図面 (/)

この項目の情報は公開日時点(2020年8月6日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題・解決手段

細胞培養食品生産するためのシステムと方法。培養食品は寿司に使用できる品質等級魚肉すり身、フォアグラ、および他の食物タイプを含む。様々な細胞型は食品を生産するために利用され、筋肉脂肪、および/または肝臓細胞を含み得る。培養食品は、毒素および他の好ましくない化学製品へ晒されることなく病原体のない培養条件で育てられる。

概要

背景

従来の食肉生産は大きな環境フットプリントをもたらす資源集約的なプロセスである。飼育された動物は、大量の水、飼料土地、および他の資源を必要とする農業環境で育てられる。同様に、消費は、乱獲や混獲、漁業による汚染を含む多くの問題に対して脆弱である。

概要

細胞培養食品を生産するためのシステムと方法。培養食品は寿司に使用できる品質等級魚肉、魚のすり身、フォアグラ、および他の食物タイプを含む。様々な細胞型は食品を生産するために利用され、筋肉脂肪、および/または肝臓細胞を含み得る。培養食品は、毒素および他の好ましくない化学製品へ晒されることなく病原体のない培養条件で育てられる。

目的

ヒト食用に適した培養組織を生産するためのバイオリアクターシステムが本明細書で開示され、上記システムは:a)細胞付着のための接着表面を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

ヒト食用培養組織を生成する方法であって、該方法は、a)自己再生細胞集団を得る工程;b)自己再生細胞の集団を培養する工程;c)培養組織を形成するために自己再生細胞の集団において分化誘導する工程;および、d)ヒト食用に培養組織を処理する工程、を含む、方法。

請求項2

自己再生細胞の集団を得る工程は、バイオリアクターにおいて二次元接着性培養物から三次元培養物へと細胞の集団を移行させる工程を含む、請求項1に記載の方法。

請求項3

自己再生細胞の集団は、不死化した分化細胞を含む、請求項1に記載の方法。

請求項4

自己再生細胞の集団において分化を誘導する工程は、集団中の細胞の、筋細胞脂肪細胞、あるいはこれらの組み合わせへの分化転換を誘導する工程を含む、請求項1−3のいずれか1つに記載の方法。

請求項5

培養する工程は、3次元のマイクロスキャフォールド上で自己再生細胞の集団を播種する工程を含む、請求項1に記載の方法。

請求項6

3次元のマイクロスキャフォールドは、細胞の増殖、接着、分化、又はそれらの組み合わせを促進する、請求項3に記載の方法。

請求項7

3次元のマイクロスキャフォールドは、細胞の成長、接着、分化、あるいはこれらの組み合わせを促進する少なくとも1つの因子に共役する、請求項3に記載の方法。

請求項8

請求項9

自己再生細胞の集団は、誘導性分化を経験するように修飾された少なくとも1つの細胞を含む、請求項8に記載の方法。

請求項10

少なくとも1つの細胞は:a)少なくとも1つの多能性遺伝子のオープンリーディングフレーム(ORF)を含む第1の遺伝子構築物;および、b)少なくとも1つの多能性遺伝子を不活性化するように構成された調節因子のオープンリーディングフレーム(ORF)を含む第2の遺伝子構築物、を組み込むように修飾される、請求項9に記載の方法。

請求項11

自己再生細胞の集団は、培養中に少なくとも50の細胞分裂を受ける少なくとも1つの細胞を含む、請求項10に記載の方法。

請求項12

調節因子はレコンビナーゼであり、少なくとも1つの多能性遺伝子のオープンリーディングフレーム(ORF)は、レコンビナーゼの発現が少なくとも1つの多能性遺伝子のオープンリーディングフレーム(ORF)の切除触媒するように、レコンビナーゼによって認識された組換え配列と隣接している、請求項10に記載の方法。

請求項13

第2の遺伝子構築物は、肝細胞核因子1α(HNF1A)、フォークヘッドボックスA2(FOXA2)、および肝細胞核因子4α(HNF4A)から選択された少なくとも1つの肝細胞分化因子のORFを含む、請求項10に記載の方法。

請求項14

第2の遺伝子構築物は、ミオゲニン(MyoG)、筋原性分化1(MyoD)、筋原性因子6(MRF4)、および筋原性因子5(MYF5)から選択された少なくとも1つの筋原性因子を含む、請求項10に記載の方法。

請求項15

第2の遺伝子構築物は、脂肪酸結合タンパク質4(FABP4)、インスリン反応性ブドウ糖輸送担体4型(GLUT4)、アディポネクチン、C1Qおよびコラーゲンドメイン含有(ADIPOQ)、1−アシルグリセロール−3−リン酸塩O−アシルトランスフェラーゼ2(AGPAT2)、ペリリピン1(PLIN1)、レプチンLEP)、およびリポプロテインリパーゼLPL)から選択された少なくとも1つの脂肪生成因子を含む、請求項10に記載の方法。

請求項16

第2の遺伝子構築物はa)少なくとも1つの分化遺伝子のオープンリーディングフレーム(ORF);および、b)i.少なくとも1つの分化遺伝子のオープンリーディングフレーム(ORF);および、ii.調節因子のオープンリーディングフレーム(ORF)の発現を制御する誘導性プロモーターをさらに含む、請求項10に記載の方法。

請求項17

分化を誘導する工程は、少なくとも1つの細胞系統遺伝子のORFおよび調節因子のORFの発現を誘導するために少なくとも1つの細胞を誘導剤に晒す工程を含む、請求項16に記載の方法。

請求項18

工程d)において自己再生細胞の集団が誘導剤で処置された後、および、ヒト食用に処理される前に、誘導剤を除去する工程をさらに含む、請求項17に記載の方法。

請求項19

分化を誘導する工程は、自己再生細胞の集団内で筋管を生成する工程を含む、請求項1に記載の方法。

請求項20

分化を誘導する工程はさらに、自己再生細胞の集団内で脂肪細胞を生成する工程を含む、請求項19に記載の方法。

請求項21

自己再生細胞の集団は、工程c)の間に筋細胞と脂肪細胞に分化するように誘導される分化多能性細胞を含む、請求項1−20のいずれかに記載の方法。

請求項22

分化多能性細胞は、筋衛星細胞の第1の亜集団および脂肪前駆細胞の第2の亜集団を含む、請求項20に記載の方法。

請求項23

分化を誘導する工程は、自己再生細胞の集団内で肝細胞を生成する工程を含む、請求項1に記載の方法。

請求項24

自己再生細胞の集団は、アヒルガチョウニワトリ、および七面鳥から選択された鳥類由来する、請求項23に記載の方法。

請求項25

肝細胞の少なくとも1つ内で脂肪症を誘導する工程をさらに含む、請求項23に記載の方法。

請求項26

自己再生細胞の集団は、導入剤での処置時に脂肪症を増強するために少なくとも1つの遺伝子を発現するように修飾された少なくとも1つの細胞を含む、請求項25に記載の方法。

請求項27

少なくとも1つの細胞は、ATF4、ZFP423、LPIN1、PPAR、APOC3、APOE、ORL1、PEMT、MTTP、SREBP、STAT3、又はKLF6をコードするオープンリーディングフレーム(ORF)を含む構築物を用いて安定的に形質転換される、請求項26に記載の方法。

請求項28

脂肪症を誘導する工程は、少なくとも栄養剤を含む培地中で肝細胞をインキュベートする工程を含む、請求項27に記載の方法。

請求項29

少なくとも1つの栄養剤は多価不飽和脂肪酸一価不飽和脂肪酸、あるいはこれらの組み合わせを含む、請求項28に記載の方法。

請求項30

少なくとも1つの栄養剤は、パルミチン酸オレイン酸ドコサヘキサエン酸ステアリン酸リノール酸リノレン酸アラキドン酸エイコサペンタエン酸、又はそれらの組み合わせを含む、請求項28に記載の方法。

請求項31

培養組織は、タコヤリイカ、あるいはコウイカの筋細胞を含む、請求項16に記載の方法。

請求項32

培養組織は筋組織を含む、請求項16に記載の方法。

請求項33

自己再生細胞の集団は、スズキ、マグロサバニシクロカジキ、メカジキブリサケ、又はマスに由来する、請求項32に記載の方法。

請求項34

魚の筋組織は工程d)の間に別に培養された魚の脂肪組織と組み合わされる、請求項32に記載の方法。

請求項35

細胞の集団は無血清培地製剤を使用して培養される、請求項1に記載の方法。

請求項36

無血清培地製剤は、マッシュルーム抽出物または大豆加水分解物を含む、請求項35に記載の方法。

請求項37

請求項1−36のいずれか1つの方法に従って生成された培養組織を含む、ヒト食用の培養食品

請求項38

培養食品は、培養組織が病原体のない環境、毒素のない環境、動物強制給餌を行わない環境、又はそれらの任意の組み合わせで生産されたことを示すラベルを有するパッケージを含む、請求項37のヒト食用の培養食品。

請求項39

培養組織は複数の切片へ処理され、培養食品を形成するためにパッケージ化される、請求項37のヒト食用の培養食品。

技術分野

0001

相互参照
本出願は、2017年6月7日出願の米国仮特許出願第62/516,575号、および2018年4月5日出願の米国仮特許出願第62/653,332号の利益を主張するものであり、これらは両方とも全体として参照することにより本明細書に組み込まれる。

背景技術

0002

従来の食肉生産は大きな環境フットプリントをもたらす資源集約的なプロセスである。飼育された動物は、大量の水、飼料土地、および他の資源を必要とする農業環境で育てられる。同様に、消費は、乱獲や混獲、漁業による汚染を含む多くの問題に対して脆弱である。

0003

本明細書にはヒト食用に培養された魚肉を生産する方法が開示される。いくつかのそのような方法は:a)自己再生細胞集団を得る工程;b)マイクロスキャフォールドを含む培地で自己再生細胞の集団を培養する工程;c)筋細胞および脂肪細胞の少なくとも1つを形成するために細胞の集団で分化誘導する工程;および、d)細胞の集団を、ヒト食用の魚肉へと処理する工程、を含む方法。様々な態様は、以下の要素の少なくとも1つを組み込む。魚肉はしばしば寿司である。いくつかの例では、魚肉はすり身である。しばしば、魚肉は生食に適している。特定の場合には、魚肉は調理される。魚肉は通常鮭肉である。特定の態様では、魚肉は寿司に使用できる品質等級の鮭肉である。代わりに、魚肉はしばしばマグロ肉である。しばしば、魚肉は寿司に使用できる品質等級のマグロ肉である。場合によっては、(c)での分化を誘導する工程は、細胞の集団に筋細胞と脂肪細胞を形成させる。場合によっては、分化は、異なる細胞型への細胞の分化転換を含む。しばしば、魚肉は、少なくとも50%の高い解糖性および嫌気性筋線維から構成される。細胞の集団はたびたび、スズキ、マグロサバニシクロカジキ、メカジキブリサケ、またはマス由来する。(d)において処理する工程は通常、上記細胞の集団を、筋細胞または脂肪細胞から構成される細胞の第2の集団と組み合わせる工程を含む。様々な態様では、細胞の集団は胚性幹細胞として単離される。しばしば、細胞の集団は多能性を誘導するために修飾されてきた。細胞の集団は、特定の実施形態において、分化多能性成体幹細胞として単離される。培養する工程は典型的には細胞培養中の細胞の集団を成長させ拡大させる工程を含む。分化を誘導する工程はしばしば、分化を刺激する培養条件に細胞の集団を晒す工程を含む。しばしば、分化を誘導する工程は、分化を刺激する少なくとも1つの成長因子に細胞の集団を晒す工程を含む。特定の例では、培養する工程は、2次元表面上で細胞の集団を育てる工程を含む。代わりに、培養する工程は、3次元スキャフォールドで細胞の集団を育てる工程を含む。培養する工程はしばしば、バイオリアクター内においてマイクロスキャフォールド上で細胞の集団を育てる工程を含み、ここで、マイクロスキャフォールドは細胞接着を可能にする。しばしば、細胞の集団は分化後に質感のない組織を形成する。様々な態様において、培養する工程は、少なくとも1つの栄養剤を含む培地製剤において細胞の集団を成長させる工程を含む。少なくとも1つの栄養剤は通常ω−3脂肪酸を含む。少なくとも1つの栄養剤は多価不飽和脂肪酸をしばしば含む。ある例では、少なくとも1つの栄養剤は一価不飽和脂肪酸を含む。しばしば、細胞の集団は無血清培地製剤を使用して培養される。多くの例では、細胞の集団はマッシュルームベースの培地製剤を使用して培養される。

0004

いくつかの態様では、培養された魚組織を生産するための方法が本明細書で開示され、上記方法は:a)魚類脂肪前駆細胞の集団および魚類の衛星細胞の集団を培養する工程;b)脂肪細胞を形成するために魚類の脂肪前駆細胞の集団において分化を誘導する工程;c)筋細胞を生成するために魚類の衛星細胞の集団において分化を誘導する工程;d)脂肪細胞および筋細胞を共培養する工程;および、e)脂肪細胞および筋細胞をヒト食用の魚類組織へと処理する工程、を含む。様々な態様は、以下の要素の少なくとも1つを含む。しばしば、魚組織は速筋線維を含む。しばしば、魚組織はサケ組織である。ある例では、魚組織はマグロ組織である。魚組織は時折マス組織である。多くの例では、魚組織はすり身である。魚組織はしばしば寿司である。魚組織は、場合によっては、生のヒト食用に作られる。魚組織はしばしば、ヒト食用に調理される。様々な態様において、脂肪細胞および筋細胞は少なくとも1つの栄養剤を含む培地製剤において共培養される。少なくとも1つの栄養剤は通常ω−3脂肪酸を含む。しばしば、少なくとも1つの栄養剤は多価不飽和脂肪酸を含む。少なくとも1つの栄養剤は時折、一価不飽和脂肪酸を含む。しばしば、無血清培地製剤は細胞培養のために使用される。ある例では、マッシュルームベースの培地製剤は、細胞培養のために使用される。

0005

いくつかの態様では、培養された魚組織を生産するための方法が本明細書で開示され、上記方法は:a)懸濁培養に適した、魚類の脂肪前駆細胞の集団、および魚類の衛星細胞の集団を培養する工程;b)脂肪細胞を形成するために魚類の脂肪前駆細胞の集団において分化を誘導する工程;c)筋細胞を形成するために魚類の衛星細胞の集団において分化を誘導する工程;d)脂肪細胞および筋細胞を共培養する工程;および、e)脂肪細胞および筋細胞をヒト食用の魚類組織へと処理する工程、を含む。

0006

いくつかの態様では、共培養された筋細胞および脂肪細胞から生成された魚組織を含むヒト食用組成物が本明細書で開示される。

0007

いくつかの態様では、脂肪前駆細胞および衛星細胞から生成された魚組織を含むヒト食用組成物が本明細書で開示される。

0008

いくつかの態様では、ヒト食用の培養された魚肉を生産する方法が本明細書で開示され、上記方法は:a)脂肪前駆細胞の集団およびの衛星細胞の集団を得る工程;b)脂肪前駆細胞の集団および衛星細胞の集団を懸濁培養に適応させる工程;c)脂肪前駆細胞の集団および衛星細胞の集団において分化を誘導する工程;d)懸濁培養において集団を共培養する工程;および、e)上記集団をヒト食用の魚肉へと処理する工程、を含む。場合によっては、分化は、異なる細胞型への細胞の分化転換を含む。様々な態様は、以下の要素の少なくとも1つを含む。しばしば、魚肉は寿司である。魚肉はしばしばすり身である。特定の例において、魚肉は生食に適している。しばしば、魚肉は調理される。様々な態様において、魚肉は鮭肉である。魚肉は、特定の例において、寿司に使用できる品質等級の鮭肉である。魚肉はしばしばマグロ肉である。しばしば、魚肉は寿司に使用できる品質等級のマグロ肉である。時折、魚肉はしばしばマス肉である。多くの例において、魚肉は、少なくとも50%の高い解糖性および嫌気性の筋線維から構成される。脂肪前駆細胞の集団は通常、スズキ、マグロ、サバ、ニシクロカジキ、メカジキ、ブリ、サケ、またはマスに由来する。衛星細胞の集団はしばしば、スズキ、マグロ、サバ、ニシクロカジキ、メカジキ、ブリ、サケ、またはマスに由来する。共培養する工程は典型的には細胞培養中の集団を成長させ拡大させる工程を含む。特定の場合には、分化を誘導する工程は、脂肪細胞への分化を刺激する少なくとも1つの成長因子に脂肪前駆細胞の集団を晒す工程を含む。しばしば、分化を誘導する工程は、筋細胞への分化を刺激する少なくとも1つの成長因子に衛星細胞の集団を晒す工程を含む。培養する工程は、しばしばバイオリアクター内で細胞の集団を育てる工程を含む。多くの例では、筋細胞と脂肪細胞は分化の後に質感のない組織を形成する。筋細胞と脂肪細胞はしばしば、少なくとも1つの栄養剤を含む培地製剤中で培養される。少なくとも1つの栄養剤は通常ω−3脂肪酸を含む。多くの例では、少なくとも1つの栄養剤は多価不飽和脂肪酸を含む。時折、少なくとも1つの栄養剤は一価不飽和脂肪酸を含む。しばしば、無血清培地製剤は細胞培養のために使用される。ある例では、マッシュルームベースの培地製剤は、細胞培養のために使用される。

0009

いくつかの態様では、培養された筋細胞および脂肪細胞から生成された魚のすり身を含むヒト食用に適した魚加工品が本明細書で開示される。

0010

いくつかの態様では、培養された衛星細胞および脂肪前駆細胞に由来する魚肉を含むヒト食用に適した合成食品が本明細書で開示される。

0011

いくつかの態様では、懸濁培養で育てられた筋細胞と脂肪細胞から生成された魚肉を含むヒト食用に適した魚加工品が本明細書で開示される。

0012

いくつかの態様では、ヒト食用の培養された魚肉を生産する方法が本明細書で開示され、上記方法は:a)懸濁培養において成長可能な魚類の脂肪前駆細胞の集団を得る工程;b)懸濁培養において成長可能な魚類の衛星細胞の集団を得る工程;c)脂肪細胞および筋細胞を形成するために魚類の脂肪前駆細胞の集団および魚類の衛星細胞の集団において分化を誘導する工程;d)少なくとも1つの栄養剤を含む懸濁培養において脂肪細胞および筋細胞を共培養する工程;および、d)細胞の集団を、ヒト食用の魚肉へと処理する工程、を含む方法。様々な態様は、以下の要素の少なくとも1つを含む。しばしば、魚肉は寿司である。しばしば、魚肉はされるすり身である。多くの例において、魚肉は生食に適している。魚肉は時折調理される。魚肉はしばしば鮭肉である。特定の例では、魚肉は寿司に使用できる品質等級の鮭肉である。しばしば、魚肉はマグロ肉である。魚肉はしばしば、寿司に使用できる品質等級のマグロ肉である。魚肉は、様々な態様において、少なくとも50%の高い解糖性および嫌気性の筋線維から構成される。典型的には、細胞の集団は、スズキ、マグロ、サバ、ニシクロカジキ、メカジキ、ブリ、サケ、またはマスに由来する。しばしば、(c)の分化を誘導する工程は、分化を刺激する培養条件に脂肪前駆細胞の集団および衛星細胞の集団を晒す工程を含む。(c)において分化を誘導する工程は通常、分化を刺激する少なくとも1つの成長因子に脂肪前駆細胞の集団を露出する工程を含む。特定の例において、(c)の分化を誘導する工程は、分化を刺激する少なくとも1つの成長因子に衛星細胞の集団を晒す工程を含む。脂肪細胞と筋細胞は通常、質感のない組織を形成する。しばしば、少なくとも1つの栄養剤はω−3脂肪酸を含む。多くの場合、少なくとも1つの栄養剤は多価不飽和脂肪酸を含む。しばしば、少なくとも1つの栄養剤は一価不飽和脂肪酸を含む。しばしば、無血清培地製剤は細胞培養のために使用される。ある例では、マッシュルームベースの培地製剤は、細胞培養のために使用される。場合によっては、細胞の集団は、少なくとも1つの細胞型へ分化転換される。場合によっては、細胞の集団は、肝細胞、筋細胞、および脂肪細胞の少なくとも1つへ分化転換される。

0013

いくつかの態様では、ヒト食用の培養組織を生産する方法が本明細書で開示され、上記方法は:a)自己再生細胞の集団を得る工程;b)自己再生細胞の集団を培養する工程;c)培養組織を形成するために自己再生細胞の集団において分化を誘導する工程;およびd)ヒト食用の培養組織を処理する工程、を含む。様々な態様は、以下の要素の少なくとも1つを含む。場合によっては、自己再生細胞の集団を得る工程は、バイオリアクターにおいて二次元接着性培養物から三次元培養物へと細胞の集団を移行させる工程を含む。しばしば、自己再生細胞の集団は、不死化した分化細胞を含む。自己再生細胞の集団において分化を誘導する工程はしばしば、集団中の細胞の、筋細胞、脂肪細胞、あるいはこれらの組み合わせへの分化転換を誘導する工程を含む。場合によっては、細胞の集団は、少なくとも1つの細胞型へ分化転換される。場合によっては、細胞の集団は、肝細胞、筋細胞、および脂肪細胞の少なくとも1つへ分化転換される。ある例では、培養は、3次元のマイクロスキャフォールド上で自己再生細胞の集団を播種する工程を含む。場合によっては、3次元のマイクロスキャフォールドは、細胞の増殖、接着、分化、またはそれらの組み合わせを促進する。3次元のマイクロスキャフォールドは、様々な態様において、細胞の成長、接着、分化、あるいはこれらの組み合わせを促進する少なくとも1つの因子に共役する。しばしば、マイクロスキャフォールドは、ヒドロゲルキトサンポリエチレンテレフタレートコラーゲンエラスチン硫酸ヘパラン硫酸コンドロイチン硫酸ケラタンヒアルロン酸ラミニンフィブロネクチンセルロースヘミセルロースペクチンリグニンアルギン酸塩グルコマンナンポリカプロラクトン(PCL)、テクスチャード植物性タンパク質(TVP)、テクスチャード大豆タンパク質(TSP)、およびアクリル酸塩の少なくとも1つを含む。ある例では、自己再生細胞の集団は、誘導性分化を経験するように修飾された少なくとも1つの細胞を含む。いくつかの例では、少なくとも1つの細胞は、以下を組み込むように修飾される:a)少なくとも1つの多能性遺伝子のオープンリーディングフレーム(ORF)を含む第1の遺伝子構築物;および、b)少なくとも1つの多能性遺伝子を不活性化するように構成された調節因子のオープンリーディングフレーム(ORF)を含む第2の遺伝子構築物。しばしば、自己再生細胞の集団は、培養中に少なくとも50の細胞分裂を受ける少なくとも1つの細胞を含む。場合によっては、調節因子はレコンビナーゼであり、少なくとも1つの多能性遺伝子のオープンリーディングフレーム(ORF)は、レコンビナーゼの発現が少なくとも1つの多能性遺伝子のオープンリーディングフレーム(ORF)の切除触媒するように、レコンビナーゼによって認識された組換え配列と隣接している。第2の遺伝子構築物は、例によっては、肝細胞核因子1α(HNF1A)、フォークヘッドボックスA2(FOXA2)、および肝細胞核因子4α(HNF4A)から選択された少なくとも1つの肝細胞分化因子のORFを含む。様々な態様では、第2の遺伝子構築物は、ミオゲニン(MyoG)、筋原性分化1(MyoD)、筋原性因子6(MRF4)、および筋原性因子5(MYF5)から選択された少なくとも1つの筋原性因子を含む。第2の遺伝子構築物はしばしば、脂肪酸結合タンパク質4(FABP4)、インスリン反応性ブドウ糖輸送担体4型(GLUT4)、アディポネクチン、C1Qおよびコラーゲンドメイン含有(ADIPOQ)、1−アシルグリセロール−3−リン酸塩O−アシルトランスフェラーゼ2(AGPAT2)、ペリリピン1(PLIN1)、レプチンLEP)、およびリポプロテインリパーゼLPL)から選択された少なくとも1つの脂肪生成因子を含む。しばしば、第2の遺伝子構築物はさらに:a)少なくとも1つの分化遺伝子のオープンリーディングフレーム(ORF);および、b)i)少なくとも1つの分化遺伝子のオープンリーディングフレーム(ORF);および、ii)調節因子のオープンリーディングフレーム(ORF)の発現を制御する誘導性プロモーターを含む。ある例では、分化を誘導する工程は、少なくとも1つの細胞系統遺伝子のORFおよび調節因子のORFの発現を誘導するために少なくとも1つの細胞を誘導剤に晒す工程を含む。方法は典型的には、工程d)において自己再生細胞の集団が誘導剤で処置された後、および、ヒト食用に処理される前に、誘導剤を除去する工程を含む。分化を誘導する工程は、ある場合では、自己再生細胞の集団内で筋管を生成する工程を含む。多くの例では、分化を誘導する工程はさらに、自己再生細胞の集団内で脂肪細胞を生成する工程を含む。しばしば、自己再生細胞の集団は、工程c)の間に筋細胞と脂肪細胞に分化するように誘導される分化多能性細胞を含む。分化多能性細胞はしばしば、筋衛星細胞の第1の亜集団および脂肪前駆細胞の第2の亜集団を含む。いくつかの例では、分化を誘導する工程は、自己再生細胞の集団内で肝細胞を生成する工程を含む。自己再生細胞の集団は、いくつかの態様において、アヒルガチョウニワトリ、および七面鳥から選択された鳥類に由来する。上記方法はしばしば肝細胞の少なくとも1つ内で脂肪症を誘導する工程を含む。特定の例において、自己再生細胞の集団は、導入剤での処置時に脂肪症を増強するために少なくとも1つの遺伝子を発現するように修飾された少なくとも1つの細胞を含む。しばしば、少なくとも1つの細胞は、ATF4、ZFP423、LPIN1、PPAR、APOC3、APOE、ORL1、PEMT、MTTP、SREBP、STAT3、またはKLF6をコードするオープンリーディングフレーム(ORF)を含む構築物を用いて安定的に形質転換される。433.様々な態様では、脂肪症を誘導する工程は、少なくとも栄養剤を含む培地中で肝細胞をインキュベートする工程を含む。少なくとも1つの栄養剤はしばしば多価不飽和脂肪酸、一価不飽和脂肪酸、あるいはこれらの組み合わせを含む。場合によっては、少なくとも1つの栄養剤は、パルミチン酸オレイン酸ドコサヘキサエン酸ステアリン酸リノール酸リノレン酸アラキドン酸エイコサペンタエン酸、またはそれらの組み合わせを含む。培養組織は、ある態様では、タコヤリイカ、あるいはコウイカの筋細胞を含む。しばしば、培養組織は魚の筋組織を含む。自己再生細胞の集団は、スズキ、マグロ、サバ、ニシクロカジキ、メカジキ、ブリ、サケ、またはマスに由来し得る。多くの場合では、魚の筋組織は工程d)の間に別に培養された魚の脂肪組織と組み合わされる。いくつかの例では、細胞の集団は無血清培地製剤を使用して培養される。無血清培地製剤は、実施形態によっては、マッシュルーム抽出物または大豆加水分解物を含む。

0014

本明細書にはヒト食用の培養された食肉を生産する方法が開示される。いくつかのそのような方法は:a)懸濁培養において成長が可能な自己再生細胞の集団を得る工程;b)懸濁液中で自己再生細胞の集団を培養する工程;c)筋細胞および脂肪細胞の少なくとも1つを形成するために細胞の集団で分化を誘導する工程;および、d)細胞の集団をヒト食用の肉へと処理する工程を含む。様々な態様は、以下の要素の少なくとも1つを組み込む。しばしば、肉は魚肉である。魚肉は通常は寿司である。いくつかの実施形態では、魚肉はすり身である。しばしば、魚肉は生食に適している。特定の場合には、魚肉は調理される。特定の場合には、魚肉は鮭肉である。特定の態様では、魚肉は寿司に使用できる品質等級の鮭肉である。場合によっては、魚肉はマグロ肉である。しばしば、魚肉は寿司に使用できる品質等級のマグロ肉である。しばしば、(c)での分化を誘導する工程は、細胞の集団に筋細胞と脂肪細胞を形成させる。魚肉は通常、少なくとも50%の高い解糖性および嫌気性の筋線維から構成される。細胞の集団は通常、スズキ、マグロ、サバ、ニシクロカジキ、メカジキ、ブリ、サケ、またはマスに由来する。(d)において処理する工程はしばしば、上記細胞の集団を、筋細胞または脂肪細胞から構成される細胞の第2の集団と組み合わせる工程を含む。ある態様では、細胞の集団は胚性幹細胞として単離される。しばしば、細胞の集団は多能性を誘導するために修飾されてきた。細胞のある集団は分化多能性成体幹細胞として単離される。しばしば、自己再生細胞の集団は不死化細胞である。培養する工程は典型的には細胞培養中の細胞の集団を成長させ拡大させる工程を含む。しばしば、分化を誘導する工程は、分化を刺激する培養条件に細胞の集団を晒す工程を含む。場合によっては、分化は、異なる細胞型への細胞の分化転換を含む。しばしば、分化を誘導する工程は、例によっては、分化を刺激する少なくとも1つの成長因子に細胞の集団を晒す工程を含む。培養する工程はしばしば、2次元表面上で細胞の集団を育てる工程を含む。細胞のある集団は分化後に質感のない組織を形成する。ある態様において、培養する工程は、少なくとも1つの栄養剤を含む培地製剤において細胞の集団を成長させる工程を含む。しばしば、少なくとも1つの栄養剤はω−3脂肪酸を含む。他の場合には、少なくとも1つの栄養剤は多価不飽和脂肪酸を含む。時折、少なくとも1つの栄養剤は一価不飽和脂肪酸を含む。しばしば、細胞の集団は無血清培地製剤を使用して培養される。多くの例では、細胞の集団はマッシュルームベースの培地製剤を使用して培養される。

0015

ヒト食用の高い脂質蓄積を有する培養細胞を生成する方法が本明細書で開示される。いくつかの方法は:a)細胞の集団を培養する工程;b)細胞の集団内で分化を誘導する工程;c)細胞の集団内で高脂肪蓄積を誘導する工程;および、d)細胞の集団をヒト食用に処理する工程を含む。様々な態様は、以下の要素の少なくとも1つを組み込む。ある例では、分化後の細胞の集団は肝細胞を含む。しばしば、処理する工程は、フォアグラ中の成分として細胞の集団を使用する工程を含む。細胞の集団は、場合によっては、アヒルまたはガチョウに由来する。細胞の集団はしばしば、家禽家畜の少なくとも1つに由来する。ある例では、高脂肪蓄積を誘導する工程は脂肪症を誘導する工程を含む。いくつかの実施形態において、高い脂質蓄積は、細胞質脂肪滴の過剰な蓄積を特徴とする。高脂肪蓄積を誘導する工程はしばしば、少なくとも1つの脂質代謝経路を調節する外因性化合物に細胞の集団を晒す工程を含む。ある場合には、高脂肪蓄積を誘導する工程は、毒素および高脂質濃縮の少なくとも1つに細胞の集団を晒す工程を含む。しばしば、高脂肪蓄積を誘導する工程は、細胞の集団内の脂質保持を増強するために少なくとも1つの脂質代謝経路を調節する工程を含む。いくつかの例では、高脂肪蓄積を誘導する工程は、脂質代謝を調節するために細胞の集団内の少なくとも1つの遺伝子を変更する工程を含む。しばしば、分化後の細胞の集団は、肝臓心臓腎臓、腸、横隔膜食道胸腺膵臓、またはの細胞を含む。細胞の集団をヒト食用に処理する工程は、様々な態様において、上記細胞の集団を、低脂質蓄積を備える細胞と混ぜ合わせる工程を含む。細胞の集団はしばしば、胚性幹細胞として単離される。ある場合には、細胞の集団は多能性を誘導するために修飾されてきた。例によっては、細胞の集団は分化多能性成体幹細胞として単離される。培養する工程は典型的には細胞培養中の細胞の集団を成長させ拡大させる工程を含む。ある態様では、分化を誘導する工程は、分化を刺激する培養条件に細胞の集団を晒す工程を含む。実施形態によっては、分化を誘導する工程は、分化を刺激する少なくとも1つの成長因子に細胞の集団を晒す工程を含む。場合によっては、分化は、異なる細胞型への細胞の分化転換を含む。培養する工程はしばしば、2次元表面上で細胞の集団を育てる工程を含む。多くの場合に、培養する工程は、3次元スキャフォールドで細胞の集団を育てる工程を含む。ある例では、培養する工程は、バイオリアクター内においてマイクロスキャフォールド上で細胞の集団を育てる工程を含み、ここで、マイクロスキャフォールドは細胞接着を可能にする。いくつかの実施形態において、細胞の集団は、生存と増殖に接着基質を必要としない。しばしば、細胞の集団は懸濁培養に適している。細胞の集団はしばしば、分化後に質感のない組織を形成する。細胞の集団は、態様によっては、分化後に非筋組織を形成する。様々な場合には、培養する工程は、少なくとも1つの栄養剤を含む培地製剤において細胞の集団を成長させる工程を含む。態様によっては、少なくとも1つの栄養剤はω−3脂肪酸を含む。少なくとも1つの栄養剤は頻繁に多価不飽和脂肪酸の少なくとも1つを含む。しばしば、細胞の集団は無血清培地製剤を使用して培養される。多くの例では、細胞の集団はマッシュルームベースの培地製剤を使用して培養される。

0016

脂質含有量を有する質感のない培養組織を生産する方法が本明細書で開示される。いくつかのそのような方法は:a)自己再生可能な分化細胞の集団を得る工程;b)分化細胞の集団を培養する工程;c)細胞が高脂質含有量を蓄積するように、分化細胞の集団に脂肪過多症を誘導するために少なくとも1つの脂質代謝経路を操作する工程;および、d)分化細胞の集団を質感のない組織へと処理する工程を含む。様々な態様は、以下の要素の少なくとも1つを組み込む。場合によっては、自己再生可能な分化細胞の集団を得る工程は、分化細胞を不死化細胞に形質転換する工程を含む。しばしば、自己再生可能な分化細胞の集団を得る工程は、不死化細胞に自然突然変異が生じるまで分化細胞を培養する工程を含む。場合によっては、分化は、異なる細胞型への細胞の分化転換を含む。しばしば、分化細胞の集団は線維芽細胞を含む。いくつかの例では、分化細胞の集団は、筋細胞、脂肪細胞、あるいはこれらの組み合わせへ分化転換される。分化細胞の集団は、態様によっては、サケまたはマスなどの魚に由来する。分化細胞の集団はある例では肝細胞を含む。多くの場合、処理する工程は、フォアグラ中の成分として分化細胞の集団を使用する工程を含む。ある実施形態では、分化細胞の集団はアヒルまたはガチョウに由来する。分化細胞の集団はしばしば、家禽と家畜の少なくとも1つに由来する。典型的には、脂肪症は、細胞質の脂肪滴の過剰な蓄積を特徴とする。ある実施形態では、少なくとも1つの脂質代謝経路を操作する工程は、細胞の集団を外因性化合物に晒す工程を含む。少少なくとも1つの脂質代謝経路を操作する工程は、態様によっては、毒素および高脂質濃度の少なくとも1つに分化細胞の集団を晒す工程を含む。代わりに、あるいは、組み合わせて、少なくとも1つの脂質代謝経路を操作する工程は、脂質代謝を調節するために細胞の集団内の少なくとも1つの遺伝子を改変する工程を含む。多くの場合、分化細胞の集団は、肝臓、心臓、腎臓、胃、腸、肺、横隔膜、食道、胸腺、膵臓、または舌の細胞を含む。しばしば、分化細胞の集団を処理する工程は、細胞の集団を、低脂質蓄積を有する細胞と混合することを含む、ことをとする実施形態に記載の方法。多くの態様では、培養する工程は細胞培養中の細胞の集団を成長させ拡大させる工程を含む。培養する工程はしばしば、2次元表面上で細胞の集団を育てる工程を含む。ある態様では、培養する工程は、3次元スキャフォールドで細胞の集団を育てる工程を含む。場合によっては、培養する工程は、バイオリアクター内においてマイクロスキャフォールド上で細胞の集団を育てる工程を含み、ここで、マイクロスキャフォールドは細胞接着を可能にする。細胞の集団は、ある例では、生存と増殖に接着基質を必要としない。しばしば、細胞の集団は懸濁培養に適している。しばしば、分化細胞の集団は質感のない組織を形成する。場合によっては、細胞の集団は非筋組織を形成する。培養する工程は、多くの態様では、少なくとも1つの栄養剤を含む培地製剤中で細胞の集団を育てる工程を含む。ある例では、少なくとも1つの栄養剤はω−3脂肪酸を含む。しばしば、少なくとも1つの栄養剤は多価不飽和脂肪酸を含む。しばしば、少なくとも1つの栄養剤は一価不飽和脂肪酸を含む。しばしば、細胞の集団は無血清培地製剤を使用して培養される。多くの例では、細胞の集団はマッシュルームベースの培地製剤を使用して培養される。

0017

本明細書にはヒト食用の培養された非筋組織を生産する方法が開示される。いくつかのそのような方法は:a)自己再生細胞の集団を得る工程;b)自己再生細胞の集団を培養する工程;c)非筋組織を形成するために細胞の集団において分化を誘導する工程;および、d)ヒト食用に培養非筋組織を処理する工程、を含む。様々な態様は、以下の要素の少なくとも1つを組み込む。場合によっては、分化は、異なる細胞型への細胞の分化転換を含む。

0018

態様によっては、ヒト食用の培養組織を生産するための方法が本明細書で開示され、上記方法は:自己再生細胞の集団を得る工程;懸濁培養に自己再生細胞の集団を適応させる工程;自己再生細胞の集団を培養する工程;培養組織を形成するために細胞の集団において分化を誘導する工程;および、培養組織をヒト食用に処理する工程を含む。場合によっては、分化は、異なる細胞型への細胞の分化転換を含む。

0019

本明細書にはヒト食用の培養された質感のない筋組織を生産する方法が開示される。いくつかのそのような方法は:a)自己再生細胞の集団を得る工程;b)自己再生細胞の集団を培養する工程;c)質感のない筋組織を形成するために細胞の集団において分化を誘導する工程;および、d)ヒト食用に培養された質感のない筋組織を処理する工程、を含む。様々な態様は、以下の要素の少なくとも1つを組み込む。場合によっては、質感のない筋組織はタコ、ヤリイカ、あるいはコウイカの筋肉である。しばしば、質感のない筋組織は魚の筋組織である。ある例では、魚の筋組織は高い解糖性および嫌気性の筋線維を含む。高い解糖性および嫌気性の筋線維はしばしば、魚の筋組織の最大で80%を構成する。場合によっては、細胞の集団は、スズキ、マグロ、サバ、ニシクロカジキ、メカジキ、ブリ、サケ、またはマスに由来する。様々な態様では、質感のない筋組織は、脂肪組織と組み合わされる。しばしば、筋組織と脂肪組織はすり身製品を作るために組み合わされる。ある場合に、魚筋肉と脂肪組織は寿司に使用できる品質等級である。細胞の集団は、特定の実施形態において、多能性成体幹細胞として単離される。ある態様では、細胞の集団は多能性を誘導するために修飾されてきた。多くの場合、細胞の集団は分化多能性成体幹細胞として単離される。培養する工程は、様々な例において、細胞培養中の細胞の集団を成長させ拡大させる工程を含む。しばしば、分化を誘導する工程は、分化を刺激する培養条件に細胞の集団を晒す工程を含む。場合によっては、分化は、異なる細胞型への細胞の分化転換を含む。しばしば、分化を誘導する工程は、分化を刺激する少なくとも1つの成長因子に細胞の集団を晒す工程を含む。様々な態様において、培養する工程は、2次元表面上で細胞の集団を育てる工程を含む。しばしば、培養する工程は、3次元スキャフォールドで細胞の集団を育てる工程を含む。ある例では、培養する工程は、バイオリアクター内においてマイクロスキャフォールド上で細胞の集団を育てる工程を含み、ここで、マイクロスキャフォールドは細胞接着を可能にする。いくつかのシナリオでは、細胞の集団は、生存と増殖に接着基質を必要としない。しばしば、細胞の集団は懸濁培養に適している。ある実施形態では、細胞の集団は分化後に質感のない組織を形成する。細胞の集団はしばしば、分化後に質感のない筋組織を形成する。ある場合には、培養する工程は、少なくとも1つの栄養剤を含む培地製剤において細胞の集団を成長させる工程を含む。例によっては、少なくとも1つの栄養剤はω−3脂肪酸を含む。典型的には、少なくとも1つの栄養剤は多価不飽和脂肪酸を含む。しばしば、少なくとも1つの栄養剤は一価不飽和脂肪酸を含む。しばしば、細胞の集団は無血清培地製剤を使用して培養される。多くの例では、細胞の集団はマッシュルームベースの培地製剤を使用して培養される。

0020

培養された鳥類の肝臓組織を含む、フォアグラを調製する方法が本明細書で開示される。いくつかのそのような方法は:a)自己再生可能な鳥類由来の細胞の集団を得る工程;b)鳥類由来の細胞の集団を肝細胞に分化する工程;および、c)高脂質含有量を有する鳥類の培養肝臓組織を生成するために肝細胞に脂肪症を誘導する工程;および、d)フォアグラとして培養された鳥類の肝臓組織を調製する工程を含む。様々な態様は、以下の要素の少なくとも1つを組み込む。しばしば、細胞はアヒルの細胞である。ある態様では、細胞はガチョウの細胞である。場合によっては、分化は、異なる細胞型への細胞の分化転換を含む。

0021

高脂質含有量を有し、かつ、ヒト食用に処理された、組織培養肝細胞を含む、調理用フォアグラ組成物が本明細書で開示される。様々な態様は、以下の要素の少なくとも1つを組み込む。場合によっては、組成物は複数の切片へ処理される。ある例では、各切片はわずか約5オンスの重さしかない。各切片はしばしば個別にパッケージ化される。しばしば、フォアグラ組成物は少なくとも約1.5ポンドの重さであり、丸く引き締まっており、かつ傷がない。様々な態様において、フォアグラ組成物にはAグレード評価を示す包装ラベルがある。ある実施形態では、フォアグラ組成物は約0.75〜約1.5ポンドの重さである。いくつかの例では、フォアグラ組成物にはBグレード評価を示す包装ラベルがある。フォアグラ組成物は、場合によっては、約1ポンド未満の重さがあり、わずか3つの傷しかない。場合によっては、フォアグラ組成物にはCグレード評価を示す包装ラベルがある。ある実施形態では、組織培養肝細胞は脂肪質である。多くの例では、組織培養肝細胞は、細胞質の脂肪滴の過剰な蓄積を特徴とする。高い脂質含有量は、ある態様中で少なくとも1つの脂質代謝経路を調節する外因性の化合物への暴露によって得られる。高い脂質含有量は、毒素および高い脂質濃度の少なくとも1つへの暴露によってしばしば得られる。しばしば、高い脂質含有量は、細胞の集団内の脂質保持を増強するために少なくとも1つの脂質代謝経路の調節によって得られる。高い脂質含有量は、組織培養肝細胞中の少なくとも1つの遺伝子の改質によって得られる。しばしば、一層のフォアグラ組成物は、低い脂質蓄積がある細胞を含む。様々な態様では、組織に培養された肝細胞は単離された胚性幹細胞を区別される。組織に培養された肝細胞は、ある症例には、人工多能性幹細胞を区別される。組織に培養された肝細胞はある例では単離された分化多能性成体幹細胞を区別される。組織培養肝細胞は、自己再生可能な細胞の集団における分化によって生成される、ことをとする実施形態に記載の組成物。しばしば、分化をする工程は、分化を刺激する培養条件に細胞の集団を晒す工程を含む。場合によっては、分化は、異なる細胞型への細胞の分化転換を含む。実施形態によっては症例、分化をする工程は、分化を刺激する少なくとも1つの成長因子に細胞の集団を晒す工程を含む。しばしば、組織培養肝細胞は2次元表面で育てられる。組織培養肝細胞は、例によっては、3次元スキャフォールドで育てられる。様々な態様において、組織培養肝細胞は、バイオリアクター内のマイクロスキャフォールド上で育てられ、マイクロスキャフォールドは細胞接着を可能とする。ある実施形態では、組織培養肝細胞は、生存と増殖に接着基質を必要としない。しばしば、組織培養肝細胞は懸濁培養に適している。しばしば、組織培養肝細胞は質感のない組織を形成する。様々な例では、組織培養肝細胞は質感のない筋組織を形成する。組織培養肝細胞は、多くの場合、少なくとも1つの栄養剤を含む培地製剤中で培養される。しばしば、少なくとも1つの栄養剤はω−3脂肪酸を含む。ある実施形態では、少なくとも1つの栄養剤は多価不飽和脂肪酸を含む。しばしば、少なくとも1つの栄養剤は一価不飽和脂肪酸を含む。しばしば、組織培養肝細胞は無血清培地製剤を使用して培養される。多くの例では、組織培養肝細胞はマッシュルームベースの培地製剤を使用して培養される。

0022

ヒト食用の質感のない非筋肉食品へと処理される培養臓器細胞を含む組成物が本明細書で開示される。様々な態様は、以下の要素の少なくとも1つを組み込む。場合によっては、培養臓器細胞は肝細胞を含む。ある態様では、培養臓器細胞は鳥類の細胞を含む。しばしば、食品は複数の切片へ処理される。しばしば、各切片はわずか約5オンスの重さしかない。各切片は通常、個別にパッケージ化される。多くの態様では、食品はフォアグラである。フォアグラは通常、少なくとも約1.5ポンドの重さであり、丸く引き締まっており、かつ傷がない。ある例では、フォアグラにはAグレード評価を示す包装ラベルがある。様々な態様において、フォアグラは約0.75〜約1.5ポンドの重さである。ある実施形態において、フォアグラにはBグレード評価を示す包装ラベルがある。しばしば、フォアグラは約1ポンド未満の重さであり、わずか3つの傷しかない。様々な例では、フォアグラにはCグレード評価を示す包装ラベルがある。しばしば、組織培養肝細胞は脂肪質である。ある場合には、フォアグラは高い脂質含有量を特徴とする。態様によっては、高い脂質含有量は、少なくとも1つの脂質代謝経路を調節する外因性の化合物への暴露によって得られる。高い脂質含有量は、毒素および高い脂質濃度の少なくとも1つへの暴露によってしばしば得られる。ある場合には、高い脂質含有量は、細胞の集団内の脂質保持を増強するために少なくとも1つの脂質代謝経路の調節によって得られる。しばしば、高脂質含有量は、組織培養肝細胞の少なくとも1つの遺伝子の改質によって得られる。態様によっては、フォアグラ組成物はさらに、低い脂質蓄積がある細胞を含む。ある例では、培養臓器細胞は2次元表面で育てられる。しばしば、培養臓器細胞は3次元スキャフォールドで育てられる。培養臓器細胞はバイオリアクター内のマイクロスキャフォールドで育てられ、ここで、マイクロスキャフォールドは、様々な実施形態において細胞接着を可能にする。培養臓器細胞はしばしば、生存と増殖には接着基質を必要としない。しばしば、組織培養肝細胞は懸濁に適している。様々な態様では、培養臓器細胞は質感のない組織を形成する。しばしば、培養臓器細胞は非筋組織を形成する。様々な場合に、培養臓器細胞は少なくとも1つの栄養剤を含む培地製剤中で培養される。しばしば、少なくとも1つの栄養剤はω−3脂肪酸を含む。少なくとも1つの栄養剤は、多くの例では、多価不飽和脂肪酸を含む。しばしば、少なくとも1つの栄養剤は一価不飽和脂肪酸を含む。しばしば、培養臓器細胞は無血清培地製剤を使用して培養される。多くの例では、培養臓器細胞はマッシュルームベースの培地製剤を使用して培養される。

0023

培養された脂肪質鳥類の肝臓細胞調味料を含むヒト食用のフォアグラ組成物が本明細書で開示される。場合によっては、調味料は塩、コショウ、および砂糖の少なくとも1つを含む。

0024

高脂質含有量を有する培養肝臓細胞、および低脂質含有量を有する肝細胞を含む、フォアグラ組成物が本明細書で開示される。様々な態様は、以下の要素の少なくとも1つを組み込む。場合によっては、高脂質含有量を有する培養肝臓細胞、および低脂質含有量を有する肝細胞は、一緒に混合される。ある例では、フォアグラ組成物は、ムースパフェ、およびパテのうち1つを調製するための成分として適切である。典型的には、低脂質含有量を有する肝臓細胞は培養細胞である。いくつかの実施形態において、低脂質含有量を有する肝臓細胞は無培養細胞である。

0025

細胞培養で育てられ、かつ、ヒト食用に処理される、鳥類の肝臓細胞を含むヒト食用組成物が本明細書で開示される。

0026

包装済みのフォアグラ組成物であって、培養肝臓細胞と、上記フォアグラ組成物が強制給餌により生産されたものではないことを示すラベルを有するパッケージとを含む、包装済みのフォアグラ組成物が本明細書で開示される。

0027

包装済みのフォアグラ組成物であって、培養肝臓細胞と、フォアグラが病原体のない環境で製造されたことを示すラベルを有するパッケージとを含む、包装済みのフォアグラ組成物が本明細書で開示される。ある例では、ラベルは、組成物が鳥類の鳥インフルエンザウイルスへ暴露されることなく作られたことを示す。

0028

包装済みのヒト食用の組成物であって、食品へと処理された培養細胞と、上記組成物が毒素へ曝露されることなく製造されたことを示すラベルとを含む、包装済みのヒト食用の組成物が本明細書で開示される。ある場合では、毒素は殺虫剤除草剤、および殺菌剤のうちの1つである。

0029

抗生物質を用いることなくヒト食用の培養細胞を生産する方法が本明細書で開示される。いくつかのそのような方法は:a)抗生物質を使用することなく細胞の集団を培養する工程;b)細胞の集団内で分化を誘導する工程;c)細胞の集団内で高脂肪蓄積を誘導する工程;および、d)細胞の集団をヒト食用に処理する工程を含む。場合によっては、分化は、異なる細胞型への細胞の分化転換を含む。

0030

病原体に晒すことなくヒト食用の培養細胞を生産する方法が本明細書で開示される。いくつかのそのような方法は:a)病原体を含まない培養環境で細胞の集団を培養する工程;b)細胞の集団内で分化を誘導する工程;c)細胞の集団内で高脂肪蓄積を誘導する工程;および、d)細胞の集団をヒト食用に処理する工程を含む。場合によっては、分化は、異なる細胞型への細胞の分化転換を含む。

0031

毒素に晒すことなくヒト食用の培養細胞を生産する方法が本明細書で開示される。いくつかのそのような方法は:a)毒素を含まない培養環境で細胞の集団を培養する工程;b)細胞の集団内で分化を誘導する工程;c)細胞の集団内で高脂肪蓄積を誘導する工程;および、d)細胞の集団をヒト食用に処理する工程を含む。場合によっては、分化は、異なる細胞型への細胞の分化転換を含む。

0032

高脂質含有量を有し、かつ、血管系を有していない質感のない培養組織を生産する方法が本明細書で開示される。いくつかのそのような方法は:a)細胞の集団を培養する工程;b)細胞の集団内で分化を誘導する工程;c)細胞が高脂質含有量を蓄積するように、分化細胞の集団に脂肪過多症を誘導するために脂質代謝経路を操作する工程;および、d)分化細胞の集団を血管系のない質感のない組織へと処理する工程を含む。場合によっては、分化は、異なる細胞型への細胞の分化転換を含む。

0033

ヒト食用の高い栄養素含有量を有する培養組織を生産する方法が本明細書で開示される。いくつかのそのような方法は:a)少なくとも1つの栄養剤を有する培養培地において細胞の集団を培養する工程;b)細胞が高脂質含有量を蓄積するように、分化細胞の集団に脂肪過多症を誘導するために脂質代謝経路を操作する工程;および、c)ヒト食用に、分化細胞の集団を血管系のない質感のない組織へと処理する工程を含む。様々な態様は、以下の要素の少なくとも1つを組み込む。例によっては、少なくとも1つの栄養剤はω−3脂肪酸を含む。しばしば、少なくとも1つの栄養剤は多価不飽和脂肪酸を含む。しばしば、少なくとも1つの栄養剤は一価不飽和脂肪酸を含む。

0034

ヒト食用の培養された臓器組織を生産する方法が本明細書に開示される。いくつかのそのような方法は:a)自己再生可能な細胞の集団を培養する工程;b)臓器組織を生成するために細胞の集団において分化を誘導する工程;および、c)ヒト食用に臓器組織を処理する工程を含む。様々な態様は、以下の要素の少なくとも1つを組み込む。場合によっては、臓器細胞は、肝臓、心臓、腎臓、胃、腸、肺、横隔膜、食道、胸腺、膵臓、または舌の組織である。場合によっては、分化は、異なる細胞型への細胞の分化転換を含む。様々な実施形態において、臓器組織は肝臓組織である。しばしば、処理する工程は、追加の細胞組織に臓器組織を混ぜ合わせる工程を含む。追加の細胞組織は、多くの例では、非脂肪質肝臓細胞を含む。

0035

ヒト食用の増強された栄養素含有量を有する培養された魚組織を生産する方法が本明細書で開示される。いくつかのそのような方法は:a)少なくとも1つの栄養剤を有する培養培地において魚類筋細胞の集団を培養する工程;B)筋細胞の集団を拡大させる工程;および、c)ヒト食用に筋細胞の集団を魚類組織へと処理する工程を含む。様々な態様は、以下の要素の少なくとも1つを組み込む。場合によっては、魚組織は速筋線維を含む。ある実施形態では、上記方法はさらに、筋細胞の集団を脂肪細胞の集団と組み合わせる工程を含む。魚筋細胞はしばしば、サケ筋細胞である。魚筋細胞はしばしば、マグロ筋細胞である。場合によっては、魚筋細胞はマス筋細胞である。

0036

本明細書に記載された方法のいずれにかかる培養された筋細胞および脂肪細胞から生産された魚組織を含むヒト食用組成物が本明細書で開示される。

0037

ヒト食用に適した培養組織を生産するためのバイオリアクターシステムが本明細書で開示され、上記システムは:a)細胞付着のための接着表面を提供する複数のマイクロスキャフォールドを含むリアクターチャンバー;b)バイオリアクター内で栽培される、自己再生細胞の集団;c)自発的に分化することなく自己再生細胞の集団を維持するための成分を含む、少なくとも1つの維持培地を提供する第1のソース;および、d)自己再生細胞の集団を特異的な系統へと分化するための成分を含む、少なくとも1つの分化媒体を提供する第2のソースを含んでおり;ここで、リアクターチャンバーは、細胞の集団を栽培するために第1のソースから維持培地を受け取り、且つ、細胞の集団を分化するために第2のソースから分化培地を受け取り、単一のバッチに生成される細胞の集団は、ヒトによる消費に適しており且つ少なくとも1kgの乾燥乾重量を有する培養組織を含む、ことを特徴とするシステム。様々な態様は、以下の要素の少なくとも1つを組み込む。場合によっては、上記システムはさらに、リアクターチャンバーをモニタリングするための少なくとも1つのセンサを含む。ある実施形態において、少なくとも1つのセンサは、バイオセンサ化学センサ、または光センサである。しばしば、少なくとも1つのセンサは、pH、温度、酸素二酸化炭素グルコース乳酸塩アンモニアヒポキサンチンアミノ酸ドーパミン、および脂質のうち少なくとも1つをモニタリングするように構成される。しばしば、上記システムはさらに、少なくとも1つの追加のリアクターチャンバーを含む。単一のバッチはしばしば、少なくとも5kgの乾燥重量を有する。しばしば、上記バイオリアクターシステムはさらに、複数のマイクロスキャフォールドを含む。代わりに、上記バイオリアクターシステムはさらに、少なくとも1つの3Dスキャフォールドを含む。バイオリアクターシステムは頻繁に、細胞の集団において脂肪過多症または脂質蓄積を誘導するための成分を含む、少なくとも1つの脂肪性媒体を提供する第3のソースを含む。様々な場合に、細胞の集団は少なくとも1つの栄養剤を含む培地中で培養される。しばしば、細胞の集団は無血清培地製剤を使用して培養される。多くの例では、細胞の集団はマッシュルームベースの培地製剤を使用して培養される。

0038

いくつかの態様において、ヒト食用の培養された食品であって、前述の方法のいずれか1つの方法に従って生産された組織を含む、ヒト食用の培養された食品が本明細書で開示される。しばしば、培養された食品は、培養組織が病原体のない環境、毒素のない環境、動物に強制給餌を行わない環境、またはそれらの任意の組み合わせで生産されたことを示すラベルを有するパッケージを含む。ある例では、培養組織は複数の切片へ処理され、培養された食品を形成するためにパッケージ化される。

図面の簡単な説明

0039

本発明の特徴と利点についてのよりよい理解は、本発明の原則が利用される例示的な実施形態を説明する以下の詳細な記載と添付の図面を参照することによって得られる:
ヒト食用の脂質蓄積を有する培養細胞を生成するプロセスのフローチャートを示す。
ヒト食用の筋細胞と脂肪細胞を含む培養された食肉を生産するプロセスのフローチャート示す。
食肉を培養する例示的なプロセスの概略を示す。
培養されたフォアグラを生産するために脂肪肝細胞を生成する例示する方法を例証する略図を示す。
ヒト食用の培養された魚組織を生産するための方法を例示する略図を示す。
単離されたマス筋衛星細胞を示す。
単離されたマス筋衛星細胞中の遺伝マーカーの発現を示す。
筋衛星細胞を分化させることにより形成された成熟した筋管を示す。
筋衛星細胞からの分化後の筋管のシートを示す。
サケの筋衛星細胞(矢じり)とサケの脂肪前駆細胞(矢)の共培養を示す。図6Bで示されるように、脂肪前駆細胞は脂肪細胞へ分化可能であり、および筋衛星細胞は筋細胞(矢じり)へ分化可能である。
バイオリアクター内で増殖されるスフェロイドを形成するために誘導されたサケの線維芽細胞を示す。
スフェロイドを2Dの培養条件に戻して、線維芽細胞が周辺に移動してコロニーを形成したことを観察した後のスフェロイドの生存率の確認を示す。
バスの筋衛星細胞の成功した細胞培養を示す。
スフェロイドを3次元の懸濁培養のために移動させることができるスピナーフラスコ懸滴で増大するアヒル肝細胞から形成されたスフェロイドを示す。
分化に成功した後の培養物中で成長するアヒル肝細胞を示す。
肝細胞分化のマーカーを測定することにより成功した肝細胞分化を確認した。
初代線維芽細胞を培養し、分割細胞のコロニーを採取することにより生成されたアヒルの自己再生細胞を示す。
初代線維芽細胞を培養し、分割細胞のコロニーを採取することにより生成されたマスの自己再生細胞を示す。
肝細胞への誘導性分化をもたらすために細胞へ導入することができる遺伝子構築物の例示的な実施形態を示す。
細胞を脂肪症にかかりやすくする1つ以上の遺伝子の誘導性の発現を可能にするために細胞へ導入することができる構築物の例示的な実施形態を示す。
多能性表現型から分化した表現型への増殖/分化の切り替えを可能にするために細胞へ導入することができるDNA構築物系の例示的な実施形態を示す。
誘導可能な「オフスイッチ」を与えるために細胞へ導入することができる例示的な構築物を示す。
リノール酸を用いるインキュベーション後のアヒル肝細胞における成功した脂肪症の誘導を示す。
脂肪肝細胞の割合をリノール酸の濃度と相関させる用量反応曲線を示す。
大豆加水分解物の存在下において徐々に低下する濃度のウシ胎仔血清(FBS)を有する媒体中で培養された場合の肝細胞の個体数を示す。
細胞培養培地からウシ胎仔血清を連続的に減少させた後の10%のシイタケ抽出物中で成功裡に育てられたアヒルの線維芽細胞を示す。
追加の無血清培地のない無血清培地で育てられたアヒルの線維芽細胞を示す;
10%のウシ胎仔血清で補足されたDMEM中で育てられた対照培養物を示す。
ヒト食用の細胞の培養するためのバイオリアクター系の略図を示す。
食肉生産プロセスの一部として使用されているバイオリアクター系の別の略図を示す。
懸滴法左パネル)を使用して生成された胚様体、および3D培養物で成長させるために胚様体を移す例示的なバイオリアクターを示す。
別の例示的なバイオリアクター(左パネル)、および、3D培養物中で増殖するスフェロイドからの細胞を示す(右パネル)。
成功裡にグルコマンナンマイクロスキャフォールドに付いた筋衛星細胞から成功裏に分化したマスの筋管を示す。
同一の細胞培養状態で育てられた同じ調製物からの未分化筋衛星細胞の陰性対照を示す。
グルコマンナンのマイクロスキャフォールド(矢)上で成功裡に育てられたアヒルの線維芽細胞(矢じり)を示す。
代表的なグルコマンナンのマイクロスキャフォールドを示す。
自発性収縮を実証するアヒルの筋組織の映像からキャプチャーした画像を示す。
アヒルの脂肪肝臓細胞を使用して作られたアヒルのレバーパテとフォアグラバターを示す。
本明細書に記載された方法に従って作られたサケのパテとアヒル肉のパテの試作品を示す。
特定の遺伝子を活性化/サイレンシングする目的でCre送達の方法の例示的な実施形態を示す。
Bは食肉生成(例えば、増殖と分化)に関連する活性化された遺伝子セット間の「スイッチ」を誘発するためにCreを使用する別の方法を示す。

0040

本明細書には、細胞農業を使用して食品を生産するためのシステムと方法が開示される。細胞培養された食品は、従来の食糧生産によって引き起こされた負の影響を取り除くか大幅に減らす多くの利点を与える。このような利点は、集中的な家畜生産を利用して、あるいは、あるいは漁業と水産業を介して一般的に作られる食肉生産の領域で特に感じられる。肉を採取される生きた動物や魚を飼育するか捕らえる代わりに、自己再生能力を有する細胞を単離させるか、あるいは作り、細胞培養で成長させる。場合によっては、胚性幹細胞および多能性前駆細胞などの細胞は、自然に自己再生ができる。代わりに、あるいは、組み合わせて、細胞は自己再生する能力を獲得するように操作される。こうした細胞は培養されて、所望の量まで拡張される。しばしば、細胞は、例えば、大規模生産を可能にするバイオリアクターを使用して、スケーラブルやり方で培養される。様々な培地製剤を随意に用いて、細胞集団の拡張中などに自己再生の能力を維持できるようにするか、あるいは、所望の細胞型を生成するために特定の分化経路に細胞を押しやる。例えば、いくつかの例では、培養細胞は筋細胞、脂肪細胞、あるいは臓器細胞に分化するように誘導される。場合によっては、分化は、異なる細胞型への細胞の分化転換を含む。例えば、不死化した線維芽細胞は拡張して、その後、筋細胞、脂肪細胞、肝細胞、および/または、他の所望の細胞型へと分化転換可能である。しばしば、培地製剤は、ウシ胎仔血清または血清代替物を必要としないように従来の培地から修飾され、ヒト食用に試験されないままである。培地製剤は、ウシ胎仔血清などの動物成分の使用を減らすか、必要としなくなるように、植物に由来する低血清あるいは無血清の製剤を含み得る。植物ベースの製剤の例としては、大豆ベース、および、植物加水分解物ベースの培地製剤が挙げられる。培地製剤はしばしば、少なくとも1つのマッシュルームベースの成分を含む。ある場合では、少なくとも1つのマッシュルームに由来する抽出物は、培地製剤中のウシ胎仔血清に取って代わる。いくつかの培地製剤は培養細胞の栄養素含有量を増強するための少なくとも1つの成分を含む。代わりに、共培養システムは、組換え型タンパク質生成を必要としなくなることにより、かつ、培地の再利用を可能にすることにより、効率を増大させる調整培地系を提供するために使用される。代替的な培地製剤に加えて、3次元スキャフォールドおよび組織工学プラットフォームを用いて、多くの場合、大規模な成長を促進する。しばしば、スケーラブルのバイオリアクターは、大量生産に必要とされる必須の成長をもたらす。いくつかの例では、3次元スキャフォールドは、構造的な支持を与えるために、かつ従来の方法を使用して当量の食品に類似する所望の構造および/または組織へと培養細胞の成長を導くために、使用される。代わりに、あるいは、組み合わせて、マイクロスキャフォールドは、バイオリアクター中などの懸濁培養中での接着細胞の成長を可能にする。これらのマイクロスキャフォールドは、幹細胞を増強し、関連する血統への細胞の分化を方向付け、および、最終的な肉製品風味食感、および引張弾性を調節するために操作可能である。いくつかの接着細胞は接着表面を必要とすることなく、懸濁培養中で成長するように修飾される。ある食品は、例えば、フォアグラを作るための肝臓細胞などの細胞の均質な集団を使用して製造される。代わりに、いくつかの食品は、筋肉と脂肪細胞の組み合わせなどの細胞の異質な集団を使用して製造される。場合によっては、分化細胞の異質な集団を生成するために、細胞の集団を複数の細胞型へ分化させる。代わりに、独立した細胞集団は別の細胞型へ分化され、その後、組み合わされる。異質な細胞集団を使用するこうした方法は、例えば、筋肉と脂肪細胞の組み合わせから構成される鮭肉などの特定の組織の生産を可能にする。しばしば、培養細胞は所望の細胞または組織表現型を生成するように修飾される。培養された細胞は、自己再生の状態、細胞または組織型への分化、あるいは脂肪症体質などの所望の表現型を与えるように、1つ以上の遺伝子構築物で修飾され得る。培養細胞は、培養物環境への調整を介しても修飾可能である。例えば、肝臓細胞は、細胞質内部での過剰な脂質取り込み貯蔵によって脂肪症を誘導するように、脂質が豊富な培地中で随意に培養される。多くの場合、脂肪肝臓細胞は採取され、フォアグラあるいはフォアグラ食品として処理される。採取された細胞は典型的に、所望の堅さおよび/または質感をもたらすために処理される。場合によっては、採取された細胞は、特別な味、質感、および、それらが再生しようとする高品質の肉とは判別不能な他の特性を達成するために処理される。

0041

本明細書で開示される細胞培養食品を生産するためのシステムおよび方法は、多くの利点を与える。培養された食肉は、生産中に鳥類の鳥インフルエンザあるいは様々なバクテリア菌株などの病原体に晒されない。同様に、本明細書で開示されるシステムおよび方法は、抗生物質を使用しない食肉生産を提供することができる。これには、抗生物質にヒトを不注意に晒さずに、一方で、抗生物質耐性を開発する細菌のリスクの増加も回避するという利点がある。加えて、培養された食品の生産は、飼料用穀物を必要とせず、かつ、糞便大腸菌細菌、アンモニア、およびリンをしばしば含有する動物性廃棄物産出を回避する。例えば、家畜向けの飼料用穀物を育てるために莫大な量の土地が割り当てられ、これには、肥料、殺虫剤、および除草剤の広範囲での使用が伴う。対照的に、培養された食品は比較的小さな環境フットプリントで生産可能である。

0042

フォアグラなどの質感のない組織、および、サケなどの特定の魚肉は、本明細書に記載された様々なシステムおよび方法を使用して生産される。いくつかの方法は、フォアグラを作るのに役立つ脂肪肝細胞などの高い脂質含有量を誇る培養された質感のない組織の生産を可能にする。そのような方法はしばしば:a)自己再生可能な分化細胞の集団を得る工程;b)分化細胞の集団を培養する工程;c)細胞が高脂質含有量を蓄積するように、分化細胞の集団に脂肪過多症を誘導するために少なくとも1つの脂質代謝経路を操作する工程;および、d)分化細胞の集団を質感のない組織へと処理する工程を含む。場合によっては、自己再生可能な分化細胞は、分化転換(例えば、直接的な細胞再プログラミング)を介して得られる。しばしば、本明細書に記載された方法は、ヒト食用の培養された臓器組織を生産する。そのような方法は:a)自己再生可能な細胞の集団を培養する工程;b)臓器組織を生成するために細胞の集団において分化を誘導する工程;および、c)ヒト食用に臓器組織を処理する工程を含む。

0043

図1は、ヒト食用の細胞を培養するプロセスの1つの実施形態を例証する。この例では、自己再生細胞の集団が得られる(101)。本明細書に記載されたように、自己再生細胞はしばしば、胚性幹細胞、人工多能性幹細胞、胚性生殖細胞、不死化分化細胞、あるいは発生期の成体幹細胞である。細胞の集団は培養され(102)、典型的には所望の個体数まで拡張される。次に、分化が集団で誘導される(103)。場合によっては、分化は、異なる細胞型への細胞の分化転換を含む。この例では、集団中の細胞は肝細胞へ分化する。しばしば、脂質蓄積は分化した肝細胞を含む細胞の集団において誘導される(104)最後に、細胞の集団はヒト食用に処理される(105)。例えば、肝細胞はしばしば、フォアグラあるいはフォアグラ食品へ処理される。

0044

図2は、ヒト食用の筋組織を培養するプロセスの1つの実施形態を例証する。この例では、自己再生細胞の第1の集団と第2の集団が得られる(201)(204)。細胞の第2の集団が培養され(202)(205)、典型的には所望の個体数まで拡張される。次に、その2つの集団において分化が誘導される(203)(206)。この場合、筋細胞への分化は細胞の第1の集団において誘導される(203)。場合によっては、分化は、異なる細胞型への細胞の分化転換を含む。脂肪細胞への分化は細胞の第2の集団において誘導される(206)。最後に、細胞のその2つの集団はヒト食用に処理される(207)。この場合、第1と第2の集団は組み合わされ、ヒト食用の筋肉および脂肪細胞の両方を含む食肉へと処理される。

0045

ヒト食用の培養された食肉を調製するための例示的なプロセスの概観図3に示される。初めに、幹細胞の同定、単離、および、特徴付けが行われる。これらの細胞は当初、フィーダー細胞層上などの二次元の培養物中で育てられる。細胞は最終的に、大規模な細胞成長を可能にするバイオリアクター内の懸濁培養へ移される。懸濁培養に移した後、細胞は筋細胞へ分化する。場合によっては、分化は、異なる細胞型(例えば、不死化された線維芽細胞から筋肉および/または脂肪細胞への)への細胞の分化転換を含む。その後、食肉が採取され、最終的に調製および調理される。培養された食品を調製するのに適切な細胞株を得るために様々なアプローチを使用することができる(図4A−4B)。

0046

ある態様において、魚に由来する組織を含む合成食品を生産する方法が本明細書で開示される。いくつかの実施形態において、魚の筋細胞および脂肪細胞は、初期開発段階中のその内因性再生能力に基づいて、魚関連の食品の開発に利用される。このプロセスの例証的な実施形態では、マスの脂肪前駆細胞および筋衛星細胞(筋細胞に分化することができる)が単離され、培養され、特徴付けられた。図5A−5Dで示されるように、マスの筋衛星細胞を単離させ、その後、特徴付けた。差込図は、存在する場合、画像の詳細を拡大し、スケールバーは、別段の定めのない限り、すべての顕微鏡写真で10μmと等しい。魚の筋衛星細胞の実質的に純粋な集団を成功裡に単離させ、図5Aで示しており、衛星細胞は単離細胞の約80%を占めている。これらの単離細胞のRTPCR分析は、多能性のマーカーである転写マーカーMstn1aとMyf5の発現を明らかにした(図5B)。次に、培養条件はこれらの細胞のために最適化された。培地プロトコルを使用して、筋衛星細胞(矢じり)を成熟した分化筋細胞(矢)へ分化させることに成功した(図5C)。筋衛星細胞から分化したマス筋管の結果として生じるシートが図5Dで示されている(スケールバーは100μmである)。いくつかの実施形態において、筋衛星細胞は脂肪前駆細胞で共培養可能である。例証的な実施形態では、図6Aで示されるような筋肉と脂肪の細胞または組織の両方を含む食品を生産するために、サケ筋衛星細胞(矢じり)をサケ脂肪前駆細胞(矢)で共培養した(スケールバーは100μmである)。図6Bで示されるように、脂肪前駆細胞を脂肪細胞へ分化させ、筋衛星細胞は筋細胞(矢じり)へ分化した(スケールバーは100μmである)。

0047

場合によっては、食品を生産するためにサケ線維芽細胞が使用される。サケ線維芽細胞は、バイオリアクター内での増殖のためにスフェロイドを形成するように誘導可能である(図7A)(スケールバーは100μmである)。こうしたスフェロイドの生存率は、2次元の培養条件にこれらを戻し、コロニーを形成するために線維芽細胞が周辺に移動したことを観察することによって確認される(図7B)(スケールバーは100μmである)。場合によっては、線維芽細胞が増殖し、その後、筋細胞、脂肪細胞、肝細胞、あるいはこれらの任意の組み合わせなどの所望の細胞型へ分化転換する。

0048

本明細書に開示される方法は様々な水生種に適用可能である。例えば、バスの筋衛星細胞の細胞培養も、標準的な細胞培養プロトコルを利用して成功裡に培養されてきた(図8)。ある実施形態では、水生生物の1つ以上の種類に由来する細胞あるいは組織を含む肉食品が本明細書で開示される。しばしば、水生生物は、ハタ、マグロ、サバ、ニシクロカジキ、メカジキ、ブリ、サケ、マス、ウナギアワビ、ヤリイカ、ハマグリ赤貝、鮎、ホタテガイ、タイ、サヨリエビヒラメトリガイ、タコ、あるいはカニからなる群から選択される。ある場合では、水生生物は、ハタ、マグロ、サバ、ニシクロカジキ、メカジキ、ブリ、サケ、マス、あるいはヒラメからなる群から選択された魚の一種である。いくつかの例では、水生生物は丸い魚あるいは平らな魚であり得る。丸い魚はバス、ナマズアルプスイワナタラ、コダラ、ニシンイワシティラピア、マス、フエダイ、サケ、メカジキ、およびマグロを含むことができる。平らな魚はヒラメ、ウシノシタ、オヒョウ、およびターボットを含み得る。マグロの種類はキハダマグロミナミマグロ、タイセイヨウクロマグロビンチョウマグロ、タイセイヨウマグロ、およびメバチマグロを含む。サケの種類はタイセイヨウサケ、ベニザケ、マスノスケキングサーモンとも呼ばれる)、ギンザケ、シロザケ、およびカラフトマスを含む。マスの種類はニジマスノドキリマス、ブラウントラウト、レッドマウンテントラウト(red mountain trout)、カワマス、およびレイクトラウトを含む。

0049

ある態様において、鳥類に由来する組織を含む合成食品を生産する方法が本明細書で開示される。いくつかの実施形態において、合成食品は、アヒルまたはガチョウに由来する鳥類の肝細胞および/または肝臓組織を含む。いくつかの実施形態において、合成食品は脂肪肝組織を含む。いくつかの実施形態において、これらの方法は、初期の開発段階中にその内因性の再生能力に基づいて関連の食品の開発のために自己再生細胞(例えば、多能性または分化多能性の細胞)を利用する。培養で成長する単離するのに成功したアヒル胚性幹細胞が図9に示される。

0050

細胞株
本明細書で開示されるいくつかのシステムおよび方法は、培養された食品の生産のために自己再生することができる細胞株の生成を含む。1つのアプローチでは、胚性幹細胞が単離される。胚性幹細胞は初期の胎芽から生成された多分化能性幹細胞である。典型的には、胚性幹細胞は、受精後4〜5日目に胚盤胞から採取される。胚盤胞は内部細胞塊を有し、これは取り除かれて、培養物中に置かれる。細胞培養状態で生存可能なままであるこうした細胞は、自己再生することができる細胞株を確立するために使用される。例えば、図4Aは脂肪肝細胞を生成するためのあるアプローチを例証する。いくつかの例では、胚性幹細胞は、アヒルまたはガチョウの(401)などの鳥類の胚から得られる。これらのアヒルまたはガチョウの胚性幹細胞は、培養されたフォアグラを生産するために随意に使用された多分化能性幹細胞(411)である。しばしば、鳥類の胚性幹細胞は、Eyal−GiladiおよびKochavのステージ10(EGK−X)鳥類胚において胚盤葉細胞から単離される。例えば、鳥類の胚性幹細胞は、Aubel P., Pain B. Chicken embryonic stem cells: establishment and characterization. MethodsMol. Biol. 2013; 1074:137−150に記載されるようなbFGF、IGF−1、mSCF、IL−6、OSM、LIF、IL−6、およびIL−11などの特定の成長因子を用いて性幹細胞培地(ESA)中の不活性化STOフィーダー細胞上でそれらを培養することにより単離可能である。培養で成長する単離するのに成功したアヒル胚性幹細胞が図9に示される。これらのアプローチも魚の筋細胞および/または脂肪細胞の生成にも利用することができる(図4B)。

0051

いったん単離されると、胚性幹細胞は通常、未分化の状態で維持される。しばしば、公開されたプロトコルは未分化の状態で胚性幹細胞を維持するために修正される。公開されたプロトコルへの修正は、持続的な細胞増殖および脱分化状態の維持を達成するために、最適化されたマトリックス基板の使用と最適化された培地製剤の使用を含むことができる。場合によっては、鳥類の胚性幹細胞は、Horiuchi et a., Chicken leukemia inhibitory factor maintains chicken embryonic stem cells in the undifferentiated state. J.Biol.Chem. 2004;279: 24514−24520に記載されるようなサイトカインインターロイキンファミリーメンバーである白血病抑制因子(LIF)を使用して未分化の状態で維持される。代わりに、鳥類の胚性幹細胞は培地中でLIFの使用を必要とすることなく未分化の状態で維持される。ある例では、鳥類の胚性幹細胞は、他のサイトカインあるいはフィーダー細胞を使用することなくLIFを含有している培地製剤中で未分化の状態で維持される。培地製剤はしばしば組み換えLIFを含む。場合によっては、組み換えLIFは精製のためのアフィニティータグを有する融合タンパク質として生成される。典型的には、精製用のアフィニティータグを有する融合タンパク質は、グルタチオンS−トランスフェラーゼ(GST)、FLAGタグ、S−タグ、プロテインC(HPC)の重鎖ストレプトアビジン結合ペプチドストレプトアビジンタグ、ヒスチジンアフィニティータグ、polyhistidineタグ、ポリシステインタグ、ポリアスパラギン酸塩タグ、アルブミン結合タンパク質(ABP)、カルモジュリン結合ペプチドセルロース結合ドメインキチン結合ドメイン、およびコリン結合ドメインから選択された少なくとも1つのアフィニティータグを使用する。いくつかの例では、アフィニティ精製融合タンパク質はアフィニティータグを取り除くために切断あるいは消化される。

0052

単離された胚性幹細胞は典型的には所望の細胞型へ分化する。所望の細胞型は通常、食品あるいは食品の一部を構築する完全に分化した細胞である。しばしば、分化細胞は肝臓実質細胞または肝細胞(412)である。図10Aは分化に成功した後の培養物中で成長するアヒル肝細胞を示す。分化は、RT−PCR(図10B)を使用して、肝細胞分化のマーカー(ローディング対照としてβアクチンを有する、L−FABP、α胎児タンパク質、およびHNF3b)を測定することにより確認された。図10Bで示されるように、肝細胞(右レーン)は、対照未分化細胞中の発現の不足と比較して(左レーン)、肝細胞分化マーカーの顕著な発現をもたらす。培養された肝細胞はしばしば、フォアグラを生成するために使用される。いくつかの例では、分化細胞は筋細胞または骨格筋細胞である。分化細胞はしばしば、脂肪と筋組織の両方を有する培養された肉製品の生産のための筋細胞などの他の細胞型と組み合わせて随意に使用される脂肪細胞である。例えば、サケの筋細胞および脂肪細胞はしばしば、ヒト食用の寿司に使用できる品質等級の鮭肉を生産するために使用される。しばしば、分化細胞は、例えば、横紋筋細胞あるいは骨格筋細胞、平滑筋細胞心筋細胞脾臓細胞胸腺細胞内皮細胞血液細胞気泡細胞、肝臓細胞、腎臓細胞、膵臓細胞肺細胞、あるいはこれらの任意の組み合わせなどの臓器細胞である。代わりに、所望の細胞型はしばしば、完全分化細胞型を生成するために役に立つ成体幹細胞または前駆細胞などの中間細胞型である。しばしば、分化は、ウェブサイトwww.abcam.com/protocols/hepatocyte−differentiation−protocolに記載されるなどの標準的なプロトコルの最適化によって達成される。例えば、胚性幹細胞と人工多能性幹細胞は両方とも、ROCK阻害剤Y27632を備えたmTESR培地中のMatrigelコーティングしたプレートへと細胞を分割し、胚体内胚葉(DE)培地を用いて処理し、その後、肝臓内胚葉HE)培地、未成熟肝細胞(IMH)培地、最後に成熟肝細胞MH)培地を用いて処理することによって、肝細胞へ分化することができる。いくつかの培地製剤は培養細胞の増殖、分化、あるいは他の所望の品質を増強するために修飾される。

0053

いくつかの方法は、本明細書に開示される食品を生産するために使用される人工多能性幹細胞(402)の生成をもたらす。しばしば、エピゾームの再プログラミング戦略は、Drozd et al., Generation of human iPSCs from cells of fibroblastic and epithelial origin by means of the oriP/EBNA−1 episomal reprogramming system. Stem Cell Research & Therapy. 2015; 6:122で概説されるエピソーム再プログラミング戦略を用いて、線維芽細胞から人工多能性幹細胞(iPSC)を作製するために採用される。例えば、例によっては、Oct3/4、Sox2、Klf4、L−Myc、C−Myc、Lin28、Nanog、およびLin4などの再プログラミング因子の組み合わせを発言する少なくとも1つのエピソームベクターは、成体の鳥類の線維芽細胞に由来する導入細胞である。しばしば追加される追加因子は、細胞老化などの再プログラミングバリアを克服するためのp53を含む。一例として、(ori−P/EBNA−1)ベースのエピソームベクターは、再プログラミングを可能にしつつ、再プログラミングされた細胞の内部においてエピソーム上でエピソーム的に持続する。エピソーム再プログラミングは、エピゾームのアプローチが古典的なウイルス再プログラミング戦略に起因する再プログラミングベクターの組み込みなくiPSC株を生成することから、「遺伝子フットプリント」の生成を妨げるアプローチをもたらす。最後に、場合によっては、iPSCsの分化は、胚性幹細胞について本明細書のどこから記載されるような最適化された基準プロトコルを使用して達成される。

0054

場合によっては、胚性生殖細胞は、自己再生可能な多分化能性幹細胞(403)の源として使用される。例えば、胚性生殖細胞は、肝臓組織生成の目的で成熟した肝細胞などの所望の細胞型へ分化することができる。しばしば、胚性生殖細胞は、Guan et al., Derivation and characteristics of pluripotent embryonic germ cells in duck. Poultry Science. 2010; 89(2): 312−317などに記載されるプロトコルを用いて単離される。例えば、ステージ28のアヒル胚組織が得られ、その後、トリプシンを使用して解離される。解離した細胞は遠心分離によって収集され、その後、幹細胞刺激因子(SCF)、白血病抑制因子(LIF)、および塩基性線維芽細胞増殖因子(FGF)の存在下において懸濁培養で培養される。胚性生殖細胞は典型的にはコロニーを形成し、これは、その後、フィーダー細胞とともにプレートへ再度播種される。いくつかの例では、単離された胚性生殖細胞は拡大され、本明細書に記載されているような食糧生産のための所望の細胞型へ随意に分化する。

0055

場合によっては、分化細胞は中間体多能性細胞型(404)を作製することなく、所望の細胞型へ再プログラミングされる。このプロセスはしばしば、所望の細胞型が非幹細胞から生成される分化転換と呼ばれる。しばしば、この方法は、Simeonov KP and Uppal H, Direct reprogramming of human fibroblasts to hepatocyte−like cells by synthetic modifiedmRNAs.PLOS ONE. 2014; 9(6): e100134に記載されるように実行される。しばしば、単離された線維芽細胞は、FOXA1、FOXA3、HNF1A、および、HNF4Aの少なくとも1つの因子を発現する間に最適化された肝臓成長培地中で線維芽細胞を培養することによって、肝細胞あるいは肝細胞様細胞へ再プログラミングされる。場合によっては、HNF1Aと、FOXA1、FOXA3、およびHNF4Aの少なくとも2つは線維芽細胞中で発現されることで、肝細胞に変換される。しばしば、再プログラミングのための分化細胞への前述の因子のいずれかの発現あるいは過剰発現は、当該技術分野で知られている遺伝的技術を使用して、外来性DNAまたはRNAを細胞へ導入することにより得られる。代わりに、単離された線維芽細胞は、筋細胞または脂肪細胞へ再プログラミングされる。場合によっては、再プログラミングは、異なる細胞型への線維芽細胞などの単離細胞の分化転換を伴う。例えば、再プログラミングされたサケの筋細胞および脂肪細胞は、サケのグレードの寿司などのヒト食用の鮭肉を生産するのに役立つ。

0056

しばしば、所望の細胞型の完全に分化した細胞は、自己再生可能な細胞株を生成するために不死化される。例えば、筋細胞、脂肪細胞、および/または肝細胞は、食糧生産の目的のために不死化可能である。しばしば、形質転換を使用する古典的に定義された不死化戦略は、不定増殖能力を用いて細胞株を生成するために、分化した成体細胞に適用される(405)。様々な例では、細胞不死化不死に必要とされる鍵となるタンパク質の人為的な発現によって達成される。いくつかの例において、分化した成体細胞は、SV4040ラージT抗原、hTERT、HPVE6/E7、EBV、MycT58A、RasV12、およびp53の少なくとも1つの発現あるいは過剰発現によって不死化される。場合によっては、鳥類の肝細胞は自己再生可能な成体の鳥類の肝細胞細胞株を生成するために不死化される。そのような細胞株は、フォアグラなどの肝細胞ベースの食品の大規模生産を助ける。しばしば、サケの筋細胞および/または脂肪細胞は、自己再生可能な成体のサケの筋細胞および脂肪細胞細胞株を生成するために不死化される。そのような不死化細胞株は、寿司に使用できる品質等級のサケなどの鮭肉の大規模生産を可能にする。場合によっては、分化細胞株(例えば、線維芽細胞)は不死化され、その後、筋細胞、脂肪細胞、肝細胞あるいはその任意の組み合わせなどの所望の細胞型へ分化転換され、および、魚肉あるいは鳥類の肝臓などの様々な型の食品を生成するために使用可能である。

0057

場合によっては、自己再生可能な不死化細胞株は、ある例では、形質転換または直接的な遺伝子修飾なく生成される(406)。このアプローチでは、細胞集団は典型的に採取され、ほとんどの細胞が老化を経験するまで数週間にわたって順次継代され、その間、少数の自然突然変異が発生し、これがする間に、無限複製能力を有する細胞株の生成を引き起こす。場合によっては、細胞集団は、例えば、胚(分化)肝臓細胞などの胚の分化細胞から得られる。このプロセスは、Lee et al., Establishment of an immortal chicken embryo liver−derived cell line. Poultry Science. 2013; 92(6):1604−12になどに記載される不死化された鳥類の肝細胞を生成するために、鳥類の細胞に適用可能である。この方法は、外因性の遺伝子材料あるいは遺伝子操作を使用することなく不死化細胞株を生成する際のウイルスを統合する必要性をなくす。例えば、図11Aは、初代線維芽細胞を培養し、および6−8週間後に分割細胞のコロニーを採取することにより生成されたアヒルの自己再生細胞を示す。図11Bは、初代線維芽細胞を培養し、および、6−8週間後に分割細胞のコロニーを採取することにより生成されたマスの自己再生細胞を示す。その後、自己再生細胞は、形態、増殖速度、および、増殖能力(例えば、形態、増殖速度に変化なく、かつ、ゲノム不安定性なく達成された継代数)について特徴付けされた。場合によっては、分化細胞株(例えば、線維芽細胞)は不死化され、その後、筋細胞、脂肪細胞、肝細胞あるいはその任意の組み合わせなどの所望の細胞型へ分化転換され、および、魚肉あるいは鳥類の肝臓などの様々な型の食品を生成するために使用可能である。

0058

場合によっては、自己再生可能な発生期の成体幹細胞は単離される。例えば、肝臓は、成体の哺乳動物と鳥類の生命体中で再生能力を有するわずかの臓器の1つである。成体の肝臓組織内の幹細胞の存在については、Navarro−Alvarez et al., Hepatic stem cells and liver development. MethodsMol Biol. 2010;640:181−236で再考察されている。これに応じて、いくつかの例では、発生期の肝臓幹細胞は単離され、培養され、培養された食糧生産で使用されるように拡大された(407)。しばしば、魚の脂肪前駆細胞および衛星細胞は単離され、脂肪細胞と筋細胞のそれぞれへの拡張と分化に適した細胞株を形成するように培養される。分化した脂肪細胞および筋細胞は通常、特定の比率でともに共培養されることで、結果として生じる食品中の脂肪細胞と筋細胞の所望の最終組成物が生成される。

0059

場合によっては、増強された増殖能力を用いる細胞を生成するために、肝臓細胞が有害化学物質を用いる処置される(408)。例えば、毒性の化合物へのこうした暴露は肝実質内での増殖反応誘い出すことが示されている。これに応じて、増強された増殖能力を有するこうした肝臓細胞は、様々な例において、培養された食糧の生産で使用されるように培養および拡大される。

0060

場合によっては、前述の方法のうちのいずれかを使用して得られた細胞は、成長または生存に接着性の基質を必要としない細胞株を生成するためにさらに修飾される。この方法はしばしば、生存して増殖するためには、結合用細胞外マトリックスを必要としない肝細胞の生成を含む。懸濁培養中で細胞を成長させることができるという利点は、容易かつ迅速に成長をスケールアップさせる能力を含む。しばしば、懸濁培養は労力が少なく、および/または資源集約的ではない。なぜなら、懸濁培養は、表面積よりもむしろ体積に基づいて細胞を培養し、かつ、トリプシン処理などの分離工程なく細胞の継代を可能にすることができるからである。接着性の基質を必要としない細胞株は、大規模な食糧生産を増強するためにバイオリアクター細胞培養システムとしばしば組み合わされる。ある場合では、幹細胞は懸濁培養に適しており、例えば、肝細胞、筋細胞あるいは脂肪細胞などの分化細胞型への分化前の拡張を可能にする。代わりに、例によっては、幹細胞は肝細胞へ分化し、その後、3次元の懸濁培養へ移した。場合によっては、分化細胞は所望の細胞型へ分化転換される。

0061

細胞株の遺伝子修飾
細胞または細胞株上での1つ以上の修飾を実施する方法が本明細書で開示される。場合によっては、修飾は、細胞または細胞株へ核酸または遺伝子構築物を導入することにより実行された遺伝子修飾である。細胞は自己再生、所望の細胞型への分化、特定の細胞表現型(例えば、脂肪症)を得ること、あるいは他の望ましい変化に関する能力を与えるように修飾可能である。場合によっては、細胞は1つ以上のDNA構築物などの外因性の核酸の導入を介して修飾される。細胞への外来性の核酸の導入は、限定されないが、トランスフェクション形質導入、ウイルスの形質導入、マイクロインジェクションリポフェクションヌクレオフェクション、あるいは形質転換を含む様々な方法を使用して遂行可能である。例えば、特定の細胞型の細胞は所望の細胞型へ分化転換することができる。

0062

加えて、利用することができる TALENS(転写活性化因子エフェクターヌクレアーゼ)あるいはCRISPRなどの遺伝子編集システムは、細胞の遺伝子修飾を実施する。例えば、活性型インバリアントなCas9タンパク質およびプログラム可能ガイドRNA(gRNA)からなることから、CRISPRはカスタマイズすることができる。Cas9−gRNA複合体は、プロトスペーサー隣接モチーフ(PAM)配列についてDNAを探索し、その後、Rループが形成される。Cas9、gRNA、および標的DNAを含む巨大分子複合体の形成に際して、Cas9タンパク質は、標的のDNAにおいて2つのニックを生成し、非相同末端結合経路あるいは鋳型指向性相同組換えによって優勢的に修復される平滑二本鎖切断を作製する。

0063

遺伝子構築物は、1つ以上の遺伝子用のプロモーターとORFを含むことができる。遺伝子構築物は細胞集団へ導入され得、その後、構築物を取り込んだ安定した細胞株について選択され得る。例えば、所望の遺伝子と、G418に対する耐性を与えるネオ遺伝子とを含むプラスミドは、線形化(例えば、制限エンドヌクレアーゼで一度切断)され、アヒルの肝細胞線維芽細胞細胞株へトランスフェクトされ、その後、G418とともに選択されることで、線形プラスミドベクターをゲノムへと成功裡に取り込んだ線維芽細胞を得ることができる。プロモーターの例は、サイトメガロウイルス(CMV)、ニワトリβアクチン・プロモーター(CAG)に縮合したCMVエンハンサー、ヒト伸長因子1−α(HEF−1α)、テロメラーゼ逆転写酵素(hTERT)プロモーター、およびシミアンウイルスシミアンウイルス40)プロモーターを含む。場合によっては、低いまたは非存在の基本転写速度を有するプロモーターは、漏出性の発現を最小限に抑えるか防ぐために使用される。一例として、本明細書に記載された様々な構築物中で使用されるレコンビナーゼの発現は、(例えば、多能性の維持に関与する遺伝子を刺激することによって)細胞に対する不可逆な変化を引き起こすことがあり得る。したがって、いくつかの実施形態では、構築物は、有糸核分裂細胞サイクル当たりせいぜい1つの転写事象を可能にするプロモーターを含む。場合によっては、プロモーターは、有糸核分裂細胞サイクル当たり、1、2、3、4、5、6、7、8、9、10、20、30、40、あるいは50以下(平均で)の転写事象を可能にする。場合によっては、プロモーターは、1つの有糸分裂周期当たり(平均で)1未満の転写事象を可能にする。しばしば、プロモーターは、(例えば、平均が1つの有糸分裂周期当たり半分未満の転写事象である場合)1つの有糸分裂周期当たりいかなる転写事象も可能にしない。

0064

遺伝子修飾は、望ましい特性を所有する細胞株の生成を可能にする。例えば、修飾された細胞株は、自己再生および/または増殖の状態で細胞株を維持する遺伝子を発現することがある。自己再生の状態は未分化の状態を維持する間の増殖または分裂の状態であり得る。一例として、自己再生特性を有する人工多能性幹細胞は、Oct3/4、Sox2、Klf4、およびc−Mycの1つ以上を発現することにより、分化した成体細胞から生成可能である。場合によっては、細胞は分化可能であり、かつ、無限の増殖能力を有しうる(例えば、不死化した線維芽細胞)。しばしば、修飾された細胞株は、1つの表現型から別の表現型までのスイッチを引き起こす誘導剤に反応する。スイッチは、自己再生の状態から分化した状態(例えば、筋衛星細胞から筋細胞、あるいは、脂肪前駆細胞から脂肪細胞)までであり得る。本明細書に開示される方法は、誘導性の脂肪生成のための1つ以上の構築物を含むことができる。例えば、上記方法は、未分化の状態で細胞分裂を促す、および/または、脂肪前駆細胞を維持するための1つ以上の多能性遺伝子を含む第1の構築物と、TRE、1つ以上の脂肪生成遺伝子、および多能性遺伝子を不活性化するための調節因子(例えば、Creレコンビナーゼ)を含む第2の構築物とを利用することもある。場合によっては、スイッチは、1つの分化細胞型から別の分化細胞型(例えば、成体線維芽細胞から肝細胞)への変化を含む。しばしば、スイッチは、細胞型の変化を伴わないが、その代わりに、細胞表現型あるいは細胞の特性の変化を含む。一例として、スイッチは、肝細胞を誘導して脂肪症を経験させ、脂肪症になりやすくさせ(例えば、脂肪酸を用いるインキュベーションなどの適切な条件下で脂肪症を経験する可能性が高まる)、あるいは増強された脂肪症(例えば、対照と比較して脂質蓄積が増大する)を引き起こすことができる。脂肪生成に関与する遺伝子の例は、FABP4、GLUT4、ADIPOQ、AGPAT2、PLIN1、LEP、およびLPLを含む。いくつかの例では、構築物は、FABP4、GLUT4、ADIPOQ、AGPAT2、PLIN1、LEP、LPL、あるいはこれらの任意の組み合わせを含む。構築物は、FABP4、GLUT4、ADIPOQ、AGPAT2、PLIN1、LEP、およびLPLからなる群から選択された遺伝子に関する、少なくとも1つ、少なくとも2つ、少なくとも3つ、少なくとも4つ、少なくとも5つ、少なくとも6つ、あるいは7つすべてのORFを含むことができる。

0065

いくつかの例では、細胞は細胞分裂を促進する1つ以上の多能性遺伝子を発現(誘導性の発現あるいは構成的に活性な発現)するように修飾される。特定の例において、多能性遺伝子は、少なくとも約50、少なくとも約100、少なくとも約150、少なくとも約200、少なくとも約250、少なくとも約300、少なくとも約350、少なくとも約400、少なくとも約500、少なくとも約600、少なくとも約700、少なくとも約800、少なくとも約900、あるいは、少なくとも約1000の細胞分裂を促進する。場合によっては、所定の細胞株あるいは細胞の集団に対する細胞分裂の数は、品質管理のためにモニタリングされる。例えば、いくつかの例では、閾値細胞分裂数超過する細胞株あるいは集団は、培養された食品を生産するためには使用されない。場合によっては、閾値細胞分裂数は、少なくとも約100、約200、約300、約400、約500、約600、約700、約800、約900、約1000、約2000、約3000、約4000、約5000、約6000、約7000、約8000、約9000、約10000、約20000、約30000、約40000、あるいは約50000以上の細胞分裂である。場合によっては、閾値細胞分裂数は、せいぜい約100、約200、約300、約400、約500、約600、約700、約800、約900、約1000、約2000、約3000、約4000、約5000、約6000、約7000、約8000、約9000、約10000、約20000、約30000、約40000、あるいは約50000以上の細胞分裂である。

0066

本明細書には、誘導剤に反応する構築物を使用して修飾される誘導可能な細胞が開示される。これら修飾細胞は、魚肉、鳥類の肝臓組織、および他の食糧などの培養食物製品を生成するために使用することができる。修飾細胞は、増殖、分化、細胞表現型(例えば脂肪過多症/脂質蓄積)、または他の細胞の特性を制御するために使用することができる。そのような誘導可能なシステムの典型的で非限定的な例は、誘導剤としてテトラサイクリンドキシサイクリンを利用する、Tet−on/offシステムである。他の誘導可能なシステムも、本明細書に記載される方法を実行するために企図される。non−Tetの誘導可能なシステムの例は、クーママイシンで誘導性の発現システム、RheoSwitch(登録商標)Mammalianで誘導性の発現システム、エストロゲン受容体で誘導可能なシステム、cumateで誘導可能なシステム、およびCre−Loxレコンビナーゼシステムを含む。場合によっては、本明細書に記載される誘導可能なシステムまたは構築物を安定して組み込んだ細胞株が生成される。代替的に、細胞は、(例えば少なくとも1つの構築物の一時的なトランスフェクションを介して)本明細書に記載される誘導可能なシステムまたは構築物を一時的に発現させるために調節され得る。

0067

Tet−onまたはTet−offのシステムは典型的に、テトラサイクリントランス活性化タンパク質を利用する。TetO配列は典型的に、発現がTetシステムを使用して制御されることを求められる任意のORFの上流位置決めされる。プロモーターおよびTetO配列は、テトラサイクリン反応要素(TRE)を構成することができる。場合によっては、TREはTetO配列から成り、且つ、対象の1つ以上の遺伝子に対してプロモーターおよびORFの上流に配される。Tet−onシステムにおいて、トランス活性化タンパク質は、テトラサイクリン(またはドキシサイクリンなどの誘導体)により結合されないと、TetOオペレーター領域に対して強い結合親和性を持つ。テトラサイクリンがない場合、トランス活性化タンパク質はテトラサイクリン反応要素(TRE)に結合されない。テトラサイクリンは、添加されると、トランス活性化タンパク質に結合し、且つ、下流のORFの発現を誘導するためにトランス活性化タンパク質をTREに結合させる。Tet−offシステムにおいて、トランス活性化タンパク質は、テトラサイクリンにより結合されないときにのみ、TetOオペレーター領域に対して強い結合親和性を持つ。テトラサイクリンがない場合、トランス活性化タンパク質はTetO配列に結合し、下流ORFの発現を促進する。添加されたテトラサイクリンは、TREへの結合の減少または損失をもたらす構造変化を引き起こすトランス活性化タンパク質に結合し、その結果、下流のORFの発現が減少する。

0068

図12は、肝細胞への誘導可能な分化を提供するために細胞へと導入され得る遺伝子構築物の典型的な実施形態を示す。構築物は、テトラサイクリン反応要素(TRE)、および肝細胞再プログラム因子HNF1A、FOXA1、およびHNF4Aに対するORFを含む。構築物は、多能性または分化多能性の細胞などの標的細胞へと安定して形質転換され得る。場合によっては、構築物は、(本明細書に記載される技術に従って得られる)不死化された線維芽細胞などの最終分化細胞へと安定して形質転換され得る。ORFの発現は通常、テトラサイクリンがない場合に抑えられる。テトラサイクリンでの処置はORFの発現を誘導し、これにより細胞は肝細胞への分化に向けて推し進められる。故に、この構築物を安定して組み込む細胞株は、テトラサイクリン/ドキシサイクリンでの処置を介して肝細胞への分化を誘導することができる。特定の場合、構築物は、HNF1A、FOXA1、およびHNF4Aの少なくとも1つを含む。時折、構築物は、HNF1A、FOXA1、およびHNF4Aの少なくとも2つを含む。幾つかの例において、構築物はHNF1A、FOXA1、およびHNF4Aを含む。構築物は、HNF1A、FOXA1、HNF4A、またはそれらの任意の組み合わせを含み得る。特定の例において、構築物はHNF1AおよびFOXA1;HNF1AおよびHNF4A;またはFOXA1およびHNF4Aを含む。

0069

図13は、細胞を脂肪過多症にさせる1つ以上のタンパク質の誘導性の発現を可能にするために細胞へと導入され得る構築物の典型的な実施形態を示す。構築物は、脂質代謝に関与する1つ以上の遺伝子に対してテトラサイクリン反応要素(TRE)およびORFを含む。構築物は、多能性または分化多能性の細胞などの標的細胞へと安定して形質転換され得る。場合によっては、構築物は線維芽細胞などの最終分化細胞へと安定して形質転換され得る。TREはORFの発現を抑えるが、ORFがテトラサイクリンまたはドキシサイクリンの存在下で転写されることを可能にする。故に、この構築物を安定して組み込む細胞株は、テトラサイクリン/ドキシサイクリンでの処置を介して脂肪過多症を受けまたは脂肪過多症に罹患させることを誘導することができる。場合によっては、構築物はZFP423に対してORFを含む。場合によっては、構築物は、ATF4に(活性化転写因子3)に対してORFを含む(Kim JY et al., Activating transcription factor 3 is a target molecule linking hepatic steatosis to impaired glucose homeostasis. J Hepatol. 2017 Aug;67(2):349−359)。場合によっては、構築物は、SREBP−1cに対してORFを含む(Ferre P et al., Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP−1c. Diabetes Obes Metab. 2010 Oct;12 Suppl 2:83−92)。他の遺伝子は、本明細書に記載される方法および構築システムに使用するために企図されており、LPIN1、PPAR、APOC3、APOE、ORL1、PEMT、MTTP、SREBP、STAT3、KLF6、またはそれらの任意の組み合わせを含む。場合によっては、構築物は、以下からなる群から選択された少なくとも1、少なくとも2、少なくとも3、少なくとも4、少なくとも5、少なくとも6、少なくとも7、少なくとも8、少なくとも9、少なくとも10、または少なくとも11の遺伝子を含む:ATF4、ZFP423、LPIN1、PPAR、APOC3、APOE、ORL1、PEMT、MTTP、SREBP、STAT3、およびKLF6。

0070

本明細書に記載される方法に利用される典型的な遺伝子は、表1に後述される。脂質代謝に関与する遺伝子の発現は、肝細胞または脂肪細胞などの標的細胞における脂質蓄積および/または脂肪過多症を促進または増強するように誘導されまたは増強され得る。肝細胞再プログラミング因子は、肝細胞への線維芽細胞の分化転換などの肝細胞への細胞型の再プログラムに使用され得る。同様に、筋細胞再プログラミング因子は、筋細胞へと線維芽細胞などの細胞型を再プログラミングするために使用され得る。脂肪細胞再プログラミングは、脂肪細胞へと線維芽細胞などの細胞型を再プログラミングするために使用され得る。同様に、筋細胞分化および脂肪生成に関与する遺伝子はそれぞれ、筋衛星細胞から筋細胞への分化、および脂肪前駆細胞から脂肪細胞への分化を誘導するために使用され得る。最後に、人工多能性幹細胞(iPSC)を生成するために使用可能な様々な遺伝子が列挙される。表1に列挙される遺伝子の何れか1つまたは組み合わせは、本明細書に記載される目的に対して企図される。

0071

0072

0073

図14は、多能性表現型から分化した表現型への増殖/分化の切り換えを可能にするために細胞へ導入することができるDNA構築物システムの例示的な実施形態を示す。このシステムは、多能性因子(例えば、10月4日、Sox2、Klf4、I−Myc)のORFの構成的発現をもたらす多能性カセットを含む、第1の構築物を有する。上記第1の構築物の多能性因子はpLox部位と隣接している。上記システムは、MyoDおよびCreレコンビナーゼのテトラサイクリン誘導性発現をもたらす分化カセットを含む、第2の構築物を有する。テトラサイクリンまたはドキシサイクリンなどの誘導剤の添加は、MyoDおよびCreレコンビナーゼの発現を誘導することができる。MyoD発現は、筋細胞へと細胞を分化させるのに役立つことができる。Creレコンビナーゼ酵素は、pLox部位と隣接する多能性因子の切除を触媒することができる。次に、誘導剤は、MyoDおよびCreレコンビナーゼ発現の誘導を止めるために除去することができる。このシステムの利点は、多能性因子の切除および誘導剤の除去後に、上記システムによって残される小さいフットプリントである。他の遺伝子は、筋形成を誘導するために使用することができ、ミオゲニン(MyoG)、MRF4、およびMyf5を含むことができる。場合によっては、MyoD、MyoG、MRF4、Myf5、あるいはそれらの任意の組み合わせが、筋形成を誘導するために使用される。時々、本明細書に記載される方法および/または構築物システムは、MyoD、MyoG、MRF4、およびMyf5からなる群から選択される少なくとも1つ、少なくとも2つ、少なくとも3つ、あるいは4つすべての筋原性因子を利用する。

0074

図15は、誘導可能な「オフスイッチ」を与えるために細胞へ導入することができる例示的な構築物を示す。この構築物は、対象の1つ以上遺伝子のORF、ならびにpLox部位と隣接するTREおよびCreレコンビナーゼを含む発現カセットを含む。図15に示されるような構築物は、ORFの下流に位置するTRE−Cre発現カセットを含む。代替的に、構築物は、ORFの上流に位置するTRE−Cre発現カセットを有することができる。プロモーターは、通常、ORFの上流に位置し、ORFがCreレコンビナーゼとは無関係に発現されるようにTREとは別個のプロモーターである。誘導剤の添加により、この構築物を安定して取り込む細胞株が、pLox部位と隣接する介在配列の切除を触媒するためのCreレコンビナーゼを発現するようにできる。したがって、1つ以上の遺伝子(例えば、分化を促進するもの)、ならびにTREおよびCreレコンビナーゼの発現カセットは除去され、対象の遺伝子のフットプリントなしの切除を結果としてもたらす。そのような構築物は、異なる細胞型へと細胞の分化転換を誘導するために使用することができる。

0075

図28Aは、遺伝子発現(例えば、標的ORFを活性化および/または不活性化する)を調節するための合成受容体の1つの実施形態を示す。このシステムは、Morsut et al., Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors. Cell. 2016 Feb 11; 164(4):780−9に記載される「合成Notch受容体」システムの後にモデル化される。このシステムでは、受容体は内因性Notch受容体(タンパク質δなどのリガンドを結合すると、細胞内ドメインの切断によって信号を送る)と同じ細胞外成分を含むように操作される。それに応じて、上記細胞内ドメインは、Creレコンビナーゼなどの酵素と取り替えることができる。リガンドが細胞に添加される場合、操作されたNotch受容体は活性化され、および、細胞内ドメインは切断され、これにより、この場合、細胞質へとCreを放出する。Creは、受動拡散によって核に侵入する(あるいは、タンパク質へと操作される核局在配列を有し、核への侵入を容易にする)。そこで、Creは、本明細書に(例えば、図12−15)記載されるように、loxP部位の組み換えを誘導する。そのような構築物は、異なる細胞型への細胞の分化転換を誘導するために使用することができる。

0076

図28Aに示されるモデルは不可逆的切り換えを表し、それによって、Creは細胞膜から核へと放出されて組み換え事象を誘導する。そのような事象(多能性維持から分化までの切り換えを含む)が本明細書に記載されている。Cre送達は、増殖、接着、分化、移動、および他の細胞特性などの様々な細胞の機能あるいは特性に影響する可能性がある。様々な実施形態において、この切り換えは、増殖状態から分化(筋細胞、脂肪細胞などへの)を誘導する遺伝子の活性化への移行を可能にする。このシステムの重要な利点は、Creを機能させるために遺伝子の活性化を必要としないということであり;代わりに、酵素は、細胞表面でリザーバーとして構成的に発現および局在化される。そのような構築物は、異なる細胞型への細胞の分化転換を誘導するために使用することができる。

0077

図28Bは、遺伝子セット(例えば、多能性遺伝子セットを不活性化し、分化遺伝子セットを活性化する)の間で切り換えるためのさらなる戦略を示す。これらの戦略は、誘導性遺伝子発現系(例えば、テトラサイクリン/ドキシサイクリン誘導性系)と組み合わせて部位特異的なレコンビナーゼ(SSR)系を実行することができる。SSR/誘導性の組み合わせは、Zhang et al. Conditional gene manipulation: Cre−ating a new biological era. J Zhejiang Univ−Sci B (Biomed & Biotechnol) 2012 13(7):511−524に記載される。場合によっては、このSSR/誘導性の系が、エクスビボの肉を生成するための多能性と分化の間の切り換えとして使用される。そのような構築物は、異なる細胞型への細胞の分化転換を誘導するために使用することができる。

0078

図28Bに示されるように、三角形lox配列を表す(黒はloxPであり、白はlox5171であるが、他の配列がこの目的に使用されてもよい)。三角形が整列する場合、組換え事象(Cre酵素によって触媒される)は、それらの間の配列の切除/欠失へとつながる。三角形(定義されたDNA配列を表す)が互いに面している場合、組み換え事象は、介在配列の確率的反転(stochastic inversion)(前後にひっくり返す)を引き起こす。この例証の目的のために、増殖が一般的に記載される(および、サイクリンファミリーのメンバー、サイクリン依存性キナーゼ、p27kip、TERT、あるいは他のものなどの細胞周期阻害剤などの遺伝子を包含することができる)。本明細書(例えば、図12−15)に記載の他の遺伝子組換え機構に記載されるように、増殖は、「多能性」遺伝子(iPSCを生成するための山中因子など)で置換することもできる。同様に、分化は、様々な遺伝子(筋細胞の場合のMyoDなど)を包含することができる。他の遺伝子が同じ方法で使用されてもよく、任意の系統への分化を刺激する。そのような構築物は、異なる細胞型への細胞の分化転換を誘導するために使用することができる。

0079

2つの代表的なシナリオが図28Bに示される。上パネル(1)において、Creが加えられる場合、それは初めに、三角形の黒色の対あるいは白色の対のいずれかで組換えを誘導する。左のシナリオに示されるように、最初の事象が黒色の三角形(loxP)に関与している場合、これは介在DNA配列の反転を誘導し、2つの白色三角形(lox5171)を平行に置く;その後、これは、Cre酵素が介在配列を切除することを可能にする。結果は、増殖遺伝子から分化遺伝子への切り換えである。右のシナリオでは、Creは、最初に白色の三角形(lox5171)に作用する。これは反転を誘導し、その後、黒色の三角形(loxP)を平行に置き、Creが介在配列を切除することを可能にする。再び、結果は、増殖遺伝子の転写から分化遺伝子の転写への切り換えである。そのような構築物は、異なる細胞型への細胞の分化転換を誘導するために使用することができる。

0080

下のパネル(2)では、異なるスキームは増殖から分化への切り換えをもたらす。Creが白色の三角形(lox5171)の間の組み換えを最初に誘導する場合、反転事象が生じるようにlox配列が配置される。上記反転事象は、2つの黒色の三角形を平行に置き(loxP)、Creが増殖遺伝子を切除し、かつ分化を活性化することを可能にする。反転は、Creが黒色の三角形の間の組み換えを初めに誘発する右パネルで生じる。そのような構築物は、異なる細胞型への細胞の分化転換を誘導するために使用することができる。

0081

他のシステム(1つの遺伝子プログラムを活性化し、その後、遺伝子活性化の第2の工程を必要とする)とは異なり、図28Bにおいて本明細書に記載されるプロセスは、単一入力(Cre)を使用し、非常に高い効率で、ある遺伝子セットから別の遺伝子セットへの完全な切り換えを誘導するという点で独特である。このアプローチは、特に大規模生産において、プロセスを単純化および/または必要な入力を減少することができる、培養食品を生産する方法の改善をもたらす。大規模に、本明細書に開示されるプロセスは、プロセス単純化における有意な改善および必要な入力の減少を表す。

0082

本明細書に記載される誘導性の系は、Tetおよび/またはCreレコンビナーゼベースの系に制限されない。対象の1つ以上の遺伝子を切除するために誘導性レコンビナーゼ発現を利用する系の他の実施形態が企図される。例えば、Flp−FRT系は、FRT(フリッパー認識標的)配列と隣接するDNAを切除するために、Flp(フリッパーゼ)レコンビナーゼを利用する。そのようなシステムは、異なる細胞型への細胞の分化転換を誘導するために使用することができる。

0083

自己再生の未分化状態で細胞を維持するための誘導された発現および遺伝子切除の組み合わせは、プロモーターの漏れやすさあるいは基礎発現レベル技術的問題に直面する可能性がある。例えば、プロモーターの漏れやすさは、レコンビナーゼの一部の発現を結果として生じさせ、その後、誘導剤が添加される前に、多分化能性幹細胞因子を切除する。しかし、本明細書に記載される培養食品生産の目的のためにこのシステムを利用する重要な利点は、漏れやすさを経験するそれらの細胞が自己再生表現型を失い、レコンビナーゼ発現のより厳しい制御を維持する細胞に打ち負かされる可能性が高いということである。したがって、自己再生(例えば、多能性または分化多能性)細胞培養をスケールアップして商業的量の培養食品を産生する際に、集団中の培養細胞のほとんどあるいはすべてが、基礎発現レベルが十分に低い場合には、それらの未分化および自己再生の特性を保持しなければならない。誘導剤の不在下でレコンビナーゼ発現の強力な抑制を有する細胞株を同定するために、修飾された細胞をクローン的に選択することができる。場合によっては、細胞がヒト食用の肉製品を産生するために採取される直前に、分化(および/または他の望ましい特性)を誘導するために誘導剤が添加される。

0084

<脂質蓄積あるいは脂肪症を誘導する>
場合によっては、本明細書に開示されるシステム、方法、および組成物は、脂質蓄積あるいは脂肪症の誘導を提供する。しばしば、脂質蓄積あるいは脂肪症は、脂質含有量が増加した細胞培養食品を産生する目的のために、細胞の集団において誘導される。本明細書で使用されるように、脂肪症は、細胞内の脂質の異常な保持を特徴とする病的状態である。過剰な脂質は、細胞質に取って代わる小胞中に蓄積する。大滴性脂肪変性は、小胞が核に取って代わるか、または歪めるのに十分な大きさである場合を説明するが、小滴性脂肪変性はこの表現型を欠いている。例えば、図4Aは、遺伝子介入および/または外因性化合物(409)の添加による脂肪肝細胞(413)の生成を含むプロセスを例証する。

0085

いくつかの態様では、脂質蓄積および/または脂肪症は、遺伝子操作によって細胞の集団において誘導される。例えば、本明細書に開示されるいくつかの方法は、培養された鳥類の肝臓組織を含むフォアグラの調製を提供する。いくつかのそのような方法は:a)自己再生可能な鳥類由来の細胞の集団を得る工程と;b)鳥類由来の細胞の集団を肝細胞へと分化させる工程と;c)高い脂質含有量を有する培養された鳥類の肝臓組織を生成するために、肝細胞中で脂肪症を誘導する工程と;d)フォアグラとして培養された鳥類の肝臓組織を調製する工程と、を含む。ある例では、非肝細胞が脂質蓄積を経験するように誘導される。いくつかの方法は、ヒトによる消費のために高脂質蓄積を有する培養細胞を生成する。そのような方法の1つの例は:a)細胞の集団を培養する工程と;b)細胞の集団内の分化を誘導する工程と;c)細胞の集団内の高脂肪蓄積を誘導する工程と;d)ヒトによる消費のために細胞の集団を処理する工程と、を含む。

0086

脂肪症および/または脂質蓄積は、脂質代謝を操作することによって遂行される。例えば、脂肪症を経験した肝細胞の遺伝子プロファイルは、Chiappini et al., Exploration of global gene expression in human liver steatosis by high−density oligonucleotide microarray. Lab Invest. 2006 Feb; 86(2):154−65によってあらかじめ特徴付けられる。脂肪肝細胞において影響を受けた細胞内シグナル伝達経路は、脂質代謝に関与しており、肝細胞の細胞質内での脂肪滴の蓄積に結びつく。場合によっては、本明細書に記載されるシステムおよび方法は、細胞の集団において脂肪症の信頼できる高い効率の誘導を提供する。脂肪症は、肝臓細胞または肝細胞の集団中でしばしば誘導される。時々、脂肪症は、肝臓脂質代謝に関与する遺伝子のアップレギュレーションあるいはダウンレギュレーションによって誘導される。例えば、場合によっては、Porteiro et al., Hepatic p63 regulates steatosis via IKK beta/ERstress. Nature Communications. 2017 May;8:15111に記載されるように、p63(例えば、N末端トランス活性化ドメインTAp63の過剰発現)のp53枯渇および/またはアップレギュレーションは、脂質蓄積を誘導する。肝細胞などの細胞の遺伝子修飾は、議論された様々なプロトコル(例えば、脂肪症に関与する遺伝子の誘導性発現)を使用して実行することができる。いくつかの例では、脂肪症および/または脂質蓄積は、脂質代謝経路およびERストレスに関与するER経路の少なくとも1つを操作することによって誘導される。時々、脂肪症あるいは脂質蓄積は、肝蔵細胞または肝細胞において誘導される。あるいは、その他の場合において、脂肪症あるいは脂質蓄積は、例えば、筋細胞または骨格筋細胞などの非肝細胞において誘導される。時々、脂肪症は、サケの筋細胞などの魚の筋細胞において誘導される。ある例では、脂肪症あるいは脂質蓄積は、例えば、腎臓細胞などの非肝細胞臓器細胞において誘導される。時々、脂肪症あるいは脂質蓄積は、分化細胞集団への拡張のための中間細胞株として使用される、多能性細胞集団または成体前駆細胞集団において誘導される。これらのシナリオでは、脂肪症あるいは脂質蓄積は、細胞の集団が分化する前の生成プロセスの初期に誘導される。場合によっては、高脂質蓄積が細胞において誘導される。

0087

反対に、ある例では、脂肪症は遺伝子操作を必要とせずに、脂質代謝経路を破壊することによって誘導される。例えば、特定の外因性化合物は、インビトロあるいはエクスビボで成長した肝細胞において脂肪症を誘導することができる。これらの外因性化合物は、アルコール類などの毒素および脂肪酸などの脂質を含む。場合によっては、少なくとも1つの脂質の高濃度を有する培地製剤において細胞を培養することは、脂肪症を誘導する。様々な実施形態では、細胞は、脂肪症を誘導するために脂質が豊富な培地製剤において培養される。脂質が豊富な培地中で培養された細胞は、時々、例えば、鳥類の肝細胞あるいは魚の筋細胞などの分化細胞の集団を含む。ある例では、脂質が豊富な培地中で培養された細胞は、胚性幹細胞あるいは誘導多能性幹細胞などの多分化能性幹細胞である。あるいは、ある例では、脂質が豊富な培地中で培養された細胞は、成体前駆細胞などの分化多能性幹細胞である。時々、細胞は、飽和脂肪酸、一価不飽和脂肪酸、ポリ不飽和脂肪酸、およびトランス脂肪酸から選択される少なくとも1つの脂質型を有する、脂質が豊富な培地において培養される。脂質の例としては、パルミチン酸、オレイン酸、ドコサヘキサエン酸、ステアリン酸、リノール酸、リノレン酸、アラキドン酸、およびエイコサペンタエン酸が挙げられる。場合によっては、上記培地は、誘導するためにリノール酸、オレイン酸、あるいはその組み合わせで補足されて、培地中で培養された細胞の集団において脂質蓄積あるいは脂肪症を誘導する。場合によっては、上記培地は、少なくとも約1mM、約2mM、約3mM、約4mM、約5mM、約6mM、約7mM、約8mM、約9mM、約10mM、約15mM、あるいは約20mMの濃度の脂質で補足される。時々、上記培地は、約1mM、約2mM、約3mM、約4mM、約5mM、約6mM、約7mM、約8mM、約9mM、約10mM、約15mM、あるいは約20mM以下の脂質で補足される。様々な実施形態において、上記培地は、少なくとも約1μM、約2μM、約3μM、約4μM、約5μM、約6μM、約7μM、約8μM、約9μM、約10μM、約20μM、約30μM、約40μM、約50μM、約60μM、約70μM、約80μM、約90μM、約100μM、約200μM、約300μM、約400μM、約500μM、約600μM、約700μM、約800μM、約900μM、あるいは約1,000μMの濃度の脂質で補足される。ある例において、上記培地は、少なくとも約1μM、約2μM、約3μM、約4μM、約5μM、約6μM、約7μM、約8μM、約9μM、約10μM、約20μM、約30μM、約40μM、約50μM、約60μM、約70μM、約80μM、約90μM、約100μM、約200μM、約300μM、約400μM、約500μM、約600μM、約700μM、約800μM、約900μM、あるいは約1,000μM以下の濃度の脂質で補足される。しばしば、細胞培養培地は、約1mM〜約20mMあるいは約1μM〜約1000μMの脂質濃度を含む。細胞培養培地は、しばしば少なくとも約1μMの脂質濃度を含む。典型的には、細胞培養培地は、最大で約20mMの脂質濃度を含む。

0088

場合によっては、上記培地は、IBMX(メチルキサンチン)、ロシグリタゾンチアゾリジンジオン)、上昇したグルコース濃度、および/またはデキサメタゾンなどのコルチコステロイドなどの少なくとも1つの培地で補足される。上記培地を補足するために使用することができるチアゾリジンジオンのその他の例としては、ピオグリタゾン、ロベグリタゾン(lobeglitazone)、シグリタゾンダルグリタゾン、エングリタゾン、ネトグリタゾン(netoglitazone)、リボグリタゾントログリタゾン、およびバラグリタゾンが挙げられる。ある例では、上記培地は、ピオグリタゾン、ロベグリタゾン、シグリタゾン、ダルグリタゾン、エングリタゾン、ネトグリタゾン、リボグリタゾン、トログリタゾン、およびバラグリタゾンからなる群から選択される少なくとも1のチアゾリジンジオンで補足される。一例において、チアゾリジンジオンはロシグリタゾンである。本明細書に記載される培地補足物は、脂質濃度について記載される濃度の全範囲を含む様々な濃度で、培地に添加することができる。例えば、上記培地補足物は、少なくとも約1μM、約2μM、約3μM、約4μM、約5μM、約6μM、約7μM、約8μM、約9μM、約10μM、約20μM、約30μM、約40μM、約50μM、約60μM、約70μM、約80μM、約90μM、約100μM、約200μM、約300μM、約400μM、約500μM、約600μM、約700μM、約800μM、約900μM、約1mM、約2mM、約3mM、約4mM、約5mM、約6mM、約7mM、約8mM、約9mM、約10mM、約15mM、あるいは約20mMの濃度で培地に添加することができる。場合によっては、上記培地補足物は、少なくとも約1μM、約2μM、約3μM、約4μM、約5μM、約6μM、約7μM、約8μM、約9μM、約10μM、約20μM、約30μM、約40μM、約50μM、約60μM、約70μM、約80μM、約90μM、約100μM、約200μM、約300μM、約400μM、約500μM、約600μM、約700μM、約800μM、約900μM、約1mM、約2mM、約3mM、約4mM、約5mM、約6mM、約7mM、約8mM、約9mM、約10mM、約15mM、あるいは約20mM以下の濃度で培地に添加することができる。

0089

図16Aは、未処理の対照(上パネル)と比較した、2μMのリノール酸(下パネル)でのインキュベーション時における、アヒルの肝細胞中での脂肪症の成功した誘導(細胞内脂質含有小胞の蓄積;矢頭)を示す。図16Bは、脂肪肝細胞の割合とリノール酸の濃度を相関させる用量反応曲線を示す。同様の結果がオレイン酸で達成された。場合によっては、IBMX(メチルキサンチン)、ロシグリタゾン(チアゾリジンジオン)、上昇したグルコース濃度、あるいは他の脂肪酸、およびデキサメタゾンなどのコルチコステロイドで肝細胞をインキュベートすることによって、プロトコルが増強された。

0090

場合によっては、細胞培養培地が、約0.1μM、約0.2μM、約0.3μM、約0.4μM、約0.5μM、約0.6μM、約0.7μM、約0.8μM、約0.9μM、約1.0μM、約1.1μM、約1.2μM、約1.3μM、約1.4μM、約1.5μM、約1.6μM、約1.7μM、約1.8μM、約1.9μM、約2μM、約3μM、約4μM、約5μM、約6μM、約7μM、約8μM、約9μM、約10μM、約15μM、あるいは20μMの脂質濃度(または本明細書に記載される他の培地補足物)含む。場合によっては、細胞培養培地が、最大で約0.1μM、約0.2μM、約0.3μM、約0.4μM、約0.5μM、約0.6μM、約0.7μM、約0.8μM、約0.9μM、約1.0μM、約1.1μM、約1.2μM、約1.3μM、約1.4μM、約1.5μM、約1.6μM、1.7μM、約1.8μM、約1.9μM、約2μM、約3μM、約4μM、約5μM、約6μM、約7μM、約8μM、約9μM、約10μM、約15μM、あるいは約20μMの脂質濃度を含む。場合によっては、細胞培養培地が、約1μM〜約2μM、約1μM〜約3μM、約1μM〜約4μM、約1μM〜約5μM、約1μM〜約6μM、約1μM〜約7μM、約1μM〜約8μM、約1μM〜約9μM、約1μM〜約10μM、約1μM〜約15μM、約1μM〜約20μM、約2μM〜約3μM、約2μM〜約4μM、約2μM〜約5μM、約2μM〜約6μM、約2μM〜約7μM、約2μM〜約8μM、約2μM〜約9μM、約2μM〜約10μM、約2μM〜約15μM、約2μM〜約20μM、約3μM〜約4μM、約3μM〜約5μM、約3μM〜約6μM、約3μM〜約7μM、約3μM〜約8μM、約3μM〜約9μM、約3μM〜約10μM、約3μM〜約15μM、約3μM〜約20μM、約4μM〜約5μM、約4μM〜約6μM、約4μM〜約7μM、約4μM〜約8μM、約4μM〜約9μM、約4μM〜約10μM、約4μM〜約15μM、約4μM〜約20μM、約5μM〜約6μM、約5μM〜約7μM、約5μM〜約8μM、約5μM〜約9μM、約5μM〜約10μM、約5μM〜約15μM、約5μM〜約20μM、約6μM〜約7μM、約6μM〜約8μM、約6μM〜約9μM、約6μM〜約10μM、約6μM〜約15μM、約6μM〜約20μM、約7μM〜約8μM、約7μM〜約9μM、約7μM〜約10μM、約7μM〜約15μM、約7μM〜約20μM、約8μM〜約9μM、約8μM〜約10μM、約8μM〜約15μM、約8μM〜約20μM、約9μM〜約10μM、約9μM〜約15μM、約9μM〜約20μM、約10μM〜約15μM、約10μM〜約20μM、あるいは約15μM〜約20μMの脂質濃度を含む。

0091

場合によっては、細胞培養培地が、少なくとも約0.1mM約0.2mM、約0.3mM、約0.4mM、約0.5mM、約0.6mM、約0.7mM、約0.8mM、約0.9mM、約1.0mM、約1.1mM、約1.2mM、約1.3mM、約1.4mM、約1.5mM、約1.6mM、約1.7mM、約1.8mM、約1.9mM、約2mM、約3mM、約4mM、約5mM、約6mM、約7mM、約8mM、約9mM、約10mM、約15mM、あるいは約20mMの脂質濃度(または本明細書に記載される他の培地補足物)を含む。場合によっては、細胞培養培地が、最大で約0.1mM、約0.2mM、約0.3mM、約0.4mM、約0.5mM、約0.6mM、約0.7mM、約0.8mM、約0.9mM、約1.0mM、約1.1mM、約1.2mM、約1.3mM、約1.4mM、約1.5mM、約1.6mM、約1.7mM、約1.8mM、約1.9mM、約2mM、約3mM、約4mM、約5mM、約6mM、約7mM、約8mM、約9mM、約10mM、約15mM、あるいは約20mMの脂質濃度を含む。場合によっては、細胞培養培地が、約1mM〜約2mM、約1mM〜約3mM、約1mM〜約4mM、約1mM〜約5mM、約1mM〜約6mM、約1mM〜約7mM、約1mM〜約8mM、約1mM〜約9mM、約1mM〜約10mM、約1mM〜約15mM、約1mM〜約20mM、約2mM〜約3mM、約2mM〜約4mM、約2mM〜約5mM、約2mM〜約6mM、約2mM〜約7mM、約2mM〜約8mM、約2mM〜約9mM、約2mM〜約10mM、約2mM〜約15mM、約2mM〜約20mM、約3mM〜約4mM、約3mM〜約5mM、約3mM〜約6mM、約3mM〜約7mM、約3mM〜約8mM、約3mM〜約9mM、約3mM〜約10mM、約3mM〜約15mM、約3mM〜約20mM、約4mM〜約5mM、約4mM〜約6mM、約4mM〜約7mM、約4mM〜約8mM、約4mM〜約9mM、約4mM〜約10mM、約4mM〜約15mM、約4mM〜約20mM、約5mM〜約6mM、約5mM〜約7mM、約5mM〜約8mM、約5mM〜約9mM、約5mM〜約10mM、約5mM〜約15mM、約5mM〜約20mM、約6mM〜約7mM、約6mM〜約8mM、約6mM〜約9mM、約6mM〜約10mM、約6mM〜約15mM、約6mM〜約20mM、約7mM〜約8mM、約7mM〜約9mM、約7mM〜約10mM、約7mM〜約15mM、約7mM〜約20mM、約8mM〜約9mM、約8mM〜約10mM、約8mM〜約15mM、約8mM〜約20mM、約9mM〜約10mM、約9mM〜約15mM、約9mM〜約20mM、約10mM〜約15mM、約10mM〜約20mM、あるいは約15mM〜約20mMの脂質濃度を含む。

0092

場合によっては、細胞は、脂肪症を誘発するために、高脂質濃度において一定期間培養される。細胞が高脂質濃度に晒される時間の長さは、細胞型、細胞集団のサイズ、細胞集団の年齢、継代の数、任意の遺伝子修飾あるいは細胞の操作、培地の型と成分、脂質蓄積または脂肪症の所望量、あるいはそれらの任意の組み合わせに応じて変動する。例えば、特定の細胞型は、他の細胞型より低速で培地中の外因性脂質を摂取し、したがって、所望量の脂肪症を誘導するために、脂質が豊富な培地においてより長いインキュベーション時間を必要とする。様々な場合では、細胞は、少なくとも1つの脂質を含む細胞培養培地において一定期間培養される。時々、細胞は、高脂質濃度を有する培地において、少なくとも一定期間培養される。多くの場合では、細胞は、高脂質濃度を有する培地において、約1日〜約20日間培養される。細胞は、しばしば、高脂質濃度を有する培地において、少なくとも約1日間培養される。典型的には、細胞は、高脂質濃度を有する培地において、最大で約20日間培養される。

0093

ある例では、細胞は、高脂質濃度(または本明細書に記載される他の培地補足物)を有する培地において、約1日〜約2日、約1日〜約3日、約1日〜約4日、約1日〜約5日、約1日〜約6日、約1日〜約7日、約1日〜約8日、約1日〜約9日、約1日〜約10日、約1日〜約15日、約1日〜約20日、約2日〜約3日、約2日〜約4日、約2日〜約5日、約2日〜約6日、約2日〜約7日、約2日〜約8日、約2日〜約9日、約2日〜約10日、約2日〜約15日、約2日〜約20日、約3日〜約4日、約3日〜約5日、約3日〜約6日、約3日〜約7日、約3日〜約8日、約3日〜約9日、約3日〜約10日、約3日〜約15日、約3日〜約20日、約4日〜約5日、約4日〜約6日、約4日〜約7日、約4日〜約8日、約4日〜約9日、約4日〜約10日、約4日〜約15日、約4日〜約20日、約5日〜約6日、約5日〜約7日、約5日〜約8日、約5日〜約9日、約5日〜約10日、約5日〜約15日、約5日〜約20日、約6日〜約7日、約6日〜約8日、約6日〜約9日、約6日〜約10日、約6日〜約15日、約6日〜約20日、約7日〜約8日、約7日〜約9日、約7日〜約10日、約7日〜約15日、約7日〜約20日、約8日〜約9日、約8日〜約10日、約8日〜約15日、約8日〜約20日、約9日〜約10日、約9日〜約15日、約9日〜約20日、約10日〜約15日、約10日〜約20日、あるいは約15日〜約20日間培養される。

0094

<培地製剤>
培養食品生産を可能にする少なくとも1つの培地製剤を利用するシステムおよび方法が本明細書で提供される。場合によっては、上記培地製剤は、ウシ胎仔血清などの血清の使用を必要としない。時々、培地製剤は、特定の細胞培養培地において使用される1つ以上の他の補足物を必要としない。細胞培養培地は、通常、血清培地および無血清培地の2つのカテゴリー分類される。従来の培地製剤は、しばしば、大規模な培養食品生産にとって費用がかかりすぎるウシ胎仔血清および他の補足物を利用する。血清(例えば、ウシ胎仔血清)は、動物から産生されるため、バッチ間で変動する傾向がある。例えば、ウシ胎仔血清(FBS)は、子胎児の血液から抽出され、組成物のバッチ間変動を有する傾向がある。加えて、血清の使用は、ウイルス、ミコプラズマ、プリオン、毒素、および、血清が抽出される動物中に存在する他の好ましくないものによって、汚染の可能性を生み出し得る。最後に、血清は費用がかかりすぎ、かつ家畜を飼育する必要があり、それは、培養食品を提供するというゴールの一部に反している。しかし、無血清培地の使用はこれらの課題を回避する。血清の代替物あるいは補足物が、本明細書に記載される培養食品を生成するための様々な培地製剤で使用される。血清の代替物あるいは補足物は、家畜ではない(例えば、ウシの胎児に由来しない)ソースに由来する。例としては、酵母、より大きな菌類(例えば、マッシュルーム)、細菌、藻類、あるいは昆虫細胞(例えば、バキュロウィルス)系における哺乳動物細胞の過剰発現系および導入遺伝子発現が挙げられる。例示的な実施形態は、Benjaminson et al. In vitro edible muscle protein production system (mpps): Stage 1, fish. Acta Astronautica (2002): 51(12), 879−889に記載されるような、無血清培地製剤のための血清の代替物を生成するためのマッシュルームベース系である。時々、本明細書に記載される上記システム、方法、および組成物は、マッシュルームベースの培地製剤を使用して培養するのに適切な、少なくとも1つの細胞株を生成あるいは取得することを含む。場合によっては、肝細胞株、脂肪前駆細胞株、あるいは衛星細胞株が、マッシュルームベースの無血清培地製剤での培養を可能にするように調整あるいは変更される。

0095

場合によっては、培地製剤は天然培地を含む。しばしば、培地製剤は合成培地あるいはその修飾したものを含む。合成培地の例としては、最小必須培地MEM)、Essential8培地、イーグル基礎培地(BME)、Ham’sF12、Ham’sF−10、フィッシャー培地、CMRL−1066培地、クリック培地、培地199、ダルベッコ改変イーグル培地(DMEM)、RPMI−1640、L−15培地、マッコイ5A改変培地、ウィリアム培地E、およびイスコフ改変ダルベッコ培地(IMDM)が挙げられる。

0096

場合によっては、培地製剤は、胚性幹細胞、人工多能性幹細胞、胚性生殖細胞、分化細胞(例えば、肝細胞または筋細胞)、不死化された分化細胞、あるいは発生期の肝臓幹細胞を培養するために変更される。ある例では、WO2008129058A1に記載されるような単離されたアヒル幹細胞株を培養するための培地製剤が、1以上の変更を伴って使用される。例えば、場合によっては、インターロイキン6および幹細胞刺激因子は、培地製剤から随意に除去される。時々、培地製剤はWO2008129058A1から変更される。培地の製剤は、通常、フィーダー細胞を必要とせずに、幹細胞の自己再生能力の増殖および/または維持を可能にする。例えば、Essential8培地は、フィーダー細胞のない環境において、多分化能性幹細胞を維持するための最も重要な成分を提供する。フィーダーなしの培養環境は、多分化能性幹細胞を成長させるために常にフィーダー細胞層を再播種する必要がないため、培養食品の大規模生産を強化する。しばしば、複数の培地製剤が細胞の集団の培養中に使用される。場合によっては、例えば、未分化状態の胚性幹細胞の集団を維持するなどの自己再生能力を維持する培地製剤を用いて、自己再生能力を有する細胞の当初の集団が培養される。次に、時々、分化は自己再生能力を有する細胞の集団において誘導される。例として、胚性幹細胞が肝細胞へと分化するために誘導される。この分化工程は、時々、分化培地製剤を必要とする。例えば、いくつかの例では、特定の分化因子が添加されるか、および/または、自己再生能力の維持に必要な因子が分化培地中で除去される。さらに、細胞の集団における分化が肝細胞の生成に結びつく場合、肝細胞において脂肪症または脂質蓄積を誘導する追加の工程がしばしば存在する。場合によっては、脂肪症は、脂肪培地製剤の使用によって、少なくとも部分的に誘導される。例えば、脂肪培地製剤は、時々、本明細書の他の箇所に記載されるように、少なくとも特定の濃度の脂質濃度を含む。

0097

場合によっては、培地製剤が、完成食品の栄養素含有量を高めるための、少なくとも1つの栄養素あるいは栄養剤を含む。栄養素は多量栄養素または微量栄養素である。多量栄養素は大量に必要な栄養素であり、タンパク質、脂肪、および炭水化物を含む。微量栄養素は少量が必要とされ、ビタミンミネラル、一部のアミノ酸、および、例えば、フラボノイドなどの特定の化合物を含む。ある例では、少なくとも1つの栄養素が、培養細胞の集団による摂取のために培地製剤に添加される。例として、フォアグラを生成するために使用される脂肪肝細胞は、典型的には、細胞質内に高脂質蓄積を有する。特定の脂質組成(例えば、ω−3脂肪酸)を有する培地製剤での肝細胞の培養は、結果として生じる脂肪肝細胞が、培地の脂質組成を部分的に反映する変更された脂質プロフィールを有するように誘導する。ある方法は、ヒトによる消費のために栄養素含有量を増加させた培養組織の生成を提供する。例えば、いくつかのそのような方法は:a)少なくとも1つの栄養剤を有する培養培地において細胞の集団を培養する工程と;b)細胞が高脂質含有量を蓄積するように、分化細胞の集団において脂肪症を誘導するために脂質代謝経路を操作する工程と;c)ヒトによる消費のために、分化細胞の集団を質感がない組織へと処理する工程と、を含む。他の方法は:a)少なくとも1つの栄養剤を有する培養培地において細胞の集団を培養する工程と;b)細胞が高脂質含有量を蓄積するように、分化細胞の集団において脂肪症を誘導するために脂質代謝経路を操作する工程と;c)ヒトによる消費のために、分化細胞の集団を均質に質感付けた組織へと処理する工程と、を含む。

0098

場合によっては、細胞を培養するために必要とされる特定の成長因子、タンパク質、脂質、ホルモン、あるいはその任意の組み合わせを含む培地製剤が生成される。しばしば、哺乳動物細胞過剰発現系は、前述の培地成分のいずれかを生成するために使用される。いくつかの例では、酵母における導入遺伝子発現、特定の菌類、細菌、藻類、あるいは昆虫細胞(バキュロウィルス)系が利用される。ある例では、その後、発現した培地成分は、単離および/または精製される。時々、培地製剤は、培地コンディショニング技術(media conditioning technique)を使用して生成される。あるいは、細胞は共培養モデルを使用して培養されることもある。しかし、様々な場合では、細胞は、共培養せずに、あるいは、酵母(例えば、食物を生成するために培養されている細胞と同じ界、門、および/または種に属さない生物あるいは細胞)などの生体異物細胞と共培養せずに、培養される。例えば、いくつかの鳥類の細胞は、マウスフィーダー細胞などの非酵母菌で共培養される。

0099

細胞培養培地からのウシ胎仔血清の成功した減少あるいは除去が実証されている。図17は、成体アヒル肝細胞に由来する不死化細胞株からの細胞数プロットするグラフを示す。これらの不死化細胞は、大豆加水分解物(10g/L)の存在下で、徐々に濃度を減少させたウシ胎仔血清(FBS)において培養された。大豆加水分解物の培地の補足は、培養した肝細胞の血清の必要量を92%減少することを可能にした。

0100

図18は、細胞培養培地からのウシ胎仔血清を連続的に減少させた後の、10%のシイタケ抽出物において成功裡に成長したアヒルの線維芽細胞を示す。場合によっては、上記培地は、少なくとも1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、あるいは15%のマッシュルーム抽出物で補足される。ある例では、上記培地は、1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、あるいは15%以下のマッシュルーム抽出物で補足される。マッシュルーム抽出物で補足される培地は、減少した血清中濃度を利用するか、あるいは血清を利用しなくてもよい。場合によっては、補足された培地は、1%、2%、3%、4%、5%、6%、7%、8%、9%、あるいは10%以下の血清(例えば、FBSなどの動物血清)を有する。そのような血清を減少させた培地製剤あるいは無血清培地製剤は、鳥類の細胞、魚の細胞、ブタの細胞、ウシの細胞、および他の食用の種の細胞などの様々な種に由来した細胞を含む本明細書に記載される細胞のいずれかを成長させるか、または培養するために利用することができる。場合によっては、細胞は家畜化された種(例えば、ウシ、ブタ、ニワトリ、アヒルなど)に由来する。その他の場合において、細胞は、家畜化されていない種(マス、サケ、ロブスター、カニなど)に由来する。分化多能性細胞、多能性細胞、胚性幹細胞、人工多能性幹細胞、筋細胞、脂肪細胞、筋衛星細胞、脂肪前駆細胞、間葉系幹細胞、線維芽細胞、肝細胞、および他の細胞型を含む様々な細胞型が、本明細書に記載される血清が減少した培地製剤または無血清培地製剤において培養され得る。

0101

場合によっては、細胞の集団あるいは細胞株は、補足を必要とせずに、血清が減少した培地製剤または無血清培地製剤において成長させるのに適している。図19Aは、追加の補足のない無血清培地において成長したアヒルの線維芽細胞を示し;図19Bは、10%のウシ胎仔血清で補足されたDMEMにおいて成長した対照培養を示す。

0102

<培養細胞のスケーラブルな生成>
ヒト食用の食品を作るための培養細胞の生成をスケールアップするために、様々な方法が随意に使用される。本明細書に開示されるシステムおよび方法は、培養食物の大規模生産を可能にする(図4A−4B)。1つの方法は、組織培養皿あるいはそれらの機能的等価物(例えば、細胞培養チャンバ)などの2次元の表面を使用することである。代表例は、接着細胞の接着を増強するための親水性を高めるように処理された、ポリスチレン表面を有する細胞培庫である。時々、細胞培養チャンバは、培養細胞の基質として機能するタンパク質組成物でコーティングされる。細胞培養チャンバは、本明細書に記載されるような培地製剤をしばしば使用する。多くの場合では、2Dの表面のアプローチは、複数の細胞培養チャンバを組み合わせることによりスケールアップされる。時々、複数の細胞培養チャンバは積み重ねられ、並んで配置される。いくつかの実施形態では、細胞培養チャンバは、少なくとも2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、あるいは100のチャンバの高さに積み重ねられる。細胞培養チャンバのスタックは、通常、互いに並んで配置される。例えば、ある例では、細胞培養チャンバのスタックは、空間を最大限に利用するために、並んでおよび/または前後に配置される。多くの場合では、上記チャンバは、物理的に結合され(例えば、単一のユニットとして作り上げられ)、かつ液体および気体の流れを可能するチャネルによって接続される一般的な注入口とベントポートを有する。

0103

ある実施形態では、細胞を培養するためのバイオリアクターシステムが本明細書で提供される。特定のバイオリアクターシステムは、ヒトによる消費に適している培養組織の生成を促進する。例えば、いくつかのバイオリアクターシステムは:a)細胞付着のための接着表面を提供する複数のマイクロスキャフォールドを含むリアクターチャンバーと;b)バイオリアクター内で培養される、自己再生細胞の集団と;c)自発的な分化なしに自己再生細胞の集団を維持するための成分を含む、少なくとも1つの維持培地を提供する第1のソースと;d)自己再生細胞の集団を特異的な系統へと分化するための成分を含む、少なくとも1つの分化培地を提供する第2のソースと、を含んでおり;ここで、上記リアクターチャンバーは、細胞の集団を培養するために上記第1のソースから維持培地を受け取り、且つ、細胞の集団を分化するために上記第2のソースから分化培地を受け取り、単一のバッチに生成される上記細胞の集団は、ヒトによる消費に適しており且つ少なくとも1kgの乾燥乾重量を有する培養組織を含む。

0104

バイオリアクターシステムは、典型的に、大規模細胞培養に対してスケーラブルである。図20は、細胞を培養するためのリアクターチャンバ(2001)を含むバイオリアクターシステムの1つの実施形態の略図を例証する。しばしば、バイオリアクターシステムは、リアクターチャンバ(2001)の内容物をかき混ぜるための要素(2003)を撹拌することを含む。連続的または周期的なかき混ぜは、懸濁液中の細胞、細胞集塊、および/またはマイクロスキャフォールドを維持するのに役立つ。新鮮な培地は、少なくとも1つの入力ポート(2002)を介してリアクターチャンバーに加えられる。新鮮な培地は、時々、本明細書に開示される維持培地、分化培地、脂肪培地、増殖培地、あるいは他の培地製剤である。枯渇した培地あるいは流出液は、少なくとも1つの出力ポート(2007)を介してリアクターチャンバーから除去される。場合によっては、酸素、二酸化炭素、および/または他のガスは、少なくとも1つの入力ガスポート(2006)を介して導入される。入力ガスポート(2006)は、リアクターチャンバーの内に配置されたエアレーターに任意につながれる。しばしば、バイオリアクターシステムは、リアクターチャンバーをモニタリングするための少なくとも1つのセンサー(2004)を含む。上記少なくとも1つのセンサー(2004)は、通常、制御装置(2008)(例えば、コンピューター)と通信する。多くの場合では、リアクターチャンバーには、複数のマイクロスキャホールド(2005)が播種されている。上記マイクロスキャホールド(2005)は、例えば、肝細胞などのある特定の接着細胞の接着を可能にする。例えば、ヒト食用のための培養魚肉を生産するいくつかの方法は、:a)魚由来の自己再生細胞の集団を得る工程と;b)マイクロスキャフォールドを含む培地で自己再生細胞の集団を培養する工程と;c)筋細胞および脂肪細胞の少なくとも1つを形成するために、細胞の集団において分化を誘導する工程と;d)ヒトによる消費のために上記細胞の集団を魚肉へと処理する工程と、を含む。

0105

図21は、バイオリアクターシステムが食肉生産に使用される例示的なプロセスを例証する。この例では、胚細胞、多能性細胞、あるいは分化多能性細胞などの特殊化した細胞は、から単離され、バイオリアクター(例えば、懸滴法を使用して、図22に示されるようなスフェロイド体(spheroid bodies)を形成する)における成長に適している。細胞は、水および植物から作られた栄養素(例えば、大豆加水分解物またはマッシュルーム抽出物などの、動物由来の血清の植物ベースの代替物を用いて)を含む培地を使用して成長する。バイオリアクターの無菌の環境で、細胞を4−6週間成長させる。場合によっては、細胞が分化し、その後、採取および/または食肉製品へと加工される。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ