の連続的な副搬送波(subcarrier)を含む。

0032

図1の(b)は、タイプ2フレーム構造(frame structure type 2)を示す。タイプ2無線フレームは、2個のハーフフレーム(half frame)から構成され、各ハーフフレームは、5個のサブフレームとDwPTS(Downlink Pilot Time Slot)、保護区間(GP:Guard Period)、UpPTS(Uplink Pilot Time Slot)から構成され、この中で1個のサブフレームは、2個のスロットから構成される。DwPTSは、端末での初期セルサーチ同期化またはチャネル推定に使用される。UpPTSは、基地局でのチャネル推定と端末のアップリンク送信同期とを合せるのに使用される。保護区間は、アップリンクとダウンリンクとの間にダウンリンク信号多重経路遅延によりアップリンクにおいて生じる干渉を除去するための区間である。

0033

TDDシステムのタイプ2フレーム構造においてアップリンク-ダウンリンク構成(uplink-downlink configuration)は、すべてのサブフレームに対してアップリンクとダウンリンクが割り当て(または予約)されるかどうかを表す規則である。表1は、アップリンク-ダウンリンク構成を示す。

0034

0035

表1に示すように、無線フレームの各サブフレーム別に、「D」は、下向きリンク送信のためのサブフレームを表し、「U」は、上向きリンク送信のためのサブフレームを表し、「S」は、DwPTS(Downlink Pilot Time Slot)、保護区間(GP:Guard Period)、UpPTS(Uplink Pilot Time Slot)の3つのフィールドで構成されるスペシャルサブフレーム(special subframe)を表す。

0036

DwPTSは、端末での初期セル探索、同期化、またはチャネル推定に使用される。UpPTSは、基地局でのチャネル推定と端末の上向きリンク送信同期とを合わせるのに使用される。GPは、上向きリンクと下向きリンクとの間に下向きリンク信号の多重経路遅延のため、上向きリンクで生じる干渉を除去するための区間である。

0037

各サブフレームiは、各T_slot=15360*T_s=0.5ms長さのスロット2i及びスロット2i+1で構成される。

0038

上向きリンク−下向きリンク構成は、7つに区分されることができ、各構成別に下向きリンクサブフレーム、スペシャルサブフレーム、上向きリンクサブフレームの位置及び/又は個数が異なる。

0039

下向きリンクから上向きリンクに変更される時点または上向きリンクから下向きリンクに切り換えられる時点を切換時点(switching point)という。切換時点の周期性(Switch−point periodicity)は、上向きリンクサブフレームと下向きリンクサブフレームとが切り換えられる様子が同様に繰り返される周期を意味し、5msまたは10msが全て支援される。5ms下向きリンク−上向きリンク切換時点の周期を有する場合には、スペシャルサブフレーム(S)は、ハーフフレーム毎に存在し、5ms下向きリンク−上向きリンク切換時点の周期を有する場合には、1番目のハーフ−フレームのみに存在する。

0040

全ての構成において、0番、5番サブフレーム、及びDwPTSは、下向きリンク送信のみのための区間である。UpPTS及びサブフレームにまっすぐ繋がるサブフレームは、常に上向きリンク送信のための区間である。

0041

このような、上向きリンク−下向きリンク構成はシステム情報であって、基地局と端末とが共に知っていることができる。基地局は、上向きリンク−下向きリンク構成情報が変わる度に構成情報のインデックスのみを送信することにより、無線フレームの上向きリンク−下向きリンク割当状態の変更を端末に知らせることができる。また、構成情報は、一種の下向きリンク制御情報であって、他のスケジューリング情報と同様に、PDCCH(Physical Downlink Control Channel)を介して送信されることができ、放送情報としてブロードキャストチャネル(broadcast channel)を介してセル内の全ての端末に共通に送信されることもできる。

0042

表2は、スペシャルサブフレームの構成(DwPTS/GP/UpPTSの長さ)を表す。

0043

0044

図1の例示による無線フレームの構造は、1つの例示に過ぎず、無線フレームに含まれる副搬送波の数、またはサブフレームに含まれるスロットの数、スロットに含まれるOFDMシンボルの数は、様々に変更されることができる。

0045

図2は、本発明が適用されることができる無線通信システムにおける一つのダウンリンクスロットに対する資源グリッド(resource grid)を示した図である。

0046

図2に示すように、一つのダウンリンクスロットは、時間領域において複数のOFDMシンボルを含む。ここで、一つのダウンリンクスロットは、7個のOFDMシンボルを含み、一つの資源ブロックは、周波数領域において12個の副搬送波を含むことを例示的に述べるが、これに限定されるものではない。

0047

資源グリッド上において各要素(element)を資源要素(resource element)とし、一つの資源ブロック(RB:resource block)は、12×7個の資源要素を含む。ダウンリンクスロットに含まれる資源ブロックの数NDLは、ダウンリンク送信帯域幅(bandwidth)に従属する。

0048

アップリンクスロットの構造は、ダウンリンクスロットの構造と同一でありうる。

0049

図3は、本発明が適用されることができる無線通信システムにおけるダウンリンクサブフレームの構造を示す。

0050

図3を参照すると、サブフレーム内の第1番目のスロットにおいて前の最大3個のOFDMシンボルが制御チャネルが割り当てられる制御領域(control region)であり、残りのOFDMシンボルは、PDSCH(Physical Downlink Shared Channel)が割り当てられるデータ領域(data region)である。3GPPLTEで使用されるダウンリンク制御チャネルの一例にPCFICH(Physical Control Format Indicator Channel)、PDCCH(Physical Downlink control Channel)、PHICH(Physical Hybrid-ARQIndicator Channel)などがある。

0051

PCFICHは、サブフレームの第1番目のOFDMシンボルにおいて送信され、サブフレーム内に制御チャネルの送信のために使用されるOFDMシンボルの数(すなわち、制御領域の大きさ)に関する情報を運ぶ。PHICHは、アップリンクに対する応答チャネルで、HARQ(Hybrid Automatic Repeat Request)に対するACK(Acknowledgement)/NACK(Not-Acknowledgement)信号を運ぶ。PDCCHを介して送信される制御情報をダウンリンク制御情報(DCI:downlink control information)という。ダウンリンク制御情報は、アップリンク資源割り当て情報、ダウンリンク資源割り当て情報または任意の端末グループに対するアップリンク送信(Tx)パワー制御命令を含む。

0052

PDCCHは、DL-SCH(Downlink Shared Channel)の資源割り当て及び送信フォーマット(これをダウンリンクグラントともいう)、UL-SCH(Uplink Shared Channel)の資源割り当て情報(これをアップリンクグラントともいう)、PCH(Paging Channel)でのページング(paging)情報、DL-SCHでのシステム情報、PDSCHから送信されるランダムアクセス応答(random access response)のような上位階層(upper-layer)制御メッセージに対する資源割り当て、任意の端末グループ内の個別端末に対する送信パワー制御命令集合、VoIP(Voice over IP)の活性化などを運ぶことができる。複数のPDCCHは、制御領域内で送信されることができ、端末は、複数のPDCCHをモニタリングできる。PDCCHは、一つまたは複数の連続的なCCE(control channel elements)の集合から構成される。CCEは、無線チャネルの状態に応じる符号化率(coding rate)をPDCCHに提供するために使用される論理割り当て単位である。CCEは、複数の資源要素グループ(resource element group)に対応する。PDCCHのフォーマット及び使用可能なPDCCHのビット数は、CCEの数とCCEにより提供される符号化率間の関連関係によって決定される。

0053

基地局は、端末に送信しようとするDCIに応じてPDCCHフォーマットを決定し、制御情報にCRC(Cyclic Redundancy Check)を付ける。CRCには、PDCCHの所有者(owner)または用途に応じて、固有識別子(これをRNTI(Radio Network Temporary Identifier)という。)がマスキングされる。特定の端末のためのPDCCHであれば、端末の固有の識別子、例えばC-RNTI(Cell-RNTI)がCRCにマスキングされることができる。またはページングメッセージのためのPDCCHであれば、ページング指示識別子、例えばP-RNTI(Paging-RNTI)がCRCにマスキングされることができる。システム情報、さらに具体的にシステム情報ブロック(SIB:system information block)のためのPDCCHであれば、システム情報識別子、SI-RNTI(system information RNTI)がCRCにマスキングされることができる。端末のランダムアクセスプリアンブルの送信に対する応答であるランダムアクセス応答を指示するために、RA-RNTI(random access-RNTI)がCRCにマスキングされることができる。

0054

図4は、本発明が適用されることができる無線通信システムにおけるアップリンクサブフレームの構造を示す。

0055

図4に示すように、アップリンクサブフレームは、周波数領域において制御領域とデータ領域とに分けられる。制御領域には、アップリンク制御情報を運ぶPUCCH(Physical Uplink control Channel)が割り当てられる。データ領域は、ユーザデータを運ぶPUSCH(Physical Uplink Shared Channel)が割り当てられる。単一搬送波特性を維持するために、一つの端末は、PUCCHとPUSCHを同時に送信しない。

0056

一つの端末に対するPUCCHには、サブフレーム内に資源ブロック(RB:Resource Block)対が割り当てられる。RB対に属するRBは、2個のスロットの各々で互いに異なる副搬送波を占める。これをPUCCHに割り当てられたRB対は、スロット境界(slot boundary)から周波数跳躍(frequency hopping)されるという。

0057

キャリア併合一般

0058

本発明の実施形態において考慮する通信環境は、マルチキャリア(Multi-carrier)サポート環境を全て含む。すなわち、本発明で使用されるマルチキャリアシステム又はキャリア併合(CA:Carrier Aggregation)システムとは、広帯域をサポートするために、目標とする広帯域を構成するときに目標帯域より小さい帯域幅(bandwidth)を有する1つ以上のコンポーネントキャリア(CC:Component Carrier)を併合(aggregation)して使用するシステムをいう。

0059

本発明においてマルチキャリアは、キャリアの併合(又は、搬送波集成)を意味し、ここで、キャリアの併合は、隣接した(contiguous)キャリア間の併合だけでなく、非隣接した(non-contiguous)キャリア間の併合の両方ともを意味する。また、ダウンリンクとアップリンク間に集成されるコンポーネントキャリアの数は異なるように設定されることができる。ダウンリンクコンポーネントキャリア(以下、「DL CC」という。)の数とアップリンクコンポーネントキャリア(以下、「UL CC」という。)の数が同一である場合を対称的(symmetric)集成といい、その数が異なる場合を非対称的(asymmetric)集成という。このようなキャリア併合は、搬送波集成、帯域幅集成(bandwidth aggregation)、スペクトル集成(spectrum aggregation)などの用語と混用して使用されることができる。

0060

2つ以上のコンポーネントキャリアが結合されて構成されるキャリア併合は、LTE−A(LTE-advanced)システムでは100MHz帯域幅までサポートすることを目標とする。目標帯域より小さい帯域幅を有する1つ以上のキャリアを結合するとき、結合するキャリアの帯域幅は、既存のIMTシステムとの互換性(backward compatibility)の維持のために既存のシステムで使用する帯域幅に制限することができる。例えば、既存の3GPPLTEシステムにおいては、{1.4,3,5,10,15,20}MHz帯域幅をサポートし、3GPP LTE−Aシステムにおいては、既存のシステムとの互換のために前記帯域幅のみを利用して20MHzより大きい帯域幅をサポートするようにすることができる。また、本発明で使用されるキャリア併合システムは、既存のシステムで使用する帯域幅と関係なく新たな帯域幅を定義してキャリア併合をサポートするようにすることもできる。

0061

LTE−Aシステムは、無線リソースを管理するためにセル(cell)の概念を使用する。

0062

前述したキャリア併合環境は、多重セル(multiple cells)環境ということができる。セルは、ダウンリンクリソース(DL CC)とアップリンクリソース(UL CC)の一対の組み合わせで定義されるが、アップリンクリソースは必須要素ではない。従って、セルは、ダウンリンクリソース単独、またはダウンリンクリソースとアップリンクリソースで構成されることができる。特定端末がただ1つの設定されたサービングセル(configured serving cell)を有する場合、1つのDL CCと1つのUL CCを有することができるが、特定端末が2つ以上の設定されたサービングセルを有する場合は、セルの数だけのDL CCを有し、UL CCの数は、それと等しいかより小さい。

0063

また、その逆にDL CCとUL CCが構成されることもできる。すなわち、特定端末が複数の設定されたサービングセルを有する場合、DL CCの数よりUL CCがさらに多いキャリア併合環境もサポートされることができる。すなわち、キャリア併合(carrier aggregation)は、それぞれキャリア周波数(セルの中心周波数)が相異なる2つ以上のセルの併合として理解されることができる。ここで言う「セル(Cell)」は、一般的に使用される基地局がカバーする領域としての「セル」とは区別されるべきである。

0064

LTE−Aシステムで使用されるセルは、プライマリセル(PCell:Primary Cell)及びセカンダリセル(SCell:Secondary Cell)を含む。PセルとSセルは、サービングセル(Serving Cell)として用いられることができる。RRC_CONNECTED状態にあるが、キャリア併合が設定されていないか、キャリア併合をサポートしない端末の場合、Pセルのみで構成されたサービングセルがただ1つ存在する。それに対して、RRC_CONNECTED状態にあり、キャリア併合が設定された端末の場合、1つ以上のサービングセルが存在することができ、全体のセルにはPセルと1つ以上のSセルが含まれる。

0065

サービングセル(PセルとSセル)は、RRCパラメータにより設定されることができる。PhysCellIdは、セルの物理層識別子として0から503までの整数値を有する。SCellIndexは、Sセルを識別するために使用される簡略な(short)識別子として1から7までの整数値を有する。ServCellIndexは、サービングセル(PセルまたはSセル)を識別するために使用される簡略な(short)識別子として0から7までの整数値を有する。0値はPセルに適用され、SCellIndexは、Sセルに適用するために予め付与される。すなわち、ServCellIndexにおいて最小のセルID(又は、セルインデックス)を有するセルがPセルとなる。

0066

Pセルは、プライマリ周波数(又は、primary CC)上で動作するセルを意味する。端末が初期接続設定(initial connection establishment)過程を行うか、接続再設定過程を行うのに使用されることができ、ハンドオーバー過程で指示されたセルを称することもできる。また、Pセルは、キャリア併合環境で設定されたサービングセルのうち制御関連通信の中心となるセルを意味する。すなわち、端末は、自分のPセルにおいてのみPUCCHを割り当てを受けて送信することができ、システムの情報を取得するか、モニタリングする手順を変更するのにPセルのみを利用することができる。E−UTRAN(Evolved Universal Terrestrial Radio Access)は、キャリア併合環境をサポートする端末に移動性制御情報(mobilityControlInfo)を含む上位層RRC接続再設定(RRCConnectionReconfigutaion)メッセージを利用して、ハンドオーバー手順のためにPセルのみを変更することもできる。

0067

Sセルは、セカンダリ周波数(又は、Secondary CC)上で動作するセルを意味することができる。特定端末にPセルは1つのみが割り当てられ、Sセルは、1つ以上が割り当てられることができる。Sセルは、RRC接続の設定が行われた後に構成可能であり、追加的な無線リソースを提供するのに使用されることができる。キャリア併合環境で設定されたサービングセルのうちPセルを除いた残りのセル、すなわち、SセルにはPUCCHが存在しない。E−UTRANは、Sセルをキャリア併合環境をサポートする端末に追加するとき、RRC_CONNECTED状態にある関連セルの動作と関連した全てのシステム情報を特定シグナル(dedicated signal)により提供することができる。システム情報の変更は、関連したSセルの解除及び追加により制御されることができ、ここで、上位層のRRC接続再設定(RRCConnectionReconfigutaion)メッセージを利用することができる。E−UTRANは、関連したSセル内においてブロードキャストするよりは端末別に相異なるパラメータを有する特定シグナリング(dedicated signaling)をすることができる。

0068

初期保安活性化の過程が開始された後、E−UTRANは、接続設定過程で、初期に構成されるPセルに付加して1つ以上のSセルを含むネットワークを構成することができる。キャリア併合環境でPセル及びSセルは、それぞれのコンポーネントキャリアとして動作することができる。以下の実施形態では、プライマリコンポーネントキャリア(PCC)はPセルと同一の意味で用いられることができ、セカンダリコンポーネントキャリア(SCC)はSセルと同一の意味で用いられることができる。

0069

図5は、本発明が適用できる無線通信システムにおけるコンポーネントキャリア及びキャリア併合の一例を示す。

0070

図5の(a)は、LTEシステムで使用される単一キャリア構造を示す。コンポーネントキャリアにはDL CCとUL CCがある。1つのコンポーネントキャリアは、20MHzの周波数範囲を有することができる。

0071

図5の(b)は、LTE−Aシステムで使用されるキャリア併合構造を示す。図5の(b)の場合、20MHzの周波数サイズを有する3つのコンポーネントキャリアが結合された場合を示す。DL CCとUL CCがそれぞれ3つずつあるが、DL CCとUL CCの個数に制限があることではない。キャリア併合の場合、端末は、3つのCCを同時にモニタリングすることができ、ダウンリンク信号/データを受信することができ、アップリンク信号/データを送信することができる。

0072

特定のセルにおいてN個のDL CCが管理される場合、ネットワークは、端末にM(M≦N)個のDL CCを割り当てることができる。ここで、端末は、M個の制限されたDL CCのみをモニタリングし、DL信号を受信することができる。また、ネットワークは、L(L≦M≦N)個のDL CCに優先順位を与え、主なDL CCを端末に割り当てることができ、このような場合、UEは、L個のDL CCを必ずモニタリングしなければならない。このような方式は、アップリンクの送信にも同様に適用されることができる。

0073

ダウンリンクリソースの搬送波周波数(又は、DL CC)とアップリンクリソースの搬送波周波数(又は、UL CC)の間のリンケージ(linkage)は、RRCメッセージのような上位層メッセージやシステム情報により指示されることができる。例えば、SIB2(System Information Block Type2)により定義されるリンケージによりDLリソースとULリソースの組み合わせが構成されることができる。具体的に、リンケージは、ULグラントを運ぶPDCCHが送信されるDL CCと、前記ULグラントを使用するUL CCとの間のマッピング関係を意味することができ、HARQのためのデータが送信されるDL CC(又は、UL CC)とHARQACK/NACK信号が送信されるUL CC(又は、DL CC)との間のマッピング関係を意味することもできる。

0074

図6は、キャリア併合をサポートするシステムのセルの区分を例示した図である。

0075

図6に示すように、設定されたセル(configured cell)は、図5のように、基地局のセルのうち測定報告に基づいてキャリア併合できるようにしたセルであり、端末別に設定される。設定されたセルは、PDSCHの送信に対するack/nack送信のためのリソースを予め予約しておくことができる。活性化されたセル(activated cell)は、設定されたセルのうち実際にPDSCH/PUSCHを送信するように設定されたセルであり、PDSCH/PUSCH送信のためのCSI(Channel State Information)報告SRS(Sounding Reference Signal)送信を行う。非活性化されたセル(de-activated cell)は、基地局の命令又はタイマー動作によりPDSCH/PUSCHの送信をしないようにするセルであり、CSI報告及びSRS送信中断することができる。

0076

以下、狭帯域物理ランダムアクセスチャネル(narrowband physical random access channel)について説明する。

0077

物理層ランダムアクセスプリアンブルは、単一サブキャリア周波数ホッピングシンボルグループに基づく。

0078

前記シンボルグループは図7に示され、長さ

の1つのCP(cyclic prefix)と全体長

を有する5つの同一のシンボルのシーケンスを含む。

0079

前記物理層ランダムアクセスプリアンブルのパラメータは、下記の表3に示す。

0080

すなわち、図7は、NPRACHプリアンブルのシンボルグループの一例を示す図であり、表3は、ランダムアクセスプリアンブルパラメータ(random access preamble parameters)の一例を示す表である。

0081

0082

ギャップ(gap)なしに送信される4シンボルグループを含むNPRACHプリアンブルは

送信される。

0083

ランダムアクセスプリアンブルの送信は、MACレイヤ(layer)によりトリガされる場合、特定時間及び周波数リソースに制限される。

0084

上位層により提供されるNPRACH構成(configuration)は次のパラメータを含む。

0085

−NPRACHリソース周期(resource periodicity)

(nprach−Periodicity)、

0086

−NPRACHに割り当てられる1番目のサブキャリア周波数位置

(nprach−SubcarrierOffset)、

0087

−NPRACHに割り当てられるサブキャリアの数

(nprach−NumSubcarriers)、

0088

競争基盤(contention based)NPRACHランダムアクセスに割り当てられる開始サブキャリア(starting sub-carriers)の数

(nprach−NumCBRA−StartSubcarriers)、

0089

−試み(attempt)別のNPRACH繰り返し数

(numRepetitionsPerPreambleAttempt)、

0090

−NPRACH開始時間(starting time)

(nprach−StartTime)、

0091

−マルチトーンmsg3送信のためのUEサポートの指示(indication)のために予約されたNPRACHサブキャリア範囲に対する開始サブキャリアインデックスを計算するための比率

(nprach−SubcarrierMSG3−RangeStart)。

0092

NPRACH送信は、

満足する無線フレームの開始以後時間

単位(time unit)でのみ開始することができる。

0093

時間単位の送信後に、

時間単位のギャップ(gap)は挿入される。

0094

であるNPRACH構成(NPRACH configurations)は有効でない(invalid)。

0095

競争基盤ランダムアクセスに割り当てられるNPRACH開始サブキャリアはサブキャリアの2セット、すなわち、

及び

割れる。

0096

ここで、2番目のセットが存在する場合、2番目のセットはマルチトーンmsg3送信に対するUEサポートを示す。

0097

NPRACH送信の周波数位置は

サブキャリア内において制限される。周波数ホッピングは12サブキャリア内において用いられ、i番目のシンボルグループ(symbol group)の周波数位置は

により与えられ、

であり、数式1に従う。

0098

0099

ここで、

は、

からMACレイヤにより選択されるサブキャリアである。また、疑似ランダム生成器(psedo random generator)は

に初期化される。

0100

ベースバンド信号生成(Baseband signal generation)

0101

シンボルグループ(symbol group)iに対する時間連続した(time-continuous)ランダムアクセス信号

は、下記の数式2により定義される。

0102

0103

ここで、

であり、

送信パワー

に従うための振幅スケーリング要素(amplitude scaling factor)であり、



はランダムアクセスプリアンブルとアップリンクデータ送信との間のサブキャリア間隔において差を説明する。

0104

また、周波数領域においての位置はパラメータ

により調節される。

0105

変数

は、下記の表4に示す。

0106

すなわち、表4はランダムアクセスベースバンドパラメータ(random access baseband parameters)の一例を示す表である。

0107

0108

PUSCH−Config

0109

IEPUSCH−ConfigCommonは、PUSCH及びPUCCHに対する共通PUSCH構成及び参照信号構成を指定するのに用いられる。IE PUSCH−ConfigDedicatedは、UE特定PUSCH構成を指定するのに用いられる。

0110

0111

表5において、symPUSCH−UpPTSは、UpPTSにおいてPUSCH送信のために設定されたデータシンボルの数を示す。

0112

sym2、sym3、sym4、sym5及びsym6値は、一般CP(normal cyclic prefix)のために用いられ、sym1、sym2、sym3、sym4及びsym5値は、拡張CP(extended cyclic prefix)のために用いられる。

0113

物理リソースマッピング(Mappingto physical resources)

0114

UpPTSに対して、dmrsLess−UpPtsが「true」に設定されると、物理リソースマッピングはスペシャルサブフレーム(special subframe)の2番目のスロットの

シンボルから開始し、そうでないと、前記物理リソースマッピングはスペシャルサブフレーム(special subframe)の2番目のスロットの

から開始する。

0115

以下、本明細書で提案するセルラー(cellular)IoT(Internet of Things)をサポートするNB(NarrowBand)−IoTシステムにおいて、フレーム構造タイプ2(frame structure type 2, TDD)をサポートするとき、NRACH(Narrowband Random Access Channel)プリアンブル(preamble)の設計(design)方法について説明する。

0116

まず、狭帯域(narrowband:NB)−LTEは、LTEシステムの1PRB(Physical Resource Block)に該当するシステム帯域幅(system BW)を有する低い複雑度(complexity)、低いパワー消費(power consumption)をサポートするシステムをいう。

0117

これは、主にMTC(machine-type communication)などのデバイス(device)をセルラーシステム(cellular system)においてサポートしてIoT(internet of things)を実現するための通信方式として用いられる。

0118

NB−IoTシステムは、サブキャリア間隔(subcarrier spacing)などのOFDMパラメータをLTEシステムにおいてのものと同一のものを用いることにより、追加的な帯域(band)割り当てなしにレガシーLTEバンド(legacy LTE band)に1PRBをNB−LTE用として割り当てて周波数を効率的に利用できるという利点がある。

0119

NB−LTEの物理チャネル(physical channel)は、ダウンリンクの場合、NPSS/NSSS、NPBCH、NPDCCH/NEPDCCH、NPDSCHなどと定義し、LTEと区別するためにNを加えて呼ぶことにする。

0120

Rel.14までのFDD(Frequency Division Duplex) NB−IoTにおいて用いているNPRACHプリアンブル(preamble)は、2種類フォーマットがあり、より具体的な形状は図8のようである。

0121

すなわち、図8は、NB−IoTシステムにおけるNPRACHプリアンブルフォーマットの一例を示す図である。

0122

図8に示すように、NPRACHプリアンブルは、単一トーン送信(single tone transmission)を行い、3.75kHzのサブキャリア間隔(subcarrier spacing)を有し、5つのシンボルと1つのCPが結合して1つのシンボルグループ(symbol group)を形成する。

0123

ここで、NPRACHプリアンブルフォーマット0(NPRACH preamble format 0)は66.66μsのCPと5つの連続した266.66μsのシンボル(symbol)で形成されており、NPRACHプリアンブルフォーマット1(PRACH preamble format 1)は266.66μsのCPと5つの連続した266.66μsのシンボル(symbol)で形成されている。

0124

ここで、NPRACHプリアンブルフォーマット0(NPRACH preamble format 0)のシンボルグループの長さは1.4msとなり、NPRACHプリアンブルフォーマット1(PRACH preamble format 1)のシンボルグループ(symbol group)の長さは1.6msとなる。

0125

また、繰り返し(repetition)のための基本単位は、4つのシンボルグループが集まって1つの繰り返しを形成する。

0126

従って、1つの繰り返しを構成している4つの連続したシンボルグループの長さはformat 0を用いると5.6msになり、format 1は6.4msになる。

0127

また、図9に示すように、NPRACHプリアンブルは、サブキャリア間隔(subcarrier spacing)の分だけの間隔を有する1番目のホッピング(1st hopping)とサブキャリア間隔 (subcarrier spacing)の6倍の分だけの間隔を有する2番目のホッピング(2nd hopping)をするよう設定される。

0128

図9は、NPRACHプリアンブルの繰り返しとランダムホッピング方法の一例を示す図である。

0129

一方、Rel.15 NB−IoTシステムで導入しようとするフレーム構造タイプ2(frame structure type 2, TDD)において、レガシーLTE(legacy LTE)のUL/DL構成(UL/DL configuration)を考慮すると、レガシーNB−IoT(Rel.14) NPRACHプリアンブルフォーマットをそのまま用いることは容易ではない。

0130

但し、TDDスタンドアローンモード(TDD standalone mode)は、新しいUL/DL構成(UL/DL configuration)を導入してレガシーNB−IoTNPRACHプリアンブルフォーマット(legacy NB-IoT NPRACH preamble format)を用いるように設定することはできるが、一般的に考慮しているインバンドモード(in-band mode)又はガードバンドモード(guard band mode)は、レガシーNB−IoT NPRACHプリアンブルフォーマットをそのまま用いることは容易ではない。

0131

従って、本明細書においては、フレーム構造タイプ2(frame structure type 2)がNB−IoTシステムに適用されるとき、NRACHプリアンブル設計方法を提供する。

0132

後述する実施形態にもかかわらず、本発明の思想は、PRACH以外の他のチャネル(channel)にも適用され、単一トーン(single-tone)方式だけでなく、マルチトーン(multi-tone)方式にも拡張が可能である。

0133

また、本明細書においては、TDDインバンドモード(TDD in-band mode)又はガードバンドモード(guard band mode)を中心に説明しているが、スタンドアローンモード(standalone mode)においても本明細書で提案する方法が利用できることは言うまでもない。

0134

フレーム構造タイプ2(Frame structure type 2)(TDD)に対する進化したNPRACHプリアンブル(enhanced NPRACH preamble)

0135

図9において説明したように、前記1番目のホッピング(1st hopping)と前記2番目のホッピング(2nd hopping)は連続的なULサブフレームにおいて送信されるように設定することが性能面で有利である。

0136

しかしながら、レガシーNPRACHプリアンブルフォーマット(legacy NPRACH preamble format)をTDDにおいても用いる場合、4つのシンボルグループを連続的に送信できるUL/DL構成(UL/DL configuration)(表1を参照)が存在しない。

0137

従って、TDDの場合、NPRACHプリアンブルを設計(design)するとき、(1)1つのシンボルグループに含まれるシンボルの数を減らすことを考慮するか、又は(2)サブフレーム間隔を増加させると共にシンボル長さ(symbol length)を減らす方法を考慮するか、又は(3)CP長さを減らすことを考慮することができる。

0138

また、前記(1)ないし(3)の方式を組み合わせてNPRACHプリアンブルを設計してもよい。

0139

表6は、表2のUL/DL構成(UL/DL configuration)に構成別に連続するULサブフレームを表示したことを示す。

0140

0141

表6を参照して、レガシーUL/DL構成(UL/DL configuration)に連続的に利用できるULSF(subframe)が個数を確認すると、configuration#2とconfiguration#5を除いたconfiguration#0、#1、#3、#4、#6は最小2つのUL SFを連続的に含む。

0142

また、スペシャルサブフレーム(special subframe)のUpPTSまで考慮すると(最大6つのシンボルまで構成(configure)可能)最大428μs(71.33μs*6)をもっと用いることができる。

0143

ここで、レガシーLTE/MTCシステムは、各端末にsymPUSCH−UpPTSという専用シグナリング(dedicated signaling)で構成(configuration)した。

0144

一方、TDDNPRACHプリアンブルをUpPTSにおいて利用できると仮定すると、前記UpPTSに含まれるシンボルの数はSIB(System Information Block)を介してセル特定(cell-specific)に、半統計的 (semi-statistic)に構成(configure)することができる。

0145

追加的に、UpPTSは、スペシャルサブフレーム構成(special subframe configuration)値に応じて何個のシンボルが利用できるかが決定されるので、SIBを介して半統計的(semi-statistic)に構成(configure)されるTDDNPRACHプリアンブル用のUpPTSシンボルの数はスペシャルサブフレーム構成(special subframe configuration)に基礎(又は、依存)するといえる。

0146

すなわち、予め約束されたスペシャルサブフレーム構成(special subframe configuration)(例えば、#0、♯5)においてのみUpPTSをNPARCHプリアンブル送信に用いると設定することができる。

0147

また、NPRACHリソース割り当て(resource allocation)情報を端末に伝達するとき、NPRACH送信のためにUpPTSを使用することができるかに対して明示的に(explicit)通知することができる。

0148

さらに、TDDNPRACHプリアンブル用のUpPTSシンボルパラメータ(symbol parameter)を送信することにより、暗示的に(implicit)UpPTSを使用するか否かを指示できると設定することができる。

0149

この場合、UpPTSを用いると設定する場合、端末は、基地局から構成(configure)されたUpPTSシンボルの最初からNPRACHプリアンブル(NPRACH preamble)を送信すると設定することができる。

0150

また、UpPTSを使用しないと設定する場合、端末は、スペシャルサブフレーム(special subframe)の直後に位置するULサブフレームの開始点にNPRACHプリアンブルを送信すると設定することができる。

0151

追加的に、NPRACHプリアンブルのためにUpPTSシンボルを利用できると端末に通知した場合、又は、そうでない場合も、基地局がNPRACHプリアンブル送信開始時点別途に構成(configure)すると、端末は、基地局が構成(configure)した所でNPRACHプリアンブル送信を開始すると設定することができる。

0152

また、基地局においてCEレベル(level)別及び/又はNPRACHフォーマット(シンボルグループ内の繰り返し数(repetition number within symbol group))別にTA(ダウンリンク時間同期(downlink time synchronization)時点からNPRACHを予め送信する時点までの時間)を構成(configure)して、暗示的なガード時間(implicit guard time)を確保する方法を考慮することができる。

0153

ここで、適用するデフォルト(default)TAは、NPRACHを送信するNPRACHリソースに従うことではなく、NPRACHを最小送信したリソースのデフォルトTAに従うと設定することができる。

0154

追加的に、基地局がUpPTSにおいてNPRACHプリアンブルを送信しても問題ないと端末に通知した場合、又は、UpPTSにおいてNPRACHプリアンブルの送信が端末と基地局間に事前に約束された場合、次の方法が考慮されることができる。

0155

第1に、スモールギャップホッピング(small gap hopping)(例えば、サブキャリア間隔などのギャップでホッピング、例えば、3.75kHz)は、スペシャルSFのUpPTSと前記スペシャルSFの直ぐ次に続くUL SFまでわたって送信するNPRACHプリアンブル内において行われると設定することができる。

0156

特徴的に、PRACHプリアンブルのシンボルグループ内のCP(Cyclic Prefix)を長くして用いると設定されることができる。

0157

第2に、連続したULサブフレーム(subframe)の数が10msec内で同一でない場合(例えば、3つの連続したULサブキャリアサブフレームと2つの連続したULサブフレームから構成されているUL/DL configuration♯6)、連続的に現れるULサブフレームがより長い区間でシンボルグループ内のCPを増加させ、スモールギャップホッピング(small gap hopping)すると設定することができる。

0158

最後に、NPRACHプリアンブルを送信できるUpPTSシンボルの長さが変化するに従ってシンボルグループ内のCP長さが変化し得ると設定することができる。

0159

また、NPRACHプリアンブルを送信できるUpPTSシンボルの長さに応じてシンボルグループ内のシンボル数が変化し得ると設定することができる。

0160

追加的に、セル(cell)が端末に構成(configure)したUL/DL構成(UL/DL configuration)に応じて端末がNPRACHプリアンブルフォーマットを選択して送信することを考慮することができる。

0161

特徴的に、UL/DL構成(UL/DL configuration)中に連続的に現れるULサブフレームの数の最小値に応じて端末がNPRACHプリアンブルフォーマットを選択すると設定することもできる。

0162

ケース1の場合、UL/DL構成(UL/DL configuration)#0と#3は連続的に現れるULサブフレーム数の最小値が3SFsであり、ケース2の場合、UL/DL構成(UL/DL configuration)#1、#4、#6は連続的に現れるULサブフレーム数の最小値が2SFsであり、ケース3の場合、UL/DL構成(UL/DL configuration)#2と#5は連続的に現れるULサブフレーム数の最小値が1SFであると区分することができる。

0163

前記端末は、各3つのケース別に相異なるNPRACHプリアンブルフォーマット(NPRACH preamble format)を選択すると設定することができる。

0164

以下、より具体的に、フレーム構造タイプ2(frame structure type 2)がNB−IoTシステムに適用されるとき、NRACHプリアンブルの設計と関連した様々な方法について説明する。

0165

(方法1)

0166

方法1は、NPRACHプリアンブルのサブキャリア間隔(subcarrier spacing)を既存に比べてN倍増加(すなわち、シンボル区間(symbol duration)は既存に比べて1/N倍減少)させ、CP長さ(CP length)を既存に比べて1/Tの分だけ減少させる方法である。

0167

すなわち、方法1は、シンボルグループ内のシンボルの数は変化することなく、シンボルの区間(duration)をN倍ダウンスケール(down scale)する方法である。

0168

方法1は、NPRACHプリアンブルのサブキャリア間隔をレガシーNPRACHプリアンブルのサブキャリア間隔値に比べてN倍増加させることである。

0169

ここで、シンボル長さ(symbol length)は1/N倍に減少し、考慮するCP長さ(CP length)は1/Tの分だけ減少すると設定することができる。(Nは正の整数、Tは実数

0170

例を挙げてより具体的に説明する。下記の例においてNとTは相異なる値を有してもよい。

0171

(実施形態1)

0172

実施形態1は、N=2であり、T=2の場合である。

0173

N値が2であると、新しいNPRACHプリアンブルのサブキャリア間隔は3.75kHzの2倍である7.5kHzとなる。

0174

それと同時に、シンボル区間(symbol duration)は266.66μsから133.33μsに1/2倍に減少する。

0175

また、Tが2であるので、CP長さは1/2倍に減少する。この場合も2つの相異なる長さのCPをサポートし、1つのシンボルグループに入るシンボル数がレガシーNPRACHプリアンブル構造(legacy NPRACH preamble configuration)と同じであるとする場合、新しいPRACHプリアンブルフォーマット0(PRACH preamble format 0)と新しいPRACHプリアンブルフォーマット1(PRACH preamble format 1)は図10のように設定される。

0176

図10は、本明細書で提案するNPRACHプリアンブルフォーマットの一例を示す図である。

0177

図10に示すように、PRACHプリアンブルフォーマット0(PRACH preamble format 0)をなすシンボルグループの長さは0.7msとなり、PRACHプリアンブルフォーマット1(PRACH preamble format 1)をなすシンボルグループの長さは0.8msとなる。

0178

これは、すなわち、PRACHプリアンブルフォーマット1(PRACH preamble format 1)を用いても2つの連続したシンボルグループの長さが2msより小さいので、2つのシンボルグループを連続的に送信することができる。

0179

従って、この場合は、各端末がNPRACHプリアンブルを送信するとき、1番目のホッピング(1st hopping)をなしている2つのシンボルグループは2つのULSFに連続的に送信するように設定し、2番目のホッピング(2nd hopping)は2つの連続的なUL SFの間で送信されるように設定することができる。

0180

これを図示すると、図11のようである。

0181

図11は、本明細書で提案するNPRACHプリアンブルシンボルグループに対するホッピングパターンの一例を示す図である。

0182

図11に示すように、NPRACHプリアンブルのための周波数リソース(frequency resource)としてサブキャリア(subcarrier)nからサブキャリア(subcarrier)n+k−1までトータルk個のサブキャリアが割り当てられ、レガシーLTETDDのUL/DL構成#1(UL/DL configuration #1)の状況に応じてNPRACHプリアンブルをどのように送信するかを表現している。

0183

このような方式で送信する場合、4つのシンボルグループを連続的に送信することに比べてチャネルの変化による性能劣化が発生する可能性がある。

0184

しかしながら、1番目のホッピングをなしている2つのシンボルグループが連続的に送信されているため、基地局端において端末別のTA推定(estimation)は大きな問題なく行われる。

0185

ただし、NPRACHプリアンブルのサブキャリア間隔が増加したため、周波数リソース(frequency resource)が既存に比べて減少するという欠点がある。

0186

すなわち、既存に3.75kHzのサブキャリア間隔である場合、48個の周波数リソースが使用可能であったが、7.5kHzのサブキャリア間隔である場合、24個の周波数リソースが使用可能である。

0187

また、CP長さが短くなるにつれて該当セルがサービング(serving)できるセルカバレッジ(cell coverage)が短くなるという欠点があり得る。

0188

(実施形態2)

0189

実施形態2はN=4であり、T=4の場合である。

0190

N値が4である場合、新しいNPRACHプリアンブルのサブキャリア間隔は3.75kHzの4倍である15kHzとなる。

0191

それと同時に、シンボル区間(symbol duration)は266.66μsから66.66μsに1/4倍に減少する。また、Tが4であるので、CP長さも図1/4倍に減少する。

0192

この場合も2つの相異なる長さのCPをサポートし、1つのシンボルグループに入るシンボル数がレガシーNPRACHプリアンブル構造と同じであるとする場合は、新しいPRACHプリアンブルフォーマット0(PRACH preamble format 0)と新しいPRACHプリアンブルフォーマット1(PRACH preamble format 1)は図12のように設定される。

0193

図12は、本明細書で提案するNPRACHプリアンブルフォーマットの一例を示す図である。

0194

図12に示すように、NPRACHプリアンブルフォーマット0(NPRACH preamble format 0)をなすシンボルグループ(symbol group)の長さは0.35msとなり、NPRACHプリアンブルフォーマット1(NPRACH preamble format 1)をなすシンボルグループの長さは0.4msとなる。

0195

これは、すなわち、NPRACHプリアンブルフォーマット1(PRACH preamble format 1)を用いても4つの連続したシンボルグループの長さが2msより小さいので、4つのシンボルグループを連続的に送信することができる。

0196

従って、この場合は、各端末がNPRACHプリアンブルを送信するとき、既存の方法と類似して1番目のホッピングと2番目のホッピングをなしている4つのシンボルグループは2つのULSFに連続的に送信するように設定することができる。

0197

これを図示すると、図13のようである。

0198

図13は、本明細書で提案するNPRACHプリアンブルシンボルグループに対するホッピングパターンのまた他の一例を示す図である。

0199

図13に示すように、NPRACHプリアンブルのための周波数リソース(frequency resource)としてサブキャリア(subcarrier)nからサブキャリア(subcarrier)n+j−1までトータルj個のサブキャリアが割り当てられ、レガシーLTETDDのUL/DL構成(UL/DL configuration)#1の状況に応じてNPRACHプリアンブルをどのように送信するかを表現している。

0200

このような方式で送信する場合、4つのシンボルグループを連続的に送信するため、基地局端において端末別のTA推定(estimation)は大きな問題なく行われる。

0201

ただし、NPRACHプリアンブルのサブキャリア間隔が増加したため、周波数リソースが既存に比べて減少するという欠点がある。

0202

すなわち、既存にの3.75kHzのサブキャリア間隔である場合、48個の周波数リソースを使用可能であったが、15kHzのサブキャリア間隔である場合、12個の周波数リソースを使用できる。

0203

また、CP長さが短くなるにつれて該当セル(cell)がサービング(serving)できるセルカバレッジ(cell coverage)が短くなるという欠点があり得る。

0204

(実施形態3)

0205

実施形態3はN=2であり、T=1の場合である。

0206

N値が2である場合、新しいNPRACHプリアンブルのサブキャリア間隔は3.75kHzの2倍である7.5kHzとなる。

0207

それと同時に、シンボル区間(symbol duration)は、266.66μsから133.33μsに1/2倍に減少する。ただし、Tが1であるので、CP長さは変化しなくなる。

0208

この場合も2つの相異なる長さのCPをサポートし、1つのシンボルグループに入るシンボル数がレガシーNPRACHプリアンブル構造と同じであるとする場合、新しいPRACHプリアンブルフォーマット0(PRACH preamble format 0)と新しいPRACHプリアンブルフォーマット1(PRACH preamble format 1)は図14のように設定される。

0209

図14は、本明細書で提案するNPRACHプリアンブルフォーマットのまた他の一例を示す図である。

0210

図14に示すように、PRACHプリアンブルフォーマット0(PRACH preamble format 0)をなすシンボルグループの長さは0.733msとなり、PRACHプリアンブルフォーマット1(PRACH preamble format 1)をなすシンボルグループの長さは0.933msとなる。

0211

これは、すなわち、PRACHプリアンブルフォーマット1(PRACH preamble format 1)を用いても2つの連続したシンボルグループの長さが2.214ms(2 ULSF+3 symbols for UpPTS)より小さいので、2つのシンボルグループを連続的に送信することができる。

0212

従って、この場合、各端末がNPRACHプリアンブルを送信するとき、1番目のホッピング(1st hopping)をなしている2つのシンボルグループはUpPTSと2つのULSFに連続的に送信するように設定し、2番目のホッピング(2nd hopping)はUpPTSと2つの連続的なUL SF間に現れるように送信するように設定することができる。これを図示すると図15の通りである。

0213

図15は、本明細書で提案するNPRACHプリアンブルシンボルグループに対するホッピングパターンのまた他の一例を示す図である。

0214

図15に示すように、NPRACHプリアンブルのための周波数リソースとしてサブキャリア(subcarrier)nからサブキャリア(subcarrier)n+k−1までトータルk個のサブキャリアが割り当てられ、レガシーLTETDDのUL/DL構成(UL/DL configuration)#1の状況に応じてNPRACHプリアンブルをどのように送信するかを表現している。

0215

このような方式で送信する場合、4つのシンボルグループを連続的に送信することに比べてチャネルの変化による性能劣化が発生する可能性がある。

0216

しかしながら、1番目のホッピング(1st hopping)をなしている2つのシンボルグループが連続的に送信されているため、基地局端において端末別のTA推定(estimation)は大きな問題なく行われる。

0217

また、NPRACHプリアンブルのサブキャリア間隔が増加したため、周波数リソースが既存に比べて減少するという欠点がある。すなわち、既存に3.75kHzのサブキャリア間隔である場合は48個の周波数リソースを使用可能であったが、7.5kHzのサブキャリア間隔である場合は24個の周波数リソースを使用できる。ただし、CP長さが変化しないので、セルカバレッジ(cell coverage)はFDDセルのカバレッジと同様の水準を維持できるという利点がある。

0218

(実施形態4)

0219

実施形態4はN=4であり、T=1の場合である。

0220

N値が4である場合、新しいNPRACHプリアンブルのサブキャリア間隔は3.75kHzの4倍である15kHzとなる。それと同時に、シンボル区間(symbol duration)は266.66μsから66.66μsに1/4倍に減少する。

0221

ただし、Tが1であるので、CP長さは変わらなくなる。この場合も2つの相異なる長さのCPをサポートし、1つのシンボルグループに入るシンボル数がレガシーNPRACHプリアンブル構造と同じであるとする場合は、新しいPRACHプリアンブルフォーマット0(PRACH preamble format 0)と新しいPRACHプリアンブルフォーマット1(PRACH preamble format 1)は図16のように設定される。

0222

図16は、本明細書で提案するNPRACHプリアンブルフォーマットのまた他の一例を示す図である。

0223

図16によると、format 0をなすシンボルグループの長さは0.4msとなり、format 1をなすシンボルグループの長さは0.6msとなる。

0224

一般に、UL/DL構成(UL/DL configuration)#2を用いるセルはカバレッジが大きくないという仮定下でformat 0を主に利用できると設定することができる。

0225

従って、format 0を用いる場合に2つの連続したシンボルグループの長さが1msより小さいので、2つのシンボルグループを連続的に送信することができる。

0226

従って、この場合、各端末がNPRACHプリアンブルを送信するとき、1番目のホッピング(1st hopping)をなしている2つのシンボルグループは1つのULSFに連続的に送信するように設定し、2番目の(2nd hopping)をなしている2つのシンボルグループも1つのUL SFに連続的に送信するように設定することができる。

0227

これを図示すると、図17及び図18のようである。

0228

図17及び図18は、本明細書で提案するNPRACHプリアンブルシンボルグループに対するホッピングパターンのまた他の一例を示す図である。

0229

図17及び図18に示すように、NPRACHプリアンブルのための周波数リソースとしてサブキャリアnからサブキャリアn+j−1までトータルj個のサブキャリアが割り当てられ、レガシーLTETDDのUL/DL構成(UL/DL configuration)#2の状況に応じてNPRACHプリアンブルをどのように送信するかを表現している。

0230

また、単一繰り返し(single repetition)内にG個のシンボルグループが入ることができる。

0231

図17は、単一繰り返し(single repetition)内にシンボルグループが4回入ったことを考慮した例であり、図18は、単一繰り返し(single repetition)内にシンボルグループ8回入ったことを考慮した例である。

0232

特徴的に、サブキャリア間隔が15kHzである場合、1番目のホッピング(1st hopping)は単一トーン(single tone)(例えば、15kHz)の差の分だけホップするように設定することができ、2番目のホッピング(2nd hopping)は2つのトーン(例えば、30kHz)の差の分だけホップするように設定することができる。

0233

このような方式で送信する場合、4つのシンボルグループを連続的に送信することに比べてチャネルの変化による性能劣化が発生する可能性があるが、1番目のホッピング(1st hopping)をなしている2つのシンボルグループと2番目のホッピング(2nd hopping)をなしている2つのシンボルグループがそれぞれ連続的に送信されているため、基地局端において端末別のTA推定(estimation)は大きな問題なく行われる。

0234

ただし、NPRACHプリアンブルのサブキャリア間隔が増加したため、周波数リソースが既存に比べて減少するという欠点がある。

0235

すなわち、既存に3.75kHzサブキャリア間隔である場合は、48個の周波数リソースを使用可能であったが、15kHzサブキャリア間隔である場合は、12個の周波数リソースを使用できる。

0236

ただし、CP長さが変化していないため、セルカバレッジ(cell coverage)はFDDセルのカバレッジと同様の水準を維持できるという利点がある。

0237

追加的に、同一の状況でUL/DL構成(UL/DL configuration)#1を用いるセルの一例を図示すると図13のようである。

0238

(方法2)

0239

方法2は、NPRACHプリアンブルのシンボルグループ(symbol group)をなしているシンボル数をM個に変更する方法である。

0240

ここで、MはM<5の自然数であり、方法2は、サブキャリア間隔(subcarrier spacing)、シンボル区間(symbol duration)及びCP長さが変更されない。

0241

すなわち、方法2は、NPRACHプリアンブルのシンボルグループをなしているシンボル数を既存の5つから5つより小さいM個に変更する方法である。

0242

以下、例を挙げてより具体的に説明する。

0243

(実施形態1)

0244

実施形態1はM=3の場合である。

0245

Mが3である場合、1つのシンボルグループをなしているシンボルの数が3であるという意味であり、サブキャリア間隔が変わらないので、相異なる2つのCP長さをそのまま用いる場合、新しいPRACHプリアンブルフォーマット0(PRACH preamble format 0)と新しいPRACHプリアンブルフォーマット1(PRACH preamble format 1)は図19のように設定される。

0246

図19は、本明細書で提案するNPRACHプリアンブルフォーマットのまた他の一例を示す図である。

0247

図19によれば、PRACHプリアンブルフォーマット0(PRACH preamble format 0)をなすシンボルグループの長さは0.866msとなり、PRACHプリアンブルフォーマット1(PRACH preamble format 1)をなすシンボルグループの長さは1.066msとなる。

0248

これは、すなわち、PRACHプリアンブルフォーマット1(PRACH preamble format 1)を用いても2つの連続したシンボルグループの長さが2.428ms(2 ULSFs+6 symbols for UpPTS)より小さいので、2つのシンボルグループを連続的に送信することができる。

0249

従って、各端末がNPRACHプリアンブルを送信するとき、1番目のホッピング(1st hopping)をなしている2つのシンボルグループはUpPTSと2つのULSFsに連続的に送信するように設定し、2番目のホッピング(2nd hopping)はUpPTSと2つの連続的なUL SFs間に現れるように設定することができる。

0250

これを図示すると、図20のようである。図20に示すように、NPRACHプリアンブルのための周波数リソース(frequency resource)としてサブキャリアnからサブキャリアn+11までトータル12個のサブキャリアが割り当てられ、レガシーLTETDDのUL/DL構成(UL/DL configuration)#1の状況に応じてNPRACHプリアンブルをどのように送信するかを示す。

0251

このような方式で送信する場合、4つのシンボルグループを連続的に送信することに比べてチャネルの変化による性能劣化が発生する可能性があるが、1番目のホッピング(1st hopping)をなしている2つのシンボルグループが連続的に送信されているため、基地局端において端末別のTA推定(estimation)は大きな問題なく行われる。

0252

また、サブキャリア間隔(subcarrier spacing)が変化していないため、周波数リソース(frequency resource)が変化しなく、CP長さ(CP length)も変化していないため、セルカバレッジ(cell coverage)も維持できるという利点がある。

0253

ただし、既存のプリアンブルに比べてシンボルの数が減少したため、エネルギー(energy)が減少するので、同一の性能を出すために必要な繰り返し数(repetition number)が増加する可能性がある。

0254

また、CP長さによるセルカバレッジを維持するために暗示的ガード時間(implicit guard time)をCP長さより長く設定することができる。

0255

従って、図20の例において、UpPTS 6 symbolを構成(configure)すると、暗示的ガード時間(implicit guard time)(すなわち、294.66μs、2428−2133.33=294.66(μs))がCP(すなわち、66.66μs又は266.66μs)長さより長く設定されるので、セルカバレッジを維持することができる。

0256

図20は、本明細書で提案するNPRACHプリアンブルシンボルグループに対するホッピングパターンのまた他の一例を示す図である。

0257

(実施形態2)

0258

実施形態2はM=2の場合である。

0259

Mが2である場合、1つのシンボルグループをなすシンボルの数は2つであり、サブキャリア間隔が変化しないので、相異なる2つのCP長さをそのまま用いる場合、新しいPRACHプリアンブルフォーマット0(PRACH preamble format 0)と新しいPRACHプリアンブルフォーマット1(PRACH preamble format 1)は図21のように設定される。

0260

図21は、本明細書で提案するNPRACHプリアンブルフォーマットのまた他の一例を示す図である。

0261

図21に示すように、PRACHプリアンブルフォーマット0(PRACH preamble format 0)をなすシンボルグループの長さは0.6msとなり、PRACHプリアンブルフォーマット1(PRACH preamble format 1)をなすシンボルグループの長さは0.8msとなる。

0262

これは、すなわち、PRACHプリアンブルフォーマット1(PRACH preamble format 1)を用いても2つの連続したシンボルグループの長さが2msより小さいので、2つのシンボルグループ連続的に送信することができる。

0263

従って、各端末がNPRACHプリアンブルを送信するとき、1番目のホッピング(1st hopping)をなしている2つのシンボルグループは2つのULSFに連続的に送信するように設定し、2番目のホッピング(2nd hopping)は2つの連続的なUL SFの間で現れるように送信するように設定することができる。

0264

これを図示すると、図22のようである。

0265

図22は、本明細書で提案するNPRACHプリアンブルシンボルグループに対するホッピングパターンのまた他の一例を示す図である。

0266

図22に示すように、NPRACHプリアンブルのための周波数リソース(frequency resource)としてサブキャリアnからサブキャリアn+11までトータル12個のサブキャリアが割り当てられ、レガシーLTETDDのUL/DL構成(UL/DL configuration)#1の状況に応じてNPRACHプリアンブルをどのように送信するかを表現している。

0267

このような方式で送信する場合、4つのシンボルグループ(symbol group)を連続的に送信することに比べてシャネル(channel)の変化による性能劣化が発生し得るが、1番目のホッピング(1st hopping)をなしている2つのシンボルグループが連続的に送信されているため、基地局端において端末別のTA推定(estimation)は大きな問題なく行われる。

0268

また、サブキャリア間隔が変換していないため、周波数リソースが変化せず、CP長さも変化していないため、セルカバレッジも維持できるという利点がある。

0269

ただし、既存のPRACHプリアンブルに比べて対応シンボルの数が減少したため、エネルギー(energy)が減少するので、同じ性能を出すために必要な繰り返し数(repetition number)が増加する可能性がある。また、本実施形態は、前述したM=3の例示に比べてUpPTSを追加に構成(configure)しなくてもセルカバレッジを維持できるという利点がある。

0270

(方法3)

0271

方法3は、NPRACHプリアンブル(preamble)のシンボルグループ(symbol group)をなしているシンボル数をM個に変更し、CP長さ(length)も変更する方法である。

0272

ここで、MはM<5の自然数である。

0273

方法3の場合、サブキャリア間隔及びシンボル区間(symbol duration)は変更されない。

0274

すなわち、方法3は、NPRACHプリアンブルのシンボルグループをなしているシンボル数を既存の5つから5つより小さいM個に変更し、CP長さまで変更する方法である。

0275

以下、例を挙げて具体的に説明する。

0276

(実施形態1)

0277

実施形態1は、M=3の場合である。

0278

Mが3である場合、1つのシンボルグループをなすシンボルの数は3であり、(サブキャリア間隔が変化しないため)CP長さ値を66.66μs、133.33μs、200μsとして用いることを考慮すると、新しいPRACHプリアンブルフォーマット0(PRACH preamble format 0)と新しいPRACHプリアンブルフォーマット1(PRACH preamble format 1)、 PRACHプリアンブルフォーマット2(PRACHプリアンブルフォーマット2(PRACH preamble format 2))は、図23のように設定される。

0279

図23は、本明細書で提案するNPRACHプリアンブルフォーマットのまた他の一例を示す図である。

0280

ここで、FDDの特性のように相異なるCP長さは2つのみを用いる場合、PRACHプリアンブルフォーマット0(PRACH preamble format 0)はデフォルト(default)として用い、PRACHプリアンブルフォーマット1(PRACH preamble format 1)とPRACHプリアンブルフォーマット2(PRACH preamble format 2)のうち1つのみを使用すると設定することができる。

0281

図23に示すように、PRACHプリアンブルフォーマット0(PRACH preamble format 0)をなすシンボルグループの長さは0.866msとなり、PRACHプリアンブルフォーマット1(PRACH preamble format 1)をなすシンボルグループの長さは0.933msとなり、PRACHプリアンブルフォーマット2(PRACH preamble format 2)をなすシンボルグループの長さは1msとなる。

0282

これは、すなわち、PRACHプリアンブルフォーマット2(PRACH preamble format 2)を使用しても2つの連続したシンボルグループの長さが2.214ms(2 ULSFs+3 symbols for UpPTS)より小さいので、2つのシンボルグループを連続的に送信することができる。

0283

従って、各端末がNPRACHプリアンブルを送信するとき、1番目のホッピング(1st hopping)をなしている2つのシンボルグループはUpPTSと2つのULSFsに連続的に送信するように設定し、2番目のホッピング(2nd hopping)はUpPTSと2つの連続的なUL SF間で現れるように送信するように設定することができる。

0284

これを図示すると、図24のようである。

0285

図24は、本明細書で提案するNPRACHプリアンブルシンボルグループに対するホッピングパターンのまた他の一例を示す図である。

0286

図24に示すように、NPRACHプリアンブルのための周波数リソース(frequency resource)にサブキャリアnからサブキャリアn+11までトータル12個のサブキャリアが割り当てられ、レガシーLTETDDのUL/DL構成(UL/DL configuration)#1の状況に応じてNPRACHプリアンブルをどのように送信するかを表現している。

0287

図24の方法でPRACHプリアンブルを送信する場合、4つのシンボルグループを連続的に送信することに比べてチャネルの変化による性能劣化が発生する可能性がある。

0288

1番目のホッピング(1st hopping)をなしている2つのシンボルグループが連続的に送信されているため、基地局端において端末別のTA推定(estimation)は大きな問題なく行われる。

0289

また、サブキャリア間隔(subcarrier spacing)が変化していないため、周波数リソース(frequency resource)が変化せず、CP長さも変化していないため、セルカバレッジも維持できるという利点がある。

0290

ただし、既存のPRACHプリアンブルに比べてシンボルの数が減少しため、エネルギー(energy)が減少するので、同じ性能を出すために必要な繰り返し数が増加する可能性がある。

0291

また、CP長さによるセルカバレッジを維持するために暗示的ガード時間(implicit guard time)をCP長さより長く設定することができる。

0292

従って、図24の例においては、UpPTS 3 symbolを構成(configure)すると、暗示的ガード時間(implicit guard time)(例えば、214μs、2214−2000=214(μs))がCP(例えば、66.66μs又は133.33μs又は200μs)長さより長く設定されるため、セルカバレッジを維持することができる。

0293

(方法4)

0294

方法4は、方法1及び方法2の組み合わせであって、NPRACHプリアンブルのサブキャリア間隔を既存に比べてN倍増加(例えば、シンボル区間(symbol duration)及びCP長さ(CP length)は既存に比べて1/N倍減少)させ、NPRACHプリアンブルのシンボルグループをなしているシンボル数をM個に変更する方法である。

0295

ここで、MはM<5の自然数である。

0296

すなわち、方法4は、前述した方法1のNPRACHプリアンブルのサブキャリア間隔をレガシーNPRACHプリアンブルのサブキャリア間隔値に比べてN倍増加させる方法と、方法2のNPRACHプリアンブルのシンボルグループをなしているシンボル数を既存の5つから5つより小さいM個に変更する方法とを組み合わせる方法であり得る。

0297

ここで、シンボル長さ(symbol length)は1/N倍に減少し、考慮するCP長さ(CP length)も1/N倍に減少すると設定することができる。

0298

ここで、Nは正の整数であり、Mは5より小さい自然数である。

0299

以下、例を挙げて具体的に説明する。

0300

(実施形態1)

0301

実施形態1はN=2で、M=4の場合である。

0302

N値が2である場合、新しいNPRACHプリアンブルのサブキャリア間隔は3.75kHzの2倍である7.5 kHzとなる。それと同時に、シンボル区間(symbol duration)は266.66μsから133.33μsに1/2倍に減少する。また、CP長さも1/2倍に減少する。

0303

追加的に、Mが4である場合、1つのシンボルグループをなすシンボルの数が4つであるという意味であるので、この場合も2つの相異なる長さのCPをサポートすると、新しいPRACHプリアンブルフォーマット0(PRACH preamble format 0)と新しいPRACHプリアンブルフォーマット1(PRACH preamble format 1)は図25のように設定される。

0304

図25は、本明細書で提案するNPRACHプリアンブルフォーマットのまた他の一例を示す図である。

0305

図25に示すように、PRACHプリアンブルフォーマット0(PRACH preamble format 0)をなすシンボルグループの長さは0.566msとなり、PRACHプリアンブルフォーマット1(PRACH preamble format 1)をなすシンボルグループの長さは0.666msとなる。

0306

すなわち、PRACHプリアンブルフォーマット1(PRACH preamble format 1)を使用しても2つの連続したシンボルグループの長さが2msより小さいので、2つのシンボルグループを連続的に送信することができる。

0307

従って、各端末がNPRACHプリアンブルを送信するとき、1番目のホッピング(1st hopping)をなしている2つのシンボルグループは2つのULSFに連続的に送信するように設定し、2番目のホッピング(2nd hopping)は2つの連続的なUL SFの間で現れるように送信するように設定することができる。

0308

これを図示すると、図26のようである。

0309

図26は、本明細書で提案するNPRACHプリアンブルシンボルグループに対するホッピングパターンのまた他の一例を示す図である。

0310

図26に示すように、NPRACHプリアンブルのための周波数リソースとしてサブキャリアnからサブキャリアn+k−1までトータルk個のサブキャリアが割り当てられ、レガシーLTETDDのUL/DL構成(UL/DL configuration)#1の状況に応じてNPRACHプリアンブルをどのように送信するかを表現している。

0311

このような方式で送信する場合、4つのシンボルグループを連続的に送信することに比べてチャネルの変化による性能劣化が発生する可能性があるが、1番目のホッピング(1st hopping)をなしている2つのシンボルグループが連続的に送信されているため、基地局端において端末別のTA推定(estimation)は大きな問題なく行われる。

0312

また、NPRACHプリアンブルのサブキャリア間隔が増加したため、周波数リソースが既存に比べて減少するという欠点がある。

0313

すなわち、既存に3.75kHzのサブキャリア間隔である場合、48個の周波数リソースを使用可能であったが、7.5kHzサブキャリア間隔である場合、24個の周波数リソースを使用できる。

0314

また、CP長さが短くなるにつれて該当セルがサービングできるセルカバレッジが短くなるという欠点がある。さらに、既存のプリアンブルに比べてシンボル数が減少したため、エネルギーが減少するので、同じ性能を出すために必要な繰り返し数が増加する可能性がある。

0315

(実施形態2)

0316

実施形態2はN=2、M=3の場合である。

0317

N値が2である場合、新しいNPRACHプリアンブルのサブキャリア間隔は3.75kHzの2倍である7.5kHzとなる。

0318

それと同時に、シンボル区間(symbol duration)は266.66μsから133.33μsに1/2倍に減少する。また、CP長さも1/2倍に減少する。

0319

追加的に、Mが3である場合、1つのシンボルグループをなすシンボルの数が3つであるので、この場合も2つの相異なる長さのCPをサポートすると、新しいformat 0と新しいformat 1は図27のように設定される。

0320

図27は、本明細書で提案するNPRACHプリアンブルフォーマットのまた他の一例を示す図である。

0321

図27に示すように、format 0をなすシンボルグループの長さは0.433msとなり、format 1をなすシンボルグループの長さは0.533msとなる。

0322

これは、すなわち、format 1を使用しても4つの連続したシンボルグループの長さが2.28533ms(2 ULSF+4 symbols for UpPTS)より小さいので、4つのシンボルグループを連続的に送信することができる。

0323

従って、この場合は、各端末がNPRACHプリアンブルを送信するとき、既存の方法と類似して1番目のホッピング(1st hopping)と2番目のホッピング(2nd hopping)をなしている4つのシンボルグループは、UpPTSと2つのULSFsに連続的に送信するように設定することができる。

0324

これを図示すると、図28のようである。

0325

図28は、本明細書で提案するNPRACHプリアンブルシンボルグループに対するホッピングパターンのまた他の一例を示す図である。

0326

図28に示すように、NPRACHプリアンブルのための周波数リソースとしてサブキャリアnからサブキャリアn+k−1までトータルk個のサブキャリアが割り当てられ、レガシーLTETDDのUL/DL構成(UL/DL configuration)#1の状況に応じてNPRACHプリアンブルをどのように送信するかを表現している。

0327

このような方式で送信すると、4つのシンボルグループを連続的に送信するために基地局端において端末別のTA推定(estimation)は大きな問題なく行われる。

0328

また、NPRACHプリアンブルのサブキャリア間隔が増加したため、周波数リソースが既存に比べて減少するという欠点がある。すなわち、既存に3.75kHzのサブキャリア間隔である場合、48個の周波数リソースを使用可能であったが、7.5kHzサブキャリア間隔である場合、24個の周波数リソースを使用できる。

0329

また、CP長さが短くなるにつれて該当セルがサービングできるセルカバレッジが短くなるという欠点がある。さらに、既存のプリアンブルに比べてシンボル数が減少したため、エネルギーが減少するので、同じ性能を出すために必要な繰り返し数が増加する可能性がある。

0330

さらに、CP長さによるセルカバレッジを維持するために暗示的ガード時間(implicit guard time)をCP長さより長く設定することができる。

0331

従って、該当例においては、UpPTS 4 symbolを構成(configure)すると、暗示的ガード時間(implicit guard time)(例えば、152μs、2285.33−2133.33=152(μs))がCP(例えば、66.66μs又は133.33μs)より長く設定されるので、セルカバレッジを維持することができる。

0332

(方法5)

0333

方法5は、TDDNB−IoTシステムに対するマルチトーン(Multi tone)NPRACH送信に関する。

0334

前述した方法1ないし方法4は、PRACH送信に単一トーン(single tone)を考慮したが、TDDNPRACHでは前述に提案した方法(方法1ないし方法4)をマルチトーンで送信するように設定することもできる。

0335

ここで、マルチトーンは連続的(contiguous)である場合もあり、非連続的(non-contiguous)である場合もある。

0336

追加的に、マルチトーン構成は連続的と非連続的が共存する形態である場合もある。以下、例を挙げてより具体的に説明する。

0337

(実施形態1)

0338

実施形態1は、非連続的(non-contiguous)デュアルトーン(dual tone)送信に関する。

0339

デュアルトーン(dual tone)が非連続的に送信される場合を考慮すると、次の通りである。

0340

1番目のトーンが送信される開始サブキャリアリソース(starting subcarrier resource)はSI(System Information)で構成(configure)された領域のうち1つを選択するように設定することができ、2番目のトーンは、予め約束した、又はSIで構成(configure)された一定の周波数間隔(例えば、6サブキャリア間隔)の分だけ1番目のトーンから離れて送信すると設定することができる。

0341

すなわち、レガシーNPRACHの1番目のホッピング(1st hopping)はそのまま維持され、2番目のホッピング(2nd hopping)がデュアルトーン(dual tone)で現れると考えられる。

0342

この場合、繰り返しの単位も2つの連続したシンボルグループのデュアルトーンに設定することができ、疑似ランダムホッピング(Pseudo random hopping)により1番目のトーンが移るトーンを決定し、2番目のトーンは1番目のトーンと前述したように一定の周波数間隔の分だけで離れて送信すると設定することができる。

0343

もし、構成(configure)された周波数リソース領域を越える場合は、周波数リソース領域内にラップアラウンド(wrap-around)すると設定することができる。

0344

前述した方法2の実施形態2の場合(NPRACHプリアンブルのシンボルグループをなしているシンボル数を2つに変更する方法)、非連続的デュアルトーン(non-contiguous dual tone)送信について例を挙げると、図29のようである。

0345

図29は、本明細書で提案するNPRACHプリアンブルシンボルグループに対するホッピングパターンのまた他の一例を示す図である。

0346

図29に示すように、NPRACHプリアンブルのための周波数リソースにサブキャリアnからサブキャリアn+11までトータル12個のサブキャリアが割り当てられ、レガシーLTETDDのUL/DL構成(UL/DL configuration)#1の状況に応じてNPRACHプリアンブルをどのように送信するかを表現している。

0347

この方法を用いてNPRACHプリアンブルを送信すると、PAPR側面及びリソース割り当て(resource allocation)側面で欠点はあるが、単一トーンのみで不足したシンボルをデュアルトーンで追加送信することによりプリアンブル受信(preamble reception)に対する性能向上が期待される。

0348

また、単一繰り返し(single repetition)の長さが減少して遅延減少(latency reduction)の効果も得られる。

0349

(実施形態2)

0350

実施形態2は連続した3つのトーン(contiguous triple tone)送信に関する。

0351

3つのトーン(Triple tone)が連続的に送信される場合を考慮すると、次の通りである。

0352

1番目のトーンが送信される開始サブキャリアリソース(starting subcarrier resource)は、SIで構成(configure)された領域のうち1つを選択するように設定することができ、2番目のトーンと3番目のトーンは1番目のトーンから1トーンずつ増加して連続的に送信すると設定することができる。

0353

もし、構成(configure)された周波数リソース領域を越える場合は周波数リソース領域内にラップアラウンド(wrap-around)すると設定することができる。

0354

連続的なマルチトーン(Contiguous multi-tone)の場合、1番目のホッピング(1st hopping)をなしている2つのシンボルグループのマルチトーンプリアンブル(multi-tone preamble)は2つのULSFに連続的に送信するように設定し、2番目のホッピング(2nd hopping)は2つの連続的なUL SFの間で現れるように送信するように設定することができる。

0355

前述した方法2の実施形態2の場合(NPRACHプリアンブルのシンボルグループをなしているシンボル数を2つに変更する方法)に対する連続的なマルチトーン(contiguous multi-tone)方式を図示すると、図30のようである。

0356

図30は、本明細書で提案するNPRACHプリアンブルシンボルグループに対するホッピングパターンのまた他の一例を示す図である。

0357

図30に示すように、NPRACHプリアンブルのための周波数リソースとしてサブキャリアnからサブキャリアn+11までトータル12個のサブキャリアが割り当てられ、レガシーLTETDDのUL/DL構成(UL/DL configuration)#1の状況に応じてNPRACHプリアンブルをどのように送信するかを表現している。

0358

この方法を用いて送信すると、PAPR側面及びリソース割り当て(resource allocation)側面で欠点はあるが、単一トーン(single tone)のみで不足したシンボルをマルチトーン(multi-tone)で追加に送信することによりプリアンブル受信(preamble reception)に対する性能向上が期待される。

0359

追加的に、マルチトーンNPRACHプリアンブルが定義される場合、マルチトーンNRPACHプリアンブルを送信できる端末の動作がより明確に定義される必要がある。

0360

現在、Rel.14 NB−IoTシステムに既にmessage3(msg.3、UE→eNBに送信)においてマルチトーン送信をサポートしており、マルチトーン送信が可能な端末は前記msg.3をマルチトーンで送信できると予め約束されているNPRACHプリアンブルリソースを選択して単一トーンプリアンブル(single tone preamble)を送信している。

0361

もし、Rel.15 NB−IoTにマルチトーンプリアンブル(multi-tone preamble)送信をサポートする場合、基地局では後方互換性(backward compatibility)のために、(A)msg.3を単一トーンで送信できると予め約束されているNPRACHプリアンブルリソース、(B)msg.3をマルチトーンで送信できると予め約束されているNPRACHプリアンブルリソース、さらに、(C)msg.3をマルチトーンで送信できると予め約束されているマルチトーンNPRACHプリアンブルリソースまで構成(configure)すると設定することができる。

0362

従って、このような場合、マルチトーン送信が可能であり、リソース(C)に構成(configuration)された繰り返し数の閾値(threshold)を満足する端末は、リソース(C)においてNPRACHプリアンブル送信を開始すると設定することができる。

0363

もし、端末が基地局からRAR(Radom Access Response)やmsg.4を受信していない場合、次の繰り返し数に該当するリソース(C)に移動してNPRACHプリアンブルを送信すると設定することができる。

0364

ただし、次の繰り返し数に該当するリソース(C)がない場合、リソース(B)に移してNPRACHプリアンブルを送信すると設定することができる。

0365

もし、リソース(B)がないか、リソース(B)の繰り返し数の閾値(threshold)が満足されない場合、リソース(A)においてNPRACHプリアンブルを送信すると設定することができる。

0366

その後の動作は、既存のRel.13のRACH動作と同一である。

0367

また、リソース(C)を用いる端末は、msg.3においてマルチトーン送信が可能であることは明白である。

0368

追加的に、コンテンションフリー(contention free:CF)NPRACH送信のように予め確保されているリソースを用いてプリアンブルを送信できる場合、該当リソースが利用できる全てのマルチトーンを連続的に送信することを考慮するこができる。

0369

例えば、NPDCCHオーター(order)によりコンテンションフリー(contention free)NPRACH送信をする端末に予め確保されているNPRACHリソースがKサブキャリアであるとすると、端末は、連続したK個のマルチトーンを用いて1つのULSFに送信すると設定することができる。

0370

特徴的に、K値は12、24、36、48などであり得る。

0371

このような送信を図示すると、図31のようである。

0372

図31は、本明細書で提案するマルチトーンNPRACHプリアンブル送信の一例を示す図である。

0373

ここで、Kトーン(K tone)に用いられたNPRACHプリアンブルは長さK(length K)の特定シーケンス(sequence)形態を有することができる。

0374

例えば、長さKであるZCシーケンスなどのPAPR性能のよいシーケンスが選択されることができる。

0375

追加的に、特定シーケンスに他のスクランブリングシーケンス(scrambling sequence)が要素ごと(element wise)に乗じられて相異なるシーケンスを示すと設定することができる。

0376

特徴的に、スクランブリングシーケンス(scrambling sequence)はPNシーケンスなどのシーケンスが選択される。この方法を用いると、コンテンションフリー(contention free)送信であるので、予め確保されているリソースを全て用いて既存に比べてより少ない繰り返し数を用いてアップリンク同期(uplink sync)を合わせることができるという利点がある。

0377

(実施形態3)

0378

実施形態3は、連続的及び非連続的(contiguous and non-contiguous)な3つのトーンを用いたNPRACH送信に関する。

0379

3つのトーン(Triple tone)の連続と非連続が共存する形態で送信される場合を考慮すると、次のようである。1番目のトーンが送信される開始サブキャリアリソース(starting subcarrier resource)は、SIで構成(configure)された領域のうち1つを選択するように設定することができ、2番目のトーンは、1番目のトーンから1トーン増加して連続的に送信すると設定し、3番目のトーンは、2番目のトーンから予め約束した、又はSIで構成(configure)された一定の周波数間隔(例えば、6サブキャリア間隔)の分だけ離れて送信すると設定することができる。

0380

もし、構成(configure)された周波数リソース領域を越える場合は周波数リソース領域内にラップアラウンド(wrap-around)すると設定することができる。

0381

連続的/非連続的マルチトーン(Contiguous/non-contiguous multi-tone)の場合、1番目のホッピング(1st hopping)と2番目のホッピング(2nd hopping)をなしているシンボルグループのマルチトーンプリアンブル(multi-tone preamble)は1つのULSFに送信するように設定することができる。

0382

方法2の実施形態2の場合(NPRACHプリアンブルのシンボルグループをなしているシンボル数を2つに変更する方法)に対する連続的/非連続的マルチトーン(Contiguous/non-contiguous multi-tone)方式を図示すると、図32のようである。

0383

図32は、本明細書で提案するマルチトーンNPRACHプリアンブル送信のまた他の一例を示す図である。

0384

図32に示すように、NPRACHプリアンブルのための周波数リソースとしてサブキャリアnからサブキャリアn+11までトータル12個のサブキャリアが割り当てられ、レガシーLTETDDのUL/DL構成(UL/DL configuration)#2の状況に応じてNPRACHプリアンブルをどのように送信するかを表現している。

0385

この方法を用いてNPRACHプリアンブルを送信する場合、PAPR側面及びリソース割り当て(resource allocation)側面で欠点はあるが、単一トーン(single tone)のみで不足したNPRACHシンボルをマルチトーン(multi-tone)で追加に送信することによりプリアンブル受信(preamble reception)に対する性能向上が期待される。

0386

(実施形態4)

0387

実施形態4は、マルチトーンNPRACHプリアンブル送信に対する相異なるヌメロロジー(numerology)に関する。

0388

追加的に、マルチトーンがそれぞれ連続的、不連続的に送信される場合を考慮すると、次のようである。

0389

最初連続的にマルチトーン(例えば、デュアルトーン)を送信するタイミングでは、相対的に小さいサブキャリア間隔(subcarrier spacing)(すなわち、SCS)を用いて送信するが、1番目のトーンが送信される開始サブキャリアリソース(starting subcarrier resource)はSIで構成(configure)された領域のうち1つを選択するように設定することができ、2番目のトーンは1番目のトーンから1つのトーン(1つのトーン基準はSCSに設定)増加して連続的に送信すると設定することができる。

0390

次に、マルチトーンを(例えば、デュアルトーン)送信するタイミングでは、相対的に大きいサブキャリア間隔(すなわち、SCL)を用いて送信するが、1番目のトーンが送信される開始サブキャリアリソース(starting subcarrier resource)はSIで構成(configure)された領域のうち1つを選択するように設定することができ、2番目のトーンは1番目のトーンから1つのトーン(1つのトーン基準はSCLに設定)増加して連続的に送信すると設定することができる。

0391

特徴的に、SCLはSCSのM倍となり、例えば、SCSは3.75kHzとなり、SCLはSCSの6倍である22.5kHzとなり得る。また、SCLを用いて送信するときは、フラクショナルオフセット(fractional offset)を適用して送信すると設定することができる。

0392

ここで、フラクショナルオフセット(fractional offset)は、M=(SCL/SCS)個のうち1つを選択することができ、M個は、Mが偶数の場合は、次の{−(0.5+(M/2−1))*SCS, −(0.5+(M/2−2))*SCS, …, −(0.5+2)*SCS, −(0.5+1)*SCS、−(0.5+0)*SCS, +(0.5+0)*SCS, +(0.5+1)*SCS, +(0.5+2)*SCS, …, +(0.5+(M/2−2))*SCS, +(0.5+(M/2−1))*SCS}に決定される。

0393

また、Mが奇数の場合は、また、Mが奇数の場合は、{−(floor(M/2)*SCS, −(floor(M/2)−1)*SCS, −(floor(M/2)−2)*SCS, …, −2*SCS, −SCS, 0, +SCS, +2*SCS, …, +(floor(M/2)−2)*SCS, +(floor(M/2)−1)*SCS, +(floor(M/2))*SCS)に決定される。

0394

具体的な例を挙げて説明すると、SCSは3.75kHzであり、SCLは22.5kHzであるとすると、22.5kHzサブキャリア間隔に3.75kHzサブキャリア間隔が6回入ることができるので、Mは6となり、22.5kHzサブキャリア中心から{−9.375kHz, −5.625kHz, −1.875kHz, +1.875kHz, +5.625kHz, +9.375kHz}のうち1つの値を選択してフラクショナルオフセット(fractional offset)と決定してサブキャリアの中心からフラクショナルオフセット(fractional offset)の分だけ移動して送信すると設定することができる。

0395

ここで、フラクショナルオフセット(fractional offset)選択は、SCSを用いてマルチトーンを送信するとき、1番目のトーンが送信される開始サブキャリアリソース(starting subcarrier resource)と同一の位置となるように選択すると設定することができる。このような送信方式を図示すると、図33のようである。

0396

図33は、本明細書で提案するマルチトーンNPRACHプリアンブル送信のまた他の一例を示す図である。

0397

さらに、相異なるヌメロロジー(different numerology)を用いた場合に該当するシンボルグループを図示すると、図34のようである。

0398

図34は、本明細書で提案するNPRACHプリアンブルフォーマットのまた他の一例を示す図である。

0399

図34に示すように、3.75kHzのサブキャリア間隔(3.75 kHz subcarrier spacing)を用いるとき、シンボルグループをなすシンボルは2つであり、1つのCPが入る。

0400

また、各フォーマット別にプリアンブルの総長さを合わせるために、22.5kHzのサブキャリア間隔(22.5 kHz subcarrier spacing)を用いるとき、シンボルグループをなすシンボル数はM倍が大きい12個となり、前のプリアンブルに用いられた同一の長さのCPが入る。

0401

特徴的に、該当CPは複数のシンボルからなると設定することができる。

0402

(方法6)

0403

方法6は、TDDNB−IoTシステムに対するショート(short)NPRACHプリアンブル送信に関する。

0404

さらに、レガシーLTEのTDDにおいてNPRACHショートフォーマット(short format)を実現したことと類似した理由で、NB−IoTのTDDにおいてもNPRACHショートフォーマットを考慮すると、次のようである。

0405

NPRACHショートフォーマットはカバレッジ(coverage)が非常に小さいTDDセルのために考慮することができ、UpPTSをなすシンボル(すなわち、SIBを介して構成(configure)されたUpPTSシンボル数)内に、又は1つのULサブフレーム内に送信されると設定することができる。ここで、該当プリアンブルは、単一トーン(single-tone)で送信されるか、マルチトーン(multi-tone)で送信される。以下、実施形態により具体的に説明する。

0406

(実施形態1)

0407

例えば、UpPTS 3 symbols内に送信できるNPRACHフォーマットを考慮すると、図35のように15kHzのサブキャリア間隔(15 kHz subcarrier spacing)を有し、66.66μsのシンボル2つと33.33μsのCPからなると設定することができる。

0408

図35は、本明細書で提案するショートNPRACHプリアンブルフォーマットの一例を示す図である。

0409

この場合も、前述した方法と類似して、CP長さによるセルカバレッジ(cell coverage)を維持するために暗示的ガード時間(implicit guard time)をCP長さより長く設定することができる。

0410

すなわち、シンボルグループとCPの長さの合計が166.65μs(すなわち、66.66×2+33.33(μs))となり、UpPTS 3 symbolsの長さは214μs(すなわち、71.33×3(μs))となるため、暗示的ガード時間(implicit guard time)が47.33μsとなり、CP長さによるセルカバレッジは維持されるといえる。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ