図面 (/)

技術 標識物質、免疫学的測定法、免疫学的測定用試薬、アナライトの測定方法、アナライト測定用キット、及び、ラテラルフロー型クロマト用テストストリップ

出願人 日鉄ケミカル&マテリアル株式会社
発明者 松村康史榎本靖新田龍三
出願日 2020年8月7日 (6ヶ月経過) 出願番号 2020-134848
公開日 2020年10月29日 (3ヶ月経過) 公開番号 2020-177035
状態 未査定
技術分野 生物学的材料の調査,分析
主要キーワード 発色レベル フロントライン 磁製るつぼ 高感度領域 固形分残渣 内包金属 参考試験 面積平均径
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2020年10月29日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (8)

課題

免疫学的測定使用可能で、感度耐久性及び視認性に優れ、かつ、特別な装置や作業工程の追加を必要とせずに高感度な判定を可能とする標識物質を提供する。

解決手段

標識物質は、樹脂粒子10に金属粒子20が固定化された構造を有する樹脂金属複合体100を有する。樹脂−金属複合体100は、樹脂粒子10と金属粒子20とを備え、(A)樹脂−金属複合体100の平均粒子径が300nmを超える、又は(B)金属粒子20の平均粒子径が20nmを超え70nm未満の範囲内である、のいずれかの構成を備えており、金属粒子20が、樹脂粒子10内に埋包された部位及び樹脂粒子10外に露出した部位を有する金属粒子を含んでいる。

概要

背景

生体内には、無数化学物質が存在することから、生体内の特定の微量成分を定性的、定量的に分析することは、極めて重要な技術である。医療製薬、健康食品バイオテクノロジー、環境等の分野において、生体内の特定の箇所(化学物質)にのみ作用する薬品及び食品、生体の僅かな変化を検出する分析装置及び診断薬等は、上記技術とともに発展してきた。

上記分析技術の一つに、イムノアッセイがある。これは、免疫学的測定法とも呼ばれ、免疫反応の一つである、抗原−抗体間における特異的な反応を利用し、微量成分を定性的、定量的に分析する方法である。抗原−抗体間反応は感度や反応の選択性が高いため、上記分野で広く用いられている。イムノアッセイは、その測定原理により、様々な測定法がある。例えば、酵素免疫測定法EIA)、放射性免疫測定法RIA)、化学発光免疫測定法(CLIA)、蛍光免疫測定法(FIA)、ラテックス等の凝集法(LIA、PA)、イムノクロマトグラフィー法ICA)、赤血球凝集法(HA)、赤血球凝集抑制法(HI)等が挙げられる。なお、イムノアッセイの他には、物理化学的測定法、生物学的測定法等がある。

イムノアッセイは、抗原及び抗体が反応し複合体を形成した際の変化(抗原、抗体または複合体の濃度変化)から、抗原または抗体を定性的または定量的に検出する。これらを検出する際に、抗体、抗原または複合体に標識物質を結合させることで、検出感度が増大する。
そのため、標識物質の標識能力は、イムノアッセイにおける検出能力を左右する重要な要素であるといえる。上記に例示したイムノアッセイにおいても、標識物質として、赤血球(HAの場合)、ラテックス粒子(LIAの場合)、蛍光色素(FIAの場合)、放射性元素(RIAの場合)、酵素(EIAの場合)、化学発光物質(CLIAの場合)等が用いられている。

ところで、標識物質として着色した微粒子を用いた場合、特別な分析装置を用いることなく目視により検出を確認することができるため、より簡便な測定ができることが期待される。このような着色した微粒子としては、金属及び金属酸化物コロイド状粒子色素で着色したラテックス粒子等が挙げられる(特許文献1、特許文献4等)。
しかし、上記コロイド状粒子は、粒子径及び調製条件によって色調が決定されてしまうため、所望の鮮明な濃い色調のものを得難い、つまり視認性が不十分であるという問題がある。
また、上記着色したラテックス粒子は、色素による着色の効果が低く、目視判定性が不十分であるという問題がある。なお、この問題を解消するために色素の着色量を増やそうとすると、色素がラテックスの表面を覆い、ラテックス粒子本来の表面状態が損なわれるため、抗原又は抗体を結合させるのが困難になるという問題があった。また、メンブランフィルター等のクロマトグラフ媒体の細孔内に詰まったり、ラテックス粒子が非特異凝集を起こしたりして、色素の着色量を増やすことにより濃く着色することが、必ずしも、性能の向上に結び付かない、という問題もあった。

上記標識物質の視認性を向上させるために、標識物質が結合した抗体(標識抗体)と抗原が反応し複合体を形成した後に、これらの標識物質に対しさらに他の金属を修飾させることで標識物質の検出感度を増幅させるイムノクロマトグラフ方法が開示されている(特許文献2及び5)。しかし、この方法では、金属銀を修飾させるために特別な装置が必要である。そのため、操作が煩雑であり、安定した増幅が難しい。また、特別な装置が必要である等、測定コストがかかることから、適用可能な用途及び使用環境は限定されると考えられる。

また、ポリマー系ラテックス粒子の表面に結合した金ナノ粒子とからなる着色ラテックスが開示されている(特許文献3)。ポリマー系ラテックス粒子の表面に金ナノ粒子を結合させることにより、該金ナノ粒子自身が着色剤として目視判定性や検出感度の向上に役立つ一方、金ナノ粒子自身が抗原又は抗体に対する結合性にも優れることから、充分な濃色となる程度にまで金ナノ粒子を結合させても充分な量の抗原又は抗体を結合させ得るとされている。

上記着色ラテックスは、スチレンアクリル酸共重合体ラテックス及び金ナノ粒子の前駆体であるHAuClの分散液にガンマ線照射することで、上記ラテックスの表面に金ナノ粒子を結合させたものである。しかし、上記着色ラテックスは、金ナノ粒子がラテックスの表面のみに結合されることから、表面プラズモン吸収発現する金粒子担持量に制限があるうえに、金ナノ粒子が脱離しやすい。その結果、免疫学的測定用試薬としての視認性や感度が十分でない恐れがある。また、ガンマ線等の電磁放射線を照射するため、ラテックスにダメージを与える恐れがある。さらに、特許文献3の明細書中には、上記ラテックス径や金ナノ粒子径の好ましい範囲を開示しているが、実施例においてこれらの好ましい範囲で検証されているか明らかでなく、好ましい範囲の規定の根拠がない。

また、特許文献4では、金属金被覆されたポリマーラテックス粒子が開示され、顕微鏡検査法及びイムノアッセイ法利用可能な試薬への適用が示唆されている。

しかし、上記金属金で被覆されたポリマーラテックス粒子は、ポリマーラテックス粒子の材質粒径の開示がない。さらに、イムノアッセイ法に利用可能な試薬としての効果について検証がない。そのため、金属金及びポリマーラテックス粒子における試薬としての効果は不明である。

上より、金ナノ粒子が結合または被覆されたラテックス粒子は、免疫学的測定用の試薬として期待されるものであるが、従来の技術では、耐久性や視認性が十分でなかった。また、視認性が高いものでも、適用可能な用途及び使用環境は限定されるものであった。

概要

免疫学的測定使用可能で、感度、耐久性及び視認性に優れ、かつ、特別な装置や作業工程の追加を必要とせずに高感度な判定を可能とする標識物質を提供する。 標識物質は、樹脂粒子10に金属粒子20が固定化された構造を有する樹脂金属複合体100を有する。樹脂−金属複合体100は、樹脂粒子10と金属粒子20とを備え、(A)樹脂−金属複合体100の平均粒子径が300nmを超える、又は(B)金属粒子20の平均粒子径が20nmを超え70nm未満の範囲内である、のいずれかの構成を備えており、金属粒子20が、樹脂粒子10内に埋包された部位及び樹脂粒子10外に露出した部位を有する金属粒子を含んでいる。

目的

本発明の目的は、免疫学的測定に使用可能で、感度、耐久性及び視認性に優れ、かつ、特別な装置や作業工程の追加を必要とせずに高感度な判定を可能とする標識物質を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

樹脂粒子金属粒子固定化された構造を有する樹脂金属複合体を備えた標識物質であって、以下の(A)、(B)のいずれかの構成:(A)前記樹脂−金属複合体の平均粒子径が300nmを超える;又は、(B)前記金属粒子の平均粒子径が20nmを超え70nm未満の範囲内である;を備えているとともに、前記金属粒子が、前記樹脂粒子内に埋包された部位及び前記樹脂粒子外に露出した部位を有する金属粒子を含んでいることを特徴とする標識物質。

請求項2

前記金属粒子が、さらに前記樹脂粒子に完全に内包された金属粒子を含んでいることを特徴とする、請求項1に記載の標識物質。

請求項3

前記金属粒子の担持量が樹脂−金属複合体の重量に対して5wt%〜70wt%の範囲内であることを特徴とする、請求項1または2に記載の標識物質。

請求項4

前記樹脂粒子が、金属イオン吸着することが可能な置換基を構造に有するポリマー粒子であることを特徴とする、請求項1〜3のいずれか1項に記載の標識物質。

請求項5

前記樹脂粒子が、含窒素ポリマー粒子であることを特徴とする、請求項1〜4のいずれか1項に記載の標識物質。

請求項6

前記(A)のとき、前記金属粒子の平均粒子径が1nm以上80nm以下の範囲内であることを特徴とする、請求項1〜5のいずれか1項に記載の標識物質。

請求項7

前記(A)のとき、前記樹脂−金属複合体の平均粒子径が300nmを超え1000nm以下の範囲内であることを特徴とする、請求項1〜6のいずれか1項に記載の標識物質。

請求項8

前記金属粒子が、金粒子である請求項7に記載の標識物質。

請求項9

前記(B)のとき、前記樹脂−金属複合体の平均粒子径が100nm以上1000nm以下の範囲内であることを特徴とする、請求項1〜6のいずれか1項に記載の標識物質。

請求項10

前記金属粒子が、金粒子である請求項9に記載の標識物質。

請求項11

前記樹脂−金属複合体を水に分散したことを特徴とする、請求項1〜10のいずれか1項に記載の標識物質。

請求項12

前記樹脂−金属複合体の表面に、抗原または抗体を吸着させて使用するものである、請求項1〜11のいずれか1項に記載の標識物質。

請求項13

請求項1〜12のいずれか1項に記載の標識物質を用いることを特徴とする、免疫学的測定法

請求項14

請求項1〜12のいずれか1項に記載の標識物質を備えた免疫学的測定用試薬

請求項15

試料中に含まれるアナライトを検出又は定量するアナライトの測定方法であって、メンブレン、及び当該メンブレンに前記アナライトと特異的に結合する捕捉リガンドが固定されてなる判定部を含むラテラルフロー型クロマトテストストリップを用い、下記工程(I)〜(III);工程(I):試料に含まれる前記アナライトと、該アナライトに特異的に結合する抗体を、請求項1〜12のいずれか1項に記載の標識物質で標識した標識抗体と、を接触させる工程、工程(II):前記判定部にて、工程(I)において形成された、アナライトと標識抗体とを含む複合体を、捕捉リガンドに接触させる工程、工程(III):前記標識物質における前記樹脂−金属複合体の局在型表面プラズモン共鳴由来する発色強度を測定する工程、を含む工程を行うことを特徴とするアナライトの測定方法。

請求項16

ラテラルフロー型クロマト用テストストリップを用いて、試料中に含まれるアナライトを検出又は定量するためのアナライト測定キットであって、メンブレン、及び当該メンブレンに、前記アナライトと特異的に結合する捕捉リガンドが固定されてなる判定部を含むラテラルフロー型クロマト用テストストリップと、前記アナライトに特異的に結合する抗体を、請求項1〜12のいずれか1項に記載の標識物質で標識した標識抗体を含む検出試薬と、を含むアナライトを検出又は定量するためのアナライト測定用キット。

請求項17

試料中に含まれるアナライトを検出又は定量するためのラテラルフロー型クロマト用テストストリップであって、メンブレンと、前記メンブレンに、前記試料が展開する方向において、前記アナライトと特異的に結合する捕捉リガンドが固定されてなる判定部と、当該判定部よりも上流側に、前記アナライトに特異的に結合する抗体を請求項1〜12のいずれか1項に記載の標識物質で標識した標識抗体が含まれる反応部と、を含むラテラルフロー型クロマト用テストストリップ。

技術分野

背景技術

0002

生体内には、無数化学物質が存在することから、生体内の特定の微量成分を定性的、定量的に分析することは、極めて重要な技術である。医療製薬、健康食品バイオテクノロジー、環境等の分野において、生体内の特定の箇所(化学物質)にのみ作用する薬品及び食品、生体の僅かな変化を検出する分析装置及び診断薬等は、上記技術とともに発展してきた。

0003

上記分析技術の一つに、イムノアッセイがある。これは、免疫学的測定法とも呼ばれ、免疫反応の一つである、抗原−抗体間における特異的な反応を利用し、微量成分を定性的、定量的に分析する方法である。抗原−抗体間反応は感度や反応の選択性が高いため、上記分野で広く用いられている。イムノアッセイは、その測定原理により、様々な測定法がある。例えば、酵素免疫測定法EIA)、放射性免疫測定法RIA)、化学発光免疫測定法(CLIA)、蛍光免疫測定法(FIA)、ラテックス等の凝集法(LIA、PA)、イムノクロマトグラフィー法ICA)、赤血球凝集法(HA)、赤血球凝集抑制法(HI)等が挙げられる。なお、イムノアッセイの他には、物理化学的測定法、生物学的測定法等がある。

0004

イムノアッセイは、抗原及び抗体が反応し複合体を形成した際の変化(抗原、抗体または複合体の濃度変化)から、抗原または抗体を定性的または定量的に検出する。これらを検出する際に、抗体、抗原または複合体に標識物質を結合させることで、検出感度が増大する。
そのため、標識物質の標識能力は、イムノアッセイにおける検出能力を左右する重要な要素であるといえる。上記に例示したイムノアッセイにおいても、標識物質として、赤血球(HAの場合)、ラテックス粒子(LIAの場合)、蛍光色素(FIAの場合)、放射性元素(RIAの場合)、酵素(EIAの場合)、化学発光物質(CLIAの場合)等が用いられている。

0005

ところで、標識物質として着色した微粒子を用いた場合、特別な分析装置を用いることなく目視により検出を確認することができるため、より簡便な測定ができることが期待される。このような着色した微粒子としては、金属及び金属酸化物コロイド状粒子色素で着色したラテックス粒子等が挙げられる(特許文献1、特許文献4等)。
しかし、上記コロイド状粒子は、粒子径及び調製条件によって色調が決定されてしまうため、所望の鮮明な濃い色調のものを得難い、つまり視認性が不十分であるという問題がある。
また、上記着色したラテックス粒子は、色素による着色の効果が低く、目視判定性が不十分であるという問題がある。なお、この問題を解消するために色素の着色量を増やそうとすると、色素がラテックスの表面を覆い、ラテックス粒子本来の表面状態が損なわれるため、抗原又は抗体を結合させるのが困難になるという問題があった。また、メンブランフィルター等のクロマトグラフ媒体の細孔内に詰まったり、ラテックス粒子が非特異凝集を起こしたりして、色素の着色量を増やすことにより濃く着色することが、必ずしも、性能の向上に結び付かない、という問題もあった。

0006

上記標識物質の視認性を向上させるために、標識物質が結合した抗体(標識抗体)と抗原が反応し複合体を形成した後に、これらの標識物質に対しさらに他の金属を修飾させることで標識物質の検出感度を増幅させるイムノクロマトグラフ方法が開示されている(特許文献2及び5)。しかし、この方法では、金属銀を修飾させるために特別な装置が必要である。そのため、操作が煩雑であり、安定した増幅が難しい。また、特別な装置が必要である等、測定コストがかかることから、適用可能な用途及び使用環境は限定されると考えられる。

0007

また、ポリマー系ラテックス粒子の表面に結合した金ナノ粒子とからなる着色ラテックスが開示されている(特許文献3)。ポリマー系ラテックス粒子の表面に金ナノ粒子を結合させることにより、該金ナノ粒子自身が着色剤として目視判定性や検出感度の向上に役立つ一方、金ナノ粒子自身が抗原又は抗体に対する結合性にも優れることから、充分な濃色となる程度にまで金ナノ粒子を結合させても充分な量の抗原又は抗体を結合させ得るとされている。

0008

上記着色ラテックスは、スチレンアクリル酸共重合体ラテックス及び金ナノ粒子の前駆体であるHAuClの分散液にガンマ線照射することで、上記ラテックスの表面に金ナノ粒子を結合させたものである。しかし、上記着色ラテックスは、金ナノ粒子がラテックスの表面のみに結合されることから、表面プラズモン吸収発現する金粒子担持量に制限があるうえに、金ナノ粒子が脱離しやすい。その結果、免疫学的測定用試薬としての視認性や感度が十分でない恐れがある。また、ガンマ線等の電磁放射線を照射するため、ラテックスにダメージを与える恐れがある。さらに、特許文献3の明細書中には、上記ラテックス径や金ナノ粒子径の好ましい範囲を開示しているが、実施例においてこれらの好ましい範囲で検証されているか明らかでなく、好ましい範囲の規定の根拠がない。

0009

また、特許文献4では、金属金被覆されたポリマーラテックス粒子が開示され、顕微鏡検査法及びイムノアッセイ法利用可能な試薬への適用が示唆されている。

0010

しかし、上記金属金で被覆されたポリマーラテックス粒子は、ポリマーラテックス粒子の材質粒径の開示がない。さらに、イムノアッセイ法に利用可能な試薬としての効果について検証がない。そのため、金属金及びポリマーラテックス粒子における試薬としての効果は不明である。

0011

上より、金ナノ粒子が結合または被覆されたラテックス粒子は、免疫学的測定用の試薬として期待されるものであるが、従来の技術では、耐久性や視認性が十分でなかった。また、視認性が高いものでも、適用可能な用途及び使用環境は限定されるものであった。

先行技術

0012

特開平5−10950号公報
特開2011−117906号公報
特開2009−168495号公報
特開平3−206959号公報
特開2009−192270号公報

発明が解決しようとする課題

0013

本発明の目的は、免疫学的測定に使用可能で、感度、耐久性及び視認性に優れ、かつ、特別な装置や作業工程の追加を必要とせずに高感度な判定を可能とする標識物質を提供することにある。

課題を解決するための手段

0014

本発明者らは、鋭意研究を行った結果、特定の構造を有する樹脂金属複合体を利用することによって、上記課題を解決できることを見出し、本発明を完成した。

0015

すなわち、本発明の標識物質は、樹脂粒子金属粒子固定化された構造を有する樹脂−金属複合体を備えた標識物質であって、以下の(A)、(B)のいずれかの構成:
(A)前記樹脂−金属複合体の平均粒子径が300nmを超える;
又は、
(B)前記金属粒子の平均粒子径が20nmを超え70nm未満の範囲内である;
を備えていることを特徴とする。

0016

本発明の標識物質は、前記(A)のとき、前記金属粒子の平均粒子径が1nm以上80nm以下の範囲内であってもよい。

0017

本発明の標識物質は、前記(A)のとき、前記樹脂−金属複合体の平均粒子径が300nmを超え1000nm以下の範囲内であってもよい。この場合、前記金属粒子が、金粒子であってもよい。

0018

本発明の標識物質は、前記(B)のとき、前記樹脂−金属複合体の平均粒子径が100nm以上1000nm以下の範囲内であってもよい。この場合、前記金属粒子が、金粒子であってもよい。

0019

本発明の標識物質は、前記樹脂−金属複合体を水に分散したものであってもよい。

0020

本発明の標識物質は、前記樹脂−金属複合体の表面に、抗原または抗体を吸着させて使用するものであってもよい。

0021

本発明の免疫学的測定法は、上記いずれかの標識物質を用いることを特徴とする。

0022

本発明の免疫学的測定用試薬は、上記いずれかの標識物質を備えている。

0023

本発明のアナライトの測定方法は、試料中に含まれるアナライトを検出又は定量するアナライトの測定方法である。
本発明のアナライトの測定方法は、メンブレン、及び当該メンブレンに前記アナライトと特異的に結合する捕捉リガンドが固定されてなる判定部を含むラテラルフロー型クロマト用テストストリップを用いる。
そして、本発明のアナライトの測定方法は、下記工程(I)〜(III);
工程(I):試料に含まれる前記アナライトと、該アナライトに特異的に結合する抗体を、上記いずれかの標識物質で標識した標識抗体と、を接触させる工程、
工程(II):前記判定部にて、工程(I)において形成された、アナライトと標識抗体とを含む複合体を、捕捉リガンドに接触させる工程、
工程(III):前記標識物質における前記樹脂−金属複合体の局在型表面プラズモン共鳴由来する発色強度を測定する工程、
を含む工程を行うことを特徴とする。

0024

本発明のアナライト測定用キットは、ラテラルフロー型クロマト用テストストリップを用いて、試料中に含まれるアナライトを検出又は定量するためのアナライト測定用キットである。
本発明のアナライト測定用キットは、メンブレン、及び当該メンブレンに、前記アナライトと特異的に結合する捕捉リガンドが固定されてなる判定部を含むラテラルフロー型クロマト用テストストリップと、
前記アナライトに特異的に結合する抗体を、上記いずれかの標識物質で標識した標識抗体を含む検出試薬と、
を含むものである。

0025

本発明のラテラルフロー型クロマト用テストストリップは、試料中に含まれるアナライトを検出又は定量するためのラテラルフロー型クロマト用テストストリップである。
本発明のラテラルフロー型クロマト用テストストリップは、
メンブレンと、
前記メンブレンに、前記試料が展開する方向において、前記アナライトと特異的に結合する捕捉リガンドが固定されてなる判定部と、
当該判定部よりも上流側に、前記アナライトに特異的に結合する抗体を上記いずれかの標識物質で標識した標識抗体が含まれる反応部と、
を含むものである。

発明の効果

0026

本発明の標識物質は、樹脂粒子に金属粒子が固定化された構造を有する樹脂−金属複合体を備えている。そのため、樹脂粒子への局在型表面プラズモン吸収を発現する金属粒子の担持量が多い。従って、本発明の標識物質は、耐久性及び視認性に優れ、特別な装置や作業工程の追加を必要とせずに高感度な判定が可能になる優れた材料として、例えばEIA、RIA、CLIA、FIA、LIA、PA、ICA、HA、HI等の免疫学的測定に好ましく適用できる。

図面の簡単な説明

0027

本発明の一実施の形態に係る標識物質を構成する樹脂−金属複合体の断面の構造を示す模式図である。
本発明の一実施の形態に係るラテラルフロー型クロマト用テストストリップを用いたアナライトの測定方法の概要を示す説明図である。
実施例1で得られた樹脂−金複合体の走査型電子顕微鏡(SEM写真である。
実施例9で得られた樹脂−金複合体の走査型電子顕微鏡(SEM)写真である。
実施例9で得られた樹脂−金複合体の断面の走査型透過電子顕微鏡(STEM)写真である。
実施例10で得られた樹脂−金複合体の走査型電子顕微鏡(SEM)写真である。
実施例10で得られた樹脂−金複合体の断面の走査型透過電子顕微鏡(STEM)写真である。

0028

以下、適宜図面を参照しながら、本発明の実施の形態について詳細に説明する。

0029

[第1の実施の形態]
本発明の第1の実施の形態に係る標識物質は、樹脂粒子に金属粒子が固定化された構造を有する樹脂−金属複合体を備えた標識物質であって、前記樹脂−金属複合体の平均粒子径が300nmを超えるものである。図1は、本実施の形態に係る標識物質を構成する樹脂−金属複合体の断面模式図である。樹脂−金属複合体100は、樹脂粒子10と、金属粒子20と、を備えている。樹脂−金属複合体100を有する本実施の形態の標識物質は、例えば免疫学的測定用試薬又はその材料として好ましく用いることができる。

0030

樹脂−金属複合体100は、樹脂粒子10に金属粒子20が分散または固定化されている。また、樹脂−金属複合体100は、金属粒子20の一部が樹脂粒子10の表層部60において二次元的または三次元的に分布し、かつ前記三次元的に分布した金属粒子20の一部が部分的に樹脂粒子10外に露出しており、残りの一部が樹脂粒子10に内包されている。

0031

ここで、金属粒子20には、樹脂粒子10に完全に内包された金属粒子(以下、「内包金属粒子30」ともいう。)、樹脂粒子10内に埋包された部位及び樹脂粒子10外に露出した部位を有する金属粒子(以下、「一部露出金属粒子40」)ともいう。)及び樹脂粒子10の表面に吸着している金属粒子(以下、「表面吸着金属粒子50」ともいう。)が存在する。

0032

樹脂−金属複合体100を標識物質として使用する場合、一部露出金属粒子40または表面吸着金属粒子50上に、抗体または抗原を固定化して使用する。その際、一部露出金属粒子40及び表面吸着金属粒子50には、前記抗体または抗原が固定化される一方で、内包金属粒子30には、固定化されない。しかし、内包金属粒子30を含む金属粒子20の全てが局在型表面プラズモン吸収を発現することから、一部露出金属粒子40及び表面吸着金属粒子50のみならず、内包金属粒子30も、標識物質の視認性向上に寄与する。さらに、一部露出金属粒子40及び内包金属粒子30は、表面吸着金属粒子50と比較して樹脂粒子10との接触面積が大きいことに加え、埋包状態によるアンカー効果等の物理的吸着力が強く、樹脂粒子10から脱離しにくい。そのため、樹脂−金属複合体100を使用した標識物質としての耐久性、安定性を優れたものにすることができる。

0033

内包金属粒子30は、その表面の全てが、樹脂粒子10を構成する樹脂に覆われているものである。また、一部露出金属粒子40は、その表面積の5%以上100%未満が、樹脂粒子10を構成する樹脂に覆われているものである。耐久性の観点から、その下限は、表面積の20%以上であることが好ましく、30%以上であることがより好ましい。また、表面吸着金属粒子50は、その表面積の0%を超えて5%未満が、樹脂粒子10を構成する樹脂に覆われているものである。

0034

また、樹脂−金属複合体100への金属粒子20(内包金属粒子30、一部露出金属粒子40及び表面吸着金属粒子50の合計)の担持量は、樹脂‐金属複合体100の重量に対して、5wt%〜70wt%であることが好ましい。この範囲であれば、樹脂−金属複合体100は、標識物質としての視認性、目視判定性及び検出感度に優れる。金属粒子20の担持量が5wt%未満では抗体または抗原の固定化量が少なくなり、検出感度が低下する傾向がある。金属粒子20の担持量は、より好ましくは、15wt%〜70wt%である。

0035

また、金属粒子20の10wt%〜90wt%が、一部露出金属粒子40及び表面吸着金属粒子50であることが好ましい。この範囲であれば、金属粒子20上への抗体または抗原の固定化量が充分確保できるため、標識物質としての感度が高い。金属粒子20の20wt%〜80wt%が一部露出金属粒子40及び表面吸着金属粒子50であることがより好ましく、耐久性の観点から、表面吸着金属粒子50が20wt%以下であることがさらに好ましい。

0036

また、免疫学的測定において優れた検出感度を得るためには、金属粒子20の60wt%〜100wt%、好ましくは、75〜100wt%が、より好ましくは、85〜100wt%が、表層部60に、より好ましくは、樹脂粒子10の表面から深さ方向に粒子半径の40%の範囲に、存在することがよい。また、表層部60に存在する金属粒子20の5wt%〜90wt%が、一部露出金属粒子40または表面吸着金属粒子50であることが、金属粒子20上への抗体または抗原の固定化量が充分確保できるため、標識物質としての感度が高いため、好ましい。換言すれば、表層部60に存在する金属粒子20の10wt%〜95wt%が内包金属粒子30であることがよい。

0037

ここで、前記「表層部」とは、樹脂−金属複合体100の最も外側の位置(つまり、一部露出金属粒子40又は表面吸着金属粒子50の突出端部)を基準にして、樹脂粒子10の表面から、深さ方向に粒子半径の50%の範囲を意味する。また、前記「二次元的に分布」とは、金属粒子20が、樹脂粒子10の面方向に分布していることを意味する。前記「三次元的に分布」とは、金属粒子20が、樹脂粒子10の面方向だけでなく、深さ方向にも分布していることを意味する。金属粒子20が「三次元的に分布」している方が、金属粒子20が、樹脂粒子10から脱離しにくい点及び金属粒子20の担持量が多くなる点から、好ましい。

0038

また、本実施の形態において、樹脂−金属複合体100の平均粒子径は、300nmを超えるものである。樹脂−金属複合体100の平均粒子径が300nm以下では、標識物質として視認性や感度が低下する傾向がある。樹脂−金属複合体100の平均粒子径は、好ましくは、300nmを超え1000nm以下であり、より好ましくは、340nm以上650nm未満である。ここで、樹脂−金属複合体100の粒子径は、樹脂粒子10の粒子径に、一部露出金属粒子40又は表面吸着金属粒子50の突出部位の長さを加えた値を意味し、レーザー回折散乱法、動的光散乱法、または遠心沈降法により測定することができる。

0039

樹脂粒子10は、金属イオンを吸着することが可能な置換基を構造に有するポリマー粒子であることが好ましい。特に、含窒素ポリマー粒子であることが好ましい。含窒素ポリマー中の窒素原子は、視認性に優れ、抗原または抗体の固定化が容易な金、パラジウムなどの金属粒子の前駆体であるアニオン性金属イオンを化学吸着しやすいため、好ましい。本実施の形態では、含窒素ポリマー中に吸着した金属イオンを還元し、金属ナノ粒子を形成する為、生成した金属粒子20の一部は、内包金属粒子30または一部露出金属粒子40となる。また、アクリル酸重合体のように、カルボン酸等はカチオン性金属イオンを吸着することができるため、銀、ニッケル、銅などの金属粒子の前駆体であるカチオン性金属イオンを吸着しやすく、銀、ニッケル、銅などの金属粒子20を形成することが可能であり、上記金、パラジウムなどの金属との合金を作ることも可能である。
一方、金属イオンを吸着することが可能な置換基を構造に有する含窒素ポリマー以外の樹脂粒子、例えばポリスチレン等の場合、前記金属イオンを樹脂内部に吸着しにくい。その結果、生成した金属粒子20の大部分は、表面吸着金属粒子50となる。上記のとおり、表面吸着金属粒子50は、樹脂粒子10との接触面積が小さいため、樹脂と金属の接着力が小さく、樹脂粒子10から金属粒子20が脱離する影響が大きい傾向にある。
上記含窒素ポリマーは、主鎖または側鎖に窒素原子を有する樹脂であり、例えば、ポリアミンポリアミドポリペプチドポリウレタンポリ尿素ポリイミドポリイミダゾールポリオキサゾールポリピロールポリアニリン等がある。これらの中でも、好ましくは、ポリ−2−ビニルピリジン、ポリ−3−ビニルピリジン、ポリ−4−ビニルピリジン等のポリアミンである。また、側鎖に窒素原子を有する場合は、例えば、アクリル樹脂フェノール樹脂エポキシ樹脂幅広く利用することが可能である。

0040

金属粒子20は、例えば、銀、ニッケル、銅、金、パラジウム等が適用できる。好ましくは、視認性に優れ、抗原または抗体の固定化が容易な金及びパラジウムである。これらは、局在型表面プラズモン共鳴に由来する吸収を発現するため、好ましい。より好ましくは、保存安定性がよい金である。これらの金属は、単体もしくは合金等の複合体で使用することが可能である。ここで、例えば金合金としては、金と金以外の金属種からなり、金を10重量%以上含有する合金を意味する。

0041

また、走査型電子顕微鏡(SEM)観察により測長される金属粒子20の平均粒子径は、例えば1〜80nmであることが好ましい。金属粒子20の平均粒子径が、1nm未満の場合や80nmを超える場合は、局在型表面プラズモンが発現しにくくなるため感度が低下する傾向がある。第1の実施の形態における金属粒子20の平均粒子径は、金属粒子20が金粒子である場合は、好ましくは、20nm以上70nm未満であり、より好ましくは、22nm以上50nm未満である。

0042

[第2の実施の形態]
本発明の第2の実施の形態の標識物質は、樹脂粒子に金属粒子が固定化された構造を有する樹脂−金属複合体を備えた標識物質であって、前記金属粒子の平均粒子径が20nmを超え70nm未満の範囲内である。本実施の形態に係る標識物質を構成する樹脂−金属複合体は、金属粒子の平均粒子径の範囲、及び樹脂−金属複合体の平均粒子径の範囲が異なる以外は、第1の実施の形態(図1)の樹脂−金属複合体100と同様である。以下、図1も参照しながら、第1の実施の形態との相違点を中心に説明する。

0043

第2の実施の形態で使用する樹脂−金属複合体100において、走査型電子顕微鏡(SEM)観察により測長される金属粒子20の平均粒子径は、例えば20nmを超え70nm未満である。金属粒子20の平均粒子径が、20nm以下では、感度が低下する傾向があり、70nm以上では、視認性が低下する傾向がある。金属粒子20の平均粒子径は、より好ましくは、22nm以上50nm未満である。

0044

また、樹脂−金属複合体100の平均粒子径は、例えば100〜1000nmであることが好ましい。樹脂−金属複合体100の平均粒子径が100nm未満では、例えば、金属粒子20として金粒子を使用する場合に、金粒子の担持量が少なくなる傾向があるため、同サイズの金粒子より着色が弱くなる傾向にあり、1000nmを超えると、試薬とした際に、メンブランフィルター等のクロマトグラフ媒体の細孔内に詰まりやすい傾向や、分散性が低下する傾向がある。樹脂−金属複合体100の平均粒子径は、好ましくは、100nm以上700nm未満であり、より好ましくは、340nm以上650nm未満である。ここで、樹脂−金属複合体100の粒子径は、樹脂粒子10の粒子径に、一部露出金属粒子40又は表面吸着金属粒子50の突出部位の長さを加えた値を意味し、レーザー回折/散乱法、動的光散乱法、または遠心沈降法により測定することができる。

0045

第2の実施の形態に係る標識物質に使用される樹脂−金属複合体100において、上記以外の構成は第1の実施の形態で使用される樹脂−金属複合体100と同様であるため説明を省略する。

0046

[樹脂−金属複合体の製造方法]
上記第1及び第2の実施の形態の標識物質に使用される樹脂−金属複合体100の製造方法は、特に限定されない。例えば、乳化重合法により製造した樹脂粒子10の分散液に、金属イオンを含有する溶液を加えて、金属イオンを樹脂粒子10に吸着させる(以下、「金属イオン吸着樹脂粒子」という。)。さらに、金属イオン吸着樹脂粒子を還元剤溶液中に加えることで、金属イオンを還元して金属粒子20を生成させ、樹脂−金属複合体100を得る。

0047

また、例えば、金属粒子20として、金粒子を使用する場合、金属イオンを含有する溶液としては、塩化金酸(HAuCl4)水溶液等が挙げられる。また、金属イオンの代わりに金属錯体を用いても良い。
また、金属イオンを含有する溶液の溶媒として、水の代わりに、メタノールエタノールn−プロパノールイソプロパノールn−ブタノール、sec−ブタノール、t−ブタノール等の含水アルコール又はアルコール塩酸硫酸硝酸等の酸等を用いても良い。
また、前記溶液に、必要に応じて、例えば、ポリビニルアルコール等の水溶性高分子化合物界面活性剤アルコール類テトラヒドロフランジエチルエーテルジイソプロピルエーテル等のエーテル類アルキレングリコールポリアルキレングリコール、これらのモノアルキルエーテル又はジアルキルエーテルグリセリン等のポリオール類アセトンメチルエチルケトン等のケトン類等の各種水混和性有機溶媒等の添加剤を添加してもよい。このような添加剤は、金属イオンの還元反応速度を促進し、また生成される金属粒子20の大きさを制御するのに有効となる。

0048

また、還元剤は、公知の物を用いることができる。例えば、水素化ホウ素ナトリウムジメチルアミンボランクエン酸次亜リン酸ナトリウム抱水ヒドラジン塩酸ヒドラジン硫酸ヒドラジンホルムアルデヒドショ糖ブドウ糖アスコルビン酸ホスフィン酸ナトリウムハイドロキノンロッシェル塩等が挙げられる。このうち、水素化ホウ素ナトリウム又は、ジメチルアミンボラン、クエン酸が好ましい。還元剤溶液には、必要に応じて界面活性剤を添加したり、溶液のpHを調整することが出来る。pH調整にはホウ酸リン酸等の緩衝剤、塩酸や硫酸などの酸、水酸化ナトリウム水酸化カリウムなどのアルカリにより調整することが出来る。
さらに還元剤溶液の温度により、金属イオンの還元速度を調整することで、形成する金属粒子の粒径をコントロールすることが出来る。

0049

また、前記金属イオン吸着樹脂粒子中の金属イオンを還元して金属粒子20を生成させる際、前記金属イオン吸着樹脂粒子を還元剤溶液に添加しても良いし、還元剤を前記金属イオン吸着樹脂粒子に添加しても良いが、内包金属粒子30及び一部露出金属粒子40の生成しやすさの観点から、前者が好ましい。

0050

また、樹脂−金属複合体100の、水への分散性を保持するために、例えば、クエン酸、ポリ−L−リシンポリビニルピロリドンポリビニルピリジン、ポリビニルアルコール、DISPERBYK194、DISPERBYK180、DISPERBYK184(ビッグケミージャパン社製)等の分散剤を添加してもよい。
さらにホウ酸やリン酸等の緩衝剤、塩酸や硫酸などの酸、水酸化ナトリウムや水酸化カリウムなどのアルカリによりpHを調整し、分散性を保持することが出来る。

0051

以上の構成を有する樹脂−金属複合体100は、特に、金属粒子20の表面に抗原または抗体を吸着させることにより、標識物質として、例えばEIA、RIA、CLIA、FIA、LIA、PA、ICA、HA、HI等の免疫学的測定法に好ましく適用できる。また、特に、低濃度域高感度領域)での目視判定性に優れた標識物質として好ましく適用できる。また、標識物質の形態に特に限定はないが、例えば、樹脂−金属複合体100を水もしくは、pHを調整した緩衝液中に分散させた分散液として使用できる。

0052

上記金属粒子20の表面に抗原または抗体を吸着させる方法としては特に限定せず、公知の物理吸着及び化学吸着による方法を用いることができる。例えば、抗原または抗体を含む緩衝液中に樹脂−金属複合体100を浸漬させ、インキュベートする等の物理吸着や、抗原又は抗体にSH基を導入し、樹脂−金属複合体100と反応させてAu−SH結合を形成する等の化学吸着が挙げられる。なかでも、金属粒子20と抗原または抗体との結合が強固となることから化学吸着が好ましい。

0053

次に、樹脂−金属複合体100を標識物質として使用したアナライトの測定方法、ラテラルフロー型クロマト用テストストリップ及びアナライト検出定量キットについて説明する。

0054

[ラテラルフロー型クロマト用テストストリップ]
まず、図2を参照しながら、本発明の一実施の形態に係るラテラルフロー型クロマト用テストストリップ(テストストリップ)について説明する。このテストストリップ200は、後述するように、本発明の一実施の形態のアナライトの測定方法に好ましく使用できるものである。

0055

テストストリップ200は、メンブレン110を備えている。メンブレン110には、試料の展開方向において順に、試料添加部120、判定部130及び吸液部140が設けられている。

0056

<メンブレン>
テストストリップ200に使用されるメンブレン110としては、一般的なテストストリップにおいてメンブレン材料として使用されるものを適用可能である。メンブレン110は、例えば毛管現象を示し、試料を添加すると同時に、試料が展開するような微細多孔性物質からなる不活性物質(アナライト160、各種リガンドなどと反応しない物質)で形成されているものである。メンブレン110の具体例としては、ポリウレタン、ポリエステルポリエチレンポリ塩化ビニルポリフッ化ビニリデンナイロンセルロース誘導体等で構成される繊維状又は不織繊維状マトリクス、膜、濾紙ガラス繊維濾紙、布、綿等が挙げられる。これらの中でも、好ましくはセルロース誘導体やナイロンで構成される膜、濾紙、ガラス繊維濾紙等が用いられ、より好ましくはニトロセルロース膜、混合ニトロセルロースエステル(ニトロセルロースと酢酸セルロースの混合物)膜、ナイロン膜、濾紙が用いられる。

0057

テストストリップ200は、操作をより簡便にするため、メンブレン110を支持する支持体を備えていることが好ましい。支持体としては、例えばプラスチック等を用いることができる。

0058

<試料添加部>
テストストリップ200は、アナライト160を含む試料を添加するための試料添加部120を有していてもよい。試料添加部120は、テストストリップ200に、アナライト160を含む試料を受け入れるための部位である。試料添加部120は、試料が展開する方向において、判定部130よりも上流側のメンブレン110に形成されていてもよいし、あるいは、例えばセルロース濾紙、ガラス繊維、ポリウレタン、ポリアセテート、酢酸セルロース、ナイロン、綿布などの材料で構成された試料添加パッドがメンブレン110に設けられて試料添加部120を構成していてもよい。

0059

<判定部>
判定部130には、アナライト160と特異的に結合する捕捉リガンド131が固定されている。捕捉リガンド131は、アナライト160と特異的な結合を形成するものであれば特に制限なく使用でき、例えばアナライト160に対する抗体などを好ましく用いることができる。捕捉リガンド131は、テストストリップ200に試料を提供した場合においても、判定部130から移動することないように不動化している。捕捉リガンド131は、物理的又は化学的な結合や吸着等によって、メンブレン110に直接的又は間接的に固定されていればよい。

0060

また、判定部130は、標識抗体150とアナライト160とを含む複合体170が、アナライト160と特異的に結合する捕捉リガンド131に接触するような構成である限り特に限定されない。例えば、メンブレン110に、直接、捕捉リガンド131が固定されていてもよいし、あるいは、メンブレン110に固定されたセルロース濾紙、グラスファイバー、不織布等からなるパッドに捕捉リガンド131が固定されていてもよい。

0061

<吸液部>
吸液部140は、例えば、セルロ−ス濾紙、不織布、布、セルロースアセテート等の吸水性材料のパッドにより形成される。添加された試料の展開前線フロントライン)が吸液部140に届いてからの試料の移動速度は、吸液部140の材質、大きさなどにより異なるものとなる。従って、吸液部140の材質、大きさなどの選定により、アナライト160の検出・定量に最適な速度を設定することができる。なお、吸液部140は任意の構成であり、省略してもよい。

0062

テストストリップ200は、必要に応じて、さらに、反応部、コントロール部等の任意の部位を含んでいてもよい。

0063

<反応部>
図示は省略するが、テストストリップ200には、メンブレン110に、標識抗体150を含む反応部が形成されていてもよい。反応部は、試料が流れる方向において、判定部130よりも上流側に設けることができる。なお、図2における試料添加部120を反応部として利用してもよい。テストストリップ200が反応部を有する場合、アナライト160を含む試料を、反応部又は試料添加部120に供すると、反応部において、試料に含まれるアナライト160と標識抗体150とを接触させることができる。この場合、試料を、単に反応部又は試料添加部120に供することで、アナライト160と標識抗体150とを含む複合体170を形成させることができるので、いわゆる1ステップ型イムノクロマトグラフが可能になる。

0064

反応部は、アナライト160と特異的に結合する標識抗体150を含む限り特に限定されないが、メンブレン110に、直接、標識抗体150が塗布されてなるものであってもよい。あるいは、反応部は、例えばセルロース濾紙、グラスファイバー、不織布等からなるパッド(コンジュゲートパッド)に標識抗体150を含浸したものを、メンブレン110に固定してなるものであってもよい。

0065

<コントロール部>
図示は省略するが、テストストリップ200は、メンブレン110に、試料が展開する方向において、標識抗体150と特異的に結合する捕捉リガンドが固定されてなるコントロール部が形成されていてもよい。判定部130とともに、コントロール部でも発色強度が測定されることにより、テストストリップ200に供した試料が展開して、反応部及び判定部130に到達し、検査が正常に行われたことを確認することができる。なお、コントロール部は、捕捉リガンド131の代わりに、標識抗体150と特異的に結合する別の種類の捕捉リガンドを用いることを除いては、上述の判定部130と同様にして作製され、同様の構成を採ることができる。

0066

[アナライトの測定方法]
次に、テストストリップ200を用いて行われる本発明の一実施の形態のアナライト160の測定方法について説明する。

0067

本実施の形態のアナライト160の測定方法は、試料中に含まれるアナライト160を検出又は定量するアナライト160の測定方法である。実施の形態のアナライト160の測定方法は、メンブレン110、及び当該メンブレン110にアナライト160と特異的に結合する捕捉リガンド131が固定されてなる判定部130を含むテストストリップ200を用い、下記工程(I)〜(III);
工程(I):試料に含まれる前記アナライト160と、該アナライト160に特異的に結合する抗体を、樹脂粒子10に複数の金属粒子20が固定化された構造を有する樹脂−金属複合体100で標識した標識抗体150と、を接触させる工程、
工程(II):判定部130にて、工程(I)において形成された、アナライト160と標識抗体150とを含む複合体を、捕捉リガンド131に接触させる工程、
工程(III):樹脂−金属複合体100の局在型表面プラズモン共鳴に由来する発色強度を測定する工程、
を含むことができる。

0068

工程(I):
工程(I)は、試料に含まれるアナライト160を、標識抗体150に接触させる工程である。アナライト160と標識抗体150とを含む複合体170を形成する限り、接触の態様は特に限定されるものではない。例えば、テストストリップ200の試料添加部120又は反応部(図示省略)に試料を供し、当該反応部においてアナライト160を標識抗体150に接触させてもよいし、テストストリップ200に試料を供する前に、試料中のアナライト160を標識抗体150に接触させてもよい。

0069

工程(I)で形成された複合体170は、テストストリップ200上で展開して移動し、判定部130に至る。

0070

工程(II):
工程(II)は、テストストリップ200の判定部130において、工程(I)において形成された、アナライト160と標識抗体150とを含む複合体170を、捕捉リガンド131に接触させる。複合体170を、捕捉リガンド131に接触させると、捕捉リガンド131は、複合体170のアナライト160に特異的に結合する。その結果、複合体170が判定部130において捕捉される。

0071

なお、捕捉リガンド131は、標識抗体150には特異的に結合しないために、アナライト160と未結合の標識抗体150が判定部130に到達した場合、当該アナライト160と未結合の標識抗体150は、判定部130を通過する。ここで、テストストリップ200に、標識抗体150に特異的に結合する別の捕捉リガンドが固定されたコントロール部(図示省略)が形成されている場合、判定部130を通過した標識抗体150は、展開を続け、コントロール部で当該別の捕捉リガンドと結合する。その結果、アナライト160と複合体170を形成していない標識抗体150は、コントロール部で捕捉される。

0072

工程(II)の後、必要に応じて工程(III)の前に、例えば、水、生理食塩水リン酸緩衝液等の生化学検査汎用される緩衝液で、テストストリップ200を洗浄する洗浄工程を実施してもよい。洗浄工程によって、判定部130、又は、判定部130及びコントロール部に捕捉されなかった標識抗体150(アナライト160と結合しておらず、複合体170を形成していない標識抗体150)を除去することができる。

0073

洗浄工程を実施することで、工程(III)において、判定部130、又は、判定部130及びコントロール部における樹脂−金属複合体100の局在型表面プラズモン共鳴による発色を測定する際に、バックグラウンドの発色強度を低減させることができ、シグナル/バックグラウンド比を高め、一層、検出感度や定量性を向上させることができる。

0074

工程(III):
工程(III)は、樹脂−金属複合体100の局在型表面プラズモン共鳴に由来する発色強度を測定する工程である。上記工程(II)又は必要に応じて洗浄工程を実施した後、テストストリップ200において、樹脂−金属複合体100の局在型表面プラズモン共鳴に由来する発色強度を測定する。

0075

なお、テストストリップ200にコントロール部が形成されている場合、工程(II)によって、コントロール部にて、標識抗体150が別の捕捉リガンドによって捕捉され複合体が形成される。そのため、工程(III)では、テストストリップ200において、判定部130だけでなく、コントロール部においても局在型表面プラズモン共鳴による発色を生じさせることができる。このように、判定部130とともにコントロール部においても発色強度を測定することで、テストストリップ200に供した試料が正常に展開して、反応部及び判定部130に到達したか否かを確認できる。

0076

<試料及びアナライト>
本実施の形態のアナライトの測定方法における試料は、アナライト160として、蛋白質などの抗原となり得る物質を含むものである限り特に限定されるものではない。例えば、目的のアナライト160を含む生体試料(すなわち、全血血清血漿、尿、唾液喀痰鼻腔又は咽頭拭い液、髄液羊水乳頭分泌液、皮膚からの浸出液組織細胞及び便からの抽出液等)や食品の抽出液等が挙げられる。必要に応じて、標識抗体150及び捕捉リガンド131とアナライト160との特異的な結合反応が生じやすくするために、上記工程(I)に先立って、試料に含まれるアナライト160を前処理してもよい。ここで、前処理としては、酸、塩基、界面活性剤等の各種化学薬品等を用いた化学的処理や、加熱・撹拌・超音波等を用いた物理的処理が挙げられる。特に、アナライト160がインフルエンザウィルスP抗原等の、通常は表面に露出していない物質である場合、界面活性剤等による処理を行うことが好ましい。この目的に使用される界面活性剤として、特異的な結合反応、例えば、抗原抗体反応等のリガンドとアナライト160との結合反応性を考慮して、非イオン性界面活性剤を用いることができる。

0077

また、前記試料は、通常の免疫学的分析法で用いられる溶媒(水、生理食塩水、又は緩衝液等)や水混和有機溶媒で適宜希釈されていてもよい。

0078

前記アナライト160としては、例えば、腫瘍マーカーシグナル伝達物質ホルモン等のタンパク質(ポリペプチド、オリゴペプチド等を含む)、核酸一本鎖又は二本鎖の、DNA、RNA、ポリヌクレオチドオリゴヌクレオチド、PNA(ペプチド核酸)等を含む)又は核酸を有する物質、糖(オリゴ糖多糖類糖鎖等を含む)又は糖鎖を有する物質、脂質などその他の分子が挙げられ、標識抗体150及び捕捉リガンド131に特異的に結合するものである限り特に限定されないが、例えば、癌胎児性抗原CEA)、HER2タンパク前立腺特異抗原(PSA)、CA19−9、α−フェトプロテインAFP)、免疫抑制酸性タンパク(IAP)、CA15−3、CA125、エストロゲンレセプタープロゲステロンレセプター便潜血トロポニンI、トロポニンT、CK−MB、CRPヒト絨毛性ゴナドトロピンHCG)、黄体形成ホルモンLH)、卵胞刺激ホルモンFSH)、梅毒抗体、インフルエンザウィルス、ヒトヘモグロビンクラミジア抗原、A群β溶連菌抗原、HBs抗体HBs抗原ロタウイルスアデノウイルスアルブミン糖化アルブミン等が挙げられる。これらの中でも非イオン性界面活性剤により可溶化される抗原が好ましく、ウィルス核タンパク質のように自己集合体を形成する抗原がより好ましい。

0079

<標識抗体>
標識抗体150は、工程(I)において、試料に含まれるアナライト160に接触させて、アナライト160と標識抗体150とを含む複合体170を形成するために使用される。標識抗体150は、アナライト160に特異的に結合する抗体を、樹脂粒子10に複数の金属粒子20が固定化された構造を有する樹脂−金属複合体100で標識化してなるものである。ここで、「標識化」とは、工程(I)〜(III)において、標識抗体150から樹脂−金属複合体100が脱離しない程度に、抗体に樹脂−金属複合体100が直接的に又は間接的に、化学的又は物理的な結合や吸着等で固定されていることを意味する。例えば、標識抗体150は、抗体に樹脂−金属複合体100が直接結合してなるものであってもよいし、抗体と樹脂−金属複合体100とが、任意のリンカー分子を介して結合してなるものや、それぞれが不溶性粒子に固定されてなるものであってもよい。

0080

また、本実施の形態において、「抗体」としては、特に制限はなく、例えば、ポリクローナル抗体モノクローナル抗体遺伝子組み換えにより得られた抗体のほか、抗原と結合能を有する抗体断片[例えば、H鎖L鎖Fab、F(ab’)2等]などを用いることができる。また、免疫グロブリンとして、IgGIgMIgAIgEIgDのいずれでもよい。抗体の産生動物種としては、ヒトをはじめ、ヒト以外の動物(例えばマウスラットウサギヤギウマ等)でもよい。抗体の具体例としては、抗PSA抗体、抗AFP抗体、抗CEA抗体、抗アデノウイルス抗体、抗インフルエンザウィルス抗体、抗HCV抗体、抗IgG抗体抗ヒトIgE抗体等が挙げられる。

0081

<標識抗体の好ましい作製方法
次に、標識抗体150の好ましい作製方法を挙げて説明する。標識抗体150の製造は、少なくとも、次の工程A;
工程A)樹脂−金属複合体100を第1のpH条件で抗体と混合して結合させることによって、標識抗体150を得る工程
を含み、好ましくは、さらに工程B;
工程B)標識抗体150を第2のpH条件で処理する工程
を含むことができる。

0082

[工程A]
工程Aでは、樹脂−金属複合体100を第1のpH条件で抗体と混合して標識抗体150を得る。工程Aは、固体状の樹脂−金属複合体100を液相中に分散させた状態で抗体と接触させることが好ましい。第1のpH条件は、樹脂−金属複合体100における金属粒子20の金属種によって異なる。

0083

樹脂−金属複合体100の金属粒子20が金粒子(金合金粒子を含む;以下同様である)である場合には、第1のpH条件は、抗体との結合は、樹脂−金属複合体100の分散と抗体の活性を維持したまま樹脂−金属複合体100と抗体を均一に接触させる観点から、pH2〜7の範囲内の条件が好ましく、さらに酸性条件、例えばpH2.5〜5.5の範囲内がより好ましい。金属粒子20が金粒子である場合、樹脂−金属複合体100と抗体とを結合させるときの条件が、pH2未満では強酸性により抗体が変質失活する場合があり、pH7を超えると樹脂−金属複合体100と抗体を混合した際に凝集し分散が困難となる。ただし、強酸性により抗体が失活しない場合はpH2未満においても処理が可能である。

0084

また、樹脂−金属複合体100の金属粒子20が金以外の粒子、例えばパラジウム粒子、またはそれらの合金等である場合には、第1のpH条件は、抗体との結合は、樹脂−金属複合体100の分散と抗体の活性を維持したまま樹脂−金属複合体100と抗体を均一に接触させる観点から、pH2〜10の範囲内の条件が好ましく、さらに例えばpH5〜9の範囲内がより好ましい。金属粒子20が金以外の粒子である場合、樹脂−金属複合体100と抗体とを結合させるときの条件が、pH2未満では強酸性により抗体が変質し失活する場合があり、pH10を超えると樹脂−金属複合体100と抗体を混合した際に凝集し分散が困難となる。ただし、強酸性により抗体が失活しない場合はpH2未満においても処理が可能である。

0085

工程Aは、第1のpH条件に調整した結合用緩衝液(Binding Buffer)中で行うことが好ましい。例えば、上記pHに調整した結合用緩衝液に所定量の樹脂−金属複合体100を混合し、十分に混和する。結合用緩衝液としては、例えば、所定濃度に調整したホウ酸溶液などを用いることができる。結合用緩衝液のpHの調整は、例えば塩酸、水酸化ナトリウムなどを用いて行うことができる。

0086

次に、得られた混合液に、所定量の抗体を添加し、十分に撹拌、混合することによって、標識抗体含有液を得ることができる。このようにして得られた標識抗体含有液は、例えば遠心分離などの固液分離手段により、固形部分として標識抗体150のみを分取できる。

0087

[工程B]
工程Bでは、工程Aで得られた標識抗体150を第2のpH条件で処理することによって、標識抗体150への非特異的な吸着を抑制するブロッキングを行う。この場合、固液分離手段によって分取しておいた標識抗体150を、第2のpH条件で液相中に分散させる。このブロッキングの条件は、樹脂−金属複合体100における金属粒子20の金属種によって異なる。

0088

樹脂−金属複合体100の金属粒子20が金粒子である場合には、第2のpH条件は、抗体の活性を保ちかつ標識抗体150の凝集を抑制する観点から、例えばpH2〜9の範囲内が好ましく、標識抗体150の非特異的な吸着を抑制する観点から、さらに酸性条件、例えばpH2〜6の範囲内がより好ましい。ブロッキングの条件が、pH2未満では強酸性により抗体が変質し失活する場合があり、pH9を超えると標識抗体150が凝集してしまい分散が困難となる。

0089

また、樹脂−金属複合体100の金属粒子20が金以外の粒子である場合には、第2のpH条件は、抗体の活性を保ちかつ標識抗体150の凝集を抑制する観点から、例えばpH2〜10の範囲内が好ましく、標識抗体150の非特異的な吸着を抑制する観点から、pH5〜9の範囲内がより好ましい。ブロッキングの条件が、pH2未満では強酸性により抗体が変質し失活する場合があり、pH10を超えると標識抗体150が凝集してしまい分散が困難となる。

0090

工程Bは、第2のpH条件に調整したブロック用緩衝液(Blocking Buffer)を用いて行うことが好ましい。例えば、所定量の標識抗体150に上記pHに調整したブロック用緩衝液を添加し、ブロック用緩衝液中で標識抗体150を均一に分散させる。ブロック用緩衝液としては、例えば、被検出物と結合しない蛋白質の溶液を用いることが好ましい。ブロック用緩衝液に使用可能な蛋白質としては、例えば牛血清アルブミン卵白アルブミンカゼインゼラチンなどを挙げることができる。より具体的には、所定濃度に調整した牛血清アルブミン溶液などを用いることが好ましい。ブロック用緩衝液のpHの調整は、例えば塩酸、水酸化ナトリウムなどを用いて行うことができる。標識抗体150の分散には、例えば超音波処理などの分散手段を用いることが好ましい。このようにして標識抗体150が均一分散した分散液が得られる。

0091

以上のようにして、標識抗体150の分散液が得られる。この分散液から、例えば遠心分離などの固液分離手段により、固形部分として標識抗体150のみを分取できる。また、必要に応じて、洗浄処理保存処理などを実施することができる。以下、洗浄処理、保存処理について説明する。

0092

(洗浄処理)
洗浄処理は、固液分離手段によって分取した標識抗体150に洗浄用緩衝液を添加し、洗浄用緩衝液中で標識抗体150を均一に分散させる。分散には、例えば超音波処理などの分散手段を用いることが好ましい。洗浄用緩衝液としては、特に限定されるものではないが、例えばpH8〜9の範囲内に調整した所定濃度の、トリス(Tris)緩衝液、グリシンアミド緩衝液、アルギニン緩衝液などを用いることができる。洗浄用緩衝液のpHの調整は、例えば塩酸、水酸化ナトリウムなどを用いて行うことができる。標識抗体150の洗浄処理は、必要に応じて複数回を繰り返し行うことができる。

0093

(保存処理)
保存処理は、固液分離手段によって分取した標識抗体150に保存用緩衝液を添加し、保存用緩衝液中で標識抗体150を均一に分散させる。分散には、例えば超音波処理などの分散手段を用いることが好ましい。保存用緩衝液としては、例えば、洗浄用緩衝液に、所定濃度の凝集防止剤及び/又は安定剤を添加した溶液などを用いることができる。凝集防止剤としては、例えば、スクロースマルトースラクトーストレハロースに代表される糖類や、グリセリン、ポリビニルアルコールに代表される多価アルコールなどを用いることができる。安定剤としては、特に限定されるものではないが、例えば牛血清アルブミン、卵白アルブミン、カゼイン、ゼラチンなどの蛋白質を用いることができる。このようにして標識抗体150の保存処理を行うことができる。

0094

以上の各工程では、さらに必要に応じて、界面活性剤や、アジ化ナトリウムパラオキシ安息香酸エステルなどの防腐剤を用いることができる。

0095

[アナライト検出・定量キット]
本発明の一実施の形態に係るアナライト測定用キットは、例えばラテラルフロー型クロマト用テストストリップ200を用いて、本実施の形態のアナライトの測定方法に基づき、試料中に含まれるアナライト160の検出又は定量するためのキットである。

0096

本実施の形態のキットは、
メンブレン110と
メンブレン110に、前記アナライト160と特異的に結合する捕捉リガンドが固定されてなる判定部130を含むラテラルフロー型クロマト用テストストリップ200と、
アナライト160に特異的に結合する抗体を樹脂粒子10に複数の金属粒子20が固定化された構造を有する樹脂−金属複合体100で標識した標識抗体150を含む検出試薬と、
を含んでいる。本実施の形態のキットは、必要に応じて、さらにその他の構成要素を含むものであってもよい。

0097

本発明に係るキットを使用するにあたっては、試料中のアナライト160と検出試薬中の標識抗体150とを接触させて工程(I)を実施した後、テストストリップ200の反応部又は試料添加部120に試料を供して、工程(II)、工程(III)を順次実施してもよい。あるいは、テストストリップ200の判定部130よりも上流側に、検出試薬を塗布して、適宜乾燥させて反応部を形成した後、形成された反応部あるいは該反応部よりも上流側の位置(例えば、試料添加部120)に試料を添加して、工程(I)〜(III)を順次実施してもよい。

0098

次に、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。以下の実施例、比較例において特にことわりのない限り、各種測定、評価は下記によるものである。

0099

<樹脂−金属複合体の吸光度測定
樹脂−金属複合体の吸光度は、光学用白板ガラスセル光路長10mm)に0.01wt%に調製した樹脂−金属複合体分散液(分散媒:水)を入れ、瞬間マルチ測光システム(大塚電子社製、MCPD−3700)を用いて、金の場合570nmの吸光度を測定した。金の場合570nmでの吸光度が0.9以上を○(良好)、0.5〜0.9未満を△(可)、0.5未満を×(不可)とした。

0100

固形分濃度測定及び金属担持量の測定>
磁製るつぼ濃度調整前の分散液1gを入れ、70℃、3時間熱処理を行った。熱処理前後の重量を測定し、下記式により固形分濃度を算出した。

0101

固形分濃度(wt%)=[乾燥後の重量(g)/ 乾燥前の重量(g)]× 100

0102

また、上記熱処理後のサンプルを、さらに500℃、5時間加熱処理を行い、加熱処理前後の重量を測定し、下記式より金属担持量を算出した。
金属担持量(wt%)=
[500℃加熱処理後の重量(g)/500℃加熱処理前の重量(g)]×100

0103

<樹脂粒子及び樹脂−金属複合体の平均粒子径の測定>
ディスク遠心式粒度分布測定装置(CPSDisc Centrifuge DC24000 UHR、CPS instruments, Inc.社製)を用いて測定した。測定は、樹脂−金属複合体を水に分散させた状態で行った。

0104

<イムノクロマトグラフによる評価>
各実施例等で作製した樹脂−金属複合体標識抗体分散液を用いて、下記に示すイムノクロマト法での測定を行って樹脂−金属複合体分散液の性能を評価した。
評価方法
評価は、インフルエンザA型評価用モノクロスクリーンアドテック社製)を用い、5分後、10分後、15分後の発色レベルを比較した。性能評価において、抗原はインフルエンザA型陽性コントロール(APC)の2倍希釈列(1倍〜1024倍)を用いた(APC希釈前のウィルスの濃度は5000FFU/ml)。
評価手順
96ウェルプレートの各ウェルに、樹脂−金属複合体標識抗体分散液を3μlずつ入れ、APCの2倍希釈列(1倍〜1024倍)及び陰性コントロールを、それぞれ100μlを混和した。次に、インフルエンザA型評価用モノクロスクリーンに50μl添加し、5分後、10分後、15分後の発色レベルを評価した。発色レベルは金コロイド判定用色見本(アドテック社製)を用いて判定した。

0105

<金属粒子の平均粒子径の測定>
金属粒子の平均粒子径の測定は、樹脂−金属複合体分散液をカーボン支持膜付き金属性メッシュ滴下して作製した基板を、電界放出走査電子顕微鏡(FE−SEM;日立ハイテクノロジーズ社製、SU−9000)により観測した画像から、金属粒子の面積平均径を測定した。

0106

[実施例1]
<樹脂粒子の合成>
Aliquat 336[アルドリッチ社製](1.00g)及びポリエチレングリコールメチルエーテルメタクリレート(PEGMA、2.00g)を80gの純水に溶解した後、2−ビニルピリジン(2−VP、9.90g)及びジビニルベンゼン(DVB、0.100g)を加え、窒素気流下において250rpm、60℃で30分間撹拌した。撹拌後、9.00gの純水に溶解した2,2−アゾビス(2−メチルプロピオンアミジン二塩酸塩AIBA、0.100g)を5分かけて滴下し、250rpm、60℃で6時間撹拌することで、平均粒子径0.45μmの樹脂粒子を得た。この樹脂粒子を遠心分離(9000rpm、10分)により沈殿させ、上澄みを除去した後、純水に再度分散させ、10wt%の樹脂粒子分散液を得た。

0107

<樹脂−金属複合体の合成>
前記樹脂粒子分散液(3.05g)に30mM塩化金酸水溶液(80g)を加え、室温で24時間放置した。その後、遠心分離(3000rpm、10分)により樹脂粒子を沈殿させ、上澄みを除去することで余分な塩化金酸を除去した後、55gの純水に再度分散させ、金イオン吸着樹脂粒子分散液を調製した。この金イオン吸着樹脂粒子分散液45gを10mMのジメチルアミンボラン水溶液(450ml)に8分かけて滴下した後、室温で2時間撹拌することで、平均粒子径0.6μmの樹脂−金複合体を得た。この樹脂−金複合体を遠心分離(3000rpm、120分)により沈殿させ、上澄みを除去した後、37gの純水に再度分散させ、限外濾過膜により精製することで、1wt%の樹脂−金複合体分散液を得た。この樹脂−金複合体分散液中の樹脂−金複合体の吸光度は上記方法に従って測定した結果、1.20であった。また、樹脂−金複合体における金粒子の平均粒子径は22.0nm、金の担持量は49.4wt%であった。作製した樹脂−金複合体の走査型電子顕微鏡(SEM)写真を図3に示した。

0108

[実施例2]
実施例1で得た樹脂粒子分散液(3.05g)に10mMの塩化金酸水溶液(56g)を加えた他は、実施例1と同様の方法で、金イオン吸着樹脂粒子分散液、平均粒子径0.6μmの樹脂−金複合体及び1wt%の樹脂−金複合体分散液を得た。この樹脂−金複合体分散液中の樹脂−金複合体の吸光度は1.04であった。また、樹脂−金複合体における金粒子の平均粒子径は7.61nm、金の担持量は36.8wt%であった。

0109

[実施例3]
<樹脂粒子の合成>
2−VP(9.90g)及びDVB(0.100g)を450gの純水に加え、窒素気流下において250rpm、60℃で30分間撹拌した。30分撹拌した後、9.00gの純水に溶解したAIBA(0.100g)を5分かけて滴下し、250rpmで6時間撹拌することで平均粒子径0.10μmの樹脂粒子を得た。この樹脂粒子を遠心分離(9000rpm、20分)により沈殿させ、上澄みを除去した後、純水に再度分散させ、10wt%の樹脂粒子分散液を得た。
<樹脂−金属複合体の合成>
樹脂粒子分散液(5.0g)に30mMの塩化金酸水溶液(198g)を加え、室温で24時間放置した。その後、遠心分離(3000rpm、10分)により樹脂粒子を沈殿させ、上澄みを除去することで余分な塩化金酸を除去した後、1.5gの純水に再度分散させ、金イオン吸着樹脂粒子分散液を調製した。この金イオン吸着樹脂粒子分散液(1.5g)を10mMのジメチルアミンボラン水溶液(65ml)に2分かけて滴下した後、室温で2時間撹拌することで、平均粒子径0.22μmの樹脂−金複合体を得た。この樹脂−金複合体に10wt%の分散剤(BYK194)600μlを加え1時間撹拌した後、遠心分離(9000rpm、10分)により沈殿させ、上澄みを除去した。その後、適量の純水を加え再度分散させ、限外濾過膜により精製し、1wt%の樹脂−金複合体分散液を得た。この樹脂−金複合体分散液中の樹脂−金複合体の吸光度は1.12であった。また、樹脂−金複合体における金粒子の平均粒子径は22.6nm、金の担持量は37.0wt%であった。

0110

[比較例1]
<イムノクロマトの評価>
着色ラテックス(メルクミリポア社製、着色Estapor機能性粒子、K1030、平均粒子径;392nm、570nmでの吸光度は0.83、400nmでの吸光度は1.11)1ml(0.1wt%)にインフルエンザ抗体を100μg混合し、室温で約3時間攪拌して着色ラテックスに抗体を結合させた。終濃度が1%となるように牛血清アルブミン溶液を添加し、室温にて2時間攪拌して着色ラテックスをブロックした。12000rpm、4℃で5分間遠心分離を行って回収し、0.2%牛血清アルブミンを含む緩衝液に懸濁して着色ラテックス標識抗体を作製した。
作製した着色ラテックス標識抗体を用いて、下記に示すイムノクロマト法での測定を行って着色ラテックスの性能を評価した。
(評価方法)
評価は、インフルエンザA型評価用モノクロスクリーン(アドテック社製)を用い、5分後、10分後、15分後の発色レベルを比較した。性能評価において、抗原はインフルエンザA型陽性コントロール(APC)の2倍希釈列(1倍〜1024倍)を用いた(APC希釈前のウィルスの濃度は5000FFU/ml)。
(評価手順)
96ウェルプレートの各ウェルに、着色ラテックス標識抗体を3μlずつ入れ、APCの2倍希釈列(1倍〜1024倍)及び陰性コントロールを、それぞれ100μlを混和した。次に、インフルエンザA型評価用モノクロスクリーンに50μl添加し、5分後、10分後、15分後の発色レベルを評価した。その結果を以下に示した。

0111

0112

上記表1Aから、着色ラテックス標識抗体は、16倍希釈の抗原に対して良好な発色を示すことが確認された。

0113

以上の実施例及び比較例の吸光度の結果をまとめて表1Bに示した。

0114

0115

[比較例2]
〈金コロイドの合成〉
500ml三つ口丸底フラスコに1mM塩化金酸水溶液を250ml入れ、加熱還流装置を用い、激しく攪拌しながら沸騰させ、沸騰後38.8mMクエン酸ナトリウム水溶液を25ml添加し、溶液が淡黄色から濃紅色に変化することを確認した。攪拌しながら10分間加熱を続けた後、室温で30分程度攪拌放冷をおこなった。孔径2μmのメンブランフィルターを用いて溶液をろ過し、三角フラスコに移し冷暗所で保存した。作製した粒子の平均粒径は12.3nmであった。

0116

<イムノクロマトの評価>
得られた金コロイド1ml(OD=10)にインフルエンザ抗体を100μg混合し、室温で約3時間攪拌して金コロイドに抗体を結合させた。終濃度が1%となるように牛血清アルブミン溶液を添加し、室温にて2時間攪拌して金コロイド表面をブロックした。12000rpm、4℃で5分間遠心分離を行って回収し、0.2%牛血清アルブミンを含む緩衝液に懸濁して金コロイド標識抗体を作製した。
作製した金コロイド標識抗体を用いて、下記に示すイムノクロマト法での測定を行って金コロイドの性能を評価した。
(評価方法)
評価は、インフルエンザA型評価用モノクロスクリーン(アドテック社製)を用い、5分後、10分後、15分後の発色レベルを比較した。性能評価において、抗原はインフルエンザA型陽性コントロール(APC)の2倍希釈列(1倍〜1024倍)を用いた(APC希釈前のウィルスの濃度は5000FFU/ml)。
(評価手順)
96ウェルプレートの各ウェルに、金コロイド標識抗体を3μlずつ入れ、APCの2倍希釈列(1倍〜1024倍)及び陰性コントロールを、それぞれ100μlを混和した。次に、インフルエンザA型評価用モノクロスクリーンに50μl添加し、5分後、10分後、15分後の発色レベルを評価した。その結果を以下に示した。

0117

0118

上記表2から、金コロイド標識抗体は、32倍希釈の抗原に対して良好な発色を示すことが確認された。

0119

[比較例3]
<樹脂粒子の合成>
Aliquat 336[アルドリッチ社製](5.00g)及びポリエチレングリコールメチルエーテルメタクリレート(PEGMA、10.00g)を389.5gの純水に溶解した後、2−ビニルピリジン(2−VP、48.00g)及びジビニルベンゼン(DVB、2.00g)を加え、窒素気流下において150rpm、30℃で50分、次いで60℃で30分間撹拌した。撹拌後、50.00gの純水に溶解した2,2−アゾビス(2−メチルプロピオンアミジン)二塩酸塩(AIBA、0.500g)を2分かけて滴下し、150rpm、60℃で3.5時間撹拌することで、平均粒子径200nmの樹脂粒子を得た。遠心分離(9000rpm、60分)により沈殿させ、上澄みを除去した後、純水に再度分散させる操作を3回行った後、透析処理により不純物を除去した。その後、濃度調整を行い10wt%の樹脂粒子分散液を得た。

0120

上記樹脂ビーズ(50ml)に純水1233mlを加えた後、30mM塩化金酸水溶液(100ml)を加え、室温で24時間放置した。その後、遠心分離(3100rpm、30分)により樹脂粒子を沈殿させ、上澄みを除去する作業を3回繰り返すことで余分な塩化金酸を除去した。その後、濃度調整を行い、2.5wt%金イオン吸着樹脂粒子分散液を調製した。

0121

次に、純水1580mlに前記2.5wt%金イオン吸着樹脂粒子分散液(42.4ml)を加え、160rpm、20℃で撹拌しながら、528mMのジメチルアミンボラン水溶液(10ml)と528mMのホウ酸水溶液(10ml)の混合溶液を4分かけて滴下した後、室温で2時間撹拌することで、平均粒子径250nmの樹脂−金複合体を得た。前記樹脂−金複合体を遠心分離(3100rpm、60分)により沈殿させ、上澄みを除去した後、純水に再度分散させる作業を3回繰り返した後、透析処理により精製、濃度調整することで、1wt%の樹脂−金複合体分散液を得た。作製した樹脂−金複合体の吸光度は上記方法に従って測定した結果、1.69であった。また、形成した金粒子の平均粒子径は75.0nm、金の担持量は52.3wt%であった。

0122

〈イムノクロマトの評価〉
得られた樹脂—金複合体分散液1ml(0.1wt%)にインフルエンザ抗体を100μg混合し、室温で約3時間攪拌して樹脂−金複合体に抗体を結合させた。終濃度が1%となるように牛血清アルブミン溶液を添加し、室温にて2時間攪拌して樹脂−金複合体表面をブロックした。12000rpm、4℃で5分間遠心分離を行って回収し、0.2%牛血清アルブミンを含む緩衝液に懸濁して樹脂−金複合体標識抗体分散液を作製した。
作製した樹脂−金複合体標識抗体分散液を用いて、イムノクロマト法での測定を行って当該樹脂−金複合体分散液の性能を評価した。その結果を以下に示した。

0123

0124

上記表3から、樹脂−金複合体標識抗体は、16倍希釈の抗原に対して良好な発色を示すことが確認された。

0125

[実施例4]
Aliquat 336[アルドリッチ社製](1.00g)及びポリエチレングリコールメチルエーテルメタクリレート(PEGMA、10.00g)を300gの純水に溶解した後、2−ビニルピリジン(2−VP、48.00g)及びジビニルベンゼン(DVB、2.00g)を加え、窒素気流下において150rpm、30℃で50分、次いで60℃で30分間撹拌した。撹拌後、18.00gの純水に溶解した2,2−アゾビス(2−メチルプロピオンアミジン)二塩酸塩(AIBA、0.500g)を0.5分かけて滴下し、150rpm、60℃で3.5時間撹拌することで、平均粒子径500nmの樹脂粒子を得た。遠心分離(9000rpm、40分)により沈殿させ、上澄みを除去した後、純水に再度分散させる操作を3回行った後、透析処理により不純物を除去した。その後、濃度調整を行い10wt%の樹脂粒子分散液を得た。

0126

上記樹脂ビーズ(50ml)に純水1233mlを加えた後、30mM塩化金酸水溶液(100ml)を加え、室温で24時間放置した。その後、遠心分離(3100rpm、30分)により樹脂粒子を沈殿させ、上澄みを除去する作業を3回繰り返すことで余分な塩化金酸を除去した。その後、濃度調整を行い、2.5wt%金イオン吸着樹脂粒子分散液を調製した。

0127

次に、純水1580mlに前記2.5wt%金イオン吸着樹脂粒子分散液(42.4ml)を加え、160rpm、20℃で撹拌しながら、528mMのジメチルアミンボラン水溶液(10ml)を2分かけて滴下した後、室温で2時間撹拌することで、平均粒子径510nmの樹脂−金複合体を得た。前記樹脂−金複合体を遠心分離(3100rpm、60分)により沈殿させ、上澄みを除去した後、純水に再度分散させる作業を3回繰り返した後、透析処理により精製、濃度調整することで、1wt%の樹脂−金複合体分散液を得た。作製した樹脂−金複合体の吸光度は上記方法に従って測定した結果、1.01であった。また、形成した金粒子の平均粒子径は46.3nm、金の担持量は54.2wt%であった。この樹脂−金複合体において、金粒子は、樹脂粒子に完全に内包された内包金粒子と、樹脂粒子内に埋包された部位及び樹脂粒子外に露出した部位を有する一部露出金粒子と、樹脂粒子の表面に吸着している表面吸着金粒子と、を含んでおり、少なくとも一部の金粒子が、樹脂粒子の表層部において三次元的に分布していた。

0128

〈イムノクロマトの評価〉
得られた樹脂—金複合体分散液1ml(0.1wt%)にインフルエンザ抗体を100μg混合し、室温で約3時間攪拌して樹脂−金複合体に抗体を結合させた。終濃度が1%となるように牛血清アルブミン溶液を添加し、室温にて2時間攪拌して樹脂−金複合体表面をブロックした。12000rpm、4℃で5分間遠心分離を行って回収し、0.2%牛血清アルブミンを含む緩衝液に懸濁して樹脂−金複合体標識抗体分散液を作製した。
作製した樹脂−金複合体標識抗体分散液を用いて、イムノクロマト法での測定を行って当該樹脂−金複合体分散液の性能を評価した。その結果を以下に示した。

0129

0130

上記表4から、樹脂−金複合体標識抗体は、256倍希釈の抗原に対して良好な発色を示すことが確認された。

0131

[実施例5]
Aliquat 336[アルドリッチ社製](0.50g)及びポリエチレングリコールメチルエーテルメタクリレート(PEGMA、10.00g)を300gの純水に溶解した後、2−ビニルピリジン(2−VP、48.00g)及びジビニルベンゼン(DVB、2.00g)を加え、窒素気流下において150rpm、30℃で50分、次いで60℃で30分間撹拌した。撹拌後、18.00gの純水に溶解した2,2−アゾビス(2−メチルプロピオンアミジン)二塩酸塩(AIBA、0.500g)を0.5分かけて滴下し、150rpm、60℃で3.5時間撹拌することで、平均粒子径613nmの樹脂粒子を得た。遠心分離(9000rpm、40分)により沈殿させ、上澄みを除去した後、純水に再度分散させる操作を3回行った後、透析処理により不純物を除去した。その後、濃度調整を行い10wt%の樹脂粒子分散液を得た。

0132

上記樹脂ビーズ(50ml)に純水1233mlを加えた後、30mM塩化金酸水溶液(100ml)を加え、室温で24時間放置した。その後、遠心分離(3100rpm、30分)により樹脂粒子を沈殿させ、上澄みを除去する作業を3回繰り返すことで余分な塩化金酸を除去した。その後、濃度調整を行い、2.5wt%金イオン吸着樹脂粒子分散液を調製した。

0133

次に、純水1580mlに前記2.5wt%金イオン吸着樹脂粒子分散液(42.4ml)を加え、160rpm、3℃で撹拌しながら、528mMのジメチルアミンボラン水溶液(10ml)を2分かけて滴下した後、室温で2時間撹拌することで、平均粒子径625nmの樹脂−金複合体を得た。前記樹脂−金複合体を遠心分離(3100rpm、60分)により沈殿させ、上澄みを除去した後、純水に再度分散させる作業を3回繰り返した後、透析処理により精製、濃度調整することで、1wt%の樹脂−金複合体分散液を得た。作製した樹脂−金複合体の吸光度は上記方法に従って測定した結果、0.98であった。また、形成した金粒子の平均粒子径は25.0nm、金の担持量は55.3wt%であった。この樹脂−金複合体において、金粒子は、樹脂粒子に完全に内包された内包金粒子と、樹脂粒子内に埋包された部位及び樹脂粒子外に露出した部位を有する一部露出金粒子と、樹脂粒子の表面に吸着している表面吸着金粒子と、を含んでおり、少なくとも一部の金粒子が、樹脂粒子の表層部において三次元的に分布していた。

0134

〈イムノクロマトの評価〉
得られた樹脂—金複合体分散液1ml(0.1wt%)にインフルエンザ抗体を100μg混合し、室温で約3時間攪拌して樹脂−金複合体に抗体を結合させた。終濃度が1%となるように牛血清アルブミン溶液を添加し、室温にて2時間攪拌して樹脂−金複合体表面をブロックした。12000rpm、4℃で5分間遠心分離を行って回収し、0.2%牛血清アルブミンを含む緩衝液に懸濁して樹脂−金複合体標識抗体分散液を作製した。

0135

作製した樹脂−金複合体標識抗体分散液を用いて、イムノクロマト法での測定を行って当該樹脂−金複合体分散液の性能を評価した。その結果を以下に示した。

0136

0137

上記表5から、樹脂−金複合体標識抗体は、256倍希釈の抗原に対して良好な発色を示すことが確認された。

0138

[実施例6]
Aliquat 336[アルドリッチ社製](1.00g)及びポリエチレングリコールメチルエーテルメタクリレート(PEGMA、10.00g)を300gの純水に溶解した後、4−ビニルピリジン(4−VP、48.00g)及びジビニルベンゼン(DVB、2.00g)を加え、窒素気流下において150rpm、30℃で50分、次いで60℃で30分間撹拌した。撹拌後、18.00gの純水に溶解した2,2−アゾビス(2−メチルプロピオンアミジン)二塩酸塩(AIBA、0.500g)を2分かけて滴下し、150rpm、60℃で3.5時間撹拌することで、平均粒子径438nmの樹脂粒子を得た。遠心分離(9000rpm、45分)により沈殿させ、上澄みを除去した後、純水に再度分散させる操作を3回行った後、透析処理により不純物を除去した。その後、濃度調整を行い10wt%の樹脂粒子分散液を得た。

0139

上記樹脂ビーズ(50ml)に純水1233mlを加えた後、30mM塩化金酸水溶液(100ml)を加え、室温で24時間放置した。その後、遠心分離(3100rpm、30分)により樹脂粒子を沈殿させ、上澄みを除去する作業を3回繰り返すことで余分な塩化金酸を除去した。その後、濃度調整を行い、2.5wt%金イオン吸着樹脂粒子分散液を調製した。

0140

次に、純水1580mlに前記2.5wt%金イオン吸着樹脂粒子分散液(42.4ml)を加え、160rpm、3℃で撹拌しながら、528mMのジメチルアミンボラン水溶液(10ml)を2分かけて滴下した後、室温で2時間撹拌することで、平均粒子径448nmの樹脂−金複合体を得た。前記樹脂−金複合体を遠心分離(3100rpm、60分)により沈殿させ、上澄みを除去した後、純水に再度分散させる作業を3回繰り返した後、透析処理により精製、濃度調整することで、1wt%の樹脂−金複合体分散液を得た。作製した樹脂−金複合体の吸光度は上記方法に従って測定した結果、0.99であった。また、形成した金粒子の平均粒子径は24.0nm、金の担持量は55.7wt%であった。この樹脂−金複合体において、金粒子は、樹脂粒子に完全に内包された内包金粒子と、樹脂粒子内に埋包された部位及び樹脂粒子外に露出した部位を有する一部露出金粒子と、樹脂粒子の表面に吸着している表面吸着金粒子と、を含んでおり、少なくとも一部の金粒子が、樹脂粒子の表層部において三次元的に分布していた。

0141

〈イムノクロマトの評価〉
得られた樹脂—金複合体分散液1ml(0.1wt%)にインフルエンザ抗体を100μg混合し、室温で約3時間攪拌して樹脂−金複合体に抗体を結合させた。終濃度が1%となるように牛血清アルブミン溶液を添加し、室温にて2時間攪拌して樹脂−金複合体表面をブロックした。12000rpm、4℃で5分間遠心分離を行って回収し、0.2%牛血清アルブミンを含む緩衝液に懸濁して樹脂−金複合体標識抗体分散液を作製した。

0142

作製した樹脂−金複合体標識抗体分散液を用いて、イムノクロマト法での測定を行って当該樹脂−金複合体分散液の性能を評価した。その結果を以下に示した。

0143

0144

上記表6から、樹脂−金複合体標識抗体は、256倍希釈の抗原に対して良好な発色を示すことが確認された。

0145

[実施例7]
Aliquat 336[アルドリッチ社製](1.00g)及びポリエチレングリコールメチルエーテルメタクリレート(PEGMA、10.00g)を300gの純水に溶解した後、3−ビニルピリジン(3−VP、48.00g)及びジビニルベンゼン(DVB、2.00g)を加え、窒素気流下において150rpm、30℃で50分、次いで60℃で30分間撹拌した。撹拌後、18.00gの純水に溶解した2,2−アゾビス(2−メチルプロピオンアミジン)二塩酸塩(AIBA、0.500g)を2分かけて滴下し、150rpm、60℃で3.5時間撹拌することで、平均粒子径429nmの樹脂粒子を得た。遠心分離(9000rpm、45分)により沈殿させ、上澄みを除去した後、純水に再度分散させる操作を3回行った後、透析処理により不純物を除去した。その後、濃度調整を行い10wt%の樹脂粒子分散液を得た。

0146

上記樹脂ビーズ(50ml)に純水1233mlを加えた後、30mM塩化金酸水溶液(100ml)を加え、室温で24時間放置した。その後、遠心分離(3100rpm、30分)により樹脂粒子を沈殿させ、上澄みを除去する作業を3回繰り返すことで余分な塩化金酸を除去した。その後、濃度調整を行い、2.5wt%金イオン吸着樹脂粒子分散液を調製した。

0147

次に、純水1580mlに前記2.5wt%金イオン吸着樹脂粒子分散液(42.4ml)を加え、160rpm、3℃で撹拌しながら、528mMのジメチルアミンボラン水溶液(10ml)を2分かけて滴下した後、室温で2時間撹拌することで、平均粒子径436nmの樹脂−金複合体を得た。前記樹脂−金複合体を遠心分離(3100rpm、60分)により沈殿させ、上澄みを除去した後、純水に再度分散させる作業を3回繰り返した後、透析処理により精製、濃度調整することで、1wt%の樹脂−金複合体分散液を得た。作製した樹脂−金複合体の吸光度は上記方法に従って測定した結果、1.03であった。また、形成した金粒子の平均粒子径は24.3nm、金の担持量は55.5wt%であった。この樹脂−金複合体において、金粒子は、樹脂粒子に完全に内包された内包金粒子と、樹脂粒子内に埋包された部位及び樹脂粒子外に露出した部位を有する一部露出金粒子と、樹脂粒子の表面に吸着している表面吸着金粒子と、を含んでおり、少なくとも一部の金粒子が、樹脂粒子の表層部において三次元的に分布していた。

0148

〈イムノクロマトの評価〉
得られた樹脂—金複合体分散液1ml(0.1wt%)にインフルエンザ抗体を100μg混合し、室温で約3時間攪拌して樹脂−金複合体に抗体を結合させた。終濃度が1%となるように牛血清アルブミン溶液を添加し、室温にて2時間攪拌して樹脂−金複合体表面をブロックした。12000rpm、4℃で5分間遠心分離を行って回収し、0.2%牛血清アルブミンを含む緩衝液に懸濁して樹脂−金複合体標識抗体分散液を作製した。

0149

作製した樹脂−金複合体標識抗体分散液を用いて、イムノクロマト法での測定を行って当該樹脂−金複合体分散液の性能を評価した。その結果を以下に示した。

0150

0151

上記表7から、樹脂−金複合体標識抗体は、256倍希釈の抗原に対して良好な発色を示すことが確認された。

0152

[実施例8]
2−(ジイソプロピルアミノエチルメタクリレートDPA、10.3g)、ポリ(プロピレングリコールジアクリレート(0.2g)とポリエチレングリコールメチルエーテルメタクリレート(PEGMA、2.0g)を85gの純水に溶解した後、窒素気流下において150rpm、30℃で50分、次いで70℃で30分間撹拌した。撹拌後、2.00gの純水に溶解したペルオキソ二硫酸アンモニウムAPS、0.10g)を2分かけて滴下し、150rpm、70℃で3.5時間撹拌することで、平均粒子径338nmの樹脂粒子を得た。遠心分離(9000rpm、45分)により沈殿させ、上澄みを除去した後、純水に再度分散させる操作を3回行った後、透析処理により不純物を除去した。その後、濃度調整を行い10wt%の樹脂粒子分散液を得た。

0153

上記樹脂ビーズ(50ml)に純水1233mlを加えた後、30mM塩化金酸水溶液(100ml)を加え、室温で24時間放置した。その後、遠心分離(3100rpm、30分)により樹脂粒子を沈殿させ、上澄みを除去する作業を3回繰り返すことで余分な塩化金酸を除去した。その後、濃度調整を行い、2.5wt%金イオン吸着樹脂粒子分散液を調製した。

0154

次に、純水1580mlに前記2.5wt%金イオン吸着樹脂粒子分散液(42.4ml)を加え、160rpm、3℃で撹拌しながら、528mMのジメチルアミンボラン水溶液(10ml)を2分かけて滴下した後、室温で2時間撹拌することで、平均粒子径345nmの樹脂−金複合体を得た。前記樹脂−金複合体を遠心分離(3100rpm、60分)により沈殿させ、上澄みを除去した後、純水に再度分散させる作業を3回繰り返した後、透析処理により精製、濃度調整することで、1wt%の樹脂−金複合体分散液を得た。作製した樹脂−金複合体の吸光度は上記方法に従って測定した結果、0.96であった。また、形成した金粒子の平均粒子径は24.6nm、金の担持量は48.5wt%であった。この樹脂−金複合体において、金粒子は、樹脂粒子に完全に内包された内包金粒子と、樹脂粒子内に埋包された部位及び樹脂粒子外に露出した部位を有する一部露出金粒子と、樹脂粒子の表面に吸着している表面吸着金粒子と、を含んでおり、少なくとも一部の金粒子が、樹脂粒子の表層部において三次元的に分布していた。

0155

〈イムノクロマトの評価〉
得られた樹脂—金複合体分散液1ml(0.1wt%)にインフルエンザ抗体を100μg混合し、室温で約3時間攪拌して樹脂−金複合体に抗体を結合させた。終濃度が1%となるように牛血清アルブミン溶液を添加し、室温にて2時間攪拌して樹脂−金複合体表面をブロックした。12000rpm、4℃で5分間遠心分離を行って回収し、0.2%牛血清アルブミンを含む緩衝液に懸濁して樹脂−金複合体標識抗体分散液を作製した。

0156

作製した樹脂−金複合体標識抗体分散液を用いて、イムノクロマト法での測定を行って当該樹脂−金複合体分散液の性能を評価した。その結果を以下に示した。

0157

0158

上記表8から、樹脂−金複合体標識抗体は、256倍希釈の抗原に対して良好な発色を示すことが確認された。

0159

[実施例9]
<樹脂粒子の合成>
Aliquat 336[アルドリッチ社製](3.00g)及びポリエチレングリコールメチルエーテルメタクリレート(PEGMA、10.00g)を300gの純水に溶解した後、2−ビニルピリジン(2−VP、49.50g)及びジビニルベンゼン(DVB、0.50g)を加え、窒素気流下において150rpm、30℃で50分、次いで60℃で30分間撹拌した。撹拌後、18.00gの純水に溶解した2,2−アゾビス(2−メチルプロピオンアミジン)二塩酸塩(AIBA、0.250g)を2分かけて滴下し、150rpm、60℃で3.5時間撹拌することで、平均粒子径370nmの樹脂粒子を得た。遠心分離(9000rpm、60分)により沈殿させ、上澄みを除去した後、純水に再度分散させる操作を3回行った後、透析処理により不純物を除去した。その後、濃度調整を行い10wt%の樹脂粒子分散液を得た。

0160

上記樹脂ビーズ(50ml)に純水1233mlを加えた後、30mM塩化金酸水溶液(100ml)を加え、室温で24時間放置した。その後、遠心分離(3100rpm、30分)により樹脂粒子を沈殿させ、上澄みを除去する作業を3回繰り返すことで余分な塩化金酸を除去した。その後、濃度調整を行い、2.5wt%金イオン吸着樹脂粒子分散液を調製した。

0161

次に、純水1580mlに前記2.5wt%金イオン吸着樹脂粒子分散液(42.4ml)を加え、160rpm、20℃で撹拌しながら、528mMのジメチルアミンボラン水溶液(10ml)を2分かけて滴下した後、室温で2時間撹拌することで、平均粒子径393nmの樹脂−金複合体を得た。前記樹脂−金複合体を遠心分離(3100rpm、60分)により沈殿させ、上澄みを除去した後、純水に再度分散させる作業を3回繰り返した後、透析処理により精製、濃度調整することで、1wt%の樹脂−金複合体分散液を得た。作製した樹脂−金複合体の吸光度は上記方法に従って測定した結果、0.92であった。また、形成した金粒子の平均粒子径は14.9nm、金の担持量は55.8wt%であった。得られた樹脂−金複合体の表面の走査型電子顕微鏡(SEM)写真を図4に、その断面の走査型透過電子顕微鏡(STEM)写真を図5に、それぞれ示した。この樹脂−金複合体において、金粒子は、樹脂粒子に完全に内包された内包金粒子と、樹脂粒子内に埋包された部位及び樹脂粒子外に露出した部位を有する一部露出金粒子と、樹脂粒子の表面に吸着している表面吸着金粒子と、を含んでおり、少なくとも一部の金粒子が、樹脂粒子の表層部において三次元的に分布していた。

0162

〈イムノクロマトの評価〉
得られた樹脂—金複合体分散液1ml(0.1wt%)にインフルエンザ抗体を100μg混合し、室温で約3時間攪拌して樹脂−金複合体に抗体を結合させた。終濃度が1%となるように牛血清アルブミン溶液を添加し、室温にて2時間攪拌して樹脂−金複合体表面をブロックした。12000rpm、4℃で5分間遠心分離を行って回収し、0.2%牛血清アルブミンを含む緩衝液に懸濁して樹脂−金複合体標識抗体分散液を作製した。

0163

作製した樹脂−金複合体標識抗体分散液を用いて、イムノクロマト法での測定を行って当該樹脂−金複合体分散液の性能を評価した。その結果を以下に示した。

0164

0165

上記表9から、樹脂−金複合体標識抗体は、64倍希釈の抗原に対して良好な発色を示すことが確認された。

0166

[実施例10]
<樹脂粒子の合成>
Aliquat 336[アルドリッチ社製](2.00g)及びポリエチレングリコールメチルエーテルメタクリレート(PEGMA、10.00g)を300gの純水に溶解した後、2−ビニルピリジン(2−VP、48.00g)及びジビニルベンゼン(DVB、2.00g)を加え、窒素気流下において150rpm、30℃で50分、次いで60℃で30分間撹拌した。撹拌後、18.00gの純水に溶解した2,2−アゾビス(2−メチルプロピオンアミジン)二塩酸塩(AIBA、0.500g)を2分かけて滴下し、150rpm、60℃で3.5時間撹拌することで、平均粒子径380nmの樹脂粒子を得た。遠心分離(9000rpm、60分)により沈殿させ、上澄みを除去した後、純水に再度分散させる操作を3回行った後、透析処理により不純物を除去した。その後、濃度調整を行い10wt%の樹脂粒子分散液を得た。

0167

上記樹脂ビーズ(50ml)に純水1233mlを加えた後、30mM塩化金酸水溶液(100ml)を加え、室温で24時間放置した。その後、遠心分離(3100rpm、30分)により樹脂粒子を沈殿させ、上澄みを除去する作業を3回繰り返すことで余分な塩化金酸を除去した。その後、濃度調整を行い、2.5wt%金イオン吸着樹脂粒子分散液を調製した。

0168

次に、純水1580mlに前記2.5wt%金イオン吸着樹脂粒子分散液(42.4ml)を加え、160rpm、20℃で撹拌しながら、528mMのジメチルアミンボラン水溶液(10ml)を2分かけて滴下した後、室温で2時間撹拌することで、平均粒子径399nmの樹脂−金複合体を得た。前記樹脂−金複合体を遠心分離(3100rpm、60分)により沈殿させ、上澄みを除去した後、純水に再度分散させる作業を3回繰り返した後、透析処理により精製、濃度調整することで、1wt%の樹脂−金複合体分散液を得た。作製した樹脂−金複合体の吸光度は上記方法に従って測定した結果、0.96であった。また、形成した金粒子の平均粒子径は25.0nm、金の担持量は53.2wt%であった。得られた樹脂−金複合体の表面の走査型電子顕微鏡(SEM)写真を図6に、その断面の走査型透過電子顕微鏡(STEM)写真を図7に、それぞれ示した。この樹脂−金複合体において、金粒子は、樹脂粒子に完全に内包された内包金粒子と、樹脂粒子内に埋包された部位及び樹脂粒子外に露出した部位を有する一部露出金粒子と、樹脂粒子の表面に吸着している表面吸着金粒子と、を含んでおり、少なくとも一部の金粒子が、樹脂粒子の表層部において三次元的に分布していた。

0169

〈イムノクロマトの評価〉
得られた樹脂—金複合体分散液1ml(0.1wt%)にインフルエンザ抗体を100μg混合し、室温で約3時間攪拌して樹脂−金複合体に抗体を結合させた。終濃度が1%となるように牛血清アルブミン溶液を添加し、室温にて2時間攪拌して樹脂−金複合体表面をブロックした。12000rpm、4℃で5分間遠心分離を行って回収し、0.2%牛血清アルブミンを含む緩衝液に懸濁して樹脂−金複合体標識抗体分散液を作製した。

0170

作製した樹脂−金複合体標識抗体分散液を用いて、イムノクロマト法での測定を行って当該樹脂−金複合体分散液の性能を評価した。その結果を以下に示した。

0171

0172

上記表10から、樹脂−金複合体標識抗体は、256倍希釈の抗原に対して良好な発色を示すことが確認された。

0173

実施例9の図5と実施例10の図7断面画像を比較すると、金粒子の60〜100%、好ましくは75〜100%が、樹脂粒子の表面から深さ方向に粒子半径の50%の範囲内に存在している実施例10の方がイムノクロマトの検出感度に優れていた。

0174

[標識抗体の作製に関する試験例]

0175

[作製例1]
<樹脂粒子の合成>
Aliquat 336[アルドリッチ社製](1.00g)及びポリエチレングリコールメチルエーテルメタクリレート(PEGMA、2.00g)を80gの純水に溶解した後、2−ビニルピリジン(2−VP、9.90g)及びジビニルベンゼン(DVB、0.100g)を加え、窒素気流下において250rpm、60℃で30分間撹拌した。撹拌後、9.00gの純水に溶解した2,2−アゾビス(2−メチルプロピオンアミジン)二塩酸塩(AIBA、0.100g)を5分かけて滴下し、250rpm、60℃で6時間撹拌することで、平均粒子径0.36μmの樹脂粒子A−1を得た。前記A−1を遠心分離(9000rpm、10分)により沈殿させ、上澄みを除去した後、純水に再度分散させ、2.1wt%の樹脂粒子分散液B−1を得た。

0176

<樹脂−金複合体の合成>
前記B−1(19.09g)に30mM塩化金酸水溶液(106.6g)を加え、室温で24時間放置した。その後、遠心分離(3000rpm、10分)により樹脂粒子を沈殿させ、上澄みを除去することで余分な塩化金酸を除去した後、40gの純水に再度分散させ、金イオン吸着樹脂粒子分散液C−1を調製した。前記C−1(20g)を3.3mMのジメチルアミンボラン水溶液(600ml)に4分かけて滴下した後、8℃で1時間撹拌し、さらに室温で5時間撹拌することで、平均粒子径0.38μmの樹脂−金複合体D−1を得た。前記D−1を遠心分離(3000rpm、120分)により沈殿させ、上澄みを除去した後、適量の純水を加えて再度分散させ、限外濾過膜により精製することで、1wt%の樹脂−金複合体分散液E−1を得た。E−1中の樹脂−金複合体F−1の吸光度は上記方法に従って測定した結果、1.0であった。また、F−1における金粒子の平均粒子径は22.0nm、金の担持量は49.1wt%であった。

0177

[試薬等]
試験例、参考試験例では以下の試薬等を使用した。
抗インフルエンザA型モノクローナル抗体(7.15mg/mL/PBS):アドテック株式会社製
結合用緩衝液a:100mMホウ酸溶液をHClでpH≒3に調整した。
結合用緩衝液b:100mM ホウ酸溶液をHClでpH≒4に調整した。
結合用緩衝液c:100mM ホウ酸溶液をHClでpH≒5に調整した。
結合用緩衝液d:100mM ホウ酸溶液 pH≒6.5
結合用緩衝液e:100mM ホウ酸溶液をNaClでpH≒7.5に調整した。
結合用緩衝液f:100mM ホウ酸溶液をNaClでpH≒8.5に調整した。
結合用緩衝液g:50mM 2−モルフォリノエタンスルホン酸溶液pH≒3.8

ブロック用緩衝液a:1重量%牛血清アルブミン溶液をHClでpH≒5に調整した。
ブロック用緩衝液b:1重量%牛血清アルブミン溶液をHClでpH≒7に調整した。
ブロック用緩衝液c:1重量%牛血清アルブミン溶液をHClでpH≒8.5に調整した。
ブロック用緩衝液d:1重量%牛血清アルブミン溶液をHClでpH≒9.5に調整した。
洗浄用緩衝液:5mMトリス溶液をHClでpH≒8.5に調整した。
保存用緩衝液:洗浄用緩衝液に、スクロースを10重量%濃度になるように添加した。
インフルエンザA型陽性コントロール(APC):インフルエンザA型ウィルス不活化抗原(アドテック株式会社製)を、検体処理液(アドテック株式会社製)を用いて100倍希釈して調製した。APCの抗原濃度は、5000FFU/mlに相当する。
陰性コントロール:検体処理液(アドテック株式会社製)
AuNCビーズ:作製例1で得た樹脂−金複合体(1重量%;平均粒子径380nm)

0178

[試験例1]

0179

(結合工程)
マイクロチューブアイビス登録商標;アズワン社製)2mL]に、樹脂−金属複合体としてAuNCPビーズ0.1mLを投入し、結合用緩衝液a0.9mLを添加した。転倒混和によって十分に混合した後、抗インフルエンザA型モノクローナル抗体100μgを添加し、室温で3時間かけて転倒撹拌を行い、樹脂−金属複合体で標識した抗インフルエンザA型モノクローナル抗体を含む標識抗体含有液A−1を得た。

0180

(ブロック工程)
次に、標識抗体含有液A−1を氷冷後、12000rpmで5分間かけて遠心分離を行い、上澄みを除去した後、固形分残渣にブロック用緩衝液a1mLを添加し、10〜20秒間かけて超音波分散処理を行い、さらに、室温で2時間かけて転倒撹拌を行い、標識抗体含有液B−1を得た。

0181

(洗浄処理)
次に、標識抗体含有液B−1を氷冷後、12000rpmで5分間かけて遠心分離を行い、上澄みを除去した後、固形分残渣に洗浄用緩衝液1mLを添加し、10〜20秒間かけて超音波分散処理を行った。この操作を3回繰り返し、洗浄処理とした。

0182

(保存処理)
次に、氷冷後、12000rpmで5分間かけて遠心分離を行い、上澄みを除去した後、固形分残渣に保存用緩衝液1mLを添加し、10〜20秒間かけて超音波分散処理を行うことによって、標識抗体含有液C−1を得た。

0183

[試験例2]
試験例1の結合工程で結合用緩衝液aの代わりに結合用緩衝液bを用いる以外は試験例1と同様にして、標識抗体含有液A−2,B−2、C−2を得た。

0184

[試験例3]
試験例1の結合工程で結合用緩衝液aの代わりに結合用緩衝液cを用いる以外は試験例1と同様にして、標識抗体含有液A−3,B−3,C−3を得た。

0185

[試験例4]
試験例1の結合工程で結合用緩衝液aの代わりに結合用緩衝液dを用いる以外は試験例1と同様にして、標識抗体含有液A−4,B−4、C−4を得た。

0186

[参考試験例1]
試験例1の結合工程で結合用緩衝液aの代わりに結合用緩衝液eを用いた場合、樹脂−金属複合体が凝集してしまうため、標識抗体含有液を得ることが困難であった。

0187

[参考試験例2]
試験例1の結合工程で結合用緩衝液aの代わりに結合用緩衝液fを用いた場合、樹脂−金属複合体が凝集してしまうため、標識抗体含有液を得ることが困難であった。

0188

[試験例5]
試験例1のブロック工程でブロック用緩衝液aの代わりにブロック用緩衝液bを用いる以外は試験例1と同様にして、標識抗体含有液B−5、C−5を得た。

0189

[試験例6]
試験例1のブロック工程でブロック用緩衝液aの代わりにブロック用緩衝液cを用いる以外は試験例1と同様にして、標識抗体含有液B−6、C−6を得た。

0190

[参考試験例3]
試験例1のブロック工程でブロック用緩衝液aの代わりにブロック用緩衝液dを用いたところ、結合工程後の標識抗体は良好な分散性を示したが、ブロック工程後に標識抗体が凝集してしまい、標識抗体含有液を得ることが困難であった。

0191

[試験例7]
試験例1の結合工程で結合用緩衝液aの代わりに結合用緩衝液gを用いる以外は試験例1と同様にして、標識抗体含有液A−7,B−7、C−7を得た。

0192

<評価方法>
評価は、インフルエンザA型評価用モノクロスクリーン(アドテック社製)を用い、5分後、10分後、15分後の発色レベルを比較した。発色レベルは金コロイド判定用色見本(アドテック社製)を用いて判定した。スクリーニング評価において、抗原はインフルエンザA型陽性コントロール(APC)を用いた。性能評価において、抗原はAPCの2倍希釈列(1倍〜1024倍希釈)を用いた。

0193

<スクリーニング評価>
96ウェルプレートの7ウェルに、試験例1〜7で得られた標識抗体含有液C−1〜7を3μLずつ入れ、それぞれにAPC100μLを混和した。次に、インフルエンザA型評価用モノクロスクリーンに50μLずつ添加し、5分後、10分後、15分後の発色レベルを評価した。その結果を表11に示した。なお、表11における数値が大きい程、発色レベルが高い(発色が強い)ことを意味する。

0194

0195

表11から、試験例1で得られた抗体標識含有液C−1は、最も強い発色を示し、優れた標識性能を有することが確認された。

0196

<性能評価>
96ウェルプレートの12ウェルに、試験例1で得られた標識抗体含有液C−1を3μLずつ入れ、APCの2倍希釈列(1倍〜1024倍希釈、それぞれAPC×1〜APC×1024と表す)及び陰性コントロールを、それぞれ100μLを混和した。次に、インフルエンザA型評価用モノクロスクリーンに50μL添加し、5分後、10分後、15分後の発色レベルを評価した。その結果を表12に示した。なお、表12における数値が大きい程、発色レベルが高い(発色が強い)ことを意味する。

0197

0198

表12から、試験例1で得られた標識抗体含有液C−1は、256倍希釈の抗原に対しても良好な発色を示し、優れた標識性能を有することが確認された。

0199

以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはない。

実施例

0200

国際出願は、2014年7月1日に出願された日本国特願2014−136356号及び2014年7月1日に出願された日本国特願2014−136357号に基づく優先権を主張するものであり、当該出願の全内容をここに援用する。

0201

10…樹脂粒子、20…金属粒子、30…内包金属粒子、40…一部露出金属粒子、50…表面吸着金属粒子、60…表層部、100…樹脂−金属複合体、110…メンブレン、120…試料添加部、130…判定部、131…捕捉リガンド、140…吸液部、150…標識抗体、160…アナライト、170…複合体、200…テストストリップ

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ