図面 (/)

この項目の情報は公開日時点(2020年10月29日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (15)

課題

画像形成条件調整用テストパターンの読取画像に異常が生じた場合であっても、画像形成条件の調整を高精度に行うことができる画像形成装置を提供する。

解決手段

画像形成装置(プリンタ300)は、ADF100及びリーダ200を備える。プリンタ300は、リーダ200により読み取られた画像の異常を検出し、該異常を検出した位置を表す異常検出画素を保持する。プリンタ300は、記録媒体に画像形成条件の調整用の画像を形成したテストチャートを生成する。テストチャートは、ADF100により搬送されながらリーダ200により読み取られる。プリンタ300は、異常を検出した場合に、テストチャートの読取画像から異常検出画素に対応する位置のデータを除いて画像形成条件を調整する。

概要

背景

電子写真方式画像形成装置は、以下のような画像形成プロセスにより記録媒体に画像を形成する。まず、画像形成装置は、感光体の表面を一様に帯電する。画像形成装置は、画像信号が示す画像の濃度階調性と記録媒体に形成する画像の濃度階調性とを一致させるために、γルックアップテーブル(γLUT)等を用いて画像信号を変換する。画像形成装置は、変換後の画像信号に基づいて、表面が一様に帯電された感光体の表面を照射することで、感光体の表面に静電潜像を形成する。画像形成装置は、静電潜像をトナー等の現像剤により現像することで感光体の表面に現像剤像を形成する。画像形成装置は、この現像剤像を記録媒体に転写定着させることで、記録媒体上に画像を形成する。カラー画像を形成する場合には、画像形成装置は、複数の色の現像剤像を個々に形成し、重畳することでカラー画像を生成する。

このように画像形成プロセスが多数の工程を含むために、形成される画像は、画像形成装置の設置環境、画像形成装置の経時変化、画像形成装置の環境変化消耗材取り替え等の影響により、濃度や色味が変動することがある。画像濃度変動は、所定のテストパターンを形成し、このテストパターンから検出される画像濃度に基づいて補正される。

原稿から原稿画像を読み取るリーダスキャナ等の画像読取装置を搭載する画像形成装置は、画像濃度の変動抑制方法として、画像読取装置を用いたキャリブレーション自動階調補正)を行う(特許文献1)。画像読取装置を用いたキャリブレーションにより、設置環境の変動等の長期変動による影響が抑制される。画像形成装置は、機器の特性や画像の特性に応じて階調表現方法をいくつか選択し、文字線画グラフィック、地図、印画紙写真印刷等の画像種に応じて階調表現方法を使い分けている。そのために、特許文献2に開示される画像形成装置は、テストパターンを複数枚の記録媒体に印字して階調補正等の画像処理条件の調整を行う。

キャリブレーションは、テストパターンが形成された記録媒体をオペレータが画像読取装置にセッティングする作業を伴う。そのために、キャリブレーションを頻繁に行うことは、ユーザにとって煩わしい。そこで特許文献3は、複数枚のテストチャートを読み取る際に、自動原稿搬送装置を用いることでオペレータの作業負荷の低減を図る方法を開示する。自動原稿搬送装置を用いる場合、原稿画像の読取位置にゴミ等の汚れがあると、読取結果である読取画像に黒スジが発生する等の異常が生じる。特許文献4は、読取画像に異常が生じたときに、異常が生じている画素画素信号を周囲の画素の画素信号に置き換えることで、読取画像を補正する補正方法を開示する。

概要

画像形成条件調整用のテストパターンの読取画像に異常が生じた場合であっても、画像形成条件の調整を高精度に行うことができる画像形成装置を提供する。画像形成装置(プリンタ300)は、ADF100及びリーダ200を備える。プリンタ300は、リーダ200により読み取られた画像の異常を検出し、該異常を検出した位置を表す異常検出画素を保持する。プリンタ300は、記録媒体に画像形成条件の調整用の画像を形成したテストチャートを生成する。テストチャートは、ADF100により搬送されながらリーダ200により読み取られる。プリンタ300は、異常を検出した場合に、テストチャートの読取画像から異常検出画素に対応する位置のデータを除いて画像形成条件を調整する。

目的

本発明は、上記の問題に鑑み、画像形成条件の調整用のテストパターンの読取画像に異常が生じた場合であっても、画像形成条件の調整を高精度に行うことができる画像形成装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

記録媒体に形成された画像を読み取る読取手段と、前記記録媒体を前記読取手段による読取位置へ搬送する搬送手段と、前記記録媒体に画像形成条件調整用の画像を形成したテストチャートを生成する画像形成手段と、前記読取手段により読み取られた画像の異常を検出し、該異常を検出した位置を表す異常検出画素を保持する異常検出手段と、前記搬送手段により搬送される前記テストチャートを前記読取手段が読み取った読取画像に基づいて、前記画像形成条件を調整するプリンタ制御手段と、前記読取手段、前記搬送手段、前記画像形成手段、及び前記プリンタ制御手段の動作を制御する主制御手段と、を備え、前記プリンタ制御手段は、前記異常検出手段が異常検出画素を保持する場合に、前記テストチャートの前記読取画像から前記異常検出画素に対応する位置のデータを除いて前記画像形成条件の調整を行うことを特徴とする、画像形成装置

請求項2

前記搬送手段は、前記記録媒体が載置されるトレイを備え、前記トレイに載置された前記記録媒体を前記読取位置へ搬送するように構成され、前記主制御手段は、前記画像形成条件の調整の実行指示受け付けて前記画像形成手段に前記テストチャートを生成させた後に、所定のディスプレイに、前記テストチャートを前記トレイに載置するように指示するとともに前記テストチャートの前記読取手段による読取指示を入力できる操作画面を表示し、前記読取指示が入力されると前記搬送手段に前記テストチャートを搬送させて前記読取手段に搬送中の前記テストチャートを読み取らせることを特徴とする、請求項1記載の画像形成装置。

請求項3

前記主制御手段は、前記異常検出手段が前記異常を検出した場合に、前記所定のディスプレイに、前記テストチャートの再読み取りを行うか、或いは前記テストチャートの前記読取画像から前記異常検出画素に対応する位置のデータを除いて前記画像形成条件の調整を行うかを選択できる画面を表示し、再読み取りが選択された場合には前記搬送手段と前記読取手段とにより再読み取りを行わせ、前記画像形成条件の調整が選択された場合には前記プリンタ制御手段に前記テストチャートの前記読取画像から前記異常検出画素に対応する位置のデータを除いて前記画像形成条件の調整を行わせることを特徴とする、請求項2記載の画像形成装置。

請求項4

前記主制御手段は、前記異常検出手段が前記異常検出画素を保持する場合、前記画像形成手段に、前記異常検出画素の位置に応じて前記画像形成条件の調整用の前記画像の形成位置をずらして、前記テストチャートを形成させることを特徴とする、請求項1〜3のいずれか1項記載の画像形成装置。

請求項5

前記テストチャートは、濃度が異なる複数のパッチ画像を組み合わせて構成されており、前記主制御手段は、前記画像形成手段に、前記異常検出画素が前記パッチ画像の検出範囲に重ならないように、前記画像形成条件の調整用の前記画像の形成位置をずらして、前記テストチャートを形成させることを特徴とする、請求項4記載の画像形成装置。

請求項6

前記プリンタ制御手段は、前記パッチ画像の中央部の前記読取画像に基づいて前記画像形成条件を調整することを特徴とする、請求項5記載の画像形成装置。

請求項7

前記異常検出手段は、前記読取手段により読み取られた前記画像を表す画像信号を、白の値と黒の値とに2値化する2値化手段と、主走査方向の同一アドレスの前記2値化された前記画像信号の値を累積加算する加算手段と、前記累積加算した結果に応じて主走査方向のアドレス毎に前記異常の判定を行う判定手段と、前記判定手段で異常と判定された主走査方向のアドレスを前記異常検出画素として保持する保持手段と、を備えることを特徴とする、請求項1〜6のいずれか1項記載の画像形成装置。

請求項8

前記異常検出手段は、主走査方向の有効区間内について前記異常の判定結果を有効にする有効化手段をさらに備えることを特徴とする、請求項7記載の画像形成装置。

請求項9

前記読取手段により読み取られた前記画像を表す画像信号の前記異常検出画素の位置に対応する画素のデータを補正する補正手段をさらに備えることを特徴とする、請求項1〜8のいずれか1項記載の画像形成装置。

技術分野

0001

本発明は、例えば原稿から読み取った原稿画像を表す画像信号に基づいて画像形成を行う画像形成装置に関する。

背景技術

0002

電子写真方式の画像形成装置は、以下のような画像形成プロセスにより記録媒体に画像を形成する。まず、画像形成装置は、感光体の表面を一様に帯電する。画像形成装置は、画像信号が示す画像の濃度階調性と記録媒体に形成する画像の濃度階調性とを一致させるために、γルックアップテーブル(γLUT)等を用いて画像信号を変換する。画像形成装置は、変換後の画像信号に基づいて、表面が一様に帯電された感光体の表面を照射することで、感光体の表面に静電潜像を形成する。画像形成装置は、静電潜像をトナー等の現像剤により現像することで感光体の表面に現像剤像を形成する。画像形成装置は、この現像剤像を記録媒体に転写定着させることで、記録媒体上に画像を形成する。カラー画像を形成する場合には、画像形成装置は、複数の色の現像剤像を個々に形成し、重畳することでカラー画像を生成する。

0003

このように画像形成プロセスが多数の工程を含むために、形成される画像は、画像形成装置の設置環境、画像形成装置の経時変化、画像形成装置の環境変化消耗材取り替え等の影響により、濃度や色味が変動することがある。画像濃度変動は、所定のテストパターンを形成し、このテストパターンから検出される画像濃度に基づいて補正される。

0004

原稿から原稿画像を読み取るリーダスキャナ等の画像読取装置を搭載する画像形成装置は、画像濃度の変動抑制方法として、画像読取装置を用いたキャリブレーション自動階調補正)を行う(特許文献1)。画像読取装置を用いたキャリブレーションにより、設置環境の変動等の長期変動による影響が抑制される。画像形成装置は、機器の特性や画像の特性に応じて階調表現方法をいくつか選択し、文字線画グラフィック、地図、印画紙写真印刷等の画像種に応じて階調表現方法を使い分けている。そのために、特許文献2に開示される画像形成装置は、テストパターンを複数枚の記録媒体に印字して階調補正等の画像処理条件の調整を行う。

0005

キャリブレーションは、テストパターンが形成された記録媒体をオペレータが画像読取装置にセッティングする作業を伴う。そのために、キャリブレーションを頻繁に行うことは、ユーザにとって煩わしい。そこで特許文献3は、複数枚のテストチャートを読み取る際に、自動原稿搬送装置を用いることでオペレータの作業負荷の低減を図る方法を開示する。自動原稿搬送装置を用いる場合、原稿画像の読取位置にゴミ等の汚れがあると、読取結果である読取画像に黒スジが発生する等の異常が生じる。特許文献4は、読取画像に異常が生じたときに、異常が生じている画素画素信号を周囲の画素の画素信号に置き換えることで、読取画像を補正する補正方法を開示する。

先行技術

0006

特開平4−268873号公報
特開2002−59626号公報
特開2007−329929号公報
特開2002−185725号公報

発明が解決しようとする課題

0007

キャリブレーション用のテストパターンの読取画像に異常が生じたときに、異常が生じている画素の画素信号を周囲の画素の画素信号に置き換えることで補正する場合、ゴミや汚れ等による黒スジの発生位置によっては、キャリブレーションに影響が生じる。これは、キャリブレーション以外の画像形成条件調整用のテストパターンについても同様である。

0008

本発明は、上記の問題に鑑み、画像形成条件の調整用のテストパターンの読取画像に異常が生じた場合であっても、画像形成条件の調整を高精度に行うことができる画像形成装置を提供することを主たる課題とする。

課題を解決するための手段

0009

本発明の画像形成装置は、記録媒体に形成された画像を読み取る読取手段と、前記記録媒体を前記読取手段による読取位置へ搬送する搬送手段と、前記記録媒体に画像形成条件の調整用の画像を形成したテストチャートを生成する画像形成手段と、前記読取手段により読み取られた画像の異常を検出し、該異常を検出した位置を表す異常検出画素を保持する異常検出手段と、前記搬送手段により搬送される前記テストチャートを前記読取手段が読み取った読取画像に基づいて、前記画像形成条件を調整するプリンタ制御手段と、前記読取手段、前記搬送手段、前記画像形成手段、及び前記プリンタ制御手段の動作を制御する主制御手段と、を備え、前記プリンタ制御手段は、前記異常検出手段が異常検出画素を保持する場合に、前記テストチャートの前記読取画像から前記異常検出画素に対応する位置のデータを除いて前記画像形成条件の調整を行うことを特徴とする。

発明の効果

0010

本発明によれば、テストパターンの読取画像に異常が生じた場合であっても、キャリブレーションを高精度に行うことができる。

図面の簡単な説明

0011

画像形成装置の説明図。
プリンタ制御部の説明図。
4限チャート図。
キャリブレーション処理を表すフローチャート。
(a)、(b)は、操作画面の例示図
テストチャートの説明図。
ゴミ検出部の説明図。
(a)、(b)は、読取画像を2値化した場合の説明図。
(a)、(b)は、ゴミ補正の説明図。
(a)〜(c)は、画像濃度の検出範囲の説明図。
キャリブレーション処理を表すフローチャート。
キャリブレーション処理を表すフローチャート。
通知画面の例示図。
テストチャートの画像をずらす場合の説明図。

実施例

0012

本発明の実施形態について、図面を参照しながら説明する。

0013

(全体構成)
図1は、本実施形態の画像形成装置の説明図である。本実施形態の画像形成装置(以下、「プリンタ」という。)300は、自動原稿搬送装置(以下、「ADF」という。)100、画像読取装置(以下、「リーダ」という。)200、及び操作部400を備える。ADF100は、リーダ200による読取位置まで原稿Sを1枚ずつ搬送する。原稿Sは、用紙等の記録媒体に画像が形成されて構成される。リーダ200は、ADF100により搬送される原稿Sの原稿画像を光学的に読み取って画像信号を生成する。プリンタ300は、リーダ200から画像信号を取得し、該画像信号に基づいて画像形成処理を行う。操作部400は、ユーザインタフェースであり、入力装置及び出力装置を備える。入力装置は、例えば入力キーテンキースタートキーストップキー等の各種キータンタッチパネル等である。出力装置は、例えばディスプレイスピーカである。

0014

(ADF100及びリーダ200)
ADF100は、原稿Sがセットされる原稿トレイ30、原稿Sが搬送される搬送経路、及び搬送された原稿Sが排出される排紙トレイ31を備える。搬送経路には、原稿Sの搬送方向の上流側から順に、給紙ローラ1、分離ローラ2、分離パッド8、レジストローラ3、原稿読取前ローラ4、原稿読取プラテンローラ5、原稿読取後ローラ6、及び排出ローラ7が設けられる。原稿読取プラテンローラ5の直下がリーダ200による搬送中の原稿Sの読取位置になる。原稿トレイ30には、原稿トレイ30上の原稿Sの有無を検知する原稿有無検知センサ16が設けられる。分離ローラ2及び分離パッド8の下流側には、分離後センサ12が設けられる。原稿読取前ローラ4の上流側には、リードセンサ14が設けられる。原稿読取後ローラ6の下流側には、排紙センサ15が設けられる。

0015

リーダ200は、筐体のADF100側に対向する面に、流し読みガラス201、原稿台ガラス202、及び基準白色板219を備える。リーダ200は、筐体内部にスキャナユニット209、折り返しミラー205、206、レンズ207、センサユニット210、及びリーダ画像処理部211を備える。スキャナユニット209は、光源203及び折り返しミラー204を備える。スキャナユニット209は、図中矢印a方向に移動可能である。流し読みガラス201は、ADF100により搬送される原稿Sの読取位置になる。原稿台ガラス202は、原稿Sが読取対象面を下にして載置される。リーダ200は、ADF100により搬送される原稿Sの原稿画像を読み取る他に、原稿台ガラス202に載置された原稿Sの原稿画像も読み取ることが可能である。基準白色板219は、シェーディング補正の際に読み取られ、白色の基準となる。スキャナユニット209は、ADF100により搬送される原稿Sから原稿画像を読み取る場合に、流し読みガラス201の直下に固定されて読取動作を行う。スキャナユニット209は、原稿台ガラス202に載置された原稿Sから原稿画像を読み取る場合に、矢印a方向に移動しながら読取動作を行う。

0016

ADF100及びリーダ200は、不図示のコントローラにより動作が制御される。コントローラは、操作部400から原稿読取の指示を受け付けることでADF100及びリーダ200の動作を制御して、原稿Sから原稿画像を読み取る。コントローラは、読取結果をリーダ画像処理部211により画像処理させて、原稿画像を表す画像信号を生成する。コントローラは、生成した画像信号をプリンタ300へ送信する。送信される画像信号は、画素毎に、R、G、B(赤、緑、青)の各輝度値輝度情報)を含む。

0017

ADF100及びリーダ200による画像読取処理について説明する。ADF100を使用して原稿画像を読み取る場合、リーダ200は、コントローラの指示によりスキャナユニット209を基準白色板219の直下に移動させて基準白色板219を読み取り、シェーディング補正を行う。シェーディング補正が終了すると、スキャナユニット209は、流し読みガラス201の直下に移動して、原稿Sが読取位置に搬送されるまで待機する。

0018

ADF100は、コントローラの指示により原稿トレイ30に積載される複数の原稿からなる原稿束最上位の原稿Sに給紙ローラ1を落下させて、最上位の原稿Sの給送を開始する。分離ローラ2及び分離パッド8は、給紙ローラ1から給紙される原稿Sが1枚ずつ搬送されるように、既知の分離技術により原稿Sを1枚ずつ分離する。給紙ローラ1、分離ローラ2、及び分離パッド8により、原稿Sは、原稿トレイ30から1枚ずつ搬送経路に給送されることになる。分離ローラ2は、原稿Sをレジストローラ3へ搬送する。分離後センサ12は、分離ローラ2によりレジストローラ3へ搬送される原稿Sを検知する。コントローラは、分離後センサ12の検知結果により原稿Sの後端が分離後センサ12の検知範囲を通過したことを検知すると、原稿有無検知センサ16の検知結果により原稿トレイ30上の次の原稿の有無を検知する。

0019

レジストローラ3は、原稿Sが搬送されてくる時点で回転が停止している。原稿Sは、先端が停止中のレジストローラ3に突き当てられた後にも分離ローラ2により所定時間だけ搬送されることで、先端側に撓みが形成される。これにより原稿Sは、搬送方向に対する斜行が補正される。レジストローラ3は、斜行補正後に回転を開始して原稿Sを原稿読取前ローラ4へ搬送する。原稿読取前ローラ4は、原稿Sを原稿読取プラテンローラ5へ搬送する。原稿Sは、原稿読取プラテンローラ5と流し読みガラス201との間を搬送される。原稿読取プラテンローラ5と流し読みガラス201との間が読取位置であり、原稿Sは、読取位置を通過する間にリーダ200により原稿画像を読み取られる。

0020

なお、原稿Sが読取位置へ搬送される前に、リードセンサ14が原稿Sの先端を検知する。コントローラは、リードセンサ14による原稿Sの先端の検知タイミングから原稿Sが読取位置に到達するまでの時間を、原稿読取前ローラ4及び原稿読取プラテンローラ5の駆動源となる不図示の搬送モータクロックによりカウントする。カウント結果により、リーダ200による原稿の読取先端位置が決定される。これによりリーダ200は、原稿Sの先端が読取位置に到達するタイミングで原稿画像の読み取りを行うことができる。

0021

シェーディング補正後に流し読みガラス201の直下で待機するスキャナユニット209は、読取位置を通過する原稿Sの原稿画像を読み取る。そのためにスキャナユニット209は、光源203により流し読みガラス201を介して読取位置を通過する原稿Sに光を照射する。照射された光は、原稿Sの読取対象面で反射される。この反射光は、折り返しミラー204、205、206によりレンズ207へ導かれる。レンズ207は、反射光をセンサユニット210の受光部に結像させる。センサユニット210は、受光部で受光した反射光を光電変換した電気信号をリーダ画像処理部211へ出力する。なお、センサユニット210は、反射光を光電変換するための光電変換素子を有している。光電変換素子は、例えばCCD(Charge Coupled Device)イメージセンサや、CMOS(Complementary metal-oxide-semiconductor)イメージセンサである。リーダ画像処理部211は、センサユニット210から取得した電気信号に所定の画像処理を行って生成した画像信号をプリンタ300へ送信する。

0022

読取位置を通過した原稿Sは、原稿読取後ローラ6により排出ローラ7へ搬送される。排出ローラ7は、原稿Sを排紙トレイ31へ排出する。この際、原稿Sは、排紙センサ15により検知される。排紙センサにより原稿Sの後端が検知され、原稿Sが排紙トレイ31に排出されることで、1枚の原稿Sの画像読取処理が終了する。

0023

なお、スキャナユニット209は、原稿台ガラス202に載置された原稿Sの原稿画像を読み取る場合には、矢印a方向に移動しながら、光源203により原稿台ガラス202を介して原稿Sに光を照射する。照射された光の反射光は、折り返しミラー204、205、206によりレンズ207へ導かれ、レンズ207によりセンサユニット210の受光部に結像される。センサユニット210及びリーダ画像処理部211の処理は、上記した通りである。

0024

(プリンタ300)
プリンタ300は、画像形成部120、130、140、150、露光器110、転写ベルト111、定着器114、及びプリンタ制御部109を備える。画像形成部120、130、140、150は、それぞれ形成する画像の色が異なるのでみであり、同様の構成で同様の動作を行う。画像形成部120は、イエロー(Y)の画像を形成する。画像形成部130は、マゼンタ(M)の画像を形成する。画像形成部140は、シアン(C)の画像を形成する。画像形成部150は、ブラック(K)の画像を形成する。ここでは画像形成部120の構成について説明し、他の画像形成部130、140、150の構成については説明を省略する。

0025

画像形成部120は、感光ドラム121、帯電器122、現像器123、転写ブレード124、及び表面電位計125を備える。感光ドラム121は、表面に感光層を有するドラム形状の感光体である。感光ドラム121は、図中時計回り方向に回転する。帯電器122は、回転中の感光ドラム121の表面を所定の電位で一様に帯電させる。感光ドラム121は、帯電した表面が露光器110によりレーザビーム走査されることで、表面に静電潜像が形成される。露光器110は、プリンタ制御部109により制御されて、レーザビームを感光ドラム121に照射する。現像器123は、静電潜像を現像剤(例えばトナー)により現像して、感光ドラム121の表面にトナー像を形成する。

0026

転写ブレード124は、感光ドラム121との間に転写ベルト111を挟んで配置される。転写ベルト111は、画像形成の対象となる記録媒体を搬送する。転写ベルト111は、放電を行うことで、感光ドラム121に形成されたトナー像を転写ベルト111で搬送される記録媒体に転写する。このようにして記録媒体にイエローのトナー像が形成される。

0027

同様に画像形成部130の感光ドラム131にはマゼンタのトナー像が形成され、画像形成部140の感光ドラム141にはシアンのトナー像が形成され、画像形成部150の感光ドラム151にはブラックのトナー像が形成される。感光ドラム131に形成されたマゼンタのトナー像は、記録媒体のイエローのトナー像に重畳するように転写される。感光ドラム141に形成されたシアンのトナー像は、記録媒体のイエロー及びマゼンタのトナー像に重畳するように転写される。感光ドラム151に形成されたブラックのトナー像は、記録媒体のイエロー、マゼンタ、及びシアンのトナー像に重畳するように転写される。各色のトナー像が重畳して転写されることで記録媒体にはフルカラーのトナー像が形成される。

0028

フルカラーのトナー像が形成された記録媒体は、転写ベルト111により定着器114へ搬送される。定着器114は、記録媒体に、転写されたトナー像を定着させる。定着器114は、例えばトナー像を加熱溶融して加圧することで、記録媒体にトナー像を定着させる。以上により記録媒体に画像が形成される。画像が形成された記録媒体は、プリンタ300の機外に排出される。

0029

なお、各画像形成部120、130、140、150の表面電位計125、135、145、155は、感光ドラム121、131、141、151の表面電位計測する。表面電位計125、135、145、155による計測結果に応じて、コントラスト電位が調整される。

0030

プリンタ制御部109は、リーダ画像処理部211から取得するR、G、Bの各画像信号に応じて、露光器110の制御信号を生成する。制御信号は、例えばPWM(Pulse Width Modulation)信号である。露光器110は、制御信号に基づいて変調したレーザビームにより感光ドラム121、131、141、151の表面を走査する。これにより、画像信号に応じた静電潜像が各感光ドラム121、131、141、151の表面に形成されることになる。

0031

図2は、プリンタ制御部109の説明図である。プリンタ制御部109は、CPU301により動作が制御される。CPU301は、メモリ302に格納される制御プログラムを実行することでプリンタ300の動作を制御し、記録媒体への画像形成処理を行う主制御部である。メモリ302は、ROM(Read Only Memory)やRAM(Random Access Memory)であり、制御プログラムや各種のデータが格納される。CPU301及びメモリ302は、プリンタ300に設けられる。

0032

プリンタ制御部109は、リーダ200又はプリントサーバ500等から画像信号を取得する。プリントサーバ500は、プリンタ300とは別に設けられ、LAN(Local Area Network)等のネットワークを介してプリンタ300に接続される外部装置サーバ)である。画像信号は、R、G、Bの各階調数が8ビットで表される。プリンタ制御部109は、色処理部303、階調制御部311、ディザ処理部307、PWM部308、及びレーザドライバ309を備える。プリンタ制御部109は、R、G、Bの各画像信号をPWM信号に変換して、露光器110に設けられる半導体レーザ310の発光制御を行う。R、G、Bの画像信号は、色処理部303に入力される。

0033

色処理部303は、プリンタ300の出力特性理想的であった場合に所望の出力結果(画像)が得られように、入力された画像信号に対して画像処理及び色処理を行う。色処理部303は、画像信号の階調数を、精度向上のために8ビットから10ビットに拡張する。色処理部303は、ルックアップテーブルであるLUTid304を備える。LUTid304は、画像信号に含まれる輝度情報を濃度情報に変換する輝度濃度変換テーブルである。色処理部303は、LUTid304により、R、G、Bの各画像信号の輝度情報を、Y(イエロー)、M(マゼンタ)、C(シアン)、K(ブラック)の画像信号の濃度情報に変換する。Y、M、C、Kの画像信号は、階調制御部311に入力される。

0034

階調制御部311は、UCR(Under Color Remove)部305及びルックアップテーブルであるLUTa306を備える。階調制御部311は、プリンタ300の実際の出力特性に合わせて所望の出力結果(画像)が得られるように、Y、M、C、Kの画像信号の階調補正を行う。UCR部305は、各画素における画像信号の積算値規制することで、画像信号レベルの総和を制限する。総和が規定値を超えた場合、UCR部305は、所定量のC、M、Yの画像信号をKの画像信号に置き換える下色除去処理(UCR)を行い、画像信号レベルの総和を低下させる。画像信号レベルの総和の規制は、プリンタ300による画像形成時のトナー載り量を規制するために行われる。LUTa306は、濃度特性を補正するための10ビットの変換テーブルであり、例えばプリンタ300のγ特性の変更に用いられる。階調補正後のY、M、C、Kの画像信号は、ディザ処理部307に入力される。

0035

ディザ処理部307は、階調補正後のY、M、C、Kの各10ビットの画像信号にディザ処理を行い、4ビットの信号に変換する中間調処理(ディザ処理)を行う。PWM部308は、ディザ処理後の信号にパルス幅変調を行い、露光器110の制御信号であるPWM信号を生成する。PWM信号は、レーザドライバ309に入力される。レーザドライバ309は、PWM信号に応じて半導体レーザ310の発光制御を行う。

0036

キャリブレーション動作
所望の濃度、階調特性を得るためのキャリブレーションは、γ補正を行う補正回路であるLUTa306を制御することで行われる。図3は、階調特性を補正するために画像信号が変換される様子を説明する4限チャート図である。

0037

第I象限は、原稿Sに形成された原稿画像の濃度を表す原稿濃度濃度信号に変換する、リーダ200の読取特性を表す。なお、原稿濃度を濃度信号へ変換する特性は、原稿台ガラス202を用いて原稿画像を読み取る場合と、ADF100を用いて原稿画像を読み取る場合とで異なる場合もある。第II象限は、濃度信号を、半導体レーザ310から出力されるレーザビームの光量を表すレーザ出力信号に変換する、階調制御部311(LUTa306)の変換特性を表す。第III象限は、レーザ出力信号を、記録媒体に形成される画像の濃度を表す出力濃度に変換する、プリンタ300の記録特性を表す。第IV象限は、原稿濃度と記録媒体に形成した画像の記録濃度との関係を表す、装置全体階調再現特性を表す。

0038

本実施形態のプリンタ300は、第IV象限の階調特性をリニアにするために、第III象限のプリンタ300の記録特性がリニアではない分を、第II象限の階調制御部311の変換特性によって補正する。LUTa306は、階調制御部311による処理を行わないでテストチャートを出力した場合に得られる第III象限の特性の入力と出力とを入れ替えて作成される。本実施形態では、出力階調数が256階調であるが、階調制御部311は10ビットのデジタル信号を処理するために、階調制御部311では1024階調である。

0039

図4は、キャリブレーション処理を表すフローチャートである。キャリブレーション処理では、階調特性等の画像形成条件が決定される。図5は、キャリブレーション処理時に操作部400のディスプレイに表示される操作画面の例示図である。キャリブレーション処理の開始前に、プリンタ300の給紙段に所定サイズの記録媒体がセットされる。キャリブレーション処理は、操作部400のディスプレイに表示される図5(a)に例示する操作画面により実行開始が指示される。

0040

ユーザが操作部400の入力装置により図5(a)の操作画面の「プリント」ボタンを選択することで、CPU301は、キャリブレーションの実行指示を受け付ける(S101)。CPU301は、記録媒体にキャリブレーション用(画像濃度の調整用)の画像が形成されたテストチャートを生成して出力する(S102)。例えばCPU301は、テストチャートを表すR、G、Bの画像信号をプリンタ制御部109に入力する。プリンタ制御部109は、色処理部303、階調制御部311、ディザ処理部307、及びPWM部308により該画像信号に対する処理を行い、レーザドライバ309により半導体レーザ310の発光制御を行う。この際、階調制御部311のLUTa306による処理が迂回され、UCR部305から出力される画像信号がディザ処理部307に直接入力される。つまりテストチャートは、階調補正が行われていない。

0041

図6は、テストチャートの説明図である。テストチャートは、画像濃度の調整用の画像である、濃度が異なる複数のパッチ画像の組み合わせである。本実施形態では、テストチャートは、イエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の各色について20階調のパッチ画像Y1〜Y20、M1〜M20、C1〜C20、K1〜K20で構成される。テストチャートは、各色のパッチ画像が縦横10行2列で構成される。20階調のパッチ画像は、画像濃度が5%から100%までの間で5%おきに、20レベル画像信号値により形成される。なお、テストチャートは、異なる解像度で複数用意されていてもよい。図6のテストチャートは、スクリーン線数の異なるスクリーンAとスクリーンBとを例示する。スクリーンAのスクリーン線数は、160〜180lpi(line per inch)である。スクリーンBのスクリーン線数は、250〜300lpiである。

0042

各スクリーン線数のテストチャートは、ディザ処理部307が該線数になるパラメータをもつディザ処理を行うことで実現される。なお、本実施形態のテストチャートは、パッチ画像を160〜180lpi程度のスクリーンAで、文字等の線画像を250〜300lpiのスクリーンBで作成される。この2種類のスクリーン線数で同一の階調レベルのテストチャートを出力しているが、スクリーン線数の違いで階調特性が大きく異なる場合には、スクリーン線数に応じて階調レベルを設定するのがより好ましい。

0043

また、プリンタ300は、2種類以上のスクリーン線数で画像を形成可能な場合、キャリブレーション用のテストチャートを、スクリーン線数毎に複数ページに分けても作成してもよい。キャリブレーションを精度良く行うには、テストチャートに形成されるパッチ画像の階調数は多い方がよい。また、リーダ200による読取精度を確保するために、パッチ画像のサイズもある程度以上必要である。本実施形態では2種類のスクリーンで説明しているが、スクリーンを3種類以上持つテストチャートであってもよい。切り替えスイッチ等によりスクリーンを切り替えて使用できる装置もあり、このような多種のスクリーン分、使用されるトナー色数分のように、多数の階調のパッチ画像が必要となる。そのために、テストチャートを1枚に収めることは難しく、図6で示したように、多くの場合、キャリブレーションで用いられるテストチャートは複数にまたがって形成される。

0044

テストチャートの出力後に、CPU301は、リーダ200によりテストチャートを読み取る(S103)。そのためにCPU301は、テストチャートの出力後に図5(b)に例示する操作画面を操作部400のディスプレイに表示させる。これによりCPU301は、ユーザに対して、テストチャートのADF100の原稿トレイ30への載置を指示する。ユーザがADF100にテストチャートを載置した後に図5(b)の操作画面の「読み取り実行」ボタンを操作部400の入力装置により選択することで、CPU301は、テストチャートの読取指示を受け付ける。CPU301は、読取指示の受け付けを契機に、ADF100にテストチャートの搬送を開始させる。また、CPU301は、リーダ200に搬送中のテストチャートを読み取らせる。

0045

リーダ200によるテストチャートの読取結果であるR、G、Bの画像信号(輝度値)は、色処理部303に入力される。CPU301は、色処理部303のLUTid304によりR、G、Bの各輝度値を濃度値に変換することで、テストチャートの各パッチ画像の濃度値を検出する(S104)。CPU301は、検出された濃度値を、テストチャートを作成するための画像信号値及びテストパターンの各パッチ画像の形成位置に対応させて、画像信号値と濃度との関係を表す階調補正テーブルLUTa(X)を作成する(S105)。CPU301は、作成した階調補正テーブルLUTa(X)をメモリ302に書き込む。この段階でCPU301は、図3に示した第III象限のプリンタ300の記録特性を求めることができる。第III象限のプリンタ300の記録特性の入力と出力とを入れ替えることで、プリンタ300のLUTaが決定される。CPU301は、決定したLUTaを階調制御部311(LUTa306)に設定することでキャリブレーションを完了する(S106)。

0046

本実施形態では、テストチャート上に20階調分のパッチ画像しか形成していないために、CPU301は、不足しているデータを補間して必要なデータを作成している。このようなキャリブレーションにより、目標濃度に対して線形となる階調特性が実現される。

0047

(ゴミ検出)
図7は、リーダ200内のリーダ画像処理部211に設けられるゴミ検出部の説明図である。リーダ画像処理部211は、アンプ502、A/D変換器503、シェーディング補正部504、及びゴミ検出部520を備える。リーダ画像処理部211は、センサユニット210内に設けられるリニアイメージセンサ501からアナログ信号である電気信号を取得する。リニアイメージセンサ501は、複数の光電変換素子が直線状に列んで構成される。光電変換素子が直線状に列ぶ方向が主走査方向となる。リニアイメージセンサ501は、画像を読み取る際に、主走査方向に1ラインずつ読み取ることになる。なお、リニアイメージセンサ501は、原稿Sの搬送方向に直交するように光電変換素子が列べられる。つまり主走査方向と原稿Sの搬送方向とは直交する。原稿Sの搬送方向が副走査方向となる。

0048

リーダ画像処理部211は、リニアイメージセンサ501から取得した電気信号をアンプ502により増幅した後に、A/D変換器503によりデジタル信号に変換する。リーダ画像処理部211は、シェーディング補正部504により、デジタル信号に変換した電気信号に対するシェーディング補正を行い、画像信号を生成する。リーダ画像処理部211は、生成した画像信号をプリンタ300に設けられる画像メモリ601に格納するとともに、ゴミ検出部520に入力する。

0049

ゴミ検出部520は、フィルタ505、2値化部506、加算器507、ラインメモリ508、コンパレータ509、AND演算器510、及びゴミ検出結果保持部511を備える。ゴミ検出部520は、リーダ200が読み取った画像(読取画像)にゴミ等の画像の異常を検出し、その検出結果をCPU301へ送信する異常検出部である。

0050

ゴミ検出部520は、フィルタ505により、画像信号に対して高周波成分を強調する等の処理を行う。2値化部506は、フィルタ505を通過した画像信号に対して、読取画像にゴミの影響で生じる黒スジ等を検出しやすくするための前処理を行う。2値化部506は、画像信号と2値化スライスレベルとを比較して、画像信号を白の値と黒の値とに2値化する。図8は、原稿読取プラテンローラ5を読み取り、原稿読取プラテンローラ5の読取画像を2値化した場合の説明図である。原稿読取プラテンローラ5は、原稿Sの読取画像に影響を与えないように白色である。

0051

流し読みガラス201がゴミ等により汚れている場合、原稿読取プラテンローラ5の読取画像には、2値化後も副走査方向に直線状の黒スジ(スジ画像)が生じる(図8(a))。主走査方向の同じ位置に周期的に表れる黒点は、原稿読取プラテンローラ5の白色表面に付着したゴミ等の汚れによる画像である。そのために、黒点が表れる周期は、原稿読取プラテンローラ5の周長に一致する。

0052

加算器507は、ラインメモリ508を用いて、所定のライン分だけ主走査方向の同一アドレスの2値化した画像信号の値を累積加算する。この処理は、サンプリング加算と呼ばれる。図8(b)はサンプリング加算の結果を例示しており、主走査方向の各位置に対する黒画素率を表す。黒画素率は、主走査方向の同じ位置で、2値化した画像信号で副走査方向に黒画像出現する割合を表す。黒スジの発生した位置では、黒画素率が100%となる。原稿読取プラテンローラ5に付着したゴミ等の汚れによる影響は、低い黒画素率として表れる。そのために、流し読みガラス201は、黒画素率が所定の黒画素率(ゴミ判定レベル)より大きくなる主走査方向の位置が、ゴミ等の汚れが生じているゴミ位置であると判定される。

0053

コンパレータ509は、サンプリング加算結果とゴミ判定レベルとを比較して、主走査方向のアドレス毎にゴミ判定を行う判定部である。AND演算器510は、コンパレータ509によるゴミ判定結果と主走査方向の有効区間信号とにより、主走査方向の有効区間内のゴミ判定結果を有効にするための演算を行う。具体的には、AND演算器510は、ゴミ判定結果と主走査方向の有効区間信号とのAND演算によりゴミ判定結果を有効にするか否かを決定する有効化部である。ゴミ検出結果保持部511は、AND演算器510による演算結果として、有効と判定されたゴミ判定結果を保持する。

0054

CPU301は、ゴミ検出結果保持部511を参照して、ゴミ検出結果を確認する。また、CPU301は、ラインメモリ508を参照し、格納されるデータをゴミ判定レベルと比較することで、ゴミを検出した主走査方向の位置(アドレス)を取得することもできる。これは、ゴミ検出画素(異常検出画素)のアドレスとして使用される。CPU301は、画像メモリ601に格納される画像信号のゴミ検出画素の画像信号に対してゴミ補正を行う。

0055

(ゴミ補正)
ゴミ補正は、補正対象となった画素(ゴミ検出画素)を、周囲の画素のデータにより補間もしくは置き換えることで行われる。図9は、ゴミ補正の説明図である。図9(a)は、ゴミ検出画素が1画素の場合のゴミ補正を表す。図9(b)は、ゴミ検出画素が2画素の場合のゴミ補正を表す。いずれの場合も、ゴミ検出画素の主走査方向の両隣に1画素ずつ追加した補正領域の画素に対して、左右の画素(A、B)の画素データを補間もしくは置き換えることでゴミ補正が行われている。なお、ゴミ補正は、補間や置き換え以外の方法で行われてもよい。また、ゴミ補正は、CPU301ではなく、他のロジック回路で行われてもよい。

0056

(本実施形態のキャリブレーション)
本実施形態では、ユーザの負荷を軽減するために、キャリブレーション時に図6に例示するテストチャートの読み取りを、ADF100を用いて行う。キャリブレーション時に用いる各色のパッチ画像の画像濃度は、テストチャートの読取結果(読取画像)から検出される。図10は、画像濃度の検出範囲の説明図である。本実施形態では、各色の画像濃度は、テストチャートの各パッチ画像の全領域の読取結果の平均値ではなく、図10(a)の破線で囲ったエリアのように、画像濃度が安定したパッチ画像の中央部の読取結果の平均値である。

0057

流し読みガラス201にゴミ等の汚れがある場合、ADF100を用いてテストチャートを読み取ると、図10(b)に示すように読取画像に副走査方向の黒スジが生じる。キャリブレーション時には、テストチャートの読取画像に対して上記のようなゴミ補正は行われない。この場合、図10(c)の破線に示すように、ゴミ検出画素のデータを除く正確に画像濃度が検出できる範囲で、画像濃度が検出される。そのために本実施形態では、キャリブレーション時にADF100を用いる場合には、ゴミ補正を行わず、ゴミ検出画素に対応する位置のデータを除いた残りの読取画像(画像信号)によりキャリブレーションを実行する。これにより、流し読みガラス201にゴミ等の汚れがある場合であっても、ADF100を用いたキャリブレーションを精度よく行うことが可能となる。

0058

(第1実施例)
図11は、キャリブレーション処理を表すフローチャートである。CPU301は、図4のS101〜S103の処理と同様に、キャリブレーションの実行指示を受け付けてテストチャートを出力し、ADF100を用いた読取処理を開始する(S201、S202、S203)。テストチャートは、連続して複数枚が出力される。ADF100は、テストチャートを連続して読み取る。テストチャートの読取結果から、リーダ画像処理部211のゴミ検出部520によりゴミ検出が行われる。検出結果は、ゴミ検出部520のゴミ検出結果保持部511に格納される。

0059

CPU301は、ゴミ検出結果保持部511を参照してゴミ検出結果を確認する(S204)。ゴミが無い場合(S204:Y)、CPU301は、図4のS104〜S106と同様の処理を行い、LUTaを階調制御部311(LUTa306)に設定することでキャリブレーションを完了する(S205、S206、S207)。

0060

ゴミが有る場合(S204:N)、CPU301は、色処理部303により、図10(c)の破線で例示するようなゴミ検出画素を除いた範囲で各パッチ画像の濃度値を検出する(S208)。CPU301は、このように検出された濃度値に基づいて、図4のS105、S106と同様の処理を行い、LUTaを階調制御部311(LUTa306)に設定することでキャリブレーションを完了する(S206、S207)。

0061

このような処理により、流し読みガラス201にゴミ等の汚れがある場合であっても、ADF100を用いたキャリブレーションを精度よく行うことが可能となる。

0062

(第2実施例)
図12は、キャリブレーション処理を表す別のフローチャートである。CPU301は、図11のS201〜S204の処理と同様に、キャリブレーションの実行指示を受け付けてテストチャートを出力し、該テストチャートの読取画像に基づくゴミ検出の結果を確認する(S301〜S304)。ゴミが無い場合(S304:Y)、CPU301は、図11のS205〜S207と同様の処理を行い、LUTaを階調制御部311(LUTa306)に設定することでキャリブレーションを完了する(S305、S306、S307)。

0063

ゴミが有る場合(S304:N)、CPU301は、操作部400のディスプレイに図13に例示する通知画面を表示して、ゴミを検出したことをユーザに通知する(S308)。図13の通知画面は、流し読みガラス201にゴミ等の汚れがあることを通知する。また、この通知画面は、流し読みガラス201の清掃を促し、テストチャートの再読み取りを行うか、あるいはゴミ検出画素を除いてキャリブレーションを行うかの選択をユーザに行わせる。ユーザは、操作部400の入力装置により、通知画面の「読み取り実行」又は「補正実行」を選択する。

0064

「読み取り実行」が選択された場合(S309:読み取り実行)、CPU301は、テストチャートの再読み取りを行うためにS303以降の処理を再度行う。「補正実行」が選択された場合(S309:補正実行)、CPU301は、図11のS208の処理と同様に、ゴミ検出画素を除いた範囲で各パッチ画像の濃度値を検出する(S310)。CPU301は、このように検出された濃度値に基づいて、LUTaを階調制御部311(LUTa306)に設定することでキャリブレーションを完了する(S306、S307)。

0065

このような処理により、流し読みガラス201にゴミ等の汚れがある場合であっても、ADF100を用いたキャリブレーションを精度よく行うことが可能となる。また、ユーザに対して流し読みガラス201が汚れていることを周知でき、流し読みガラス201の清掃を促すことができる。

0066

(第3実施例)
ADF100を用いた画像読取は、通常のコピー動作スキャン動作時にも行われる。そのために、読取位置のゴミ等の汚れの有無が通常の動作時にも検出され、汚れにより読取画像に生じる黒スジの位置は、通常の動作時に既知である。そこで、キャリブレーション時にはテストチャートの画像自体を主走査方向にずらすことで、黒スジの影響を回避することが可能である。つまりCPU301は、予め通常の動作時に読取画像に黒スジが検出された場合には、ゴミ検出結果保持部511によりゴミ検出画素を確認する。その後、テストチャートを生成する際に、CPU301は、テストチャートの画像の形成位置をゴミ検出画素の位置に応じてずらす。図14は、テストチャートの画像をずらす場合の説明図である。

0067

テストチャートの画像の位置をずらさない場合、黒スジが破線で囲ったパッチ画像の画像濃度の検出範囲に重なっている。このような場合に画像の位置を主走査方向にずらすことが有効である。テストチャートの画像の位置を主走査方向にずらした場合、黒スジが破線で囲ったパッチ画像の画像濃度の検出範囲に重なることが回避される。ただし、これは、黒スジが1つの場合、或いは黒スジがパッチ画像の境界偶然位置する場合である。黒スジが複数発生する場合、テストチャートの画像の位置をずらすことで1つの黒スジに対応し、他の黒スジに対しては第1実施例或いは第2実施例のように対応することができる。

0068

このような処理により、流し読みガラス201にゴミ等の汚れがある場合であっても、ADF100を用いたキャリブレーションを精度よく行うことが可能となる。

0069

以上のような各実施例では、階調補正を行う場合のテストチャートについて説明したが、他の画像形成条件や画像読取条件の調整を行うテストチャートについても同様の処理によりゴミ等の汚れの影響を抑制することができる。例えば、主走査方向の読取ムラや傾きを補正するためのテストチャートについても、本実施形態は適用可能である。また、プリンタ300の駆動ムラや部材の周ピッチムラ等の修正に用いられるテストチャートについても、本実施形態は適用可能である。すべての画像形成条件や画像読取条件の調整を行うためのテストチャートが1枚の記録媒体に形成される場合であっても、本実施形態は適用可能である。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ