図面 (/)

技術 空気調和装置

出願人 アイシン精機株式会社
発明者 中谷則天
出願日 2019年4月15日 (1年10ヶ月経過) 出願番号 2019-076961
公開日 2020年10月29日 (3ヶ月経過) 公開番号 2020-176732
状態 未査定
技術分野 空調制御装置 気液分離装置、除霜装置、制御または安全装置
主要キーワード 設定時間τ 非優先モード 分岐流量 中間配管 回避運転 サブ熱交換器 ステップ回転 循環サイクル
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2020年10月29日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (6)

課題

室外熱交換器への着霜を回避することができる空気調和装置を提供すること。

解決手段

空気調和装置(1)が備える制御装置(40)は、暖房運転時に冷媒温度センサ(61,62)により検出された冷媒温度(Tdef)が室外熱交換器(13)への着霜が予測される温度の上限値として予め定められる着霜回避基準温度(T0)未満である状態が所定時間継続したとき、冷媒温度(Tdef)が低いほどバイパス配管(38)を流れる冷媒の流量が多くなるように弁装置(51,52)を制御する着霜回避運転制御処理を実行するように構成される。

概要

背景

空気調和装置が備える室外熱交換器は、その内部を流れる冷媒外気熱交換することができるように構成される。また、空気調和装置が暖房運転を行っているとき、室外熱交換器を流れる冷媒は、外気から熱を奪うことにより蒸発する。つまり、暖房運転時には室外熱交換器は蒸発器として機能する。室外熱交換器にて冷媒が外気から熱を奪うためには、室外熱交換器を流れる冷媒温度外気温度よりも低く設定されていなければならない。従って、場合によっては冷媒温度が0℃未満にされる。冷媒温度が0℃未満になると、室外熱交換器に着霜する。室外熱交換器に着霜すると、室外熱交換器を通過する外気の通風面積が小さくなるため熱交換効率が低下する。このため、室外熱交換器に着霜した場合に除霜運転がなされて室外熱交換器に着霜したが溶かされる。

一般的な除霜運転は、運転状態暖房運転状態から冷房運転状態切り換えることによりなされる。これにより圧縮機の吐出口と室外熱交換器が四方弁を介して接続される。よって、室外熱交換器に圧縮機から高温高圧ガス冷媒が流入し、室外熱交換器において冷媒が凝縮し、凝縮熱が発生することで除霜がなされる(例えば特許文献1参照)。また、除霜運転時に運転状態を暖房運転状態に維持したまま、圧縮機から吐出されたガス冷媒の一部を直接室外熱交換器に流入させる除霜運転も提案されている(例えば特許文献2参照)

概要

室外熱交換器への着霜を回避することができる空気調和装置を提供すること。 空気調和装置(1)が備える制御装置(40)は、暖房運転時に冷媒温度センサ(61,62)により検出された冷媒温度(Tdef)が室外熱交換器(13)への着霜が予測される温度の上限値として予め定められる着霜回避基準温度(T0)未満である状態が所定時間継続したとき、冷媒温度(Tdef)が低いほどバイパス配管(38)を流れる冷媒の流量が多くなるように弁装置(51,52)を制御する着霜回避運転制御処理を実行するように構成される。

目的

本発明は、室外熱交換器への着霜を回避することができる空気調和装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

吸入口及び吐出口を備える圧縮機と、第一ポート、第二ポート、第三ポート、及び第四ポートを有し、前記第一ポートが前記圧縮機の前記吐出口に第一配管を介して接続され、暖房運転時に前記第一ポートと前記第二ポートが連通するとともに前記第三ポートと前記第四ポートが連通し、冷房運転時に前記第一ポートと前記第三ポートが連通するとともに前記第二ポートと前記第四ポートが連通するように、各ポートの連通状態切り替え可能に構成される四方弁と、前記四方弁の前記第二ポートに第二配管を介して接続された室内熱交換器と、前記四方弁の前記第三ポートに第三配管を介して接続されるとともに中間配管を介して前記室内熱交換器に接続された室外熱交換器と、前記四方弁の前記第四ポートにアキュムレータ入口配管を介して接続されるとともに、アキュムレータ出口配管を介して前記圧縮機の前記吸入口に接続されたアキュムレータと、前記第一配管と前記アキュムレータ入口配管とを接続するバイパス配管と、前記バイパス配管に介装され、前記バイパス配管を流れる冷媒の流量を調整可能な弁装置と、前記弁装置を制御する制御装置と、前記室外熱交換器を流れる冷媒温度を検出する冷媒温度センサと、を備え、前記制御装置は、暖房運転時に、前記冷媒温度センサにより検出された冷媒温度が前記室外熱交換器への着霜予測される温度の上限値として予め定められる着霜回避基準温度未満である状態が所定時間継続したとき、前記冷媒温度センサにより検出された冷媒温度が低いほど前記バイパス配管を流れる冷媒の流量が多くなるように前記弁装置を制御する着霜回避運転制御処理を実行するように構成される、空気調和装置

請求項2

請求項1に記載の空気調和装置において、前記着霜回避運転制御処理は、前記冷媒温度センサにより検出された冷媒温度が、前記室外熱交換器に着霜しないと判断することができる温度として予め定められる着霜回避終了温度以上であるとき、又は、前記着霜回避運転制御処理の実行時間が予め定められる設定時間を経過したときに、終了する、空気調和装置。

請求項3

請求項1又は2に記載の空気調和装置において、前記制御装置は、外気温度が、前記着霜回避運転制御処理の実行により前記室外熱交換器への着霜を回避することができないと判断される温度として予め定められる着霜回避不可温度未満であるときには、前記着霜回避運転制御処理を実行しないように構成される、空気調和装置。

請求項4

請求項1乃至3のいずれか1項に記載の空気調和装置において、前記弁装置は、前記バイパス配管に並列接続した流量調整弁及び開閉弁を有し、前記制御装置は、前記着霜回避運転制御処理の実行中に前記開閉弁の開閉作動及び前記流量調整弁の開度の調整を併用して、前記バイパス配管を流れる冷媒の流量を調整する、空気調和装置。

技術分野

0001

本発明は、空気調和装置に関する。

背景技術

0002

空気調和装置が備える室外熱交換器は、その内部を流れる冷媒外気熱交換することができるように構成される。また、空気調和装置が暖房運転を行っているとき、室外熱交換器を流れる冷媒は、外気から熱を奪うことにより蒸発する。つまり、暖房運転時には室外熱交換器は蒸発器として機能する。室外熱交換器にて冷媒が外気から熱を奪うためには、室外熱交換器を流れる冷媒温度外気温度よりも低く設定されていなければならない。従って、場合によっては冷媒温度が0℃未満にされる。冷媒温度が0℃未満になると、室外熱交換器に着霜する。室外熱交換器に着霜すると、室外熱交換器を通過する外気の通風面積が小さくなるため熱交換効率が低下する。このため、室外熱交換器に着霜した場合に除霜運転がなされて室外熱交換器に着霜したが溶かされる。

0003

一般的な除霜運転は、運転状態暖房運転状態から冷房運転状態切り換えることによりなされる。これにより圧縮機の吐出口と室外熱交換器が四方弁を介して接続される。よって、室外熱交換器に圧縮機から高温高圧ガス冷媒が流入し、室外熱交換器において冷媒が凝縮し、凝縮熱が発生することで除霜がなされる(例えば特許文献1参照)。また、除霜運転時に運転状態を暖房運転状態に維持したまま、圧縮機から吐出されたガス冷媒の一部を直接室外熱交換器に流入させる除霜運転も提案されている(例えば特許文献2参照)

先行技術

0004

特開平07−174441号公報
国際公開第2016/170680号明細書

0005

(発明が解決しようとする課題)
上記特許文献1及び2に記載の除霜方法によれば、圧縮機から吐出されたガス冷媒の全部または一部を利用して室外熱交換器を除霜するので、空調に利用できる冷媒量が減少する。このため除霜運転中の暖房効率が低下する。また、室外熱交換器に付着した多量の霜を溶かすために長時間を要する。よって、除霜運転はできるだけ実施されないのがよい。

0006

除霜運転を回避するためには、室外熱交換器への着霜を回避する方策が必要であるが、従来では室外熱交換器への着霜を回避する方策がなされていない。そこで、本発明は、室外熱交換器への着霜を回避することができる空気調和装置を提供することを目的とする。

課題を解決するための手段

0007

本発明は、吸入口(11a)及び吐出口(11b)を備える圧縮機(11)と、第一ポート(12a)、第二ポート(12b)、第三ポート(12c)、及び第四ポート(12d)を有し、第一ポートが圧縮機の吐出口に第一配管(31)を介して接続され、暖房運転時に第一ポートと第二ポートが連通するとともに第三ポートと第四ポートが連通し、冷房運転時に第一ポートと第三ポートが連通するとともに第二ポートと第四ポートが連通するように、各ポートの連通状態切り替え可能に構成される四方弁(12)と、四方弁の第二ポートに第二配管(32)を介して接続された室内熱交換器(17)と、四方弁の第三ポートに第三配管(33)を介して接続されるとともに中間配管(34)を介して室内熱交換器に接続された室外熱交換器(13)と、四方弁の第四ポートにアキュムレータ入口配管(35)を介して接続されるとともに、アキュムレータ出口配管(36)を介して圧縮機の吸入口に接続されたアキュムレータ(15)と、第一配管とアキュムレータ入口配管とを接続するバイパス配管(38)と、バイパス配管に介装され、バイパス配管を流れる冷媒の流量を調整可能な弁装置(51,52)と、弁装置を制御する制御装置(40)と、室外熱交換器を流れる冷媒温度を検出する冷媒温度センサ(61,62)と、を備え、制御装置は、暖房運転時に、冷媒温度センサにより検出された冷媒温度が室外熱交換器への着霜が予測される温度の上限値として予め定められる着霜回避基準温度(T0)未満である状態が所定時間継続したとき、冷媒温度センサにより検出された冷媒温度が低いほどバイパス配管を流れる冷媒の流量が多くなるように弁装置を制御する着霜回避運転制御処理を実行するように構成される、空気調和装置(1)を提供する。

0008

本発明によれば、着霜回避運転制御処理の実行により、着霜回避運転が実施される。この着霜回避運転では、圧縮機の吐出口から吐出された高温高圧のガス冷媒の一部がバイパス配管を通って圧縮機の吸入口に吸入される。このため圧縮機の吸入口から吸入される冷媒の温度が上昇し、これにより冷媒回路内を流れる冷媒温度が上昇する。そのため室外熱交換器を通る冷媒温度も上昇する。その結果、室外熱交換器への着霜が回避され、或いは室外熱交換器にわずかに着霜した場合に速やかに除霜することができる。

0009

また、着霜回避運転制御処理は、室外熱交換器に実際に着霜したときではなく、冷媒温度センサにより検出される室外熱交換器を流れる冷媒の温度が室外熱交換器への着霜が将来的に予測される温度の上限値として予め定められる着霜回避基準温度未満である状態が、所定時間継続したときに、実行される。このため、着霜回避運転の開始時には、室外熱交換器に未だ着霜していない状態であるか、或いは室外熱交換器に僅かに着霜している状態であると考えられる。つまり、着霜回避運転は、室外熱交換器に既に多量に付着した霜を除くような除霜運転ではなく、室外熱交換器に着霜していないか或いは僅かに着霜した状態において冷媒の温度を上昇させるための運転である。このため霜が付着している室外熱交換器を除霜する場合に行われる除霜運転に比較して冷媒温度を上昇させやすく、それゆえに短時間で終了する。よって暖房運転時における快適性を確保することができる。

0010

さらに、着霜回避運転制御処理では、室外熱交換器を流れる冷媒の温度が低いほどバイパス配管を流れる冷媒の流量が多くなるように、バイパス配管に介装された弁装置が制御される。このため、室外熱交換器の着霜の回避に用いられる冷媒量を最小限に抑えることができる。よって、さほど暖房効率を低下させることなく、室外熱交換器への着霜を回避することができる。

0011

着霜回避運転制御処理は、冷媒温度センサにより検出された冷媒温度が、室外熱交換器に着霜しないと判断することができる温度として予め定められる着霜回避終了温度(Ts)以上であるとき(S42:Yes)、又は、着霜回避運転制御処理の実行時間が予め定められる設定時間(τ2th)を経過したとき(S41:Yes)に、終了するとよい。これによれば、予め設定した冷媒温度条件あるいは予め設定した実行時間に基づいて速やかに着霜回避運転を終了して通常の暖房運転に移行させることにより、空調の快適性を確保することができる。

0012

制御装置は、外気温度(Tout)が、着霜回避運転制御処理の実行により室外熱交換器への着霜を回避することができないと判断される温度として予め定められる着霜回避不可温度未満であるとき(S12:No)には、着霜回避運転制御処理を実行しないように構成されるとよい。外気温度が極端に低い場合には、本発明に係る着霜回避運転制御処理を実行しても、冷媒温度が0°未満となって、室外熱交換器に着霜する可能性が高い。よって、このような場合に着霜回避運転制御処理を実行せずに除霜運転を実行することにより、結果として素早く室外熱交換器を除霜することができる。

0013

弁装置は、バイパス配管に並列接続した流量調整弁(52)及び開閉弁(51)を有していてもよい。この場合、制御装置は、着霜回避運転制御処理の実行中に開閉弁の開閉作動及び流量調整弁の開度の調整を併用して、バイパス配管を流れる冷媒の流量を調整するとよい。これによれば、開閉弁の開閉作動及び流量調整弁の開度の調整を併用することにより、バイパス配管を流れる冷媒流量の調整幅を大きくすることができる。

図面の簡単な説明

0014

図1は、本実施形態に係る空気調和装置の概略構成を示す図である。
図2は、着霜回避運転開始判断処理ルーチンの流れを示すフローチャートである。
図3は、着霜回避運転制御処理ルーチンの流れを示すフローチャートである。
図4は、流量調整弁制御マップの一例を示す図である。
図5は、着霜回避運転終了判断処理ルーチンの流れを示すフローチャートである。

実施例

0015

以下、本発明の実施形態について図面を参照して説明する。図1は、本実施形態に係る空気調和装置の概略構成を示す図である。図1に示すように、空気調和装置1は、圧縮機11と、四方弁12と、室外熱交換器13と、サブ熱交換器14と、アキュムレータ15と、室外電子膨張弁16と、室内熱交換器17と、室内側電子膨張弁18と、エンジン20と、複数の冷媒配管31〜38と、制御装置40とを備える。エンジン20及び制御装置40を除く上記の構成要素が、冷媒配管としての第一配管31、第二配管32、第三配管33、中間配管34、アキュムレータ入口配管35、アキュムレータ出口配管36、分岐配管37、バイパス配管38により接続される。このようにして冷媒回路が構成される。

0016

圧縮機11はエンジン20の出力軸に接続されており、エンジン20からの駆動力を受けて作動する。圧縮機11は吸入口11a及び吐出口11bを有する。圧縮機11は、作動することにより吸入口11aから冷媒ガスを吸入し、内部で冷媒ガスを圧縮し、圧縮した冷媒ガスを吐出口11bから吐出する。

0017

圧縮機11の吐出口11bは第一配管31の一端に接続される。第一配管31の他端に四方弁12が接続される。四方弁12は、第一ポート12a、第二ポート12b、第三ポート12c、及び、第四ポート12dを有する。圧縮機11の吐出口11bは、四方弁12の第一ポート12aに第一配管31を介して接続される。四方弁12の第二ポート12bには第二配管32を介して室内熱交換器17が接続される。四方弁12の第三ポート12cには第三配管33を介して室外熱交換器13が接続される。また、室外熱交換器13は、中間配管34を介して室内熱交換器17に接続される。四方弁12の第四ポート12dには、アキュムレータ入口配管35を介してアキュムレータ15が接続される。

0018

四方弁12は、第一ポート12aが第二ポート12bに連通するとともに第三ポート12cが第四ポート12dに連通する暖房時切換状態と、第一ポート12aが第三ポート12cに連通するとともに第二ポート12bが第四ポート12dに連通する冷房時切換状態とを、選択的に実現することができるように構成される。

0019

第三配管33を介して四方弁12の第三ポート12cに接続された室外熱交換器13は、その内部を流通する冷媒と外気とを熱交換させる。また、第二配管32を介して四方弁12の第二ポート12bに接続された室内熱交換器17は、その内部を流通する冷媒と室内空気とを熱交換させる。

0020

また、室外熱交換器13と室内熱交換器17とを接続する中間配管34の位置Aから位置Bまでの間の部分は、2つの配管(配管L1、配管L2)に分岐している。配管L1には一方向弁19が介装され、配管L2には室外側電子膨張弁16が介装される。冷房運転時には冷媒は配管L1を流れ、暖房運転時には冷媒は配管L2を流れる。一方向弁19は、位置Aから位置Bに向かう冷媒の流れを許容し、位置Bから位置Aに向かう冷媒の流れを遮断する。室外側電子膨張弁16は、そこを流れる冷媒を膨張させる。室外側電子膨張弁16は開度調整可能な流量調整弁である。

0021

アキュムレータ入口配管35を介して四方弁12の第四ポート12dに接続されたアキュムレータ15は、さらにアキュムレータ出口配管36を介して圧縮機11の吸入口11aに接続される。このアキュムレータ15は、アキュムレータ入口配管35側から冷媒を導入し、導入した冷媒を気液分離する。アキュムレータ15内で液冷媒から分離されたガス冷媒が、アキュムレータ出口配管36を経由して圧縮機11の吸入口11aに吸入される。

0022

また、アキュムレータ入口配管35と中間配管34が分岐配管37により接続される。分岐配管37にサブ熱交換器14が介装される。分岐配管37を流れる冷媒は、サブ熱交換器14に入り、サブ熱交換器14にて、エンジン20を冷却することにより加熱された冷却水と熱交換する。分岐配管37を流れる冷媒の流量は、分岐配管37に介装された分岐流量調整弁37aにより調整される。

0023

また、第一配管31とアキュムレータ入口配管35がバイパス配管38により接続される。バイパス配管38は、その途中の位置C及び位置Dの間において、第一バイパス配管381と第二バイパス配管382とに分岐している。そして、第一バイパス配管381の途中に電磁開閉弁51が介装され、第二バイパス配管382の途中に流量調整弁52が介装される。従って、電磁開閉弁51と流量調整弁52は、バイパス配管38に並列接続されていることになる。電磁開閉弁51と流量調整弁52が、本発明の弁装置に相当する。

0024

電磁開閉弁51は、開状態又は閉状態に設定することができ、開状態である場合には第一バイパス配管381内への冷媒の流通が許可され、閉状態である場合には第一バイパス配管381内への冷媒の流通が遮断されるように構成される。流量調整弁52は、開度調整可能であり、第二バイパス配管382内を流通する冷媒の流量を調整することができるように構成される。

0025

制御装置40は、CPU,ROM,RAM等からなるマイクロコンピュータを主要構成とし、少なくとも、エンジン20及び圧縮機11の駆動、四方弁12の切換動作各膨張弁16,18の開度、電磁開閉弁51の開閉状態、流量調整弁52の開度、分岐流量調整弁37aの開度、を制御する。

0026

また、冷媒回路の各所に温度センサ及び圧力センサが取り付けられる。これらの各種センサには、第一温度センサ61、第二温度センサ62、および外気温センサ63が含まれる。第一温度センサ61は、中間配管34のうち室外熱交換器13の近傍位置に設けられ、中間配管34を流通する冷媒の温度を検出する。第二温度センサ62は、第三配管33のうち室外熱交換器13の近傍位置に設けられ、第三配管33を流通する冷媒の温度を検出する。外気温センサ63は、室外熱交換器13の近傍における外気温度を検出する。各温度センサにより検出された温度情報は、制御装置40に入力される。

0027

次に、上記構成の空気調和装置1の空調動作について説明する。本実施形態に係る空気調和装置1は、空調モード暖房モード(暖房運転状態)であるか冷房モード(冷房運転状態)であるかをユーザがリモコンなどを操作することにより設定することができるようにされている。そして、設定された空調モードに従って、空気調和装置1が空調運転する。

0028

また、空気調和装置1の空調モードが暖房モードであるときに、四方弁12の切換状態が暖房時切換状態になるように、制御装置40が四方弁12の切換動作を制御する。また、空気調和装置1の空調モードが冷房モードであるときに、四方弁12の切換状態が冷房時切換状態になるように、制御装置40が四方弁12の切換動作を制御する。なお、図1において、冷房運転(冷房モードによる運転)時における冷媒の主な流れが実線の矢印により示され、暖房運転(暖房モードによる運転)時における冷媒の主な流れが点線の矢印により示される。

0029

まず、暖房運転について説明する。エンジン20の駆動により圧縮機11が作動すると、圧縮機11は、アキュムレータ出口配管36内の低圧ガス冷媒を吸入口11aから吸入するとともに吸入した低圧ガス冷媒を圧縮して高温高圧ガス冷媒を生成する。そして、生成した高温高圧ガス冷媒を吐出口11bから吐出する。吐出口11bから吐出された高温高圧ガス冷媒は第一配管31を流れて四方弁12の第一ポート12aに入る。なお、通常の暖房運転時には、第一配管31に接続したバイパス配管38に介装されている電磁開閉弁51が閉状態にされるとともに流量調整弁52が全閉状態にされる。

0030

四方弁12は、空気調和装置1の空調モードが暖房モードであるときには暖房時切換状態になるように制御装置40によりその切換動作が制御されているから、暖房運転時には、四方弁12の第一ポート12aが第二ポート12bに連通する。そのため第一配管31から四方弁12の第一ポート12aに入った高温高圧ガス冷媒は、第二ポート12bから四方弁12を流出して第二配管32に流れる。

0031

第二配管32内の冷媒は室内熱交換器17に流入する。室内熱交換器17に流入した高温高圧ガス冷媒は室内熱交換器17内を流通する間に室内空気と熱交換し、室内に熱を吐き出して凝縮する。つまり、暖房運転時には室内熱交換器17が凝縮器として機能する。このとき高温高圧ガス冷媒から吐き出された熱によって室内空気が暖められて、室内が暖房される。

0032

室内空気に熱を吐き出して凝縮した冷媒は一部液化し、室内熱交換器17から中間配管34に流出する。そして、中間配管34に介装された室内側電子膨張弁18で膨張することにより中圧化され、さらに中間配管34の配管L2を流れ、配管L2に介装された室外側電子膨張弁16を通ることにより冷媒が低圧化される。室外側電子膨張弁16を通った冷媒は、室外熱交換器13に流入する。室外熱交換器13に流入した冷媒は室外熱交換器13内を流通する間に外気の熱を奪って蒸発する。つまり、暖房運転時には室外熱交換器13が蒸発器として機能する。

0033

外気の熱を奪って蒸発した冷媒は一部気化して室外熱交換器13から第三配管33に流出し、その後、四方弁12の第三ポート12cに入る。空調モードが暖房モードであるときには、四方弁12の第三ポート12cが第四ポート12dに連通しているから、第三配管33から四方弁12の第三ポート12cに入った冷媒は第四ポート12dから四方弁12を流出してアキュムレータ入口配管35を流れる。アキュムレータ入口配管35を流れた冷媒はアキュムレータ15に導入される。アキュムレータ15では導入された冷媒が気液分離される。気液分離した冷媒のうちガス冷媒がアキュムレータ出口配管36に流出する。そして、アキュムレータ出口配管36内のガス冷媒が圧縮機11の吸入口11aに帰還する。このような冷媒の循環サイクルが繰り返されることにより、室内暖房が継続される。

0034

次に、冷房運転について説明する。圧縮機11が作動すると、圧縮機11の吐出口11bから第一配管31に高温高圧ガス冷媒が吐出される。高温高圧ガス冷媒は第一配管31を流れて四方弁12の第一ポート12aに入る。

0035

四方弁12は、空気調和装置の空調モードが冷房モードであるときには冷房時切換状態になるように制御装置40によりその切換動作が制御されているから、冷房運転時には、四方弁12の第一ポート12aが第三ポート12cに連通する。そのため第一配管31から四方弁12の第一ポート12aに入った高温高圧ガス冷媒は、第三ポート12cから四方弁12を流出して第三配管33に流れる。第三配管33に流れた高温高圧ガス冷媒は室外熱交換器13に流入する。室外熱交換器13に流入した冷媒は室外熱交換器13内を流通する間に外気に熱を吐き出して凝縮する。つまり、冷房運転時には室外熱交換器13が凝縮器として機能する。

0036

外気に熱を吐き出して凝縮した冷媒は一部液化し、室外熱交換器13から中間配管34に流出する。中間配管34に流出した液冷媒(或いは気液二相冷媒)は、配管L1及び配管L1に介装された一方向弁19を経由して室内側電子膨張弁18を通る。この室内側電子膨張弁18で冷媒が膨張することにより蒸発しやすいように低圧化される。その後、冷媒は室内熱交換器17に流入する。室内熱交換器17に流入した冷媒は室内熱交換器17内を流通する間に室内空気の熱を奪って蒸発する。つまり、室内熱交換器17は冷房運転時に蒸発器として機能する。このとき冷媒が室内空気の熱を奪うことによって室内空気が冷やされて、室内が冷房される。

0037

室内空気の熱を奪って蒸発した冷媒は一部気化し、室内熱交換器17から第二配管32に流出し、さらに四方弁12の第二ポート12bに入る。空調モードが冷房モードであるときには、四方弁12の第二ポート12bが第四ポート12dに連通しているから、第二配管32から四方弁12の第二ポート12bに入った冷媒は、第四ポート12dから四方弁12を流出してアキュムレータ入口配管35に流入する。アキュムレータ入口配管35を流れた冷媒はアキュムレータ15に導入される。アキュムレータ15では導入された冷媒が気液分離され、分離された低温低圧のガス冷媒がアキュムレータ出口配管36に流出する。そして、アキュムレータ15からアキュムレータ出口配管36内に流入したガス冷媒が、圧縮機11の吸入口11aに帰還する。このような冷媒の循環サイクルが繰り返されることにより、室内冷房が継続される。

0038

ところで、暖房モードによる空調運転時、すなわち暖房運転時には、上記したように室外熱交換器13が冷媒の蒸発器として機能する。室外熱交換器13を流れる冷媒が外気から熱を奪って蒸発するためには、室外熱交換器13を流れる冷媒の温度を外気よりも低く設定しなければならない。また、暖房運転は通常冬季に実施されるので、暖房運転中の外気温度は低く、場合によっては外気温度が0℃程度或いはそれ以下であることもある。よって、外気温度が0℃程度或いはそれ以下である場合、室外熱交換器13を流れる冷媒の温度は0℃未満にされる場合がある。室外熱交換器13を流れる冷媒の温度が0℃未満になると室外熱交換器13に着霜する。室外熱交換器13に着霜したまま暖房運転を継続した場合に室外熱交換器13の熱交換効率が悪化する。よって、通常の空気調和装置においては、室外熱交換器の着霜を確認した場合に除霜運転が実施される。しかしながら、除霜運転中には暖房効率が低下するため、できるだけ除霜運転の実施を回避したいという要望がある。この点に関し、本実施形態においては、室外熱交換器13の着霜を確認した場合ではなく、室外熱交換器13への着霜が予測される場合に、着霜回避運転が実施されることにより、室外熱交換器13への着霜が回避され、或いは室外熱交換器13にわずかに着霜した場合でも速やかに除霜がなされる。これにつき、以下に説明する。

0039

暖房運転中に、制御装置40は、着霜回避運転開始判断処理を実行する。図2は、制御装置40が実行する着霜回避運転開始判断処理ルーチンの流れを示すフローチャートである。このルーチンが起動すると、まず、制御装置40は、図2のステップ(以下、ステップをSと略記する)11にて、外気温センサ63により検出された最新の外気温度Toutが2℃以上であるか否かを判断する。この判断にて外気温度Toutが2℃未満であると判断された場合(S11:No)、制御装置40はS12に処理を進める。一方、この判断にて外気温度Toutが2℃以上であると判断された場合(S11:Yes)制御装置40は、S14に処理を進める。

0040

S12では、外気温センサ63により検出された最新の外気温度Toutが−5℃以上且つ2℃未満の範囲内にあるか否かを判断する。この判断にて外気温度Toutが−5℃以上且つ2℃未満の範囲内に無いと判断された場合(S12:No)、制御装置40はS18に処理を進める。S18では、制御装置40は、着霜回避運転開始条件が不成立であると判断する。その後、制御装置40はこのルーチンを終了する。

0041

なお、S12の判断結果がNoである場合は、外気温が−5℃未満の場合である。このように外気温が非常に低い場合には、後述する着霜回避運転制御処理の実行によっては室外熱交換器13への着霜を回避することができないと判断される。よって、この場合には、着霜回避運転制御処理は実行されず、室外熱交換器13への着霜が確認されたときに除霜運転が実施される。本実施形態における−5℃という外気温が、本発明の着霜回避不可温度に相当する。従って、制御装置40は、外気温度Toutが、着霜回避運転制御処理の実行により室外熱交換器13への着霜を回避することができないと判断される温度として予め定められる着霜回避不可温度(本実施形態では−5℃)未満であるときには、着霜回避運転制御処理を実行しないように構成される。なお、除霜運転では、四方弁12の切換状態が冷房時切換状態にされる。このため圧縮機11から吐出した高温高圧の冷媒が室外熱交換器13に流入する。室外熱交換器13に流入した冷媒は室外熱交換器13にて凝縮して凝縮熱が発生する。発生した凝縮熱によって室外熱交換器13が加熱される。これにより室外熱交換器13が除霜される。

0042

S12にて、外気温度Toutが−5℃以上且つ2℃未満の範囲内にあると判断された場合(S12:Yes)、制御装置40は、S13に処理を進める。S13では、制御装置40は、着霜回避運転優先モードが選択されているか否かを判断する。ここで、制御装置40には、後述する着霜回避運転を優先的に実施するかしないかを選択することができるスイッチ(例えばディップスイッチ)が設けられている。ユーザ或いはオペレータがこのディップスイッチをON操作することにより、着霜回避運転優先モードが選択される。一方、ユーザ或いはオペレータがこのディップスイッチをOFF操作することにより、着霜回避運転非優先モードが選択される。

0043

S13にて、着霜回避運転優先モードが選択されていない(すなわち着霜回避運転非優先モードが選択されている)と判断した場合(S13:No)、制御装置40は、S18に処理を進めて、着霜回避運転開始条件が不成立であると判断する。その後、制御装置40はこのルーチンを終了する。一方、S13にて、着霜回避運転優先モードが選択されていると判断した場合(S13:Yes)、制御装置40は、S14に処理を進める。

0044

制御装置40は、上記のようにS11の判断結果がYesである場合(外気温度Toutが2℃以上である場合)、及び、S13の判断結果がYesである場合(外気温が−5℃以上2℃未満であって且つ着霜回避運転優先モードが選択されている場合)に、S14に処理を進める。このS14の処理では、タイマτ1のカウントが開始される。次いで、制御装置40は、S15にて、デフロスト温度Tdefが、着霜回避基準温度T0未満であるか否かを判断する。ここで、デフロスト温度Tdefは、第一温度センサ61により検出された温度T1と第二温度センサ62により検出された温度T2のうち、より温度の低い方の温度である。暖房運転時には、第一温度センサ61により検出された温度T1は、室外熱交換器13に流入する液冷媒の温度であり、第二温度センサ62により検出された温度T2は、室外熱交換器13から流出するガス冷媒の温度である。従って、デフロスト温度Tdefは、室外熱交換器13を流れる冷媒温度であると言える。また、着霜回避基準温度T0とは、暖房運転時に室外熱交換器13への着霜が将来的に予測されるデフロスト温度として予め定められる温度の上限値である。つまり、現在は室外熱交換器13に着霜していないと考えられるが、その温度が継続した場合にはやがて室外熱交換器13に着霜する可能性が高いと判断されるようなデフロスト温度Tdefの上限値が、着霜回避基準温度T0である。この着霜回避基準温度T0は、ほぼ確実に室外熱交換器13に着霜する温度である0℃以上の温度である。また、デフロスト温度Tdefが2℃を越えると、室外熱交換器13に着霜する可能性がかなり低くなる。従って、着霜回避基準温度T0は2℃以下であるのがよい。つまり、着霜回避基準温度T0は、0℃以上であり2℃以下であるのがよい。より好ましくは、着霜回避基準温度T0は、1℃以上であり2℃以下であるのがよい。

0045

S15にて、デフロスト温度Tdefが着霜回避基準温度T0以上であると判断した場合(S15:No)、制御装置40は、室外熱交換器13を流れる冷媒温度(デフロスト温度Tdef)が比較的高いために室外熱交換器13に着霜する可能性が低いと判断し、S18に処理を進めて、着霜回避運転開始条件が不成立であると判断する。その後、制御装置40はこのルーチンを終了する。一方、S15にて、デフロスト温度Tdefが着霜回避基準温度T0未満であると判断した場合(S15:Yes)、制御装置40は、S16に処理を進める。

0046

S16では、制御装置40は、タイマによる計測時間τ1が、本発明の所定時間に相当する閾値時間τ1th以上であるか否かを判断する。閾値時間τ1thは任意に設定することができる。例えば閾値時間τ1thを25分に設定することができる。タイマによる計測時間τ1が閾値時間τ1th未満である場合(S16:No)、制御装置はS15に処理を戻す。一方、タイマによる計測時間τ1が閾値時間τ1th以上である場合(S16:Yes)、制御装置40はS17に処理を進めて、着霜回避運転開始条件が成立したと判断する。その後、制御装置40は、このルーチンを終了する。

0047

上記した着霜回避運転開始判断処理の流れからわかるように、着霜回避運転開始条件は、外気温が−5℃以上であり、デフロスト温度Tdefが着霜回避基準温度T0未満である状態が所定時間(閾値時間τ1th)継続した場合に、成立する。

0048

制御装置40は、上記の着霜回避運転開始判断処理にて着霜回避運転開始条件が成立したと判断したときに、着霜回避運転を実施するための着霜回避運転制御処理を実行する。図3は、着霜回避運転制御処理ルーチンの流れを示すフローチャートである。このルーチンが起動すると、制御装置40は、まず図3のS21にて、バイパス配管38に介装されている電磁開閉弁51に閉作動信号を出力する。これにより電磁開閉弁51が閉作動する。なお、既に電磁開閉弁51が閉状態である場合には、その閉状態が維持される。

0049

次いで、制御装置40は、S22にて、最新のデフロスト温度Tdefを取得し、続いてS23にて、流量調整弁制御マップを参照して、流量調整弁52の制御量Uを取得する。

0050

図4は、流量調整弁制御マップの一例を示す図である。図4横軸がデフロスト温度Tdefを表し、縦軸が制御量Uを表す。図4に示す流量調整弁制御マップによれば、デフロスト温度Tdefが温度Ta未満であるときに制御量Uが+S2に設定され、デフロスト温度Tdefが温度Ta以上且つ温度Tb未満であるときに制御量Uが+S1(<S2)に設定され、デフロスト温度Tdefが温度Tb以上且つ温度Tc未満であるときに制御量Uが0に設定され、デフロスト温度Tdefが温度Tc以上且つ温度Td未満であるときに制御量Uが−S1に設定され、デフロスト温度Tdefが温度Td以上であるときに制御量Uが−S2(<−S1)に設定される。ここで、本実施形態における流量調整弁52の開度はステッピングモータにより調整され、上記の制御量Uは、現在のステッピングモータのステップ数からの増減ステップ数を表す。

0051

制御装置40は、S23にて、上記のような流量調整弁制御マップを参照して制御量Uを取得した後に、S24に処理を進めて、取得した制御量Uに基づいて流量調整弁52の開度を調整する。具体的には、制御装置40は、S24にて、流量調整弁52の開度調整用のステッピングモータのステップ数を、現在のステップ数からS23にて取得した制御量Uにより表されるステップ数だけ増減させる。例えば、S23にて取得した制御量Uが+S1、+S2である場合、ステッピングモータが正方向にS1ステップ或いはS2ステップ回転する。これにより流量調整弁52の開度が増加する。また、S23にて取得した制御量Uが−S1、−S2である場合、ステッピングモータが逆方向にS1ステップ或いはS2ステップ回転する。これにより流量調整弁52の開度が減少する。なお、制御量Uが0である場合、ステッピングモータは回転しない。このため流量調整弁52の現状の開度が維持される。

0052

このようにしてS24にて流量調整弁52の開度を調整することにより、流量調整弁52を介して、或いは後述するS28の処理にて電磁開閉弁51が開かれた場合には電磁開閉弁51及び流量調整弁52を介して、バイパス配管38内を、圧縮機11から吐出された高温高圧のガス冷媒の一部が流れる。こうしてバイパス配管38を流れた高温高圧のガス冷媒は、バイパス配管38からアキュムレータ入口配管35に流入し、さらにアキュムレータ15及びアキュムレータ出口配管36を通って圧縮機11の吸入口11aに導入される。これにより、圧縮機11の吸入側における冷媒の圧力が上昇することで冷媒の蒸発温度が上昇し、冷媒回路内を流れる冷媒の温度が上昇する。その結果、室外熱交換器13を流れる冷媒の温度も上昇する。このようにして室外熱交換器13を流れる冷媒温度が上昇されることにより、室外熱交換器13への着霜が回避され、或いは室外熱交換器13に僅かに着霜している場合に速やかに除霜される。

0053

S24にて流量調整弁52の開度を調整した制御装置40は、続いてS25にて、流量調整弁52が全開であるか否かを判断する。流量調整弁52が全開である場合(S25:Yes)、制御装置40は、S28に処理を進めて、流量調整弁52を全閉作動させるとともに、電磁開閉弁51を開作動させる。ここで、流量調整弁52が全開状態である場合に流量調整弁52を通ってバイパス配管38を流れる冷媒流量と、開状態の電磁開閉弁51を通ってバイパス配管38を流れる冷媒流量は、ほぼ等しくなるように、流量調整弁52の開口径と電磁開閉弁51の開口径が設定されている。従って、S28の処理を実行した場合であっても、バイパス配管38を流れる冷媒量は変動しない。S28の処理の実行後、制御装置40はS30に処理を進める。

0054

また、S25にて、流量調整弁52が全開ではないと判断した場合(S25:No)、制御装置40は、S26に処理を進めて、流量調整弁52が全閉であるか否かを判断する。流量調整弁52が全閉ではない場合(S26:No)、すなわち流量調整弁52が全開でも全閉でもない場合、制御装置はS30に処理を進める。一方、流量調整弁52が全閉である場合(S26:Yes)、制御装置40はS27に処理を進めて、電磁開閉弁51が開状態であるか否かを判断する。電磁開閉弁51が開状態でない場合、すなわち電磁開閉弁51が閉状態である場合(S27:No)、制御装置40はS30に処理を進める。なお、この場合、電磁開閉弁51も流量調整弁52も閉じていることになり、そのためバイパス配管38内を冷媒が流れない。着霜回避運転制御処理中にこのような状況は発生しないと考えられるので、S27の処理は省略しても良い。

0055

一方、S27にて電磁開閉弁51が開状態であると判断した場合(S27:Yes)、制御装置40は、S29に処理を進める。S29では、制御装置40は、流量調整弁52を全開作動させるとともに、電磁開閉弁51を閉作動させる。ここで、上述したように、流量調整弁52が全開状態である場合に流量調整弁52を通ってバイパス配管38を流れる冷媒流量と、開状態の電磁開閉弁51を通ってバイパス配管38を流れる冷媒流量は、ほぼ等しくなるように、流量調整弁52の開口径と電磁開閉弁51の開口径が設定されている。従って、S29の処理を実行した場合であっても、バイパス配管38を流れる冷媒量は変動しない。S29の処理の実行後、制御装置40はS30に処理を進める。

0056

S26、S27の判定結果がNoである場合、S28の処理を実行した場合、及び、S29の処理を実行した場合、制御装置40はS30に処理を進める。S30では、制御装置40は、制御周期に達したか否かを判断する。この制御周期は任意に設定できる。例えば制御周期を30秒に設定することができる。なお、制御周期が短すぎる場合、S28の処理及びS29の処理が頻繁に実行されて電磁開閉弁51の寿命が低下する虞がある。そのため、制御周期は30秒程度であるのがよい。

0057

S30にて制御周期に達していないと判断した場合(S30:No)、制御装置40はS30の処理を繰り返す。そして、S30にて制御周期に達したと判断した場合(S30:Yes)、制御装置40は、S22に処理を戻し、S22以降の処理を再度実行する。

0058

制御装置40が上記した着霜回避運転制御処理を実行することにより着霜回避運転が実施される。この着霜回避運転においては、デフロスト温度Tdefに応じて、圧縮機11の吐出口11bからバイパス配管38を流れてアキュムレータ15に向かう高温高圧のガス冷媒の流量が調整される。具体的には、デフロスト温度Tdefが低いほど、流量調整弁51の開度が増加するように流量調整弁51が制御される。このような流量調整弁51の開度調整及び、流量調整弁51の開度状態に応じた電磁開閉弁51の開閉作動により、デフロスト温度Tdefが低いほどバイパス配管38内を流れるガス冷媒の流量が多くなるように、電磁開閉弁51の開閉状態及び流量調整弁52の開度が制御される。このため、室外熱交換器13への着霜を回避するために必要最小限のガス冷媒をバイパス配管38に流すことができる。言い換えれば、着霜回避運転中には、最小限のガス冷媒を室外熱交換器13への着霜の回避に用い、残りのガス冷媒を暖房運転に用いることにより、暖房効率(室外熱交換器の熱交換効率)をさほど低下させることなく、室外熱交換器13への着霜を回避、或いは室外熱交換器13に僅かに付着した霜を除霜することができる。

0059

また、本実施形態に係るバイパス配管38は、冷媒回路の低圧状態を回避するために圧縮機11から吐出されたガス冷媒を直接アキュムレータ15に送り込むためのバイパス回路として、すなわち、所謂ホットガスバイパスとして、従来から設けられている。このホットガスバイパスに流量調整弁を開閉弁と並列接続することにより、すなわち既設のホットガスバイパスを改良することにより、安価に室外熱交換器13への着霜を回避することができる。

0060

また、本実施形態に係るバイパス配管38に介装された流量調整弁52の開度は、上記した着霜回避運転時以外の状況においても調整することができる。例えば、冷媒回路内を流れる冷媒の容量の調整を行う際に、流量調整弁52の開度を調整することができる。これにより、圧縮機を高価な可変容量タイプのものに変更することなく冷媒の容量調整を実施することができるといった付随的な効果を奏する。

0061

また、本実施形態に係る着霜回避運転制御処理においては、電磁開閉弁51が閉じているときに流量調整弁52が全開にされた場合に、電磁開閉弁51を開くとともに流量調整弁52を全閉にする。これにより、その後さらにバイパス配管38内を流れる冷媒流量を増加させる必要性が生じた場合、流量調整弁52の開度を増加させることにより、その必要性に対処することができる。また、電磁開閉弁51が開いているときに流量調整弁52が全閉にされた場合に、電磁開閉弁51を閉じるとともに流量調整弁52を全開にする。これにより、その後さらにバイパス配管38内を流れる冷媒流量を減少させる必要性が生じた場合、流量調整弁52の開度を減少させることにより、その必要性に対処することができる。つまり、本実施形態によれば、着霜回避運転制御処理の実行中に、制御装置40が電磁開閉弁51の開閉作動及び流量調整弁52の開度調整を併用することで、バイパス配管38内を流れる冷媒流量の調整幅を大きくすることができる。

0062

制御装置40は、上記の着霜回避運転制御処理の実行中に、所定の周期で着霜回避運転終了条件判断処理を実行する。図5は、着霜回避運転終了判断処理ルーチンの流れを示すフローチャートである。このルーチンが起動すると、制御装置40は、まず、図5のS41にて、着霜回避運転の開始からの経過時間、すなわち着霜回避運転時間τ2が、予め定められる設定時間τ2thに達したか否かを判断する。設定時間τ2thは任意に設定することができる。設定時間τ2thは10分〜25分の間の時間であるのがよい。

0063

S41にて、着霜回避運転時間τ2が設定時間τ2thに達していると判断した場合(S41:Yes)、制御装置40はS43に処理を進める。一方、S41にて、着霜回避運転時間τ2が設定時間τ2thに達していないと判断した場合(S41:No)、制御装置40はS42に処理を進める。S42では、制御装置40は、デフロスト温度Tdefが着霜回避終了温度Ts以上であるか否かを判断する。着霜回避終了温度Tsは、室外熱交換器13に当面は着霜しないと判断することができる温度として予め設定される。着霜回避終了温度Tsは、7℃〜10℃の間の温度に設定するのが良い。

0064

S42にて、デフロスト温度Tdefが着霜回避終了温度Ts未満であると判断した場合(S42:No)、制御装置40は、室外熱交換器13への着霜の回避が終了していないと判断して、着霜回避運転を終了することなくこのルーチンを終了する。一方、デフロスト温度Tdefが着霜回避終了温度Ts以上であると判断した場合(S42:Yes)、制御装置40はS43に処理を進める。S43では、制御装置40は、着霜回避運転制御処理を終了する。これにより着霜回避運転が終了する。次いで、制御装置40は、S44にて電磁開閉弁51を閉作動し(S44)、さらに流量調整弁52を全閉作動させる(S45)。その後、制御装置40は、このルーチンを終了する。

0065

上記した着霜回避運転終了判断処理の実行により、デフロスト温度Tdefが着霜回避終了温度Ts以上にまで高められたとき、或いは着霜回避運転制御処理の実行時間が設定時間τ2thを経過したときに、着霜回避運転が終了する。なお、デフロスト温度Tdefが十分に高められた場合、室外熱交換器13を流れる冷媒の温度が外気温度よりも高くなる可能性が高いため、室外熱交換器13を流れる冷媒が外気から熱を奪うことができない。この場合、分岐流量調整弁37aの開度を増加させて、分岐配管37に流れる冷媒流量を増加させる。分岐配管37にはサブ熱交換器14が介装されているので、分岐配管37を流れる冷媒はサブ熱交換器14にてエンジン冷却水と熱交換して蒸発される。このようにして、サブ熱交換器14を室外熱交換器13の代わりとして用いることで、冷媒を蒸発させることができ、それにより、室外熱交換器13の暖房効率の低下を補うことができる。

0066

このように、本実施形態に係る空気調和装置1によれば、着霜回避運転が実施された場合に、室外熱交換器13を流れる冷媒の温度(デフロスト温度Tdef)が低いほどバイパス配管38を流れる冷媒流量が多くなるように弁装置(電磁開閉弁51、流量調整弁52)が制御される。これにより、室外熱交換器13への着霜が回避され、或いは室外熱交換器13に僅かに付着した霜が除去される。また、着霜回避運転時にバイパス配管38に流すガス冷媒の流量を、デフロスト温度Tdefに応じて調整することで、最小限に抑えることができる。このため、さほど暖房効率を低下させることがなく、室外熱交換器13への着霜を回避することができる。

0067

また、上記した着霜回避運転は、実際に室外熱交換器13に着霜したことを確認したときではなく、室外熱交換器13に将来的に着霜すると予測される場合、具体的にはデフロスト温度Tdefが着霜回避基準温度T0未満である状態が所定時間継続したときに、開始される。従って、着霜回避運転の開始時には、室外熱交換器13には未だ着霜していないか、或いは僅かに着霜していると考えられる。つまり、本実施形態に係る着霜回避運転は、室外熱交換器13に多量に付着した霜を一気に取り除くような除霜運転ではなく、室外熱交換器13に着霜していないか或いは僅かに着霜した状態において冷媒回路内の冷媒の温度を上昇させるための運転であるので、通常の除霜運転に比較して短時間で終了する。このため暖房運転の効率を低下させるような運転を行っている時間の短縮化を図ることができ、その結果、暖房運転時における快適性を確保することができる。

0068

以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されるべきものではない。例えば、上記実施形態にて示した各温度の値及び各時間の値は、状況に応じて適宜設定することができる。このように、本発明は、その趣旨を逸脱しない限りにおいて、変形可能である。

0069

1…空気調和装置、11…圧縮機、11a…吸入口、11b…吐出口、12…四方弁、12a…第一ポート、12b…第二ポート、12c…第三ポート、12d…第四ポート、13…室外熱交換器、14…サブ熱交換器、15…アキュムレータ、16…室外側電子膨張弁、17…室内熱交換器、18…室内側電子膨張弁、20…エンジン、31…第一配管、32…第二配管、33…第三配管、34…中間配管、35…アキュムレータ入口配管、36…アキュムレータ出口配管、37…分岐配管、38…バイパス配管、381…第一バイパス配管、382…第二バイパス配管、40…制御装置、51…電磁開閉弁(開閉弁)、52…流量調整弁、61…第一温度センサ(冷媒温度センサ)、62…第二温度センサ(冷媒温度センサ)、63…外気温センサ、T0…着霜回避基準温度、Tdef…デフロスト温度、Tout…外気温度、Ts…着霜回避終了温度、τ1th…閾値時間(所定時間)、τ2th…設定時間

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 株式会社テクノミライの「 店舗商品売り場のデジタルスマートエアコントロールシステム」が 公開されました。( 2020/12/17)

    【課題】冷蔵・冷凍ショーケースが設置されている売り場において、空調機の冷房、暖房運転自動切り替えによって結露やカビが発生することを防止し、売り場環境の最適化を図る。【解決手段】冷蔵・冷凍ショーケースエ... 詳細

  • ダイキン工業株式会社の「 空調機」が 公開されました。( 2020/12/17)

    【課題・解決手段】少なくとも1,2−ジフルオロエチレンを含む沸混合冷媒を使用した空調機において、高効率化を達成する。空調負荷に応じて圧縮機(100)のモータ回転数を変更することができるので、高い通年エ... 詳細

  • 三菱電機株式会社の「 監視システム及び監視方法」が 公開されました。( 2020/12/17)

    【課題・解決手段】クラウドサーバ(5)は、屋内情報受信部(500)と、監視情報生成部(504)と、監視情報送信部(505)とを備える。屋内情報受信部(500)は、エアコン(2a,2b)から屋内情報を受... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ