図面 (/)

技術 液晶表示素子

出願人 DIC株式会社
発明者 木村正臣谷口士朗間宮純一平田真一井ノ上雄一櫻井宗矩
出願日 2019年4月16日 (1年10ヶ月経過) 出願番号 2019-077773
公開日 2020年10月29日 (3ヶ月経過) 公開番号 2020-177071
状態 未査定
技術分野 発光性組成物 液晶3-2(配向部材) 液晶材料 液晶物質
主要キーワード 最短離間距離 最小離間 長短径比 極性要素 オゾン含有雰囲気 水溶分 光応答性分子 代替部材
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2020年10月29日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (18)

課題

本発明が解決しようとする課題は、高エネルギー光線照射による液晶層劣化を抑制または防止するものである。

解決手段

本願発明の第一は、第一の基板および第二の基板が対向して設けられる一対の基板と、前記基板と間に挟持された特定の液晶化合物を含有する液晶層と、前記基板の少なくとも一方に設けられた画素電極と、前記基板の少なくとも一方に設けられた共通電極と、発光素子を備えた光源部と、赤色(R)、緑色(G)および青色(B)の三原色画素を備え、前記三原色の内少なくとも一色に入射した前記光源部からの光により赤色(R)、緑色(G)、青色(B)の何れかに発光スペクトルを有する発光ナノ結晶を含有する光変換層と、前記基板と前記液晶層との間のうち少なくとも一方には、配向膜を有さず、重合性化合物から形成された配向制御層を有することを特徴とする液晶表示素子である。

概要

背景

表示品質が優れていることから、アクティブマトリクス型液晶表示装置携帯端末液晶テレビプロジェクタコンピューター等の市場に出されている。アクティブマトリクス表示方式は、画素毎にTFT(薄膜トランジスタ)あるいはMIM(メタルインシュレータ・メタル)等が使われており、高電圧保持率を有する液晶組成物との組合せにおいて、TN型ツイストネマチック)を初めとする一般的液晶表示素子として広く用いられている。また、更に広い視角特性を得るためにVA(バーチカルアライメント垂直配向)、IPS(In Plane Switching:インプレースイッチング)、IPSの改良型であるFFS(Fringe Field Switching:フリンジフィールドスイッチング)等が用いられており、この様な表示素子に対応するために、現在も新しい液晶化合物あるいは液晶組成物の提案がなされている。

一方液晶表示素子は自己発光型では無いため、発光するための光源が必須となり、ディスプレイとして求められる色再現領域発光スペクトルを有する白色光源が使用される。光源としては、冷陰極管や白色LED(発光ダイオード)等が用いられるが発光効率の観点から、現在では白色LEDを用いることが主流となっている。LEDは現在一つの素子で380nmから750nmにおよぶ可視光全領域のカバーすることはできず、白色光を得るためにはいくつかの形式が知られている。
1)青色LEDと黄色蛍光体の組合せ
2)3原色の各LED(赤色・緑色・青色)の組合せ
3)近紫外線または紫色LEDと赤色・緑色・青色の蛍光体との組合せ
これら3方式中、液晶表示素子の光源として最適な白色光を得る観点では3)が最も優れ、2)、1)の順となり、発光効率の観点では、1)が最も優れている。

液晶表示素子においては、消費電力の低減が重要であり、先進各国が検討中省電力プログラムに対応するためには、光源の発光効率が重視されている。そのため、現在では1)の青色LEDと黄色蛍光体の組合せにより白色光を得ている。

この方式は、発光効率的には優れるものの、赤色光不足など白色光源としての特性的には劣り、色再現性に問題を有していた。特に液晶表示素子はカラー表示を実現するために液晶素子と合わせてカラーフィルタを用いることから、光源部を改良しても色再現性を向上させることは難しく、そのため色再現性を向上させるにはカラーフィルタ中の高顔料濃度化を図るか、或いは、着色膜厚を大きくすることにより色純度を高める必要があった。然しながら、この場合、透過率が低下し、光量を増加させなければならず消費電力が増加することとなる問題があった。

そこで、液晶表示素子の色再現性と発光効率を同時に解決するための技術として、発光用ナノ結晶の一例である量子ドット技術(特許文献1参照)が注目されている。量子ドットは、粒子径数nmから数十nmの半導体微結晶からなり電子正孔対閉じ込め効果によりエネルギーレベル離散的に存在し、粒子径が小さくなるにつれてエネルギーバンドギャップが大きくなる性質を有している。この性質を応用し、粒子径をコントロールバンドギャップを均一化することにより、発光スペクトルの半値幅が小さい光源を得ることができる。半値幅の小さい三原色の光源を得ることにより広色域ディスプレイが実現できることから、量子ドットをバックライト構成部材として用いることにより、色再現性を向上させた液晶表示素子を構成できることが開示されている(特許文献2及び非特許文献1参照)。更に、光源として近紫外線または青色等の短波長可視光線を用いて、三色の量子ドットを従来のカラーフィルタの替わりに用いる提案がなされている(特許文献3参照)。これらの表示素子は、原理的には高い発光効率と色再現性を両立できるものである。

また、液晶表示素子の開発において、配向膜自体を使用せず、自発配向性化合物により初期配向状態を制御する方法も存在する。当該液晶表示素子は、液晶組成物に重合性化合物を含有した重合性液晶組成物基板滴下し、もう一枚の基板を狭持した状態で、紫外線照射し、重合性化合物を重合させて製造するが、初期の配向状態が十分でなかったり、経時的に変化してしまうなどの問題を解決し、広い温度範囲での表示、高速応答性及び低電圧駆動性を満たしつつ、液晶表示素子とした際に表示不良が無いか極めて少なくする必要があった。

概要

本発明が解決しようとする課題は、高エネルギー光線の照射による液晶層劣化を抑制または防止するものである。本願発明の第一は、第一の基板および第二の基板が対向して設けられる一対の基板と、前記基板と間に挟持された特定の液晶化合物を含有する液晶層と、前記基板の少なくとも一方に設けられた画素電極と、前記基板の少なくとも一方に設けられた共通電極と、発光素子を備えた光源部と、赤色(R)、緑色(G)および青色(B)の三原色画素を備え、前記三原色の内少なくとも一色に入射した前記光源部からの光により赤色(R)、緑色(G)、青色(B)の何れかに発光スペクトルを有する発光用ナノ結晶を含有する光変換層と、前記基板と前記液晶層との間のうち少なくとも一方には、配向膜を有さず、重合性化合物から形成された配向制御層を有することを特徴とする液晶表示素子である。

目的

本発明が解決しようとする課題は、発光用ナノ結晶を含有する光変換層をカラーフィルタの替わりに用いた場合において、高い発光効率と色再現性を両立しつつ、高エネルギー光線の照射による液晶層の劣化を抑制または防止できる、第一の基板及び第二の基板と前記液晶層との間のうち少なくとも一方に配向膜を使用しない液晶表示素子を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

第一の基板および第二の基板が対向して設けられる一対の基板と、前記第一の基板と第二の基板と間に挟持された液晶層と、前記第一の基板または第二の基板の少なくとも一方に設けられた画素電極と、前記第一の基板または第二の基板の少なくとも一方に設けられた共通電極と、発光素子を備えた光源部と、赤色(R)、緑色(G)および青色(B)の三原色画素を備え、前記三原色の内少なくとも一色に入射した前記光源部からの光により赤色(R)、緑色(G)、青色(B)の何れかに発光スペクトルを有する発光ナノ結晶を含有する光変換層と、を備え、前記液晶層は、一般式(2−A)及び(2−B)(式中、R2は炭素原子数1から7のアルキル基、炭素原子数1から7のアルコキシ基又は炭素原子数2から7のアルケニル基であり、環Cは、複数存在する場合は相互に独立して、環上の−CH2−基の1個又は2個以上が−O−又は−S−で置換されていてもよい1,4−シクロキシレン基、又は、環状の−CH=基の1個又は2個以上が−N=で置換されていてもよい1,4−フェニレン基を表し、これら環上の水素原子は1個又は2個以上がハロゲン原子で置換されていてもよく、L2は、複数存在する場合は相互に独立して、単結合、−C2H4−、−CH=CH−、−C≡C−、−COO−、−OCO−、−CH2O−、−OCH2−、−CF2O−又は−OCF2−を表し、X1は、−F、−Cl、−CN、−NCS、−CF3、−OCF3、少なくとも1つの水素原子がハロゲン原子で置換された炭素原子数1〜6のアルキル基又は少なくとも1つの水素原子がハロゲン原子で置換された炭素原子数1〜6のアルコキシ基を表し、Y1及びY2は相互に独立して、水素原子又はフッ素原子を表し、bは、1、2、3又は4を表す。)で表される群から選ばれる化合物を1種又は2種以上含有する誘電率異方性(Δε)が正の液晶組成物を含み、前記第一の基板及び第二の基板と前記液晶層との間のうち少なくとも一方は配向膜を有さず、液晶組成物に含まれた単一又は複数の化合物(I)の光重合により形成された重合体PL)を液晶層に接する界面上に有する液晶表示素子

請求項2

前記光変換層は、ブラックマトリクスを有し、青色光を吸収し赤色光を発光する第一の発光用ナノ結晶及び青色光を吸収し緑色光を発光する第二の発光用ナノ結晶を含有し、前記発光素子が青色領域に発光スペクトルを有する請求項1記載の液晶表示素子。

請求項3

前記光源部からの発光が青色光であり、光変換層における青色画素を形成する青色画素領域が該青色光を透過させるものである請求項1又は2記載の液晶表示素子。

請求項4

前記光変換層は、ブラックマトリクスを有し、紫外光を吸収し赤色光を発光する第三の発光用ナノ結晶、紫外光を吸収し緑色光を発光する第四の発光用ナノ結晶及び紫外光を吸収し青色光を発光する第五の発光用ナノ結晶を含有し、前記発光素子が紫外領域に発光スペクトルを有する請求項1記載の液晶表示素子。

請求項5

前記光変換層は、前記光源部側の基板と対向する基板側に設けられる、請求項1〜4のいずれか1項に記載の液晶表示素子。

請求項6

前記第一の基板と第二の基板間に少なくとも一つの偏光板挟持した請求項1〜5のいずれか1項に記載の液晶表示素子。

請求項7

赤色(R)、緑色(G)及び青色(B)の画素からの透過光又は発光のうち少なくとも一つの発光スペクトルの半値幅が20から50nmである請求項1〜6のいずれか1項に記載の液晶表示素子。

請求項8

前記発光用ナノ結晶は、第一の半導体材料を少なくとも1種又は2種以上含むコアと、前記コアを被覆し、かつ前記コアと同一または異なる第二の半導体材料を含むシェルとを有する、請求項1〜7のいずれか1項に記載の液晶表示素子。

請求項9

前記第一の半導体材料は、II−VI族半導体、III−V族半導体、I−III−VI族半導体、IV族半導体及びI−II−IV−VI族半導体からなる群から選択される1種又は2種以上である、請求項8に記載の液晶表示素子。

請求項10

前記化合物(I)が、メソゲン基及び前記メソゲン基に結合した光異性化基又は二量化基を含む化合物である請求項1〜9いずれか1項に記載の液晶表示素子。

請求項11

前記化合物(I)におけるメソゲン基は、さらに1個又は2個以上のPi1−Spi1−(式中、Pi1は、一般式(P−1)〜一般式(P−15)で表される群より選ばれる置換基を表し、(式中、右端の黒点結合手を表す。)Spi1は、単結合又はスペーサー基を表す。)で置換されている請求項10に記載の液晶表示素子。

請求項12

前記化合物(I)が、極性基として一般式(K−1)〜(K−18)で表される群から選ばれる少なくとも一種の基を構造中に有する請求項10〜11に記載の液晶表示素子。(式中、WK1は、メチン基又は窒素原子を表すが、メチン基中の水素原子は炭素原子数1〜6の直鎖又は分岐のアルキル基で置換されてもよく、RK1は、水素原子、炭素原子数1〜6の直鎖又は分岐のアルキル基を表し該アルキル基中の−CH2−は−CH=CH−、−C≡C−、−O−、−NH−、−OCOO−、−COO−又は−OCO−で置換されてもよいが−O−は連続にはならなく、XK1及びYK1はそれぞれ独立して、−CH2−、酸素原子又は硫黄原子を表し、ZK1は、酸素原子又は硫黄原子を表し、UK1、VK1及びSK1は、それぞれ独立して、メチン基又は窒素原子を表し、TK1は、それぞれ独立して一般式(T−1)〜(T−6)(式中、ST1は、単結合、炭素原子数1〜15個の直鎖状若しくは分岐状のアルキレン基又は炭素原子数2〜18個の直鎖状若しくは分岐状のアルケニレン基を表し、当該アルキレン基又は当該アルケニレン基の−CH2−は酸素原子が直接隣接しないように−O−、−COO−、−C(=O)−、−C(=CH2)−又は−OCO−に置換されてもよく、RT1は、炭素原子数1〜5のアルキル基を表し、当該アルキル基の−CH2−は酸素原子が直接隣接しないように−O−、−COO−、−C(=O)−、−C(=CH2)−又は−OCO−に置換されてもよく、RT2及びRT3は、それぞれ独立して水素原子又は炭素原子数1〜5のアルキル基を表し、Pi1は、請求項11に記載のPi1と同じ意味を表し、Spi1は、請求項11に記載のSpi1と同じ意味を表し、同一分子内に、WK1、RK1、XK1、YK、ZK1、UK1、VK1、SK1、TK1、Spi1、Pi1、ST1、RT1、RT2及びRT3が複数存在する場合にはそれらは同一の意味を表しても、異なる意味を表してもよい。)で表される基を表す。)

請求項13

前記化合物(I)の極性基が一般式(K−13)〜(K−18)から選択され、かつTK1の少なくとも一つが一般式(T−1)である請求項12に記載の液晶表示素子。

請求項14

前記化合物(I)の極性基が一般式(K−13)〜(K−18)から選択され、かつTK1の少なくとも一つが(T−3)である請求項12に記載の液晶表示素子。

請求項15

前記化合物(I)の極性基が(K−1)〜(K−12)から選択される請求項12に記載の液晶表示素子。

請求項16

前記化合物(I)におけるメソゲンは、2つ以上のPi1−Spi1−(式中、Pi1及びSpi1は、請求項11記載のPi1及びSpi1と同じ意味を表す。)で表される置換基で置換されている請求項11〜15いずれか1項に記載の液晶表示素子。

請求項17

前記メソゲンに置換しているPi1−Spi1−で表される置換基におけるSpi1が単結合である請求項11〜16いずれか1項に記載の液晶表示素子。

請求項18

前記化合物(I)として一般式(i)で表される化合物を1種又は2種以上含有する請求項1〜17いずれか1項に記載の液晶表示素子。(式中、Ri1及びRi2はそれぞれ独立して、水素原子、炭素原子数1〜40の直鎖又は分岐のアルキル基、ハロゲン化アルキル基、又はPi1−Spi1−を表し、該アルキル基中の−CH2−は−CH=CH−、−C≡C−、−O−、−NH−、−OCOO−、−COO−又は−OCO−で置換されてもよいが−O−は連続にはならなく、Pi1は重合性基を表し、Spi1はスペーサー基又は単結合を表し、Ai1、Ci1及びDi1はそれぞれ独立して、2価の芳香族基、2価の複素芳香族基、2価の脂肪族基、2価の複素脂肪族基を表し、Bi1は、芳香族基を表し、これらAi1からDi1の環構造は、無置換であるか又は炭素原子数1〜12のアルキル基、炭素原子数1〜12のハロゲン化アルキル基、炭素原子数1〜12のアルコキシ基、炭素原子数1〜12のハロゲン化アルコキシ基、ハロゲン原子、シアノ基ニトロ基、Pi1−Spi1−及び−Z4−Kilで置換されていてもよく、Z1及びZ2はそれぞれ独立して、単結合、−CH=CH−、−CF=CF−、−C≡C−、−COO−、−OCO−、−OCOO−、−CF2O−、−OCF2−、−CH=CHCOO−、−OCOCH=CH−、−CH2−CH2COO−、−OCOCH2—CH2−、−CH=C(CH3)COO−、−OCOC(CH3)=CH−、−CH2−CH(CH3)COO−、−OCOCH(CH3)—CH2−、−OCH2CH2O−、又は炭素原子数2〜20のアルキレン基を表し、このアルキレン基中の1個又は隣接しない2個以上の−CH2−はそれぞれ独立して、−O−、−COO−又は−OCO−で置換されてもよく、Z31及びZ32はそれぞれ独立して、一般式(Z3−1)〜(Z3−5)から選ばれる基、又は単結合を表すが、Z31及び/又はZ32の少なくとも一つは(Z3−1)〜(Z3−5)のいずれかであり、(式中、両端の黒点は結合手を表す。)l、m及びnはそれぞれ独立して、0、1、2の整数を表し、kは0、1、2の整数を表し、Z4は、単結合、−O−、−CH=CH−、−COO−、−OCO−、−OCOO−、−CH2−CH(CH3)COO−、−OCOCH(CH3)—CH2−、又は炭素原子数1〜20の直鎖又は分岐アルキレン基を表し、該アルキレン基中の1個又は隣接しない2個以上の−CH2−は−O−、−COO−又は−OCO−で置換されてもよく、Ki1は請求項11に記載の一般式(K−1)〜(K−18)から選択される基を表すが、分子内に複数存在する場合のPi1、Spi1、Pi1、Spi1、Ai1、Ci1、Di1、Z1、Z2、Z32、Z4及びKi1は同一の意味を表しても、異なった意味を表していてもよい。)

請求項19

前記液晶組成物中に含有する一般式(2−A)及び(2−B)で表される化合物において、L2が単結合又は−CF2O−である化合物の含有量の合計が、一般式(2−A)及び(2−B)で表される化合物の含有量の合計に対して50〜100質量%である請求項1〜9のいずれか1項に記載の液晶表示素子。

技術分野

0001

本願発明は、液晶表示素子に関する。

背景技術

0002

表示品質が優れていることから、アクティブマトリクス型液晶表示装置携帯端末液晶テレビプロジェクタコンピューター等の市場に出されている。アクティブマトリクス表示方式は、画素毎にTFT(薄膜トランジスタ)あるいはMIM(メタルインシュレータ・メタル)等が使われており、高電圧保持率を有する液晶組成物との組合せにおいて、TN型ツイストネマチック)を初めとする一般的液晶表示素子として広く用いられている。また、更に広い視角特性を得るためにVA(バーチカルアライメント垂直配向)、IPS(In Plane Switching:インプレースイッチング)、IPSの改良型であるFFS(Fringe Field Switching:フリンジフィールドスイッチング)等が用いられており、この様な表示素子に対応するために、現在も新しい液晶化合物あるいは液晶組成物の提案がなされている。

0003

一方液晶表示素子は自己発光型では無いため、発光するための光源が必須となり、ディスプレイとして求められる色再現領域発光スペクトルを有する白色光源が使用される。光源としては、冷陰極管や白色LED(発光ダイオード)等が用いられるが発光効率の観点から、現在では白色LEDを用いることが主流となっている。LEDは現在一つの素子で380nmから750nmにおよぶ可視光全領域のカバーすることはできず、白色光を得るためにはいくつかの形式が知られている。
1)青色LEDと黄色蛍光体の組合せ
2)3原色の各LED(赤色・緑色・青色)の組合せ
3)近紫外線または紫色LEDと赤色・緑色・青色の蛍光体との組合せ
これら3方式中、液晶表示素子の光源として最適な白色光を得る観点では3)が最も優れ、2)、1)の順となり、発光効率の観点では、1)が最も優れている。

0004

液晶表示素子においては、消費電力の低減が重要であり、先進各国が検討中省電力プログラムに対応するためには、光源の発光効率が重視されている。そのため、現在では1)の青色LEDと黄色蛍光体の組合せにより白色光を得ている。

0005

この方式は、発光効率的には優れるものの、赤色光不足など白色光源としての特性的には劣り、色再現性に問題を有していた。特に液晶表示素子はカラー表示を実現するために液晶素子と合わせてカラーフィルタを用いることから、光源部を改良しても色再現性を向上させることは難しく、そのため色再現性を向上させるにはカラーフィルタ中の高顔料濃度化を図るか、或いは、着色膜厚を大きくすることにより色純度を高める必要があった。然しながら、この場合、透過率が低下し、光量を増加させなければならず消費電力が増加することとなる問題があった。

0006

そこで、液晶表示素子の色再現性と発光効率を同時に解決するための技術として、発光用ナノ結晶の一例である量子ドット技術(特許文献1参照)が注目されている。量子ドットは、粒子径数nmから数十nmの半導体微結晶からなり電子正孔対閉じ込め効果によりエネルギーレベル離散的に存在し、粒子径が小さくなるにつれてエネルギーバンドギャップが大きくなる性質を有している。この性質を応用し、粒子径をコントロールバンドギャップを均一化することにより、発光スペクトルの半値幅が小さい光源を得ることができる。半値幅の小さい三原色の光源を得ることにより広色域ディスプレイが実現できることから、量子ドットをバックライト構成部材として用いることにより、色再現性を向上させた液晶表示素子を構成できることが開示されている(特許文献2及び非特許文献1参照)。更に、光源として近紫外線または青色等の短波長可視光線を用いて、三色の量子ドットを従来のカラーフィルタの替わりに用いる提案がなされている(特許文献3参照)。これらの表示素子は、原理的には高い発光効率と色再現性を両立できるものである。

0007

また、液晶表示素子の開発において、配向膜自体を使用せず、自発配向性化合物により初期配向状態を制御する方法も存在する。当該液晶表示素子は、液晶組成物に重合性化合物を含有した重合性液晶組成物基板滴下し、もう一枚の基板を狭持した状態で、紫外線照射し、重合性化合物を重合させて製造するが、初期の配向状態が十分でなかったり、経時的に変化してしまうなどの問題を解決し、広い温度範囲での表示、高速応答性及び低電圧駆動性を満たしつつ、液晶表示素子とした際に表示不良が無いか極めて少なくする必要があった。

0008

特表2001−523758号公報
国際公開2004/074739号パンフレット
米国特許8648524号公報

先行技術

0009

SID 2012 DIGEST,p895−896

発明が解決しようとする課題

0010

上記の通り、特許文献2、3及び非特許文献1のように発光用ナノ結晶の一例である量子ドットを液晶表示素子に用いた場合、当該量子ドットの励起を引き起こすために光源として短波長または紫外光可視光源が必要であることから、液晶層を透過する光は、従来の白色光を用いる場合と異なり短波長領域主体となる。

0011

より詳細に説明すると、発光用ナノ結晶の発光に使用するための光源に用いる短波長の可視光線や紫外光は高エネルギー光線であり、光スイッチとして機能する液晶層はこれらの高エネルギー光長時間暴露に耐えうることが求められる。特に、配向膜自体を使用しない液晶表示素子の場合、短波長の可視光線や紫外光といった高エネルギー光線に液晶層が暴露されると液晶材料自体が分解する等の問題がより確認された。

0012

そこで、本発明が解決しようとする課題は、発光用ナノ結晶を含有する光変換層をカラーフィルタの替わりに用いた場合において、高い発光効率と色再現性を両立しつつ、高エネルギー光線の照射による液晶層の劣化を抑制または防止できる、第一の基板及び第二の基板と前記液晶層との間のうち少なくとも一方に配向膜を使用しない液晶表示素子を提供することにある。

課題を解決するための手段

0013

本発明者らは、上記課題を解決するために鋭意検討した結果、特定の液晶化合物を含有する液晶層を、量子ドットなどの発光用ナノ結晶をカラーフィルタとして用いた液晶表示素子に使用することで、前記課題を解決できることを見出し本願発明の完成に至った。

発明の効果

0014

本発明の液晶表示素子は、短波長の可視光線や紫外光といった高エネルギー光線に対しても劣化しにくく、色再現領域を長期間維持する。

0015

本発明の液晶表示素子は、透過率に優れ、かつ色再現領域を長期間維持する。

図面の簡単な説明

0016

本発明の液晶表示素子の実施形態を示す斜視図である。
本発明の液晶表示素子の他の実施形態を示す斜視図である。
図1〜2のI−I線方向に液晶表示素子を切断した断面の模式図であり、本発明の液晶表示素子における光変換層の一例を示す模式図である。
図1〜2のI−I線方向に液晶表示素子を切断した断面の模式図であり、本発明の液晶表示素子における光変換層の他の一例を示す模式図である。
図1〜2のI−I線方向に液晶表示素子を切断した断面の模式図であり、本発明の液晶表示素子における光変換層の他の一例を示す模式図である。
図1〜2のI−I線方向に液晶表示素子を切断した断面の模式図であり、本発明の液晶表示素子における光変換層の他の一例を示す模式図である。
図1〜2のI−I線方向に液晶表示素子を切断した断面の模式図であり、本発明の液晶表示素子における光変換層の他の一例を示す模式図である。
図1〜2のI−I線方向に液晶表示素子を切断した断面の模式図であり、本発明の液晶表示素子における光変換層の他の一例を示す模式図である。
図1〜2のI−I線方向に液晶表示素子を切断した断面の模式図であり、本発明の液晶表示素子における光変換層の他の一例を示す模式図である。
本発明の液晶表示素子の画素部分等価回路で示した模式図である。
本発明の画素電極の形状の一例を示す模式図である。
本発明の画素電極の形状の一例を示す模式図である。
本発明のIPS型の液晶表示素子の電極構造を示す模式図である。
図14は、光変換層6の一例を示す模式図である。
図15は、光変換層6の一例を示す模式図である。
図16は、光変換層6の一例を示す模式図である。
量子ドットの発光スペクトルを示す図である。

0017

本願発明の第一は、第一の基板および第二の基板が対向して設けられる一対の基板と、
前記第一の基板と第二の基板と間に挟持された液晶層と、
前記第一の基板または第二の基板の少なくとも一方に設けられた画素電極と、
前記第一の基板または第二の基板の少なくとも一方に設けられた共通電極と、
発光素子を備えた光源部と、
赤色(R)、緑色(G)および青色(B)の三原色画素を備え、前記三原色の内少なくとも一色に入射した前記光源部からの光により赤色(R)、緑色(G)、青色(B)の何れかに発光スペクトルを有する発光用ナノ結晶を含有する光変換層と、を備え、
前記液晶層は、前記液晶層は、一般式(2−A)及び(2−B)

0018

0019

(式中、R2は炭素原子数1から7のアルキル基、炭素原子数1から7のアルコキシ基又は炭素原子数2から7のアルケニル基であり、環Cは、複数存在する場合は相互に独立して、環上の−CH2−基の1個又は2個以上が−O−又は−S−で置換されていてもよい1,4−シクロキシレン基、又は、環状の−CH=基の1個又は2個以上が−N=で置換されていてもよい1,4−フェニレン基を表し、これら環上の水素原子は1個又は2個以上がハロゲン原子で置換されていてもよく、L2は、複数存在する場合は相互に独立して、単結合、−C2H4−、−CH=CH−、−C≡C−、−COO−、−OCO−、−CH2O−、−OCH2−、−CF2O−又は−OCF2−を表し、X1は、−F、−Cl、−CN、−NCS、−CF3、−OCF3、少なくとも1つの水素原子がハロゲン原子で置換された炭素原子数1〜6のアルキル基又は少なくとも1つの水素原子がハロゲン原子で置換された炭素原子数1〜6のアルコキシ基を表し、Y1及びY2は相互に独立して、水素原子又はフッ素原子を表し、bは、1、2、3又は4を表す。)
で表される群から選ばれる化合物を1種又は2種以上含有する誘電率異方性(Δε)が正の液晶組成物であって、
前記第一の基板及び第二の基板と前記液晶層との間のうち少なくとも一方は配向膜を有さず、液晶組成物に含まれた単一又は複数の化合物(I)の重合により形成された重合体PL)を液晶層に接する界面上に有し、これを配向制御層とする液晶表示素子である。
本発明おける上記化合物(I)は、メソゲン長軸方向に光異性化基又は二量化基部分構造を有することを特徴としている。これにより、本発明における液晶組成物に光照射時をした際に、吸収および光反応がメソゲンに対して平行な向きを向いている分子のみが相対的に反応し、選択的な光異性化又は光二量化反応が促進される。これらの反応を繰り返すことにより、結果的に系全体の液晶組成物の配向軸を一義的に決定される。すなわち、化合物(I)の分子構造が配向軸を決定する駆動力となる。

0020

したがって、本実施形態の化合物(I)を用いた液晶組成物によれば、素子の両面又は片面にPI層を設けなくとも液晶分子配向させる(電圧印加時における液晶分子の均一水平配向を実現する)ことが可能となる。このように、一般式(I)で表される化合物は、液晶組成物における液晶分子の水平配向を助けるために好適に使用される。

0021

本発明では、液晶層を特定の構成とすることにより、光源に用いる短波長の可視光線や紫外光などの高エネルギー光線の長時間暴露に耐えうる液晶層を備えた信頼性の高い第一の基板及び第二の基板と液晶層との間のうち少なくとも一方には配向膜を有さない液晶表示素子を提供できる。

0022

また、発光素子は、紫外または可視光を発光する発光素子が好ましい。

0023

本発明に係る好適な液晶表示素子について図を用いて以下に説明した後、液晶表示素子の各構成要素について説明する。

0024

図1は、本実施形態で用いられる液晶表示素子の一例の全体を示す斜視図であり、説明のために便宜上各構成要素を離間して記載している。

0025

本発明に係る液晶表示素子1000は、バックライトユニット100と、液晶パネル10とを備えている。当該バックライトユニット100は、発光素子Lを有する光源部101と、導光板(図示せず)または光拡散板(図示せず)の役割を果たす導光部102と、を有している。図1に示すように、バックライト100の一形態は、複数の発光素子Lを含む光源部101が導光部102の一側面に配置されている。必要により、複数の発光素子Lを含む光源部101を、液晶パネル10の一側面側(導光部102の一側面)だけでなく、液晶パネル10の他方の側面側(対向する両側面)に設けてもよく、また、導光部102の周囲を囲むように、複数の発光素子Lを含む光源部101が、該導光部102の3つ側面又は該導光部102の全周囲を囲むように、4つの側面に設けられていてもよい。なお、導光部102は必要に応じて導光板の代わりに光拡散板(図示せず)を備えてもよい。

0026

図1に示す液晶パネル10において、第一の(透明絶縁)基板2は、一方の面に偏光層1が設けられ、他方の面に電極層3が設けられている。また、液晶層5を挟んで前記第一の基板2と対向するように、第二の(透明絶縁)基板7が配設され、該基板7上に光変換層(いわゆる色層)6および偏光層8の順で設けられている。ここで、該光変換層(色層)6は、赤色(R)、緑色(G)および青色(B)の三原色画素を備え、前記三原色の内の少なくとも一色の画素が、前記光源部からの入射光により赤色(R)、緑色(G)、青色(B)の何れかに発光スペクトルを有する発光用ナノ結晶を含有するものである。

0027

図1では、電極層3として画素電極(図示せず)と共通電極(図示せず)とが第一の基板2側に設けられている形態を示しているが、別の実施形態(例えば、図3図4)では、画素電極を第一の基板2に設け、共通電極3’を第二の基板7に設けてもよい。

0028

また、図1では、前記第二の基板7と液晶層5との間に光変換層6が設けられているが、本発明に係る液晶表示素子の他の実施形態としては、図10図11に示す様な、いわゆるカラーフィルタオンアレイ(COA)であってもよく、この場合、電極層3と液晶層5の間に光変換層6を設けても、または当該電極層3と第一の基板2との間に光変換層6を設けてもよい。また、必要により、オーバコート層(図示せず)を、光変換層6を覆う様に設けることで、光変換層に含まれる物質が液晶層へ流出することを防止してもよい。

0029

図1において、発光素子Lから発光された光は、導光部102内(例えば、導光板や光拡散板を介して)を通過して、液晶パネル10の面内に入射する。当該液晶パネル10内に入射した光は、第一の偏光層1により特定の方向に偏光された後、電極層3の駆動により液晶層5の液晶分子の配向方向を制御することができるため、光シャッターとしての役割を果たす液晶層5により偏光の方向が変えられた光は、第二の偏光層8で遮断または特定方向に偏光された後、光変換層6に入光する。当該光変換層6では、該光変換層6に入光した光が発光用ナノ結晶に吸収され、赤色(R)、緑色(G)、青色(B)の何れかに発光スペクトルに変換されることで、赤色(R)、緑色(G)、青色(B)の何れかの色を表示することができる。

0030

この際、導光部102(特に導光板)の形状が、発光素子Lから発光された光が入射する側面から対向面に向かって厚さが次第に減少する側面を備えた平板体である(側面がテーパー状の形態や楔状四角形板)と、線光を面光に変換することができるため液晶パネル10内に光を入射しやすくなる為好ましい(後述に実施形態として記載する)。

0031

図2は、バックライトユニット100が、複数の発光素子Lを平板状の導光部102に対して平面状に配置された、所謂直下型バックライト構造を持つ液晶表示素子の一例の全体を示す斜視図である。なお、説明のために便宜上各構成要素を離間して記載している。

0032

直下型バックライト構造は、発光素子Lからの光は面光であるため、導光部102の形状は、図1とは異なりテーパー状である必要はない。

0033

図2における液晶パネル10は、一方の面に第一の電極層3(例えば、画素電極)を備え、かつ他方の面に第一の偏光層1を備えた第一の基板2と、第二の電極層3’(例えば、共通電極)を具備した第二の基板7と、前記第一の基板2と第二の基板7との間に挟持された液晶層5を備えている。また、前記第二の基板7と第二の電極層3’との間に光変換層6が設けられており、さらに当該光変換層6の上の第二の電極層3’側に第二の偏光層8が設けられている。

0034

すなわち、図3の実施形態では、液晶表示素子1000は、バックライトユニット100と、第一の偏光板1と、第一の基板2と、薄膜トランジスタを含む電極層(又は薄膜トランジスタ層や画素電極とも称する)3と、液晶組成物を含む層5と、第二の電極層3’と、第二の偏光板8と、光変換層6と、第二の基板7と、が順次積層された構成となる。

0035

図2において、発光素子Lから発光された光は、導光部102を(光拡散板や光拡散板を介して)通過して、液晶パネル10の面内に入射する。当該液晶パネル10内に入射した光は、第一の偏光層1により特定の方向に偏光された後、第一の電極層3、第二の電極層3’の駆動により液晶層5内で偏光の方向が変えられた光が、第二の偏光層8で遮断または特定方向に偏光された後、光変換層6に入光する。当該光変換層6では、光変換層6に入光した光が発光用ナノ結晶に吸収され、赤色(R)、緑色(G)、青色(B)の何れかに発光スペクトルに変換されることで、赤色(R)、緑色(G)、青色(B)の何れかの色を表示することができる。

0036

また、前記導光部102として、液晶パネル10と前記導光部102との間に光拡散板を備えることが好ましい(後述に実施形態として記載する)。

0037

以下、本発明の好ましい液晶表示素子における液晶パネル部分の断面構造、特に、偏光層、光変換層、および液晶層などの積層態様について説明する。

0038

図3〜9は、本実施形態で用いられる液晶パネルの構成を示すために、液晶表示素子における液晶パネル10部分を切断した断面図の模式図であり、液晶パネル10における偏光層、光変換層および液晶層の積層態様を示す概略図である。また、図3〜9では、偏光層、光変換層および液晶層の位置関係の説明のため便宜上、図1図2で示されている電極層3(TFTを含む)、電極層3’などを省略して模式的に示している。

0039

さらに、図3〜9では、液晶層5に対して、バックライトユニット(光源)側の基板とその基板に積層される積層体アレイ基板(A−SUB)、当該アレイ基板と液晶層5を挟んで対向する基板とその基板に積層される積層体を対向基板(O−SUB)としている。これらアレイ基板(A−SUB)および対向基板(O−SUB)の構成や好ましい実施態様は、後述の図12〜図19における電極構造の説明の箇所で詳細に説明する。なお、図3〜9では、アレイ基板側にTFTが形成されている例を記載しているが、アレイ基板と対向基板とを入れ替えてもよい。

0040

図3の実施態様は、光変換層6が対向基板(O−SUB)に設けられ、かつ、該光変換層6と第二の偏光層8とが、一対の基板(第一の基板2及び第二の基板7)の間に設けられた所謂インセル偏光層を備える形態である。

0041

一般的な液晶表示素子は、白色光源からの光をカラーフィルタにおいて、波長選択し、その一部を吸収することによりそれぞれの色表示を行っているのに対して、本発明では、発光用ナノ結晶を含有する光変換層をカラーフィルタの代替部材として用いたことを特徴の一つとしている。よって、本発明における光変換層6は、赤色(R)、緑色(G)および青色(B)の三原色画素を備えており、いわゆるカラーフィルタと同様の役割を果たす。

0042

具体的には、光変換層6は、例えば、赤色(R)の画素部(赤色の色層部)は、赤色発光用ナノ結晶を含む光変換画素層(NC−Red)を備え、緑色(R)の画素部(緑色の色層部)は、緑色発光用ナノ結晶を含む光変換画素層(NC−Green)を備え、そして青色(R)の画素部(青色の色層部)は、青色発光用ナノ結晶を含む光変換画素層(NC−Blue)を備えている。斯かる単層型の光変換層6の一例を図16に示す。

0043

すなわち、光変換層6は、青色LEDなどの450nm近傍主ピークを持つ光を光源として使用する場合、青色LEDが発する青色光を青色として利用することができる。そのため、光源部からの光が青色光である場合には、前記各色の光変換画素層(NC−Red、NC−Green、NC−Blue)のうち、光変換画素層(NC−Blue)を省略し、青色はバックライト光をそのまま使用してもよい。この場合、青色を表示する色層は透明樹脂や青色の色材を含む色材層(いわゆる青色カラーフィルタ)などによって構成することができる。よって、図3及び図16では、青色発光用ナノ結晶が任意成分となりうることから、青色発光用ナノ結晶を一点破線で表示している。

0044

また、特に好ましい実施形態として、光変換層6における赤色の色層に光源部が発する光(例えば青色光)を吸収して赤色光を発する赤色発光用ナノ結晶NCを含有し、かつ緑色の色層に光源部が発する光(例えば青色光)を吸収して緑色光を発する緑色発光用ナノ結晶NCを含有する例を記載しているがこれに限定されることはない。

0045

本発明に係る発光用ナノ結晶NCは、光源部が発する光(例えば青色光)を吸収して青色光を発する青色発光用ナノ結晶NC、光源部が発する光(例えば青色光)を吸収して緑色光を発する緑色発光用ナノ結晶NCおよび光源部が発する光(例えば青色光)を吸収して赤色光を発する赤色発光用ナノ結晶NCからなる群から選択される少なくとも1種で表されることが好ましく、光源部が発する光(例えば青色光)を吸収して青色光を発する青色発光用ナノ結晶NC、光源部が発する光(例えば青色光)を吸収して緑色光を発する緑色発光用ナノ結晶NCおよび光源部が発する光(例えば青色光)を吸収して赤色光を発する赤色発光用ナノ結晶NCからなる群から選択される2種の発光用ナノ結晶NCで表されることがより好ましい。本発明に係る光変換層は、赤色発光用ナノ結晶を含む層(NC−Red)と、緑色発光用ナノ結晶を含む層(NC−Green)と、を含むことが特に好ましい。

0046

図3で示す本発明の液晶表示素子では、各色層の間の混色を防ぐ目的でブラックマトリックスを設けてもよい。また、図3において、使用する光源の種類(発光素子として青色LED)に応じて、光変換層6と第二の偏光層8との間に、青色の色材を含む色層(いわゆる「青色カラーフィルタ」)をそれらの間に一面に設けることが、外部からの不要光の侵入を防ぎ、画質低下を抑制できる点から好ましい。斯かる青色カラーフィルタを配した構造を図15に示す。

0047

図3に示す実施形態をFFS型またはIPS型の液晶表示素子に適用する場合には、画素電極および共通電極が第一の基板2上に形成されていることが好ましい。

0048

次に、図4の実施態様は、光変換層6が対向基板(O−SUB)に設けられ、かつ、該光変換層6が、一対の基板(第一の基板2及び第二の基板7)の外側に設けられた形態である。そのため、第二の偏光層8および光変換層6を支持する支持基板9が設けられている。当該支持基板9は、透明基板であることが好ましい。

0049

図4における光変換層6は、図3の実施形態と同様に、赤色(R)の画素部(赤色の色層部)は、赤色発光用ナノ結晶を含む光変換画素層(NC−Red)を備え、緑色(R)の画素部(緑色の色層部)は、緑色発光用ナノ結晶を含む光変換画素層(NC−Green)を備え、当該青色(R)の画素部(青色の色層部)は、青色発光用ナノ結晶を必要により含む光変換画素層(NC−Blue)を備えている。また、図4における光変換層8における赤色(R)の画素部、緑色(G)の画素部および青色(B)の画素部の好ましい形態は、図3で示した実施形態と同一であるためここでは省略する。

0050

図4に示す実施形態をFFS型又はIPS型の液晶表示素子に適用する場合には、画素電極および共通電極が第一の基板2上に形成されていることが好ましい。

0051

次に、図5の実施態様は、光変換層6が対向基板側O−SUBに設けられ、該光変換層6及び第二の偏光層8が一対の基板(第一の基板2及び第二の基板7)の間に設けられたインセル偏光板を備える形態であって、かつ、該光変換層6を構成する赤色及び緑色の各色層部において、赤色の色層部が、赤色発光用ナノ結晶を含有する光変換画素層(NC−Red)と、赤色の色材を含む色材層(いわゆる赤色カラーフィルタ)(CF‐Red)とが積層された2層構造を有し、緑色の色層部が、緑色光を発する緑色発光用ナノ結晶を含有する光変換画素層(NC−Green)と、緑色の色材を含む色材層(いわゆる緑色カラーフィルタ)(CF‐Green)とが積層された2層構造を有するものである。

0052

即ち、斯かる色層の2層構造は、入射光(光源からの光、好ましくは青色光)の全てをナノ結晶を含有する光変換画素層で変換できない場合に、残った励起光を透過させず吸収する目的でカラーフィルタ(CFL)や各色の色材層を積層させるものである。

0053

図5によれば、本発明に係る液晶表示素子の液晶パネル部において、第二の偏光層8および赤色の色層と緑色の色層と青色の色層を有する光変換層6は、バックライトユニット(光源)側の基板A−SUBと対向する基板側O−SUBに設けられている。また、図5では第二の偏光層8が一対の基板(第一の基板2、第二の基板7)の間に設けられたインセル偏光板を備える形態である。図5における実施形態は、図3の光変換層6が二層に積層された形態である。より詳細には、光変換層6は、赤色の色層部と緑色の色層部と青色の色層部とを有し、赤色(R)の画素部(赤色の色層部)は、赤色発光用ナノ結晶を含む光変換画素層(NC−Red)と赤色の色材を含む色材層(CF‐Red)との二層構造として構成される。緑色(R)の画素部(緑色の色層部)は、緑色発光用ナノ結晶を含む光変換画素層(NC−Green)と緑色の色材を含む色材層(CF‐Green)との二層構造として構成される。この場合、図5では、緑色の色層部は、励起光の透過を考慮して色補正を行うために、緑色発光用ナノ結晶を含む光変換画素層(NC−Green)と黄色の色材を含む色材層(CF‐Yellow)との組み合わせでもよい。青色(R)の画素部(青色の色層部)は、青色発光用ナノ結晶を必要により含む色層(NC−Blue)で構成される。

0054

図5における光変換層6における赤色発光用ナノ結晶を含む光変換画素層(NC−Red)、緑色発光用ナノ結晶を含む光変換画素層(NC−Green)および青色発光用ナノ結晶を必要により含む色層(NC−Blue)の好ましい形態は、図3で示した実施形態と同一であるためここでは省略する。なお、図5でも、赤色の色層部と緑色の色層部と青色の色層部はそれぞれ接しているように示されているが、混色を防止するために、それぞれの間に遮光層としてブラックマトリックスを配置してもよい。

0055

また、使用する発光素子として青色LEDなど使用する場合には、図5の光変換層6と第二の偏光層8との間に、青色の色材を含む色材層(いわゆる青色カラーフィルタ)をそれらの間に一面に設けることが外部からの不要光の侵入を防ぎ、画質低下を抑制できる点から好ましい。斯かる2層構造の光変換層6と青色カラーフィルタとを必須の構成要素とする層構造は、例えば図16で示される構造が挙げられる。

0056

図5に示す実施形態をFFS型又はIPS型の液晶表示素子適用する場合には、画素電極および共通電極が第一の基板2上に形成されていることが好ましい。

0057

次に、図6の実施形態は、第二の偏光層8が一対の基板(第一の基板2、第二の基板7)の間に設けられたインセル偏光板を備えた形態であり、発光用ナノ結晶を含む層とカラーフィルタとが積層された二層の光変換層6を持つものである。具体的には、光変換層6は、赤色(R)の画素部(赤色の色層部)が、発光用ナノ結晶を含む層(NCL)と赤色の色材を含む色材層との二層構造で構成され、緑色(R)の画素部(緑色の色層部)が、発光用ナノ結晶を含む層(NC)と緑色の色材を含む色材層との二層構造で構成され、かつ、青色(R)の画素部(青色の色層部)は、発光用ナノ結晶を含む層(NC)と青色の色材を含む色材層との二層構造で構成されている。

0058

この場合、発光用ナノ結晶NCを含む層における発光用ナノ結晶は、入射光(光源からの光、好ましくは青色光)を吸収して青色光を発する青色発光用ナノ結晶、入射光(光源からの光、好ましくは青色光)を吸収して緑色光を発する緑色発光用ナノ結晶および入射光(光源からの光、好ましくは青色光)を吸収して赤色光を発する赤色発光用ナノ結晶からなる群から選択される1種または2種を含むことが好ましい。なお、本実施形態においても各色層の間の混色を防ぐ目的でブラックマトリックスを設けてもよい。

0059

また、図6の実施形態では、青色または黄色カラーフィルタを光変換層6の液晶層側に隣接するように一面に設けることが不要光の侵入を防ぎ、画質低下を抑制できる点から好ましい。斯かる青色または黄色カラーフィルタを配設した構造は図9で示すことができる。

0060

図6又は図7に示す実施形態をFFS型又はIPS型の液晶表示素子に適用する場合、画素電極および共通電極が第一の表示基板SUB1上に形成されていることが好ましい。

0061

以上詳述した図3〜7に示す実施形態では、短波長の可視光線や紫外光といった高エネルギー光線の光源を用いた光を、光スイッチとして機能する液晶層および偏光層を介して、光変換層に含まれる発光用ナノ結晶が吸収し、当該吸収した光を当該発光用ナノ結晶により特定の波長の光に変換して発光することにより色を表示する。

0062

次に、図8の実施形態は、光変換層6がアレイ基板側(A−SUB)側に設けられ、また、第二の偏光層8が、第二の基板7の外側に設けられ、さらに、第一の偏光層1が一対の基板(第一の基板2、第二の基板7)の間に設けられたインセル偏光板を備える、カラーフィルタオンアレイ型の液晶パネルである。

0063

図8に示す実施形態をFFS型またはIPS型の液晶表示素子に適用する場合、画素電極および共通電極が第一の基板2上、例えば、第一の基板2と光変換層6との間、第一の偏光層1と光変換層6との間または第一の偏光層1と液晶層5との間に形成されていることが好ましい。また、光変換層6と第一の基板2との間には、青色カラーフィルタをそれらの間に一面に設けることが不要光の侵入を防ぎ、画質低下を抑制できる点から好ましい。また、入射光が青色光である場合には、青色を表示する色層は青色発光用ナノ結晶を用いなくともよく、この場合、透明樹脂や青色の色材を含む色層(いわゆる青色カラーフィルタ)などによって構成することができる。

0064

図9に示す実施形態は、光変換層6がバックライトユニット(光源)側のアレイ基板(A−SUB)側に設けられ、かつ、第一の偏光層1および第二の偏光層8が一対の基板(第一の基板2、第二の基板7)の間の外側に設けられた形態である。そのため、第一の偏光層1および光変換層6を支持する支持基板9が第一の基板2より光源部(バックライトユニット)側に設けられている。

0065

図9に示す実施形態をFFS型またはIPS型の液晶表示素子に適用する場合、画素電極および共通電極が第一の基板2上、例えば、第一の基板2と液晶層5との間に画素電極および共通電極が形成されていることが好ましい。また、光変換層6と支持基板9との間には、青色カラーフィルタをそれらの間に一面に設けることが不要光の侵入を防ぎ、画質低下を抑制できる点から好ましい。また、入射光が青色光である場合には、青色を表示する色層は青色発光用ナノ結晶を用いなくともよく、この場合、透明樹脂や青色の色材を含む色材層(いわゆる青色カラーフィルタ)などによって構成することができる。

0066

以上詳述した通り、図8〜9に示す実施形態では、短波長の可視光線や紫外光といった高エネルギー光線の光源を用いた光のうち、光変換層に含まれる発光用ナノ結晶で吸収されなかった光、特に青色の色層部を通過した光が光スイッチとして機能する液晶層を介して、色を表示するものである。

0067

以上の図3図9各実施態様の中でも、特に、図3図7で示される、光変換層6を、バックライトユニット(光源)側の基板A−SUBと対向する基板側O−SUB側に設けられた構造のものが、高エネルギー光線の照射による液晶層の劣化を抑制または防止できる、という本発明の効果が顕著に現れるものとなる点から好ましい。

0068

上述した通り、図3〜9の模式図を用いて、本発明の好ましい液晶表示素子(特に液晶パネル)における、偏光層、光変換層および液晶層の位置関係を説明した。

0069

「光変換層」
次に、本発明における光変換層につき更に詳述すれば、その画素部の構成要素は、発光用ナノ結晶を必須成分として含み、樹脂成分、その他必要により当該発光用ナノ結晶に対して親和性のある分子、公知の添加剤、その他色材を含有してもよいものである。また、前記した通り、各画素層の境界部分にはブラックマトリックスを有することがコントラストの点から好ましい。

0070

(発光用ナノ結晶)
本発明に係る光変換層は、発光用ナノ結晶を含有する。本明細書における用語「ナノ結晶」は、好ましくは、100nm以下の少なくとも1つの長さを有する、粒子を指す。ナノ結晶の形状は、任意の幾何学的形状を有してもよく、対称または不対称であってよい。当該ナノ結晶の形状の具体例としては、細長ロッド状の形状、円形(球状)、楕円形角錐の形状、ディスク状、枝状、網状または任意の不規則な形状等を含む。一部の実施形態では、ナノ結晶は、量子ドットまたは量子ロッドであることが好ましい。

0071

当該発光用ナノ結晶は、少なくとも1種の第一の半導体材料を含むコアと、前記コアを被覆し、かつ前記コアと同一または異なる第二の半導体材料を含むシェルとを有することが好ましい。

0072

そのため、発光用ナノ結晶は、少なくとも第一半導体材料を含むコアと、第二半導体材料を含むシェルからなり、前記第一半導体材料と、前記第二半導体材料とは同じでも異なっていても良い。また、コアおよび/またはシェル共に第一半導体および/または第二半導体以外の第三の半導体材料を含んでも良い。なお、ここでいうコアを被覆とは、コアの少なくとも一部を被覆していればよい。

0073

さらに、当該発光用ナノ結晶は、少なくとも1種の第一の半導体材料を含むコアと、前記コアを被覆し、かつ前記コアと同一または異なる第二の半導体材料を含む第一のシェルと、必要により、前記第一のシェルを被覆し、かつ前記第一のシェルと同一または異なる第三の半導体材料を含む第二のシェルと、を有することが好ましい。

0074

したがって、本発明に係る発光用ナノ結晶は、第一の半導体材料を含むコアおよび前記コアを被覆し、かつ前記コアと同一の第二の半導体材料を含むシェルを有する形態、すなわち1種類又は2種以上の半導体材料から構成される態様(=コアのみの構造(コア構造とも称する))と、第一の半導体材料を含むコアおよび前記コアを被覆し、かつ前記コアと異なる第二の半導体材料を含むシェルを有する形態等の、すなわちコア/シェル構造と、第一の半導体材料を含むコアおよび前記コアを被覆し、かつ前記コアと異なる第二の半導体材料を含む第一のシェルと、前記第一のシェルを被覆し、かつ前記第一のシェルと異なる第三の半導体材料を含む第二のシェルを有する形態の、すなわちコア/シェル/シェル構造との3つの構造のうち少なくとも一つを有することが好ましい。

0075

また、本発明に係る発光用ナノ結晶は、上記の通り、コア構造、コア/シェル構造、コア/シェル/シェル構造の3つの形態を含むことが好ましく、この場合、コアは2種以上の半導体材料を含む混晶であってもよい(例えば、CdSe+CdS、CIS+ZnS等)。またさらに、シェルも同様に2種以上の半導体材料を含む混晶であってもよい。

0076

本発明に係る光変換層において、発光用ナノ結晶は、当該発光用ナノ結晶に対して親和性のある分子が発光用ナノ結晶と接触していてもよい。

0077

上記親和性のある分子とは、発光用ナノ結晶に対して親和性のある官能基を有する低分子および高分子であり、親和性のある官能基としては特に限定されるものでは無いが、窒素酸素硫黄およびリンからなる群から選択される1種の元素を含む基である事が好ましい。例えば、有機硫黄基、有機系リン酸基ピロリドン基ピリジン基アミノ基、アミド基イソシアネート基カルボニル基、および水酸基等を挙げる事が出来る。

0078

本発明に係る半導体材料は、II−VI族半導体、III−V族半導体、I−III−VI族半導体、IV族半導体及びI−II−IV−VI族半導体からなる群から選択される1種又は2種以上であることが好ましい。本発明に係る第一の半導体材料、第一の半導体材料および第三の半導体材料の好ましい例は、上記の半導体材料と同様である。

0079

本発明に係る半導体材料は、具体的には、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、CdHgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe;GaN、GaPGaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InPInAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb;SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe;Si、Ge、SiC、SiGe、AgInSe2、CuGaSe2、CuInS2、CuGaS2、CuInSe2、AgInS2、AgGaSe2、AgGaS2、C、SiおよびGeからなる群から選択される少なくとも1つ以上選ばれ、これらの化合物半導体は単独で使用されても、または2つ以上が混合されていても良く、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、InP、InAs、InSb、GaP、GaAs、GaSb、AgInS2、AgInSe2、AgInTe2、AgGaS2、AgGaSe2、AgGaTe2、CuInS2、CuInSe2、CuInTe2、CuGaS2、CuGaSe2、CuGaTe2、Si、C、GeおよびCu2ZnSnS4からなる群から選択される少なくとも1つ以上選ばれることがより好ましく、これらの化合物半導体は単独で使用されても、または2つ以上が混合されていても良い。

0080

本発明に係る発光用ナノ結晶は、赤色光を発光する赤色発光用ナノ結晶、緑色光を発光する緑色発光用ナノ結晶および青色光を発光する青色発光用ナノ結晶からなる群から選択される少なくとも1種のナノ結晶を含むことが好ましい。一般に、発光用ナノ結晶の発光色は、井戸型ポテンシャルモデルのシュレディンガー波動方程式の解によれば粒子径に依存するが、発光用ナノ結晶が有するエネルギーギャップにも依存するため、使用する発光用ナノ結晶とその粒子径を調整することにより、発光色を選択する。

0081

本発明において赤色光を発光する赤色発光用ナノ結晶の蛍光スペクトル波長ピークの上限は、665nm、663nm、660nm、658nm、655nm、653nm、651nm、650nm、647nm、645nm、643nm、640nm、637nm、635nm、632nmまたは630nmであることが好ましく、前記波長ピークの下限は、628nm、625nm、623nm、620nm、615nm、610nm、607nmまたは605nmであることが好ましい。

0082

本発明において緑色光を発光する緑色発光用ナノ結晶の蛍光スペクトルの波長ピークの上限は、560nm、557nm、555nm、550nm、547nm、545nm、543nm、540nm、537nm、535nm、532nmまたは530nmであることが好ましく、前記波長ピークの下限は、528nm、525nm、523nm、520nm、515nm、510nm、507nm、505nm、503nmまたは500nmであることが好ましい。

0083

本発明において青色光を発光する青色発光用ナノ結晶の蛍光スペクトルの波長ピークの上限は、480nm、477nm、475nm、470nm、467nm、465nm、463nm、460nm、457nm、455nm、452nmまたは450nmであることが好ましく、前記波長ピークの下限は、450nm、445nm、440nm、435nm、430nm、428nm、425nm、422nmまたは420nmであることが好ましい。

0084

本発明において赤色光を発光する赤色発光用ナノ結晶に使用される半導体材料は、発光のピーク波長が635nm±30nmの範囲に入っている事が望ましい。同じく、緑色光を発光する緑色発光用ナノ結晶に使用される半導体材料は、発光のピーク波長が530nm±30nmの範囲に入っている事が望ましく、青色光を発光する青色発光用ナノ結晶に使用される半導体材料は、発光のピーク波長が450nm±30nmの範囲に入っている事が望ましい。

0085

本発明に係る発光用ナノ結晶の蛍光量子収率の下限値は、40%以上、30%以上、20%以上、10%以上の順で好ましい。

0086

本発明に係る発光用ナノ結晶の蛍光スペクトルの半値幅の上限値は、60nm以下、55nm以下、50nm以下、45nm以下の順で好ましい。

0087

本発明に係る赤色発光用ナノ結晶の粒子径(1次粒子)の上限値は、50nm以下、40nm以下、30nm以下、20nm以下の順で好ましい。

0088

本発明に係る赤色発光用ナノ結晶のピーク波長の上限値は665nm、下限値は605nmであり、このピーク波長に合う様に化合物およびその粒径を選択する。同じく、緑色発光用ナノ結晶のピーク波長の上限値は560nm、下限値は500nm、青色発光用ナノ結晶のピーク波長の上限値は420nm、下限値は480nmであり、それぞれこのピーク波長に合う様に化合物およびその粒径を選択する。

0089

本発明に係る液晶表示素子は、少なくとも1つの画素を備える。当該画素を構成する色は、近接する3つの画素により得られ、各画素は、赤色(例えば、CdSeの発光用ナノ結晶、CdSeのロッド状発光用ナノ結晶、コアシェル構造を備えたロッド状発光用ナノ結晶であり、当該シェル部分がCdSであって内側のコア部がCdSe、コアシェル構造を備えたロッド状発光用ナノ結晶であり、当該シェル部分がCdSであって内側のコア部がZnSe、コアシェル構造を備えた発光用ナノ結晶であり、当該シェル部分がCdSであって内側のコア部がCdSe、コアシェル構造を備えた発光用ナノ結晶であり、当該シェル部分がCdSであって内側のコア部がZnSe、CdSeとZnSとの混晶の発光用ナノ結晶、CdSeとZnSとの混晶のロッド状発光用ナノ結晶、InPの発光用ナノ結晶、InPの発光用ナノ結晶、InPのロッド状発光用ナノ結晶、CdSeとCdSとの混晶の発光用ナノ結晶、CdSeとCdSとの混晶のロッド状発光用ナノ結晶、ZnSeとCdSとの混晶の発光用ナノ結晶、ZnSeとCdSとの混晶のロッド状発光用ナノ結晶など)、緑色(CdSeの発光用ナノ結晶、CdSeのロッド状の発光用ナノ結晶、CdSeとZnSとの混晶の発光用ナノ結晶、CdSeとZnSとの混晶のロッド状発光用ナノ結晶など)および青色(ZnSeの発光用ナノ結晶、ZnSeのロッド状発光用ナノ結晶、ZnSの発光用ナノ結晶、ZnSのロッド状発光用ナノ結晶、コアシェル構造を備えた発光用ナノ結晶であり、当該シェル部分がZnSeであって内側のコア部がZnS、コアシェル構造を備えたロッド状発光用ナノ結晶であり、当該シェル部分がZnSeであって内側のコア部がZnS、CdSの発光用ナノ結晶、CdSのロッド状発光用ナノ結晶)で発光する異なるナノ結晶を含む。他の色(例えば、黄色)についても、必要に応じて光変換層に含有してもよく、さらには近接する4画素以上の異なる色を使用してもよい。

0090

本明細書における本発明に係る発光用ナノ結晶の平均粒子径(1次粒子)はTEM観察によって測定できる。一般的に、ナノ結晶の平均粒子径の測定方法としては、光散乱法溶媒を用いた沈降式粒度測定法、電子顕微鏡により粒子を直接観察して平均粒子径を実測する方法が挙げられる。発光用ナノ結晶は水分などにより劣化しやすいため、本発明では、透過型電子顕微鏡TEM)または走査型電子顕微鏡(SEM)により任意の複数個結晶を直接観察し、投影二次元映像よる長短径比からそれぞれの粒子径を算出し、その平均を求める方法が好適である。そのため、本発明では上記方法を適用して平均粒子径を算出している。発光用ナノ結晶の1次粒子とは、構成する数〜数十nmの大きさの単結晶またはそれに近い結晶子のことであり、発光用ナノ結晶の一次粒子の大きさや形は、当該一次粒子の化学組成、構造、製造方法や製造条件などによって依存すると考えられる。

0091

本発明に係る光変換層において、発光用ナノ結晶は、分散安定性の観点から、その表面に有機リガンドを有することが好ましい。有機リガンドは、例えば、発光用ナノ結晶の表面に配位結合されていてよい。換言すれば、発光用ナノ結晶の表面は、有機リガンドによってパッシベーションされていてよい。また、発光用ナノ結晶は、その表面に高分子分散剤を有していてもよい。一実施形態では、例えば、上述の有機リガンドを有する発光用ナノ結晶から有機リガンドを除去し、有機リガンドと高分子分散剤とを交換することで発光用ナノ結晶の表面に高分子分散剤を結合させてよい。ただし、インクジェットインクにした際の分散安定性の観点では、有機リガンドが配位したままの発光用ナノ結晶に対して高分子分散剤が配合されることが好ましい。

0092

有機リガンドとしては、発光用ナノ結晶粒子に対して親和性のある官能基を有する低分子および高分子であり、親和性のある官能基としては特に限定されるものでは無いが、窒素、酸素、硫黄およびリンからなる群から選択される1種の元素を含む基である事が好ましい。例えば、有機系硫黄基、有機系リン酸基ピロリドン基、ピリジン基、アミノ基、アミド基、イソシアネート基、カルボニル基、および水酸基等を挙げることができる。例えば、TOP(トリオクチルフォスフィン)、TOPO(トリオクチルフォスフィンオキサイド)、オレイン酸オレイルアミンオクチルアミン、トリオクチルアミンヘキサデシルアミンオクタンチオールドデカンチオールヘキシルホスホン酸(HPA)、テトラデシルホスホン酸(TDPA)、及びオクチホスフィン酸(OPA)が挙げられる。

0093

その他の有機リガンドとしては、発光性ナノ結晶粒子の分散性及び発光強度がより一層優れたものになるという観点から、親和性基としてエチレンオキシド鎖及び/又はプロピレンオキシド鎖を有する脂肪族炭化水素を有することが好ましい。

0094

上記好ましい有機リガンドは、例えば、下記一般式(1)で表される有機リガンドであってもよい。

0095

0096

[式(1)中、pは0〜50の整数を示し、qは0〜50の整数を示す。]
上記一般式(1)で表される有機リガンドにおいて、p及びqのうち少なくとも一方が1以上であることが好ましく、p及びqの両方が1以上であることがより好ましい。

0097

発光用ナノ結晶としては、有機溶剤の中にコロイド形態で分散しているものを用いることができる。有機溶剤中で分散状態にある発光用ナノ結晶の表面は、上述の有機リガンドによってパッシベーションされていることが好ましい。有機溶剤としては、例えば、シクロヘキサンヘキサンヘプタンクロロホルムトルエンオクタンクロロベンゼンテトラリンジフェニルエーテルプロピレングリコールモノメチルエーテルアセテートブチルカルビトールアセテート、又はそれらの混合物が挙げられる。

0098

本発明に係る光変換層(または当該光変換層の調製用インク組成物)は、高分子分散剤を含有させることが好ましい。高分子分散剤は、光散乱性粒子インク中に均一分散させることができる。

0099

本発明における光変換層は、上記で示した発光用ナノ結晶粒子に加え、該発光用ナノ結晶粒子を適度に分散安定化させる高分子分散剤を含むことが好ましい。

0100

本発明において、高分子分散剤は、750以上の重量平均分子量を有し、かつ、光散乱性粒子に対し親和性を有する官能基を有する高分子化合物であり、光散乱性粒子を分散させる機能を有する。高分子分散剤は、光散乱性粒子に対し親和性を有する官能基を介して高分子分散剤が光散乱性粒子に吸着し、高分子分散剤同士の静電反発及び/又は立体反発により、光散乱性粒子がインク組成物中に分散される。高分子分散剤は、光散乱性粒子の表面と結合して光散乱性粒子に吸着していることが好ましいが、発光用ナノ結晶の表面に結合して発光性ナノ粒子に吸着していてもよく、インク組成物中に遊離していてもよい。

0101

光散乱性粒子に対し親和性を有する官能基としては、酸性官能基塩基性官能基及び非イオン性官能基が挙げられる。酸性官能基は解離性プロトンを有しており、アミン、水酸化物イオン等の塩基により中和されていてもよく、塩基性官能基は有機酸無機酸等の酸により中和されていてもよい。

0102

酸性官能基としては、カルボキシル基(−COOH)、スルホ基(−SO3H)、硫酸基(−OSO3H)、ホスホン酸基(−PO(OH)3)、リン酸基(−OPO(OH)3)、ホスフィン酸基(−PO(OH)−)、メルカプト基(−SH)、が挙げられる。

0103

塩基性官能基としては、一級二級及び三級アミノ基、アンモニウム基イミノ基、並びに、ピリジンピリミジンピラジンイミダゾールトリアゾール等の含窒素ヘテロ環基等が挙げられる。

0105

光散乱性粒子の分散安定性の観点、発光用ナノ結晶が沈降するという副作用を起こしにくい観点、高分子分散剤の合成の容易性の観点、及び官能基の安定性の観点から、酸性官能基としては、カルボキシル基、スルホ基、ホスホン酸基及びリン酸基が好ましく用いられ、塩基性官能基としては、アミノ基が好ましく用いられる。これらの中でも、カルボキシル基、ホスホン酸基及びアミノ基がより好ましく用いられ、最も好ましくはアミノ基が用いられる。

0106

酸性官能基を有する高分子分散剤は酸価を有する。酸性官能基を有する高分子分散剤の酸価は、好ましくは、固形分換算で、1〜150mgKOH/gである。酸価が1以上であると、光散乱性粒子の充分な分散性が得られやすく、酸価が150以下であると、画素部(インク組成物の硬化物)の保存安定性が低下しにくい。

0107

また、塩基性官能基を有する高分子分散剤はアミン価を有する。塩基性官能基を有する高分子分散剤のアミン価は、好ましくは、固形分換算で、1〜200mgKOH/gである。アミン価が1以上であると、光散乱性粒子の充分な分散性が得られやすく、アミン価が200以下であると、画素部(インク組成物の硬化物)の保存安定性が低下しにくい。

0108

高分子分散剤は、単一のモノマーの重合体(ホモポリマー)であってよく、複数種のモノマーの共重合体コポリマー)であってもよい。また、高分子分散剤は、ランダム共重合体ブロック共重合体又はグラフト共重合体のいずれであってもよい。また、高分子分散剤がグラフト共重合体である場合、くし形のグラフト共重合体であってよく、星形のグラフト共重合体であってもよい。高分子分散剤は、例えば、アクリル樹脂ポリエステル樹脂ポリウレタン樹脂ポリアミド樹脂ポリエーテルフェノール樹脂シリコーン樹脂ポリウレア樹脂アミノ樹脂ポリエチレンイミン及びポリアリルアミン等のポリアミンエポキシ樹脂ポリイミドなどであってよい。

0109

前記高分子分散剤として、市販品を使用することも可能であり、市販品としては、味の素ファインテクノ株式会社のアジスパーPBシリーズ、BYK社製のDISPERBYKシリーズ並びにBYK−シリーズ、BASF社製のEfkaシリーズ等を使用することができる。

0110

本発明に係る光変換層(または当該光変換層の調製用インク組成物)は、硬化物中においてバインダーとして機能する樹脂成分を含むことが好ましい。本発明に係る樹脂成分は、硬化性樹脂が好ましく、当該硬化性樹脂としては、熱硬化性樹脂またはUV硬化性樹脂が好ましい。

0111

当該熱硬化性樹脂としては、硬化性基を有し、当該硬化性基としては、エポキシ基オキセタン基、イソシアネート基、アミノ基、カルボキシル基、メチロール基等が挙げられ、インク組成物の硬化物の耐熱性及び保存安定性に優れる観点、及び、遮光部(例えばブラックマトリックス)及び基材への密着性に優れる観点から、エポキシ基が好ましい。熱硬化性樹脂は、1種の硬化性基を有していてもよく、二種以上の硬化性基を有していてもよい。

0112

熱硬化性樹脂は、単一のモノマーの重合体(ホモポリマー)であってよく、複数種のモノマーの共重合体(コポリマー)であってもよい。また、熱硬化性樹脂は、ランダム共重合体、ブロック共重合体又はグラフト共重合体のいずれであってもよい。

0113

熱硬化性樹脂としては、1分子中に熱硬化性官能基を2個以上有する化合物が用いられ、通常、硬化剤と組み合わせて用いられる。熱硬化性樹脂を用いる場合、熱硬化反応を促進できる触媒硬化促進剤)を更に添加してもよい。言い換えれば、インク組成物は、熱硬化性樹脂(並びに、必要に応じて用いられる硬化剤及び硬化促進剤)を含む熱硬化性成分を含有していてよい。また、これらに加えて、それ自体は重合反応性のない重合体を更に用いてもよい。

0114

1分子中に熱硬化性官能基を2個以上有する化合物として、例えば、1分子中にエポキシ基を2個以上有するエポキシ樹脂(以下、「多官能エポキシ樹脂」ともいう。)を用いてよい。「エポキシ樹脂」には、モノマー性エポキシ樹脂及びポリマー性エポキシ樹脂の両方が含まれる。多官能性エポキシ樹脂が1分子中に有するエポキシ基の数は、好ましくは2〜50個であり、より好ましくは2〜20個である。エポキシ基は、オキシラン環構造を有する構造であればよく、例えば、グリシジル基オキシエチレン基エポキシシクロヘキシル基等であってよい。エポキシ樹脂としては、カルボン酸により硬化しうる公知の多価エポキシ樹脂を挙げることができる。このようなエポキシ樹脂は、例えば、新保正樹編「エポキシ樹脂ハンドブック」日刊工業新聞社刊(昭和62年)等に広く開示されており、これらを用いることが可能である。

0115

熱硬化性樹脂として、比較的分子量が小さい多官能エポキシ樹脂を用いると、インク組成物(インクジェットインク)中にエポキシ基が補充されてエポキシ反応点濃度が高濃度となり、架橋密度を高めることができる。

0116

熱硬化性樹脂を硬化させるために用いられる硬化剤及び硬化促進剤としては、上記した有機溶剤に溶解又は分散し得る公知慣用のものをいずれも用いることができる。

0117

熱硬化性樹脂は、信頼性に優れるカラーフィルタ画素部が得られやすい観点から、アルカリ不溶性であってよい。熱硬化性樹脂がアルカリ不溶性であるとは、1質量%の水酸化カリウム水溶液に対する25℃における熱硬化性樹脂の溶解量が、熱硬化性樹脂の全質量を基準として、30質量%以下であることを意味する。熱硬化性樹脂の上記溶解量は、好ましくは、10質量%以下であり、より好ましくは3質量%以下である。

0118

熱硬化性樹脂の重量平均分子量は、インクジェットインクとして適正な粘度が得られやすい観点、インク組成物の硬化性が良好となる観点、並びに、画素部(インク組成物の硬化物)の耐溶剤性及び磨耗性が向上する観点から、750以上であってよく、1000以上であってもよく、2000以上であってよい。インクジェットインクとしての適正な粘度とする観点から、500000以下であってよく、300000以下であってもよく、200000以下であってもよい。ただし、架橋後の分子量に関してはこの限りでない。

0119

熱硬化性樹脂の含有量は、インクジェットインクとして適正な粘度が得られやすい観点、インク組成物の硬化性が良好となる観点、並びに、画素部(インク組成物の硬化物)の耐溶剤性及び磨耗性が向上する観点から、インク組成物の不揮発分の質量を基準として、10質量%以上であってよく、15質量%以上であってもよく、20質量%以上であってもよい。熱硬化性樹脂の含有量は、画素部の厚さが光変換機能に対して厚くなりすぎない観点から、インク組成物の不揮発分の質量を基準として、90質量%以下であってよく、80質量%以下であってもよく、70質量%以下であってもよく、60質量%以下であってもよく、50質量%以下であってもよい。

0120

上記UV硬化性樹脂は、光の照射によって重合する、光ラジカル重合性化合物又は光カチオン重合性化合物を重合した樹脂であることが好ましく、光重合性のモノマー又はオリゴマーであってよい。これらは、光重合開始剤と共に用いられる。光ラジカル重合性化合物は光ラジカル重合開始剤と共に用いられ、光カチオン重合性化合物は光カチオン重合開始剤と共に用いられることが好ましい。言い換えれば、本発明に係る光変換層用のインク組成物は、光重合性化合物及び光重合開始剤を含む光重合性成分を含有していてよく、光ラジカル重合性化合物及び光ラジカル重合開始剤を含む光ラジカル重合性成分を含有していてもよく、光カチオン重合性化合物及び光カチオン重合開始剤を含む光カチオン重合性成分を含有していてもよい。光ラジカル重合性化合物と光カチオン重合性化合物とを併用してもよく、光ラジカル重合性と光カチオン重合性を具備した化合物を用いてもよく、光ラジカル重合開始剤と光カチオン重合開始剤とを併用してもよい。光重合性化合物は一種を単独で用いてもよいし、二種以上を併用してもよい。

0121

上記光ラジカル重合性化合物としては、(メタアクリレート化合物が挙げられる。(メタ)アクリレート化合物は、(メタ)アクリロイル基を一つ有する単官能(メタ)アクリレートであってよく、(メタ)アクリロイル基を複数有する多官能(メタ)アクリレートであってもよい。カラーフィルタ製造時における硬化収縮に起因する平滑性の低下を抑制し得る観点から、単官能(メタ)アクリレートと多官能(メタ)アクリレートとを組み合わせて用いることが好ましい。なお、本明細書において、(メタ)アクリレートとは、「アクリレート」及びそれに対応する「メタクリレート」を意味する。「(メタ)アクリロイル」との表現についても同様である。

0122

光カチオン重合性化合物としては、エポキシ化合物オキセタン化合物ビニルエーテル化合物等が挙げられる。

0123

また、本実施形態における光重合性化合物として、特開2013−182215号公報の段落0042〜0049に記載の光重合性化合物を用いることもできる。

0124

本発明に係る光変換層用のインク組成物において、硬化可能成分を、光重合性化合物のみ又はそれを主成分として構成する場合には、上記したような光重合性化合物としては、重合性官能基一分子中に2以上有する2官能以上の多官能の光重合性化合物を必須成分として用いることが、硬化物の耐久性(強度、耐熱性等)をより高めることができることからより好ましい。

0125

光重合性化合物は、信頼性に優れるカラーフィルタ画素部が得られやすい観点から、アルカリ不溶性であってよい。本明細書中、光重合性化合物がアルカリ不溶性であるとは、1質量%の水酸化カリウム水溶液に対する25℃における光重合性化合物の溶解量が、光重合性化合物の全質量を基準として、30質量%以下であることを意味する。光重合性化合物の上記溶解量は、好ましくは、10質量%以下であり、より好ましくは3質量%以下である。

0126

光重合性化合物の含有量は、インク組成物の硬化性が良好となる観点、並びに、画素部(インク組成物の硬化物)の耐溶剤性及び磨耗性が向上する観点から、インク組成物の不揮発分の質量を基準として、10質量%以上であってもよく、15質量%以上であってもよく、20質量%以上であってもよい。光重合性化合物の含有量は、より優れた光学特性漏れ光)が得られる観点から、インク組成物の不揮発分の質量を基準として、90質量%以下であってよく、80質量%以下であってもよく、70質量%以下であってもよく、60質量%以下であってもよく、50質量%以下であってもよい。

0127

光重合性化合物は、画素部(インク組成物の硬化物)の安定性に優れる(例えば、経時劣化を抑制でき、高温保存安定性及び湿熱保存安定性に優れる)観点から、架橋性基を有していてもよい。架橋性基は、熱又は活性エネルギー線(例えば、紫外線)により他の架橋性基と反応する官能基であり、例えば、エポキシ基、オキセタン基、ビニル基、アクリロイル基、アクリロイルオキシ基ビニルエーテル基等が挙げられる。

0128

光ラジカル重合開始剤としては、分子開裂型又は水素引き抜き型の光ラジカル重合開始剤が好適である。

0129

光重合開始剤の含有量は、インク組成物の硬化性の観点から、光重合性化合物100質量部に対して、0.1質量部以上であってよく、0.5質量部以上であってもよく、1質量部以上であってもよい。光重合開始剤の含有量は、画素部(インク組成物の硬化物)の経時安定性の観点から、光重合性化合物100質量部に対して、40質量部以下であってよく、30質量部以下であってもよく、20質量部以下であってもよい。

0130

また、これらのUV硬化樹脂と共に、一部熱可塑性樹脂を併用してもよく、該熱可塑性樹脂としては、例えば、ウレタン系樹脂アクリル系樹脂ポリアミド系樹脂ポリイミド系樹脂スチレンマレイン酸系樹脂スチレン無水マレイン酸系樹脂等が挙げられる。

0132

さらに、本発明に係る光変換層(または当該光変換層の調製用インク組成物)において、上記硬化性樹脂、上記高分子分散剤、上記発光用ナノ結晶粒子の他に、光散乱性粒子といった公知の添加剤を含んでもよい。

0133

発光用ナノ結晶を用いたインク組成物によりカラーフィルタ画素部(以下、単に「画素部」ともいう。)を形成した場合、光源からの光が発光用ナノ結晶に吸収されずに画素部から漏れることがある。このような漏れ光は、画素部の色再現性を低下させるため、光変換層として上記画素部を用いる場合には、その漏れ光を可能な限り低減することが好ましい。上記光散乱性粒子は、画素部の漏れ光を防止するために、好適には用いられる。光散乱性粒子は、例えば、光学的に不活性無機微粒子である。光散乱性粒子は、カラーフィルタ画素部に照射された光源からの光を散乱させることができる。

0134

光散乱性粒子を構成する材料としては、例えば、タングステンジルコニウムチタン白金ビスマスロジウムパラジウム、銀、スズ、プラチナ、金等の単体金属シリカ硫酸バリウム炭酸バリウム炭酸カルシウムタルク酸化チタンクレーカオリン、硫酸バリウム、炭酸バリウム、炭酸カルシウム、アルミナホワイト、酸化チタン、酸化マグネシウム酸化バリウム酸化アルミニウム酸化ビスマス酸化ジルコニウム酸化亜鉛等の金属酸化物炭酸マグネシウム、炭酸バリウム、次炭酸ビスマス、炭酸カルシウム等の金属炭酸塩水酸化アルミニウム等の金属水酸化物ジルコン酸バリウムジルコン酸カルシウムチタン酸カルシウムチタン酸バリウムチタン酸ストロンチウム等の複合酸化物次硝酸ビスマス等の金属塩などが挙げられる。光散乱性粒子は、漏れ光の低減効果により優れる観点から、酸化チタン、アルミナ、酸化ジルコニウム、酸化亜鉛、炭酸カルシウム、硫酸バリウム及びシリカからなる群より選択される少なくとも1種を含むことが好ましく、酸化チタン、硫酸バリウム及び炭酸カルシウムからなる群より選択される少なくとも一種を含むことがより好ましい。

0135

光散乱性粒子の形状は、球状、フィラメント状不定形状等であってよい。しかしながら、光散乱性粒子としては、粒子形状として方向性の少ない粒子(例えば、球状、正四面体状等の粒子)を用いることが、インク組成物の均一性流動性及び光散乱性をより高められる点で好ましい。

0136

インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、漏れ光の低減効果により優れる観点から、0.05μm以上であってよく、0.2μm以上であってもよく、0.3μm以上であってもよい。インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、吐出安定性に優れる観点から、1.0μm以下であってもよく、0.6μm以下であってもよく、0.4μm以下であってもよい。インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、0.05〜1.0μm、0.05〜0.6μm、0.05〜0.4μm、0.2〜1.0μm、0.2〜0.6μm、0.2〜0.4μm、0.3〜1.0μm、0.3〜0.6μm、又は0.3〜0.4μmであってもよい。このような平均粒子径(体積平均径)が得られやすい観点から、使用する光散乱性粒子の平均粒子径(体積平均径)は、50nm以上であってよく、1000nm以下であってよい。光散乱性粒子の平均粒子径(体積平均径)は、動的光散乱ナノトラック粒度分布計により測定し、体積平均径を算出することにより得られる。また、使用する光散乱性粒子の平均粒子径(体積平均径)は、例えば透過型電子顕微鏡又は走査型電子顕微鏡により各粒子の粒子径を測定し、体積平均径を算出することにより得られる。

0137

光散乱性粒子の含有量は、漏れ光の低減効果により優れる観点から、インク組成物の不揮発分の質量を基準として、0.1質量%以上であってよく、1質量%以上であってもよく、5質量%以上であってもよく、7質量%以上であってもよく、10質量%以上であってもよく、12質量%以上であってもよい。光散乱性粒子の含有量は、漏れ光の低減効果により優れる観点及び吐出安定性に優れる観点から、インク組成物の不揮発分の質量を基準として、60質量%以下であってよく、50質量%以下であってもよく、40質量%以下であってもよく、30質量%以下であってもよく、25質量%以下であってもよく、20質量%以下であってもよく、15質量%以下であってもよい。本実施形態では、インク組成物が高分子分散剤を含むため、光散乱性粒子の含有量を上記範囲とした場合であっても光散乱性粒子の良好に分散させることができる。

0138

発光用ナノ結晶の含有量に対する光散乱性粒子の含有量の質量比(光散乱性粒子/発光用ナノ結晶)は、0.1〜5.0である。質量比(光散乱性粒子/発光用ナノ結晶)は、漏れ光の低減効果により優れる観点から、0.2以上であってもよく、0.5以上であってもよい。質量比(光散乱性粒子/発光用ナノ結晶)は、漏れ光の低減効果により優れる観点から、2.0以下であってもよく、1.5以下であってもよい。質量比(光散乱性粒子/発光用ナノ結晶)は、0.1〜2.0、0.1〜1.5、0.2〜5.0、0.2〜2.0、0.2〜1.5、0.5〜5.0、0.5〜2.0、又は0.5〜1.5であってもよい。なお、光散乱性粒子による漏れ光低減は、次のようなメカニズムによると考えられる。すなわち、光散乱性粒子が存在しない場合、バックライト光は画素部内をほぼ直進して通過するのみであり、発光用ナノ結晶に吸収される機会が少ないと考えられる。一方、光散乱性粒子を発光用ナノ結晶と同一の画素部内に存在させると、その画素部内でバックライト光が全方位に散乱され、それを発光用ナノ結晶が受光することができるため、同一のバックライトを用いていても、画素部における光吸収量が増大すると考えられる。結果的に、このようなメカニズムで漏れ光を防ぐことが可能になったと考えられる。

0139

本発明における光変換層は、上記で示した発光用ナノ結晶に加え、製造工程に応じて該発光用ナノ結晶を適度分散安定化させる樹脂成分を含むことが好ましい。

0140

斯かる樹脂成分は、該光変換層をフォトリソグラフィ法で製造される観点では、光重合性化合部物の重合体であって、かつ、アルカリ現像可能なものが好ましく、具体的には、例えば、1,6−ヘキサンジオールジアクリレートエチレングリコールジアクリレートネオペンチルグリコールジアクリレートトリエチレングリコールジアクリレート、ビスアクリロキシエトキシビスフェノールA、3−メチルペンタンジオールジアクリレート等のような2官能モノマーの重合体:トリメチルロールプロパトントリアクリレートペンタエリスリトールトリアクリレートトリス〔2−(メタ)アクリロイルオキシエチルイソシアヌレートジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレート等の比較的分子量の小さな多官能モノマーの重合体、ポリエステルアクリレートポリウレタンアクリレートポリエーテルアクリレート等の様な比較的分子量の大きな多官能モノマーの重合体が挙げられる。

0141

また、これらの重合体と共に、一部熱可塑性樹脂を併用してもよく、該熱可塑性樹脂としては、例えば、ウレタン系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、スチレンマレイン酸系樹脂、スチレン無水マレイン酸系樹脂等が挙げられる。

0142

さらに、本発明に係る光変換層において、必要により、上記透明樹脂、上記発光用ナノ結晶の他に、重合開始剤、触媒、アルミナ、シリカ、酸化チタンビーズゼオライトまたはジルコニアなどの散乱剤といった、公知の添加剤を含んでもよい。

0143

(色材)
本発明に係る光変換層は、赤(R)、緑(G)、青(B)の三色画素部を備え、必要により色材を含んでもよく、当該色材としては、公知の色材を使用することができ、例えば、赤(R)の画素部中にジケトピロロピロール顔料及び/又はアニオン性赤色有機染料を、緑(G)の画素部中にハロゲン化銅フタロシニア顔料フタロシアニン系緑色染料、フタロシアニン系青色染料とアゾ系黄色有機染料との混合物からなる群から選ばれる少なくとも一種を、青(B)の画素部中にε型銅フタロシニアン顔料及び/又はカチオン性青色有機染料を含有することが好ましい。

0144

本発明に係る赤色の色層中に発光用ナノ結晶と共に任意に添加される好ましい色材は、ジケトピロロピロール顔料及び/又はアニオン性赤色有機染料を含有するのが好ましい。ジケトピロロピロール顔料としては、具体的にはC.I.Pigment Red 254、同255、同264、同272、Orange 71及び同73から選ばれる1種又は2種以上が好ましく、Red 254、同255、同264及び同272から選ばれる1種又は2種以上がより好ましく、C.I.Pigment Red 254が特に好ましい。アニオン性赤色有機染料としては、具体的には、C.I.Solvent Red 124、Acid Red 52及び同289から選ばれる1種又は2種以上が好ましく、C.I.Solvent Red 124が特に好ましい。

0145

上記本発明に係る赤色の色層中には、色材として、更に、C.I.Pigment Red 177、同242、同166、同167、同179、C.I.Pigment Orange 38、同71、C.I.Pigment Yellow 150、同215、同185、同138、同139、C.I.Solvent Red 89、C.I.Solvent Orange 56、C.I.Solvent Yellow 21、同82、同83:1、同33、同162からなる群から選ばれる少なくとも1種の有機染顔料を含有するのが好ましい。

0146

本発明に係る緑色の色層中に発光用ナノ結晶と共に任意に添加される好ましい色材は、ハロゲン化金属フタロシアニン顔料、フタロシアニン系緑色染料及びフタロシアニン系青色染料とアゾ系黄色有機染料との混合物からなる群から選ばれる少なくとも一種を含有するのが好ましい。上記ハロゲン化金属フタロシアニン顔料としては、次の2つの群のハロゲン化金属フタロシアニン顔料が挙げられる。

0147

(第一群
Al、Si、Sc、Ti、V、Mg、Fe、Co、Ni、Zn、Ga、Ge、Y、Zr、Nb、In、Sn及びPbからなる群から選ばれる金属を中心金属として有し、フタロシアニン分子個当たり8〜16個のハロゲン原子がフタロシアニン分子のベンゼン環に結合したハロゲン化金属フタロシアニン顔料であり、その中心金属が三価の場合には、その中心金属には1つのハロゲン原子、水酸基又はスルホン酸基(−SO3H)のいずれかが結合しており、中心金属が四価金属の場合には、その中心金属には1つの酸素原子又は同一でも異なっていても良い2つのハロゲン原子、水酸基又はスルホン酸基のいずれかが結合しているハロゲン化金属フタロシアニン顔料。

0148

(第二群)
Al、Sc、Ga、Y及びInからなる群から選ばれる三価金属を中心金属とし、フタロシアニン分子1個当たり8〜16個のハロゲン原子がフタロシアニン分子のベンゼン環に結合したハロゲン化金属フタロシアニンの2分子を構成単位とし、これら構成単位の各中心金属が酸素原子、硫黄原子スルフィニル(−SO−)及びスルホニル(−SO2−)からなる群から選ばれる二価原子団を介して結合したハロゲン化金属フタロシアニン二量体からなる顔料。

0149

本発明で用いるハロゲン化金属フタロシアニン顔料において、ベンゼン環に結合するハロゲン原子は、全て同一であっても、それぞれ異なっていてもよい。また、ひとつのベンゼン環に異なるハロゲン原子が結合していてもよい。

0150

ここで、フタロシアニン分子1個当たり8〜16個のハロゲン原子のうち9〜15個の臭素原子がフタロシアニン分子のベンゼン環に結合した、本発明で用いるハロゲン化金属フタロシアニン顔料は、黄味を帯びた明るい緑色を呈し、カラーフィルタの緑色画素部への使用に最適である。本発明で用いるハロゲン化金属フタロシアニン顔料は、水や有機溶媒不溶または難溶である。本発明で用いるハロゲン化金属フタロシアニン顔料には、後述する仕上げ処理が行われていない顔料(粗顔料とも呼ばれる)も、仕上げ処理が行われた顔料も、いずれも包含される。

0151

前記第一群および第二群に属するハロゲン化金属フタロシアニン顔料は、下記一般式(PIG−1)で表すことが出来る。

0152

0153

第一群に属するハロゲン化金属フタロシアニン顔料は、前記一般式(PIG−1)において、次の通りである。

0154

一般式(PIG−1)において、X1〜X16は、水素原子、塩素原子、臭素原子またはヨウ素原子を表す。ひとつのベンゼン環に結合した4個のXの原子は同一でも異なっていても良い。4個のベンゼン環に結合したX1〜X16のうち、8〜16個は塩素原子、臭素原子またはヨウ素原子である。Mは中心金属を表す。後述するY及びそれの個数mが同一であるハロゲン化金属フタロシアニン顔料の範囲において、16個のX1〜X16のうち塩素原子、臭素原子及びヨウ素原子の合計が8未満の顔料は青色であり、同様に16個のX1〜X16のうち塩素原子、臭素原子及びヨウ素原子の合計が8以上の顔料で前記合計値が大きいほど黄味が強くなる。中心金属Mに結合するYはフッ素塩素臭素またはヨウ素のいずれかのハロゲン原子、酸素原子、水酸基及びスルホン酸基からなる群から選ばれる一価原子団であり、mは中心金属Mに結合するYの数を表し、0〜2の整数である。

0155

中心金属Mの原子価により、mの値が決定される。中心金属Mが、Al、Sc、Ga、Y、Inの様に原子価が3価の場合、m=1であり、フッ素、塩素、臭素、ヨウ素、水酸基及びスルホン酸基からなる群から選ばれる基の一つが中心金属に結合する。中心金属Mが、Si、Ti、V、Ge、Zr、Snの様に原子価が4価の場合は、m=2であり、酸素の一つが中心金属に結合するか、またはフッ素、塩素、臭素、ヨウ素、水酸基及びスルホン酸基からなる群から選ばれる基の二つが中心金属に結合する。中心金属Mが、Mg、Fe、Co、Ni、Zn、Zr、Sn、Pbの様に原子価が2価の場合は、Yは存在しない。

0156

また、第二群に属するハロゲン化金属フタロシアニン顔料は、前記一般式(PIG−1)において次の通りである。

0157

前記一般式(PIG−1)において、X1〜X16については、前記定義と同義であり、中心金属MはAl、Sc、Ga、Y及びInからなる群から選ばれる三価金属を表し、mは1を表す。Yは次の原子団を表す。

0158

0159

なお、原子団Yの化学構造中、中心金属Mは前記した定義と同義であり、X17〜X32については、一般式(PIG−1)において前記したX1〜X16の定義と同義である。Aは、酸素原子、硫黄原子、スルフィニル(−SO−)及びスルホニル(−SO2−)からなる群から選ばれる二価原子団を表す。一般式(PIG−1)中のMと原子団YのMとは、二価原子団Aを介して結合していることを表す。

0160

即ち、第二群に属するハロゲン化金属フタロシアニン顔料は、ハロゲン化金属フタロシアニンの2分子を構成単位とし、これらが前記二価原子団を介して結合したハロゲン化金属フタロシアニン二量体である。

0161

一般式(PIG−1)で表わされるハロゲン化金属フタロシアニン顔料としては、具体的には、次の(1)〜(4)が挙げられる。

0162

(1)ハロゲン化錫フタロシアニン顔料ハロゲン化ニッケルフタロシアニン顔料、ハロゲン化亜鉛フタロシアニン顔料の様な、Mg、Fe、Co、Ni、Zn、Zr、Sn及びPbからなる群から選ばれる二価金属を中心金属として有し、かつフタロシアニン分子1個当たり4個のベンゼン環に8〜16個のハロゲン原子が結合したハロゲン化金属フタロシアニン顔料。なお、この中で、塩素化臭素化亜鉛フタロシアニン顔料は、C.I.Pigment Green 58であり、特に好ましい。

0163

(2)ハロゲン化クロロアルミニウムフタロシアニンの様な、Al、Sc、Ga、Y及びInからなる群から選ばれる三価金属を中心金属として有し、中心金属には1つのハロゲン原子、水酸基又はスルホン酸基のいずれかを有し、かつフタロシアニン分子1個当たり4個のベンゼン環に8〜16個のハロゲン原子が結合したハロゲン化金属フタロシアニン顔料。

0164

(3)ハロゲン化オキシチタニウムフタロシアニン、ハロゲン化オキシバナジウムフタロシアニンの様な、Si、Ti、V、Ge、Zr及びSnからなる群から選ばれる四価金属を中心金属として有し、中心金属には1つの酸素原子又は同一でも異なっていても良い2つのハロゲン原子、水酸基又はスルホン酸基のいずれかを有し、かつフタロシアニン分子1個当たり4個のベンゼン環に8〜16個のハロゲン原子が結合したハロゲン化金属フタロシアニン顔料。

0165

(4)ハロゲン化されたμ−オキソ−アルミニウムフタロシアニン二量体、ハロゲン化されたμ−チオ−アルミニウムフタロシアニン二量体の様な、Al、Sc、Ga、Y及びInからなる群から選ばれる三価金属を中心金属とし、フタロシアニン分子1個当たり4個のベンゼン環に8〜16個のハロゲン原子が結合したハロゲン化金属フタロシアニンの2分子を構成単位とし、これら構成単位の各中心金属が酸素原子、硫黄原子、スルフィニル及びスルホニルからなる群から選ばれる二価原子団を介して結合したハロゲン化金属フタロシアニン二量体からなる顔料。

0166

その他の色材としては、緑色の色層中にC.I.Solvent Blue 67とC.I.Solvent Yellow 162との混合物、又はC.I.Pigment Green 7及び/又は同36を任意に含有するのが好ましい。

0167

上記本発明に係る緑色の色層中には、色材として、更に、C.I.Pigment Yellow 150、同215、同185、同138、C.I.Solvent Yellow 21、同82、同83:1、同33からなる群から選ばれる少なくとも1種の有機染顔料を含有するのが好ましい。

0168

本発明に係る青色の色層中に発光用ナノ結晶と共に任意に添加される好ましい色材は、ε型銅フタロシニアン顔料及び/又はカチオン性青色有機染料を含有するのが好ましい。ε型銅フタロシニアン顔料は、C.I.Pigment Blue 15:6である。カチオン性青色有機染料としては、具体的には、C.I.Solvent Blue 2、同3、同4、同5、同6、同7、同23、同43、同72、同124、C.I.Basic Blue7、同26が好ましく、C.I.Solvent Blue 7、Basic Blue7がより好ましく、C.I.Solvent Blue 7が特に好ましい。

0169

上記本発明に係る青色の色層中には、色材として、更に、C.I.Pigment Blue 1、C.I.Pigment Violet 23、C.I.Basic Blue 7、C.I.Basic Violet 10、C.I.Acid Blue 1、同90、同83、C.I.Direct Blue 86からなる群から選ばれる少なくとも1種の有機染顔料を含有するのが好ましい。

0170

また、本発明に係る光変換層に、黄色(Y)画素部(黄色の色層)を含む場合、色材として、黄色の色層中には、に、C.I.Pigment Yellow 150、同215、同185、同138、同139、C.I.Solvent Yellow 21、82、同83:1、同33、同162からなる群から選ばれる少なくとも1種の黄色有機染顔料を含有するのも好ましい。

0171

本発明における光変換層において、透明樹脂に対する発光用ナノ結晶の含有量の上限は、透明樹脂100質量部に対して、80質量部、70質量部、60質量部、50質量部が好ましく、前記発光用ナノ結晶の含有量の下限は、透明樹脂100質量部に対して、1.0質量部、3.0質量部、5.0質量部、10.0質量部が好ましい。光変換層に複数種の発光用ナノ結晶が含まれる場合において、上記含有量は合計量を表す。

0172

(カラーフィルタ)
本発明に係る光変換層は、発光用ナノ結晶を含む層(NC)とカラーフィルタ(CF)とを積層させた積層体であることが好ましい(例えば、図19)。より詳細には、当該光変換層は、赤色の色層Rと、緑色の色層Gと、青色の色層Bと、を有することが好ましい。この場合、赤色(R)の画素部R(赤色の色層部R)は、赤色発光用ナノ結晶を含む層(NC)と赤色の色材を含む色材層(CF‐Red)とで構成されることが好ましい。緑色(R)の画素部(緑色の色層部G)は、緑色発光用ナノ結晶を含む層(NC)と緑色の色材を含む色材層(CF‐Green)または黄色の色材を含む色材層(黄色の色層)とで構成されることが好ましい。青色(R)の画素部(青色の色層部B)は、青色の色材を含む色材層(CF‐Blue 青色の色材を含む層)および/または透明樹脂層と、必要により青色発光用ナノ結晶を含む層(NC)とで構成されることが好ましい。本発明では、図7における光変換画素層に積層される色材層(CF—Green、CF、Red)、図8又は図9におけるカラーフィルタ(CFL)、図9における青色カラーフィルタ(CF−Blue)のように色材を含むカラーフィルタを適宜使用することができる。

0173

カラーフィルタは、上記色材を用いて形成することが好ましい。例えば、赤色(R)のカラーフィルタ中にジケトピロロピロール顔料及び/又はアニオン性赤色有機染料を、緑色(G)のカラーフィルタ中にハロゲン化銅フタロシニアン顔料、フタロシアニン系緑色染料、フタロシアニン系青色染料とアゾ系黄色有機染料との混合物からなる群から選ばれる少なくとも一種を、青色(B)のカラーフィルタ中にε型銅フタロシニアン顔料及び/又はカチオン性青色有機染料を含有することが好ましい。

0174

また、カラーフィルタには、必要により前述の透明樹脂や後述の光硬化性化合物分散剤などを含んでもよく、カラーフィルタの製造方法は公知のフォトリソグラフィ法などで形成することができる。

0175

(光変換層の製造方法)
光変換層は、従来公知の方法で形成することができる。画素部の形成方法の代表的な方法としては、フォトリソグラフィ法であり、これは、後記する発光用ナノ結晶含有光硬化性組成物を、従来のカラーフィルタ用の透明基板のブラックマトリックスを設けた側の面に塗布、加熱乾燥プリベーク)した後、フォトマスクを介して紫外線を照射することでパターン露光を行って、画素部に対応する箇所の光硬化性化合物を硬化させた後、未露光部分を現像液現像し、非画素部を除去して画素部を透明基板に固着させる方法である。この方法では、発光用ナノ結晶含有光硬化性組成物の硬化着色皮膜からなる画素部が透明基板上に形成される。

0176

赤色(R)画素、緑色(G)画素、青色(B)画素、必要に応じて黄色(Y)画素等の他の色の画素ごとに、後記する光硬化性組成物を調製して、前記した操作を繰り返すことにより、所定の位置に赤色(R)画素、緑色(G)画素、青色(B)画素、黄色(Y)画素の着色画素部を有する光変換層を製造することができる。

0177

後記する発光用ナノ結晶含有光硬化性組成物をガラス等の透明基板上に塗布する方法としては、例えば、スピンコート法、ロールコート法インクジェット法等が挙げられる。

0178

透明基板に塗布した発光用ナノ結晶含有光硬化性組成物の塗膜乾燥条件は、各成分の種類、配合割合等によっても異なるが、通常、50〜150℃で、1〜15分間程度である。また、発光用ナノ結晶含有光硬化性組成物の光硬化に用いる光としては、200〜500nmの波長範囲の紫外線、あるいは可視光を使用するのが好ましい。この波長範囲の光を発する各種光源が使用できる。

0179

現像方法としては、例えば、液盛り法、ディッピング法スプレー法等が挙げられる。光硬化性組成物の露光、現像の後に、必要な色の画素部が形成された透明基板は水洗いし乾燥させる。こうして得られたカラーフィルタは、ホットプレートオーブン等の加熱装置により、90〜280℃で、所定時間加熱処理(ポストベーク)することによって、着色塗膜中の揮発性成分を除去すると同時に、発光用ナノ結晶を含有する光硬化性組成物の硬化着色皮膜中に残存する未反応の光硬化性化合物が熱硬化し、光変換層が完成する。

0180

本発明の光変換層用色材、樹脂は、本発明の発光用ナノ結晶と用いることで、液晶層の電圧保持率(VHR)の低下、青色光または紫外光による劣化、イオン密度(ID)の増加を防止し、白抜け、配向むら焼き付けなどの表示不良の問題を解決する液晶表示装置を提供することが可能となる。

0181

上記発光用ナノ結晶含有光硬化性組成物の製造方法としては、発光用ナノ結晶と、有機溶剤と、を混合して、必要により、親和性のある分子、分散剤、色材(=染料及び/又は顔料組成物)と、を添加し均一となる様に攪拌分散を行って、まず光変換層の画素部を形成するための分散液を調製してから、そこに、光硬化性化合物と、必要に応じて熱可塑性樹脂や光重合開始剤等を加えて発光用ナノ結晶を含有する発光用ナノ結晶含有光硬化性組成物とする方法が一般的である。

0182

ここで用いられる有機溶媒としては、例えば、トルエンやキシレンメトキシベンゼン等の芳香族系溶剤酢酸エチル酢酸プロピル酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートジエチレングリコールメチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコールプロピルエーテルアセテート、ジエチレングリコールブチルエーテルアセテート等の酢酸エステル系溶剤、エトキシエチルプロピオネート等のプロピオネート溶剤メタノールエタノール等のアルコール系溶剤ブチルセロソルブプロピレングリコールモノメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル系溶剤メチルエチルケトンメチルイソブチルケトンシクロヘキサノン等のケトン系溶剤、ヘキサン等の脂肪族炭化水素系溶剤、N,N−ジメチルホルムアミド、γ−ブチロラクタムN−メチル−2−ピロリドンアニリン、ピリジン等の窒素化合物系溶剤、γ−ブチロラクトン等のラクトン系溶剤カルバミン酸メチルカルバミン酸エチルの48:52の混合物の様なカルバミン酸エステル等が挙げられる。

0183

ここで用いられる分散剤としては、例えば、ビックケミー社のディスパービック130、ディスパービック161、ディスパービック162、ディスパービック163、ディスパービック170、ディスパービック171、ディスパービック174、ディスパービック180、ディスパービック182、ディスパービック183、ディスパービック184、ディスパービック185、ディスパービック2000、ディスパービック2001、ディスパービック2020、ディスパービック2050、ディスパービック2070、ディスパービック2096、ディスパービック2150、ディスパービックLPN21116、ディスパービックLPN6919エフカ社のエフカ46、エフカ47、エフカ452、エフカLP4008、エフカ4009、エフカLP4010、エフカLP4050、LP4055、エフカ400、エフカ401、エフカ402、エフカ403、エフカ450、エフカ451、エフカ453、エフカ4540、エフカ4550、エフカLP4560、エフカ120、エフカ150、エフカ1501、エフカ1502、エフカ1503、ルーブリゾール社のソルスパース3000、ソルスパース9000、ソルスパース13240、ソルスパース13650、ソルスパース13940、ソルスパース17000、18000、ソルスパース20000、ソルスパース21000、ソルスパース20000、ソルスパース24000、ソルスパース26000、ソルスパース27000、ソルスパース28000、ソルスパース32000、ソルスパース36000、ソルスパース37000、ソルスパース38000、ソルスパース41000、ソルスパース42000、ソルスパース43000、ソルスパース46000、ソルスパース54000、ソルスパース71000、味の素株式会社のアジスパーPB711、アジスパーPB821、アジスパーPB822、アジスパーPB814、アジスパーPN411、アジスパーPA111等の分散剤や、アクリル系樹脂、ウレタン系樹脂、アルキッド系樹脂、ウッドロジンガムロジントール油ロジン等の天然ロジン、重合ロジン不均化ロジン水添ロジン酸化ロジン、マレイン化ロジン等の変性ロジンロジンアミンライムロジン、ロジンアルキレンオキシド付加物、ロジンアルキド付加物、ロジン変性フェノール等のロジン誘導体等の、室温で液状かつ水不溶性合成樹脂を含有させることが出来る。これら分散剤や、樹脂の添加は、フロキュレーションの低減、顔料の分散安定性の向上、分散体粘度特性を向上にも寄与する。

0184

また、分散助剤として、有機顔料誘導体の、例えば、フタルイミドメチル誘導体、同スルホン酸誘導体、同N−(ジアルキルアミノメチル誘導体、同N−(ジアルキルアミノアルキルスルホン酸アミド誘導体等も含有することも出来る。もちろん、これら誘導体は、異なる種類のものを二種以上併用することも出来る。

0185

発光用ナノ結晶含有光硬化性組成物の調製に使用する熱可塑性樹脂としては、例えば、ウレタン系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、スチレンマレ
発光用ナノ結晶含有光硬化性化合物としては、例えば、1,6−ヘキサンジオールジアクリレート、エチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、トリエチレングリコールジアクリレート、ビス(アクリロキシエトキシ)ビスフェノールA、3−メチルペンタンジオールジアクリレート等のような2官能モノマー、トリメチルロールプロパトントリアクリレート、ペンタエリスリトールトリアクリレート、トリス〔2−(メタ)アクリロイルオキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレート等の比較的分子量の小さな多官能モノマー、ポリエステルアクリレート、ポリウレタンアクリレート、ポリエーテルアクリレート等の様な比較的分子量の大きな多官能モノマーが挙げられる。

0186

光重合開始剤としては、例えばアセトフェノンベンゾフェノンベンジルジメチルケタノール、ベンゾイルパーオキサイド、2−クロチオキサントン、1,3−ビス(4’−アジドベンザル)−2−プロパン、1,3−ビス(4’−アジドベンザル)−2−プロパン−2’−スルホン酸、4,4’−ジアジドスチルベン−2,2’−ジスルホン酸等が挙げられる。市販の光重合開始剤としては、たとえば、BASF社製「イルガキュア商標名)−184」、「イルガキュア(商標名)−369」、「ダロキュア(商標名)−1173」、BASF社製「ルシリン−TPO」、日本化薬社製「カヤキュアー(商標名)DETX」、「カヤキュアー(商標名)OA」、ストーファー社製「バイキュアー10」、「バイキュアー55」、アクゾー社製「トリゴナールPI」、サンド社製「サンドレー1000」、アップジョン社製「デープ」、黒金化成社製「ビイミダゾール」などがある。

0187

また上記光重合開始剤に公知慣用の光増感剤を併用することもできる。光増感剤としては、たとえば、アミン類尿素類、硫黄原子を有する化合物、燐原子を有する化合物、塩素原子を有する化合物またはニトリル類もしくはその他の窒素原子を有する化合物等が挙げられる。これらは、単独で用いることも、2種以上を組み合わせて用いることもできる。

0188

光重合開始剤の配合率は、特に限定されるものではないが、質量基準で、光重合性あるいは光硬化性官能基を有する化合物に対して0.1〜30%の範囲が好ましい。0.1%未満では、光硬化時の感光度が低下する傾向にあり、30%を超えると、顔料分散レジストの塗膜を乾燥させたときに、光重合開始剤の結晶が析出して塗膜物性の劣化を引き起こすことがある。

0189

前記した様な各材料を使用して、質量基準で、本発明の発光用ナノ結晶100部当たり、300〜100000部の有機溶剤と、1〜500部の親和性のある分子や分散剤とを、均一となる様に攪拌分散して前記染顔料液を得ることができる。次いでこの顔料分散液100部当たり、熱可塑性樹脂と光硬化性化合物の合計が0.125〜2500部、光硬化性化合物1部当たり0.05〜10部の光重合開始剤と、必要に応じてさらに有機溶剤を添加し、均一となる様に攪拌分散して画素部を形成するための発光用ナノ結晶含有光硬化性組成物を得ることができる。

0190

現像液としては、公知慣用の有機溶剤やアルカリ水溶液を使用することができる。特に前記光硬化性組成物に、熱可塑性樹脂または光硬化性化合物が含まれており、これらの少なくとも一方が酸価を有し、アルカリ可溶性を呈する場合には、アルカリ水溶液での洗浄がカラーフィルタ画素部の形成に効果的である。

0191

ここでは、フォトリソグラフィ法によるR画素、G画素、B画素、Y画素の着色画素部の製造方法について詳記したが、本発明の発光用ナノ結晶含有組成物を使用して調製された画素部は、その他の電着法転写法ミセル電解法PVED(PhotovoltaicElectrodeposition)法、インクジェット法、反転印刷法、熱硬化法等の方法で各色画素部を形成して、光変換層を製造してもよい。

0192

本発明に係る光変換層用のインク組成物の製造方法について説明する。インク組成物の製造方法は、例えば、光散乱性粒子及び高分子分散剤を含有する、光散乱性粒子の分散体を用意する第1の工程と、光散乱性粒子の分散体及び発光性ナノ結晶粒子を混合する第2の工程と、を備える。この方法では、光散乱性粒子の分散体が熱硬化性樹脂を更に含有してよく、第2の工程において、熱硬化性樹脂を更に混合してもよい。この方法によれば、光散乱性粒子を充分に分散させることができる。そのため、画素部における漏れ光を低減することができるインク組成物を容易に得ることができる。

0193

光散乱性粒子の分散体を用意する工程では、光散乱性粒子と、高分子分散剤と、場合により、熱硬化性樹脂とを混合し、分散処理を行うことにより光散乱性粒子の分散体を調製してよい。混合及び分散処理は、ビーズミルペイントコンディショナー遊星撹拌機等の分散装置を用いて行ってよい。光散乱性粒子の分散性が良好となり、光散乱性粒子の平均粒子径を所望の範囲に調整しやすい観点から、ビーズミル又はペイントコンディショナーを用いることが好ましい。

0194

インク組成物の製造方法は、第2の工程の前に、発光性ナノ結晶粒子と、熱硬化性樹脂とを含有する、発光性ナノ結晶粒子の分散体を用意する工程を更に備えていてもよい。この場合、第2の工程では、光散乱性粒子の分散体と、発光性ナノ結晶粒子の分散体と、を混合する。この方法によれば、発光性ナノ結晶粒子を充分に分散させることができる。そのため、画素部における漏れ光を低減することができるインク組成物を容易に得ることができる。発光性ナノ結晶粒子の分散体を用意する工程では、光散乱性粒子の分散体を用意する工程と同様の分散装置を用いて、発光性ナノ結晶粒子と、熱硬化性樹脂との混合及び分散処理を行ってよい。

0195

本実施形態のインク組成物を、インクジェット方式用のインク組成物として用いる場合には、圧電素子を用いた機械吐出機構による、ピエゾジェット方式のインクジェット記録装置に適用することが好ましい。ピエゾジェット方式では、吐出に当たり、インク組成物が瞬間的に高温に晒されることがなく、発光性ナノ結晶粒子の変質が起こり難く、カラーフィルタ画素部(光変換層)も期待した通りの発光特性がより容易に得られやすい。

0196

本発明に係る光変換層は、例えば、基材上に遮光部であるブラックマトリックスをパターン状に形成した後、基材上の遮光部によって区画された画素部形成領域に、上述した実施形態のインク組成物(インクジェットインク)をインクジェット方式により選択的に付着させ、活性エネルギー線の照射又は加熱によりインク組成物を硬化させる方法により製造することができる。

0197

遮光部を形成させる方法は、基材の一面側の複数の画素部間の境界となる領域に、クロム等の金属薄膜、又は、遮光性粒子を含有させた樹脂組成物薄膜を形成し、この薄膜をパターニングする方法等が挙げられる。金属薄膜は、例えば、スパッタリング法真空蒸着法等により形成することができ、遮光性粒子を含有させた樹脂組成物の薄膜は、例えば、塗布、印刷等の方法により形成することができる。パターニングを行う方法としては、フォトリソグラフィ法等が挙げられる。

0198

インクジェット方式としては、エネルギー発生素子として電気熱変換体を用いたバブルジェット登録商標)方式、或いは圧電素子を用いたピエゾジェット方式等が挙げられる。

0199

インク組成物の硬化を活性エネルギー線(例えば紫外線)の照射により行う場合、例えば、水銀ランプメタルハライドランプキセノンランプ、LED等を用いてよい。照射する光の波長は、例えば、200nm以上であってよく、440nm以下であってよい。露光量は、例えば、10mJ/cm2以上であってよく、4000mJ/cm2以下であってよい。

0200

インク組成物の硬化を加熱により行う場合、加熱温度は、例えば、110℃以上であってよく、250℃以下であってよい。加熱時間は、例えば、10分以上であってよく、120分以下であってよい。

0201

また、本明細書において、インクジェット法で使用される化合物、樹脂などの材料は、フォトリソグラフィ法で用いてもよく、またその反対にフォトリソグラフィ法で使用される化合物、樹脂などの材料は、インクジェット法で用いてもよいことは言うまでもない。

0202

以上、カラーフィルタ及び光変換層、並びにこれらの製造方法の一実施形態について説明したが、本発明は上記実施形態に限定されない。

0203

「液晶パネル」
次に、本発明に係る液晶表示素子における液晶パネルの構造について説明する。

0204

液晶パネル10の好ましい実施形態を、図10〜13および図14図16を用いて説明する。図10は、液晶表示部の電極層3の構造図の模式図を表し、液晶パネル10の電極部分を等価回路で示した模式図であり、図111および12は画素電極の形状の一例を示す模式図であり、本実施形態の一例として、FFS型の液晶表示素子の電極構造を示す模式図である。図13は、本実施形態の一例として、IPS型の液晶表示素子の電極構造を示す模式図である。図1図2に示すように、液晶パネル10に対して側面側または背面側から照明する照明手段としてバックライトユニットを設けることで液晶表示素子として駆動する。

0205

図1〜2および図10において、本発明に係る電極層3、3’は、1以上の共通電極および/または1以上の画素電極を備えている。例えば、FFS型の液晶表示素子では、画素電極は、絶縁層(例えば、窒化シリコン(SiN)など)を介して共通電極上に配置されており、VA型の液晶表示素子では、画素電極と共通電極とは液晶層5を介して対向して配置されている。

0206

画素電極は表示画素毎に配置され、スリット状の開口部が形成されている。共通電極と画素電極とは、例えばITO(Indium Tin Oxide)によって形成された透明電極であり、電極層3は、表示部において、複数の表示画素が配列する行に沿って延びるゲートバスラインBL(GBL1、GBL2・・・GBLm)と、複数の表示画素が配列する列に沿って延びるソースバスラインSBL(SBL1、SBL2・・・SBLm)と、ゲートバスラインとソースバスラインとが交差する位置近傍画素スイッチとして薄膜トランジスタを備えている。また、当該薄膜トランジスタのゲート電極は対応するゲートバスラインGBLと電気的に接続されており、当該薄膜トランジスタのソース電極は対応する信号線SBLと電気的に接続されている。さらに、薄膜トランジスタのドレイン電極は、対応する画素電極と電気的に接続されている。

0207

電極層3は、複数の表示画素を駆動する駆動手段として、ゲートドライバソースドライバとを備えており、前記ゲートドライバおよび前記ソースドライバは、液晶表示部の周囲に配置されている。また、複数のゲートバスラインはゲートドライバの出力端子と電気的に接続され、複数のソースバスラインはソースドライバの出力端子と電気的に接続されている。

0208

ゲートドライバは複数のゲートバスラインにオン電圧を順次印加して、選択されたゲートバスラインに電気的に接続された薄膜トランジスタのゲート電極にオン電圧を供給する。ゲート電極にオン電圧が供給された薄膜トランジスタのソースドレイン電極間導通する。ソースドライバは、複数のソースバスラインのそれぞれに対応する出力信号を供給する。ソースバスラインに供給された信号は、ソース−ドレイン電極間が導通した薄膜トランジスタを介して対応する画素電極に印加される。ゲートドライバおよびソースドライバは、液晶表示素子の外部に配置された表示処理部(制御回路とも称する)により動作を制御される。

0209

本発明に係る表示処理部は、通常駆動のほかに駆動電力低減のために低周波駆動の機能と間欠駆動の機能とを備えてもよく、TFT液晶パネルのゲートバスラインを駆動するためのLSIであるゲートドライバの動作およびTFT液晶パネルのソースバスラインを駆動するためのLSIであるソースドライバの動作を制御するものである。また、共通電極に共通電圧VCOMを供給し、バックライトユニットの動作も制御している。例えば、本発明に係る表示処理部は、表示画面全体を複数の区画に分けて、それぞれの区画に映す画像の明るさに合わせてバックライトの光の強度を調整するローカルディミング手段を有してもよい。

0210

本発明に係る液晶表示素子におけるFFS型の液晶パネルの例を図11、および図12を用いて説明する。

0211

図11は、画素電極の形状の一例として櫛形の画素電極を示した図であり、図1および2における基板2上に形成された電極層3のII線で囲まれた領域を拡大した平面図である。図11に示すように、第一の基板2の表面に形成されている薄膜トランジスタを含む電極層3は、走査信号を供給するための複数のゲートバスライン26と表示信号を供給するための複数のソースバスライン25とが、互いに交差してマトリクス状に配置されている。当該複数のゲートバスライン26と当該複数のソースバスライン25とにより囲まれた領域により、液晶表示装置の単位画素が形成され、該単位画素内には、画素電極21及び共通電極22が形成されている。ゲートバスライン26とソースバスライン25が互いに交差している交差部近傍には、ソース電極27、ドレイン電極24およびゲート電極28を含む薄膜トランジスタが設けられている。この薄膜トランジスタは、画素電極21に表示信号を供給するスイッチ素子として、画素電極21と連結している。また、ゲートバスライン26と並行して、共通ライン29が設けられる。この共通ライン29は、共通電極22に共通信号を供給するために、共通電極22と連結している。

0212

画素電極21の背面には絶縁層18(図示せず)を介して共通電極22が一面に形成されている。そして、隣接する共通電極と画素電極との最短離間経路の水平成分は配向層同士(または基板同士)の最短離間距離セルギャップ)より短い。前記画素電極の表面には保護絶縁膜及び配向層によって被覆されていてもよい。ここで言う「最短離間経路の水平成分」とは、隣接する共通電極と画素電極とを結ぶ最短離間経路を、基板に対して水平方向と基板に対して垂直方向(=厚み方向)とに分解した成分のうち、基板に対して水平方向の成分をいう。なお、前記複数のゲートバスライン26と複数のソースバスライン25とに囲まれた領域にはソースバスライン25を介して供給される表示信号を保存するストレイジキャパシタ(図示せず)を設けてもよい。

0213

また、図12は、図11の変形例であり、画素電極の形状の一例としてスリット状の画素電極を示した図である。当該図12に示す画素電極21は、略長方形の平板体の電極を、当該平板体の中央部および両端部が三角形状の切欠き部でくり抜かれ、その他の部分は略矩形枠状の切欠き部でくり抜かれた形状である。なお、切欠き部の形状は特に制限されるものではなく、楕円、円形、長方形状菱形、三角形、または平行四辺形など公知の形状の切欠き部を使用できる。

0214

なお、図11および図12には、一画素における一対のゲートバスライン26及び一対のソースバスライン25のみが示されている。
図14図16を用いて光変換層6について以下説明する。

0215

本発明に係る光変換層6を拡大した模式図の一例を図14に示す。光変換層6は、赤色の色層Rと緑色の色層Gと青色の色層Bとを有する。赤色(R)の画素部R(赤色の色層R)は、赤色発光用ナノ結晶を含む光変換画素層(NC−Red)と青色または黄色の色材を含む色材層(いわゆる黄色カラーフィルタまたは青色カラーフィルタ)とで構成されている。緑色(G)の画素部G(緑色の色層G)は、緑色発光用ナノ結晶を含む光変換画素層(NC−Green)と青色または黄色の色材を含む色材層(いわゆる黄色カラーフィルタまたは青色カラーフィルタ)とで構成されている。青色(B)の画素部B(青色の色層B)は、青色発光用ナノ結晶を必要により含む光変換画素層(または透明樹脂層)と青色または黄色の色材を含む色材層(いわゆる黄色カラーフィルタまたは青色カラーフィルタ)とで構成される。そのため、光変換層6は、赤色の色層、緑色の色層および青色の色層を含むナノ結晶層NCLに対して光源側に色材を含む色層(いわゆるカラーフィルタ)CFLが積層した2層が設けられている。さらに赤色の色層と緑色の色層と青色の色層との間に、混色を防止するために、それぞれ遮光層としてブラックマトリックスBMが設けられている。また、黄色カラーフィルタを一面に設けることで、発光用ナノ結晶に吸収されない青色光をカットすることができる。

0216

図14では好ましい光変換層の態様の一つとして、ナノ結晶層NCLと色材を含む色材層(いわゆるカラーフィルタ)CFLとが積層されている。光源からの光(励起光、例えば青色光)を全て光変換層で変換できないため、残った励起光が光変換層を透過させず吸収する必要がある。そのため、光変換層は、発光用ナノ結晶を含む層(NC)と色材を含む色層(いわゆるカラーフィルタ)CFLとを積層させることで、残った励起光(青色光)を外部から視認しないよう抑制している。しかし、必要により色材を含む色層(いわゆるカラーフィルタ)CFLを無くしてもよい。その場合、好ましい光変換層の態様の他の一つとしては、図16などで示すようにナノ結晶層NCLから構成される。

0217

また、図14ではカラーフィルタ層CFLとして、光源として420nm以上480nm以下の波長領域に主発光ピークを有する光(例えば青色LEDなどの光)を想定して青色の色材を含む色層を設けているが、使用する光源の種類により当該色層の種類は適宜変更される。

0218

また、赤色の色層R、緑色の色層Gおよび青色の色層Bには、必要により適宜色材を含んでもよい。さらには、発光用ナノ結晶NCを含む層(NCL)には、それぞれの色に対応した色材を含んでも良い。

0219

図15は、好ましい光変換層の態様の他の一つを模式的に示している。光変換層6は、赤色の色層Rと緑色の色層Gと青色の色層Bとを有する。赤色(R)の画素部R(赤色の色層R)は、赤色の色材を含む色材層(いわゆる赤色カラーフィルタ)CF‐Redと赤色発光用ナノ結晶を含む光変換画素層(NC)と青色の色材を含む色材層CFL(青色または黄色カラーフィルタCF−BLue・Yellow)で構成される。緑色(G)の画素部(緑色の色層G)は、緑色の色材を含む色材層(いわゆる緑色カラーフィルタ)CF‐Greenと緑色発光用ナノ結晶を含む光変換画素層(NC)と青色の色材を含む色材層CFL(青色または黄色カラーフィルタCF−Blue・Yellow)とで構成される。青色(R)の画素部(青色の色層B)は、透明樹脂層および/または青色または黄色の色材を含む色層CFL(いわゆる青色または黄色カラーフィルタ)と必要により含まれる発光用ナノ結晶を含む層(NC)と青色の色材を含む色層CFL(青色または黄色カラーフィルタ)とで構成される。さらには、赤色の色層と緑色の色層と青色の色層のそれぞれの間に遮光層としてブラックマトリックスが配置されている。黄色カラーフィルタを一面に設けることで、発光用ナノ結晶に吸収されない青色光をカットすることができる。

0220

したがって、光変換層6は、(青色または黄色の)カラーフィルタ層CFLと、発光用ナノ結晶NCを含む層(NCL)と、赤色(R)、緑色(G)および青色(B)の三原色画素を備えた赤色(R)、緑色(G)および青色(B)カラーフィルタと、が順に積層された構造であり、三層構造の積層体を有する。しかし、必要によりカラーフィルタ層CFLを無くしてもよい。なお、緑色の色材を含む色材層(いわゆる緑色カラーフィルタ)CF‐Greenの代わりに、色調整のため黄色の色材を含む色材層(いわゆる黄色カラーフィルタ)を使用してもよい。

0221

また、赤色の色層R、緑色の色層Gおよび青色の色層Bには、必要により適宜色材を含んでもよい。さらには、発光用ナノ結晶NCを含む層(NCL)には、それぞれの色に対応した色材を含んでも良い。

0222

上記構成であると、光源からの光(励起光、例えば青色光)のうち、発光用ナノ結晶で吸収されない光を、各色のカラーフィルタや一面に設けられた青色のカラーフィルタ層CFLで吸収することができるため、残った励起光が光変換層を透過することを軽減・抑制することができる。また、図15でもカラーフィルタ層CFLとして、光源として青色LEDを想定して青色のカラーフィルタ層を設けているが、使用する光源の種類によりカラーフィルタ層の色の種類は適宜変更される。

0223

本発明に係る光変換層6を拡大した模式図の他の一例を図16に示す。光変換層6は、赤色の色層Rと緑色の色層Gと青色の色層Bとを有する。赤色(R)の画素部R(赤色の色層R)は、赤色発光用ナノ結晶を含む光変換画素層(NC−Red)から構成されている。緑色(G)の画素部G(緑色の色層G)は、緑色発光用ナノ結晶を含む光変換画素層(NC−Green)から構成されている。青色(B)の画素部B(青色の色層部B)は、青色発光用ナノ結晶を必要により含む(光変換画素)層(または透明樹脂層)から構成される。そのため、光変換層6は、赤色の色層R、緑色の色層Gおよび青色の色層Bを含むナノ結晶層NCLの1層で構成されている。また、赤色の色層Rと緑色の色層Gと青色の色層Bとの間に、混色を防止するために、それぞれ遮光層としてブラックマトリックスBMが設けられている。

0224

また、赤色の色層R、緑色の色層Gおよび青色の色層Bには、必要により適宜色材を含んでもよい。さらには、発光用ナノ結晶NCを含む層(NCL)には、それぞれの色に対応した色材を含んでも良い。

0225

図1図12、および、図12に示すようなFFS型の液晶表示素子の実施形態では、共通電極22はゲート絶縁層12上のほぼ全面に形成された平板状の電極であり、一方、画素電極21は共通電極22を覆う絶縁保護層18上に形成された櫛形の電極である。すなわち、共通電極22は画素電極21よりも第一の基板2に近い位置に配置され、これらの電極は絶縁保護層18を介して互いに重なりあって配置される。画素電極21と共通電極22は、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IZTO(Indium Zinc Tin Oxide)等の透明導電性材料により形成される。画素電極21と共通電極22が透明導電性材料により形成されるため、単位画素面積で開口される面積が大きくなり、開口率及び透過率が増加する。

0226

また、画素電極21と共通電極22とは、これらの電極間フリンジ電界を形成するために、画素電極21と共通電極22との間の電極間経路の水平成分(最小離間経路の水平成分とも称する)Rが、第一の基板2と第二の基板7との間の液晶層5の厚さGより小さくなるように形成される。ここで、電極間経路の水平成分Rは各電極間の基板に水平方向の距離を表す。FFS型の液晶表示素子は、画素電極21の櫛形を形成するラインに対して垂直な方向に形成される水平方向の電界と、放物線状の電界を利用することができる。画素電極21の状部分電極幅:l、及び、画素電極21の櫛状部分の間隙の幅:mは、発生する電界により液晶層5内の液晶分子が全て駆動され得る程度の幅に形成することが好ましい。また、画素電極と共通電極との最小離間経路の水平成分Rは、絶縁膜の(平均)膜厚などで調整することができる。

0227

本発明に係る液晶表示素子におけるFFS型の液晶パネルの変形例であるIPS型の液晶パネルの例を図13を用いて説明する。IPS型の液晶表示素子における液晶パネル10の構成は、上記図1のFFS型と同様に片側の基板上に電極層3(共通電極と画素電極とTFTを含む)が設けられた構造であり、第一の偏光層1と、第一の基板2と、電極層3と、液晶組成物を含む液晶層5と、第二の偏光層8と、光変換層6と、第二の基板7と、が順次積層された構成である。

0228

図13は、IPS型の液晶表示部における図1の第一の基板2上に形成された電極層3のII線で囲まれた領域の一部を拡大した平面図である。図13に示すように、走査信号を供給するための複数のゲートバスライン26と表示信号を供給するための複数のソースバスライン25とにより囲まれた領域内(単位画素内)で、櫛歯形の第一の電極(例えば、画素電極)21と櫛歯型の第二の電極(例えば、共通電極)22とが互いに遊嵌した状態(両電極が一定距離を保った状態で離間して噛合した状態)で設けられている。該単位画素内には、ゲートバスライン26とソースバスライン25が互いに交差している交差部近傍には、ソース電極27、ドレイン電極24およびゲート電極28を含む薄膜トランジスタが設けられている。この薄膜トランジスタは、第一の電極21に表示信号を供給するスイッチ素子として、第一の電極21と連結している。また、ゲートバスライン26と並行して、共通ライン(Vcom)29が設けられる。この共通ライン29は、第二の電極22に共通信号を供給するために、第二の電極22と連結している。

0229

図13に示すような実施の形態では、第一の電極21及び第二の電極22は、絶縁保護層31上に、すなわち同一の層上に形成された櫛形の電極であり、互いに離間して噛合した状態で設けられている。IPS型の液晶表示部では、第一の電極21と第二の電極22との間の電極間距離Gと、第一の基板2と第二の基板7との間の液晶層の厚さ(セルギャップ):Hは、G≧Hの関係を満たす。電極間距離:Gとは、第一の電極21と第二の電極22との間の、基板に水平方向の最短距離を表し、図13で示す例においては、第一の電極21と第二の電極22とが遊嵌して交互に形成されたラインに対して、水平の方向の距離を表す。第一の基板2と第二の基板7との距離:Hとは、第一の基板2と第二の基板7との間の液晶層の厚さを表し、具体的には、第一の基板2及び第二の基板7のそれぞれに設けられた最表面間の距離(すなわちセルギャップ)、液晶層の厚みを表す。

0230

一方、先述のFFS型の液晶パネルでは、第一の基板2と第二の基板7との間の液晶層の厚さが、第一の電極21と第二の電極22との間の、基板に水平方向の最短距離以上であり、IPS型の液晶表示部は、第一の基板2と第二の基板7との間の液晶層の厚さが、第一の電極21と第二の電極22との間の、基板に水平方向の最短距離未満である。

0231

IPS型の液晶パネルは、第一の電極21及び第二の電極22間に形成される基板面に対して水平方向の電界を利用して液晶分子を駆動させる。第一の電極21の電極幅:Q、及び第二の電極22の電極幅:Rは、発生する電界により液晶層5内の液晶分子が全て駆動され得る程度の幅に形成することが好ましい。

0232

本発明に係る液晶表示素子は、バックライトユニット100を液晶画素数より少ない複数の区画毎輝度を制御することで、コントラストを向上させるローカルディミングの手法を有していても良い。

0233

ローカルディミングの手法としては、複数存在する発光素子Lを液晶パネル上の特定の領域の光源として使用し、各発光素子Lを表示領域の輝度に応じて制御することが可能である。この場合、当該複数の発光素子Lが、平面状に配列された形態であっても、液晶パネル10の一側面側に一列に並べられた形態であっても良い。

0234

上記ローカルディミングの手法としてバックライトユニット100の導光部102と液晶パネル10とを有する構造になっている場合において、導光板(および/または光拡散板)と液晶パネルの光源側の基板との間に当該導光部102として、液晶の画素数より少ない特定領域毎にバックライトの光量を制御する制御層を有していても良い。

0235

バックライトの光量を制御する手法としては、液晶の画素数より少ない液晶素子を更に有していても良く、液晶素子としては既存の様々手法を用いることができるが、ポリマーネットワークが形成された液晶を含むLCD層が透過率の点で好ましい。当該ポリマーネットワークが形成された(ネマチック)液晶を含む層(必要により一対の透明電極で挟持されたポリマーネットワークが形成された(ネマチック)液晶を含む層)は、電圧OFF時は光を散乱し、電圧ON時は光を透過するため、表示画面全体を複数の区画に分けるように区画されたポリマーネットワークが形成された液晶を含むLCD層を、導光板(および/または光拡散板)と液晶パネルの光源側の基板との間に設けることでローカルディミングを実現できる。

0236

また、本発明に係る液晶表示素子は、下記数式(1)にてリタデーション(Re)(25℃)が定義される。
Re=Δn×d 数式(1)
(上記数式(1)中、Δnは589nmにおける屈折率異方性を表し、dは液晶表示素子の液晶層のセル厚(μm)を表す。)
光源部は450nmに主発光ピークを有することが好ましい。また、リタデーション(Re)は、250〜400nmであることが好ましく、270〜380nmであることがさらに好ましい。

0237

可視光全域の波長を含む従来の白色光の透過をスイッチングする通常の液晶表示素子と、当該量子ドットの励起を引き起こす約500nm以下の青色可視光(いわゆる短波長領域の光)または紫外線の透過をスイッチングする液晶表示素子とでは、透過する光および当該透過する光の光学的な性質が異なるため、それぞれの素子に求められる特性等も相違する。従来技術では、量子ドットなどの発光用ナノ結晶を発光素子として用いた液晶表示素子で用いられる光源と、量子ドットなどの発光用ナノ結晶を含まない通常の液晶表示素子で使用する光源との違いに起因する液晶材料の光学特性についての最適化がなされておらず、量子ドットなどの発光用ナノ結晶を用いた表示素子の光学特性を最大限に利用できない問題が確認された。しかし、上記リタデーションの条件により、液晶表示素子の透過率を向上することができる。そのため、発明が解決しようとする他の課題は、液晶表示素子の透過率の低下を抑制または防止するものである。

0238

以下、本発明に係る液晶表示素子の主な構成要素である光源部、偏光層、液晶層および化合物(I)より形成された重合体(PL)、必要に応じて有しても良い配向層について説明する。

0239

(光源部)
本発明に係る光源部は、紫外または可視光を発光する発光素子を有する。当該発光素子は、波長領域について特に制限されることはないが、青色領域に主発光ピークを有することが好ましい。例えば、420nm以上480nm以下の波長領域に主発光ピークを有す
本発明に係る発光素子(または発光ダイオード)は、波長領域について特に制限されることはないが、青色領域に主発光ピークを有することが好ましい。例えば、430nm以上500nm以下(420nm以上480nm以下)の波長領域に主発光ピークを有する発光ダイオードを好適に使用できる。当該青色領域に主発光ピークを有する発光ダイオードは、公知のものを使用することができる。青色領域に主発光ピークを有する発光ダイオードとしては、例えば、サファイア基板の上に形成されるAlNからなるシード層と、シード層上に形成される下地層と、GaNを主体とする積層半導体層とを少なくとも備えたものなどが例示として挙げられる。また、積層半導体層は、基板側から下地層、n型半導体層、発光層およびp型半導体層の順に積層されて構成されたものが挙げられる。

0240

紫外線の光源としては、例えば、低圧水銀灯中圧水銀灯高圧水銀灯超高圧水銀灯カーボンアーク灯無電極ランプ、メタルハライドランプ、キセノンアークランプ、LED等が挙げられるが、本発明に係る発光素子Lは、上記の420nm以上480nm以下の波長領域に主発光ピークを有するLED以外として、紫外光を発生するLEDが好ましい。

0241

なお、本明細書において、420〜480nmの波長帯域発光中心波長を有する光を青色光と称し、500〜560nmの波長帯域に発光中心波長を有する光を緑色光と称し、605〜665nmの波長帯域に発光中心波長を有する光を赤色光と称する。また、本明細書の紫外光とは、300nm以上420nm未満の波長帯域に発光中心波長を有する光をいう。さらに本明細書において、「半値幅」とは、ピーク高さ1/2でのピークの幅のことを言う。

0242

(偏光層)
本発明に係る偏光層は特に制限されることは無く、公知の偏光板(偏光層)を使用することができる。例えば、二色性有機色素偏光子塗布型偏光層ワイヤーグリッド型偏光子、またはコレステリック液晶型偏光子などが挙げられる。たとえば、ワイヤーグリッド型偏光子は、第1基板、第2基板、カラーフィルタ上に形成され、ナノインプリント法ブロックコポリマー法、Eビームリソグラフィ法またはグラシングアングル蒸着法のうちいずれか一つによって形成されることが好ましい。また、塗布型偏光層を形成する場合、本明細書の以下で説明する配向層をさらに設けてもよい。そのため、本発明に係る偏光層が塗布型偏光層である場合、塗布型偏光層と配向層とを有することが好ましい。

0243

(液晶表示素子の形態)
本実施形態の液晶組成物は、液晶表示素子に適用される。液晶表示素子は、アクティブマトリックス駆動用液晶表示素子であってよい。液晶表示素子1は、IPS型、FFS型又はPSA型、PSVA型、VA型、ECB型の液晶表示素子であってよく、より好ましくはIPS型、FFS型の液晶表示素子である。

0244

本実施形態の液晶表示素子では、化合物(I)より形成された重合体(PL)を含むため、第一基板及び第二基板の液晶層側にポリイミド配向膜等の配向膜が設けられている必要がない。すなわち、本実施形態の液晶表示素子は、二つの基板のうち少なくとも一方の基板がポリイミド配向膜等の配向膜を有さない構成をとることができる。
(配向層)

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ