図面 (/)

技術 電力変換装置

出願人 株式会社デンソー
発明者 増澤高志
出願日 2019年3月28日 (1年10ヶ月経過) 出願番号 2019-064481
公開日 2020年10月8日 (4ヶ月経過) 公開番号 2020-167787
状態 未査定
技術分野
  • -
主要キーワード ノイズ除去コンデンサ N端子 閉塞プレート サージ電圧発生 インサート成形体 ホイーストンブリッジ回路 オンオフ作動 平面略矩形
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2020年10月8日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (8)

課題

コモンモードノイズモード変換されて発生するノーマルモードノイズの低減を可能にした、電力変換装置を提供する。

解決手段

電力変換装置は、高電位導体低電位導体出力導体およびノイズ除去コンデンサ9yp,9ynを備える。ノイズ除去コンデンサ9ypは、高電位電力ライン7pのコモンモードノイズをグランドへ流し、ノイズ除去コンデンサ9ynは、低電位電力ライン7nのコモンモードノイズをグランドへ流す。高電位−出力導体間の寄生容量、低電位−出力導体間の寄生容量、ノイズ除去コンデンサ9ynの容量等、ノイズ除去コンデンサ9ypの容量等によって各々形成されるインピーダンスをZ1、Z2、Z3、Z4とする。Z1<Z4かつZ3>Z2或いはZ1>Z4かつZ3<Z2の大小関係となっている。

概要

背景

特許文献1には、電圧昇圧変換するコンバータ電力変換装置)が開示されている。この電力変換装置は、直流電力ライン並列接続されている上下アーム回路を備える。この種の電力変換装置では、上下アーム回路に設けられたスイッチング素子オンオフ作動に伴い、高周波スイッチングノイズ(SWノイズ)が発生する。

そして、SWノイズがグランド伝播するコモンモードノイズに対しては、特許文献1に記載の電力変換装置では、上下アーム回路とグランドとの間にYコンデンサが設けられて対策されている。

概要

コモンモードノイズがモード変換されて発生するノーマルモードノイズの低減を可能にした、電力変換装置を提供する。電力変換装置は、高電位導体低電位導体出力導体およびノイズ除去コンデンサ9yp,9ynを備える。ノイズ除去コンデンサ9ypは、高電位電力ライン7pのコモンモードノイズをグランドへ流し、ノイズ除去コンデンサ9ynは、低電位電力ライン7nのコモンモードノイズをグランドへ流す。高電位−出力導体間の寄生容量、低電位−出力導体間の寄生容量、ノイズ除去コンデンサ9ynの容量等、ノイズ除去コンデンサ9ypの容量等によって各々形成されるインピーダンスをZ1、Z2、Z3、Z4とする。Z1<Z4かつZ3>Z2或いはZ1>Z4かつZ3<Z2の大小関係となっている。

目的

本開示はこのような課題に鑑みてなされたものであり、コモンモードノイズがモード変換されて発生するノーマルモードノイズの低減を可能にした、電力変換装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

該当するデータがありません

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

電力ライン高電位側である高電位電力ライン(7p)と、電力ラインの低電位側である低電位電力ライン(7n)との間に電気接続される上下アーム回路(6)と、前記上下アーム回路の上アーム(6U)と前記高電位電力ラインとを接続する高電位導体(130)と、前記上下アーム回路の下アーム(6L)と前記低電位電力ラインとを接続する低電位導体(140)と、前記上アームと前記下アームとを接続し、前記上下アーム回路により変換された電力を出力する出力導体(150)と、前記高電位電力ラインとグランドとを接続し、前記高電位電力ラインのコモンモードノイズをグランドへ流す高電位側コンデンサ(9yp)と、前記低電位電力ラインとグランドとを接続し、前記低電位電力ラインのコモンモードノイズをグランドへ流す低電位側コンデンサ(9yn)と、を備え、前記高電位導体と前記出力導体との間の寄生容量を第1容量(Cp)とし、前記低電位導体と前記出力導体との間の寄生容量を第2容量(Cn)とし、前記低電位側コンデンサの容量を第3容量(Cyn)とし、前記高電位側コンデンサの容量を第4容量(Cyp)とし、前記低電位側コンデンサの低電位側と前記第2容量とを接続する配線経路に寄生するインダクタンスを第3インダクタンス(Ln)とし、前記高電位側コンデンサの高電位側と前記第1容量の高電位側とを接続する配線経路に寄生するインダクタンスを第4インダクタンス(Lp)とし、前記第1容量によるインピーダンスを第1インピーダンス(Z1)とし、前記第2容量によるインピーダンスを第2インピーダンス(Z2)とし、前記第3容量と前記第3インダクタンスによるインピーダンスを第3インピーダンス(Z3)とし、前記第4容量と前記第4インダクタンスによるインピーダンスを第4インピーダンス(Z4)とし、Z1<Z4かつZ3>Z2の大小関係、或いは、Z1>Z4かつZ3<Z2の大小関係となっている電力変換装置

請求項2

前記高電位導体は、平板形状の高電位平板部(135)を有し、前記低電位導体は、平板形状の低電位平板部(145)を有し、前記出力導体は、平板形状の出力平板部(155)を有し、前記第1容量は、前記高電位平板部と前記出力平板部とが対向することで形成され、前記第2容量は、前記低電位平板部と前記出力平板部とが対向することで形成されている請求項1に記載の電力変換装置。

請求項3

前記上アームおよび前記下アームに並列接続されたコンデンサ(8)を備え、前記高電位導体は、前記コンデンサの正極端子、前記上アーム、および前記高電位電力ラインを接続し、前記低電位導体は、前記コンデンサの負極端子、前記下アーム、および前記低電位電力ラインを接続する請求項2に記載の電力変換装置。

請求項4

前記第1インピーダンスと前記第2インピーダンスとは同じ値である請求項1〜3のいずれか1つに記載の電力変換装置。

請求項5

前記高電位導体、前記低電位導体および前記出力導体を収容する金属製のケース(187)を備え、前記ケースはグランドに接続されており、前記出力導体と前記ケースとの間で寄生容量が形成されている請求項1〜4のいずれか1つに記載の電力変換装置。

請求項6

第1インピーダンス、前記第2インピーダンス、前記第3インピーダンス、および前記第4インピーダンスが、Z1・Z3=Z2・Z4といった平衡条件を満たしている請求項1〜5のいずれか1つに記載の電力変換装置。

技術分野

0001

この明細書における開示は、電力変換装置に関する。

背景技術

0002

特許文献1には、電圧昇圧変換するコンバータ(電力変換装置)が開示されている。この電力変換装置は、直流電力ライン並列接続されている上下アーム回路を備える。この種の電力変換装置では、上下アーム回路に設けられたスイッチング素子オンオフ作動に伴い、高周波スイッチングノイズ(SWノイズ)が発生する。

0003

そして、SWノイズがグランド伝播するコモンモードノイズに対しては、特許文献1に記載の電力変換装置では、上下アーム回路とグランドとの間にYコンデンサが設けられて対策されている。

先行技術

0004

特開2016−174502号公報

発明が解決しようとする課題

0005

さて、SWノイズの伝播経路には、グランド伝播(コモンモード)の他にも、電力ラインの高電位側ライン低電位側ラインの2線間で伝播するノーマルモードが挙げられる。しかしながら、上記電力変換装置では、コモンモードノイズについてはYコンデンサで対策されているものの、コモンモードノイズがモード変換されて発生するノーマルモードノイズについては対策が為されていない。

0006

本開示はこのような課題に鑑みてなされたものであり、コモンモードノイズがモード変換されて発生するノーマルモードノイズの低減を可能にした、電力変換装置を提供することを目的とする。

課題を解決するための手段

0007

本開示は、上記目的を達成するために以下の技術的手段を採用する。なお、括弧内の符号は、ひとつの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、技術的範囲を限定するものではない。

0008

本開示のひとつである電力変換装置は、
電力ラインの高電位側である高電位電力ライン(7p)と、電力ラインの低電位側である低電位電力ライン(7n)との間に電気接続される上下アーム回路(6)と、
上下アーム回路の上アーム(6U)と高電位電力ラインとを接続する高電位導体(130)と、
上下アーム回路の下アーム(6L)と低電位電力ラインとを接続する低電位導体(140)と、
上アームと下アームとを接続し、上下アーム回路により変換された電力を出力する出力導体(150)と、
高電位電力ラインとグランドとを接続し、高電位電力ラインのコモンモードノイズをグランドへ流す高電位側コンデンサ(9yp)と、
低電位電力ラインとグランドとを接続し、低電位電力ラインのコモンモードノイズをグランドへ流す低電位側コンデンサ(9yn)と、
を備える。

0009

そして、
高電位導体と出力導体との間の寄生容量を第1容量(Cp)とし、
低電位導体と出力導体との間の寄生容量を第2容量(Cn)とし、
低電位側コンデンサの容量を第3容量(Cyn)とし、
高電位側コンデンサの容量を第4容量(Cyp)とし、
低電位側コンデンサの低電位側と第2容量とを接続する配線経路に寄生するインダクタンスを第3インダクタンス(Ln)とし、
高電位側コンデンサの高電位側と第1容量の高電位側とを接続する配線経路に寄生するインダクタンスを第4インダクタンス(Lp)とし、
第1容量によるインピーダンスを第1インピーダンス(Z1)とし、
第2容量によるインピーダンスを第2インピーダンス(Z2)とし、
第3容量と第3インダクタンスによるインピーダンスを第3インピーダンス(Z3)とし、
第4容量と第4インダクタンスによるインピーダンスを第4インピーダンス(Z4)とし、
Z1<Z4かつZ3>Z2の大小関係、或いは、Z1>Z4かつZ3<Z2の大小関係となっている。

0010

ここで、上述した電力変換装置においては、第1容量と、第2容量と、第3容量および第3インダクタンスと、第4容量および第4インダクタンスとが、ホイーストンブリッジ回路(HB回路)を形成することとなる。したがって、原理的には、Z1・Z3-=Z2・Z4との平衡条件を満たせば、第4インダクタンスおよび第1容量の接続点(高電位側接続点)と、第3インダクタンスおよび第2容量の接続点(低電位側接続点)との間に電位差は生じない。そして、高電位側接続点は高電位電力ラインに含まれ、低電位側接続点は低電位電力ラインに含まれる。このことは、Z1・Z3-=Z2・Z4との平衡条件を満たせば、高電位電力ラインと低電位電力ラインの2線間で伝播するノーマルモードノイズを無くせることを意味する。なお、上記HB回路の電位差に起因して流れるノーマルモードノイズは、コモンモードノイズがモード変換されて発生するものである。

0011

この点を鑑み、上記電力変換装置では、Z1<Z4かつZ3>Z2の大小関係、或いは、Z1>Z4かつZ3<Z2の大小関係となっている。これによれば、上記大小関係を満たしていない場合に比べてHB回路の平衡条件に近づくことになる。よって、その近づいた分、高電位電力ラインと低電位電力ラインの2線間で伝播するノーマルモードノイズを低減できる。

図面の簡単な説明

0012

第1実施形態に係る電力変換装置の概略構成を示す図である。
第1実施形態に係るパワーモジュールを示す分解斜視図である。
図2のIII−III線に沿う断面図である。
図2バスバー単体を示す斜視図。
図4の分解斜視図
電力変換装置で生じる各種の寄生インダクタンスと寄生容量を示す、電力変換装置の回路図である。
図6等価回路図である。

実施例

0013

図面を参照しながら、複数の実施形態を説明する。複数の実施形態において、機能的におよび/又は構造的に対応する部分には同一の参照符号を付与する。以下において、半導体素子の厚み方向をZ方向、Z方向に直交する一方向をX方向と示す。また、Z方向およびX方向の両方向に直交する方向をY方向と示す。特に断わりのない限り、上記したX方向およびY方向により規定されるXY面に沿う形状を平面形状とする。

0014

(第1実施形態)
先ず、図1に基づき、電力変換装置について説明する。

0015

<電力変換装置の概略構成>
図1に示す電力変換装置1は、たとえば電気自動車ハイブリッド自動車に搭載される。電力変換装置1は、車両に搭載された直流電源2から供給される直流電圧を、三相交流に変換して、三相交流方式モータ3に出力する。モータ3は、車両の走行駆動源として機能する。電力変換装置1は、モータ3により発電された電力を、直流に変換して直流電源2に充電することもできる。電力変換装置1は、双方向の電力変換が可能となっている。

0016

電力変換装置1は、平滑コンデンサ4と、ノイズ除去コンデンサ9yp,9ynと、電力変換器であるインバータ5を有している。

0017

インバータ5は、入力された直流電力所定周波数の三相交流に変換し、モータ3に出力する。インバータ5は、モータ3により発電された交流電力を、直流電力に変換する。インバータ5は、DC−AC変換部である。インバータ5は、三相分の上下アーム回路6を備えて構成されている。各相の上下アーム回路6は、正極側の電源ラインである高電位電力ライン7pと、負極側の電源ラインである低電位電力ライン7nの間で、2つのアームが直列に接続されてなる。各相の上下アーム回路6において、上アーム6Uと下アーム6Lの接続点は、モータ3への出力ライン7oに接続されている。

0018

本実施形態では、各アームを構成するスイッチング素子として、nチャネル型絶縁ゲートバイポーラトランジスタ6i(以下、IGBT6iと示す)を採用している。IGBT6iのそれぞれには、還流用のダイオードであるFWD6dが逆並列に接続されている。一相分の上下アーム回路6は、2つのIGBT6iを有して構成されている。上アームにおいて、IGBT6iのコレクタ電極が、高電位電力ライン7pに接続されている。下アームにおいて、IGBT6iのエミッタ電極が、低電位電力ライン7nに接続されている。そして、上アームにおけるIGBT6iのエミッタ電極と、下アームにおけるIGBT6iのコレクタ電極が相互に接続されている。

0019

電力変換装置1は、上記した平滑コンデンサ4およびインバータ5に加えて、インバータ5とは別の電力変換器であるコンバータ、インバータ5やコンバータを構成するスイッチング素子の駆動回路などを備えてもよい。コンバータは、直流電圧を異なる値の直流電圧に変換するDC−DC変換部である。

0020

平滑コンデンサ4は、高電位電力ライン7pと低電位電力ライン7nの間に接続されている。詳細には、平滑コンデンサ4の正極側端子は高電位電力ライン7pに接続され、負極側端子は低電位電力ライン7nに接続されている。平滑コンデンサ4は、インバータ5やコンバータと並列に接続されている。平滑コンデンサ4は、たとえばコンバータで昇圧された直流電圧、或いは直流電源2から供給される直流電圧を平滑化し、その直流電圧の電荷蓄積する。平滑コンデンサ4の両端間の電圧が、モータ3を駆動するための直流の高電圧となる。

0021

ノイズ除去コンデンサ9yp,9ynには、「高電位側コンデンサ」に相当するノイズ除去コンデンサ9ypと、「低電位側コンデンサ」に相当するノイズ除去コンデンサ9ynとが含まれる。

0022

2つのノイズ除去コンデンサ9yp,9ynは、互いに直列接続されるとともに、高電位電力ライン7pと低電位電力ライン7nの間に接続されている。2つのノイズ除去コンデンサ9yp,9ynは、高電位電力ライン7pと低電位電力ライン7nの間において、インバータ5、コンバータおよび平滑コンデンサ4等と並列に接続されている。これらのノイズ除去コンデンサ9yp,9ynは、互いに同じ容量に設定されている。よって、高電位電力ライン7pとグランドの電位差と、グランドと低電位電力ライン7nの電位差は同一である。

0023

ノイズ除去コンデンサ9ypは、高電位電力ライン7pとグランドの間に接続されている。詳細には、ノイズ除去コンデンサ9ypの正極側端子は、高電位電力ライン7pに接続され、負極側端子はグランドに接続されている。ノイズ除去コンデンサ9ypは、高電位電力ライン7pのコモンモードノイズをグランドへ流す。

0024

ノイズ除去コンデンサ9ynは、低電位電力ライン7nとグランドの間に接続されている。詳細には、ノイズ除去コンデンサ9ypの負極側端子は、低電位電力ライン7nに接続されている。また、ノイズ除去コンデンサ9ypの正極側端子は、ノイズ除去コンデンサ9ypの負極側端子とともにグランドに接続されている。ノイズ除去コンデンサ9ynは、低電位電力ライン7nのコモンモードノイズをグランドへ流す。

0025

半導体装置の構成>
次に、電力変換装置1の構成要素である半導体装置20U,20Lについて説明する。

0026

上アーム6Uと下アーム6Lの各々は、半導体装置20U,20Lを備えて構成されている。半導体装置20U,20Lは、上アーム6Uと下アーム6Lとで、基本的な構成が同じであり、たとえば共通部品とすることもできる。半導体装置20U,20Lは、先述したIGBT6iに加えて、封止樹脂体導電部材主端子70および信号端子80を備えている。

0027

主端子70には、コレクタ端子およびエミッタ端子が含まれている。コレクタ端子は、IGBT6iのコレクタ電極と電気的に接続されている。エミッタ端子は、IGBT6iのエミッタ電極と電気的に接続されている。Pバスバー130には、上アーム6Uのコレクタ端子が電気的に接続されている。Nバスバー140には、下アーム6Lのエミッタ端子が電気的に接続されている。出力バスバー150には、上アーム6Uのエミッタ端子および下アーム6Lのコレクタ端子が電気的に接続されている。

0028

導電部材は、IGBT6iと主端子70とを電気的に中継する。導電部材は、IGBT6iの熱を半導体装置20U,20Lの外部へ放熱する機能も果たし、ヒートシンクとも称される。封止樹脂体は、IGBT6iの全体、導電部材の一部、主端子70の一部および信号端子80の一部を封止する。

0029

<パワーモジュールの構成>
次に、図2および図3を用いて、半導体装置20U,20Lを構成要素としてモジュール化された、パワーモジュール110について説明する。

0030

パワーモジュール110は、半導体装置20U,20Lと、冷却器120と、コンデンサ8と、Pバスバー130と、Nバスバー140と、出力バスバー150と、駆動基板160と、保護部材180を備えている。図2では、便宜上、半導体装置20U,20Lの主端子70と、封止材188を省略して図示している。図3では、パワーモジュール110を構成する要素を簡素化して図示している。

0031

保護部材180を構成するケース187は、筒状をなしている。ケース187は、平面略矩形環状をなしている。ケース187は、金属材料を用いて形成されている。たとえばダイカスト法によって形成された金属成形体を採用することができる。或いは、金属部品を用いたインサート成形体を採用することもできる。或いは、ケース187は樹脂製であってもよい。

0032

ケース187はZ方向に延設されている。ケース187は、Z方向の両端に、開口部187a,187bを有している。ケース187は、貫通孔187cを有している。貫通孔187cは、開口部187b側の端面187dに開口するとともに、筒状内部の空間に連通している。貫通孔187cは、X方向においてケース187の両端に設けられている。ケース187内には、半導体装置20U,20Lの少なくとも一部、冷却器120の一部、コンデンサ8、各バスバー130,140,150それぞれの一部が配置されている。

0033

冷却器120は、供給管121と、排出管122と、多段に配置された熱交換部123を有している。そして、上アーム6Uを構成する半導体装置20Uと、下アーム6Lを構成する半導体装置20Lは、X方向に並んで配置されている。これらの半導体装置20U,20Lは、一対の熱交換部123の間に配置されて挟まれている。供給管121および排出管122の並び方向は、X方向に沿っている。供給管121と排出管122の間に、半導体装置20U,20Lが配置されている。

0034

熱交換部123のひとつには、閉塞プレート127が一体的に設けられている。閉塞プレート127は、ケース187の開口部187aを閉塞するように設けられている。閉塞プレート127は、たとえば平板状に設けられている。閉塞プレート127は、熱交換部123に対して、半導体装置20U,20L側の面とは反対の面に固定されている。図3に示すように、閉塞プレート127が開口部187aを塞ぐように、冷却器120がケース187に組み付けられている。閉塞プレート127は、接着、ねじ締結などによってケース187に固定されている。閉塞プレート127は、ケース187の底として機能する。

0035

コンデンサ8は、Pバスバー130、Nバスバー140および出力バスバー150とともに、コンデンサユニット190をなしている。コンデンサユニット190は、ケース191を有している。ケース191は、コンデンサ8を収容するハウジングとして機能する。ケース191は、各バスバー130,140,150を外部と接続可能に保持する端子台のハウジングとして機能する。このように、コンデンサ8、Pバスバー130、Nバスバー140および出力バスバー150は一体的に保持されている。

0036

コンデンサユニット190は、ケース187内において、冷却器120上に配置されている。コンデンサユニット190は、閉塞プレート127が設けられていない側の熱交換部123に対して、半導体装置20U,20Lとは反対側に配置されている。

0037

パワーモジュール110は、電流センサ200をさらに備えている。電流センサ200は、出力バスバー150に流れる電流を検出する。このため、電流センサ200は、出力バスバー150の近傍に配置されている。本実施形態では、電流センサ200が、センサ本体部201と、リード202を有している。センサ本体部201には、磁電変換素子が形成されている。磁電変換素子としては、たとえばホール素子や、GMR素子TMR素子などの磁気抵抗効果素子を採用することができる。電流センサ200のリード202が、駆動基板160に実装、たとえば挿入実装されている。

0038

駆動基板160は、コンデンサユニット190に対して、冷却器120と反対側に配置されている。本実施形態では、駆動基板160が、ケース187の開口部187bを閉塞するように配置されている。駆動基板160は、開口部187b側の端面187dに配置された状態で、ケース187に固定されている。電流センサ200は、X方向において駆動基板160の一端に実装されている。駆動基板160は、出力バスバー150側の端部に凸部161を有している。凸部161は、開口部187bとは反対側、すなわち外側に突出している。

0039

電流センサ200は、凸部161に実装されている。電流センサ200は、駆動基板160に実装された状態で、Z方向に延設されている。そして、ケース187の外で、出力バスバー150の突出部分の近傍に配置されている。

0040

なお、本実施形態では、ノイズ除去コンデンサ9yp,9ynは、パワーモジュール110とは別体に設けられているが、パワーモジュール110と一体に設けられていてもよい。例えば、ノイズ除去コンデンサ9yp,9ynは、駆動基板160に実装されていてもよい。

0041

保護部材180を構成する封止材188は、ケース187内に収容された要素の少なくとも一部を封止している。封止材188としては、電気絶縁性の材料、たとえば樹脂やゲルを採用することができる。封止材188は、ポッティング材と称される場合がある。封止材188は、半導体装置20U,20Lおよびコンデンサ8の少なくとも一部を封止している。封止材188は、異なる電位の部材間に配置されるのが好ましい。

0042

本実施形態では、閉塞プレート127を底側として封止材188が充填されている。封止材188は、半導体装置20U,20Lが備えるすべての主端子70を一体的に覆うように、主端子70の周辺のみに配置されている。封止材188は、主端子70のうちのコレクタ端子とエミッタ端子の間に介在している。

0043

<バスバーの構造>
次に、図4および図5を用いて、コンデンサユニット190の構成部品であるPバスバー130、Nバスバー140および出力バスバー150について、位置関係や形状等を説明する。Pバスバー130、Nバスバー140および出力バスバー150は、導電性に優れる金属、たとえば銅を含む金属板材である。この金属板材の表面には電気絶縁膜が設けられている。Pバスバー130は「高電位導体」に相当する。Nバスバー140は「低電位導体」に相当する。出力バスバー150は「出力導体」に相当する。

0044

本例では、各バスバーにおいて厚みがほぼ均一とされている。Pバスバー130、Nバスバー140および出力バスバー150は、互いにほぼ同じ厚みとされている。Pバスバー130、Nバスバー140および出力バスバー150は、冷却器120と電気的に分離されている。

0045

Pバスバー130は、電源接続部131、コンデンサ接続部132、スイッチ接続部133および対向部135を有する。電源接続部131は、高電位電力ライン7pに接続される部分である。コンデンサ接続部132は、コンデンサ8の正極端子に接続される部分である。スイッチ接続部133は、半導体装置20U(上アーム6U)を構成するIGBT6iのコレクタ電極に、繋バスバー170(図3参照)を介して接続される部分である。

0046

対向部135は、Z方向に対して垂直に拡がる板形状である。電源接続部131は、対向部135の一端から駆動基板160に向けて延びる形状であり、「高電位平板部」に相当する。コンデンサ接続部132は、対向部135の板面から電源接続部131と同じ向きに延びる形状である。スイッチ接続部133に接続される繋バスバー170は、電源接続部131と反対向きに、半導体装置20Uに向けて延びる形状である。電源接続部131およびコンデンサ接続部132は、対向部135よりも幅広かつ大面積である。

0047

Nバスバー140は、電源接続部141、コンデンサ接続部142、スイッチ接続部143および対向部145を有する。電源接続部141は、低電位電力ライン7nに接続される部分である。コンデンサ接続部142は、コンデンサ8の負極端子に接続される部分である。スイッチ接続部143は、半導体装置20L(下アーム6L)を構成するIGBT6iのエミッタ電極に、繋バスバー170(図3参照)を介して接続される部分である。

0048

対向部145は、Z方向に対して垂直に拡がる板形状であり、「低電位平板部」に相当する。電源接続部141は、対向部145の一端から駆動基板160に向けて延びる形状である。コンデンサ接続部142は、対向部145の他端から電源接続部141と同じ向きに延びる形状である。スイッチ接続部143に接続される繋バスバー170は、電源接続部141と反対向きに、半導体装置20Lに向けて延びる形状である。電源接続部141およびコンデンサ接続部142は、対向部145よりも幅広かつ大面積である。

0049

Pバスバー130およびNバスバー140の各々の対向部135,145は、XY平面上に並べて配置されている。Pバスバー130およびNバスバー140の各々のコンデンサ接続部132,142は、コンデンサ8を間に挟んだ状態で対向して配置されている。Pバスバー130およびNバスバー140の各々の電源接続部131,141は、X方向のうち対向部135,145に対して同じ側に設けられている。

0050

出力バスバー150は、出力接続部151、スイッチ接続部153および対向部155を有する。出力接続部151は、出力ライン7oに接続される部分である。スイッチ接続部153は、半導体装置20Uのエミッタ電極および半導体装置20Lのコレクタ電極に、繋バスバー170(図3参照)を介して接続される部分である。

0051

対向部155は、Z方向に対して垂直に拡がる板形状であり、「出力平板部」に相当する。出力接続部151は、対向部155の一端から駆動基板160に向けて延びる形状である。スイッチ接続部153に接続される繋バスバー170は、出力接続部151と反対向きに、半導体装置20Lに向けて延びる形状である。出力接続部151は、対向部155よりも幅広かつ大面積である。出力接続部151、電源接続部131および電源接続部141は、互いの板面が平行となるように配置されている。電源接続部131および電源接続部141は、対向部155に対して、出力接続部151の反対側に配置されている。

0052

出力バスバー150の対向部155は、Pバスバー130の対向部135およびNバスバー140の対向部145と対向配置されている。これらの対向部135,145,155は、互いに平行に配置されている。対向部155のうち、Pバスバー130の対向部135と対向する部分をP対向部155aと称し、Nバスバー140の対向部145と対向する部分をN対向部155bと称する。

0053

上アーム6Uをオン作動させるとともに下アーム6Lをオフ作動させると、上アーム6UのIGBT6iを通じて、高電位電力ライン7pから出力ライン7oへP電流が流れる。図4中の矢印Ipは、P電流のうちPバスバー130での流れを示す。図4中の矢印Ipoは、P電流のうち出力バスバー150での流れを示す。

0054

下アーム6Lをオン作動させるとともに上アーム6Uをオフ作動させると、下アーム6LのIGBT6iを通じて、低電位電力ライン7nから出力ライン7oへN電流が流れる。図4中の矢印Inは、N電流のうちNバスバー140での流れを示す。図4中の矢印Inoは、N電流のうち出力バスバー150での流れを示す。

0055

インバータ5は、図示しない端子台を備える。端子台は、図6に示すP端子5p、N端子5n、O端子5oおよびG端子5gを保持する。P端子5pには、Pバスバー130の電源接続部131と、高電位電力ライン7pとが接続されている。N端子5nには、Nバスバー140の電源接続部141と、低電位電力ライン7nとが接続されている。O端子5oには、出力バスバー150の出力接続部151と、出力ライン7oとが接続されている。

0056

<寄生インダクタンスと寄生容量について>
次に、図6および図7を用いて、電力変換装置1で生じる各種の寄生インダクタンスと寄生容量について説明する。

0057

Pバスバー130の対向部135と出力バスバー150のP対向部155aとは、一対の電極として作用して電荷を蓄え得る。つまり、Pバスバー130と出力バスバー150との間で寄生容量が生じ、この寄生容量を第1容量Cpとする。Nバスバー140の対向部145と出力バスバー150のN対向部155bとは、一対の電極として作用して電荷を蓄え得る。つまり、Nバスバー140と出力バスバー150との間で寄生容量が生じ、この寄生容量を第2容量Cnとする。

0058

本例では、第1容量Cpと第2容量Cnが同じ値となるように、Pバスバー130、Nバスバー140および出力バスバー150の形状等が設定されている。具体的には、Pバスバー130の材質とNバスバー140の材質が同じに設定されている。Pバスバー130の板厚寸法とNバスバー140の板厚寸法が同じに設定されている。Pバスバー130の対向部135の面積とNバスバー140の対向部145の面積が同じに設定されている。出力バスバー150のP対向部155aの面積とN対向部155bの面積が同じに設定されている。Pバスバー130の対向部135と出力バスバー150のP対向部155aとの離間距離は、Nバスバー140の対向部145と出力バスバー150のN対向部155bとの離間距離は同じに設定されている。

0059

低電位側コンデンサであるノイズ除去コンデンサ9ynの容量を第3容量Cynとする。高電位側コンデンサであるノイズ除去コンデンサ9ypの容量を第4容量Cypとする。第3容量Cynと第4容量Cypは同じ値に設定されている。

0060

出力バスバー150の対向部155と、ケース187の板面とは、一対の電極として作用して電荷を蓄え得る。つまり、出力バスバー150とケース187との間で寄生容量が生じ、この寄生容量を第5容量Cgとする。なお、ケース187はグランドに電気接続されている。

0061

ノイズ除去コンデンサ9ynの低電位側と第2容量Cnとを接続する配線経路に寄生するインダクタンスを、第3インダクタンスLnとする。第3インダクタンスLnは、例えば以下に説明するインダクタンスLn1,Ln2,Ln3の合成とみなすことができる。

0062

インダクタンスLn1は、低電位電力ライン7nのうち平滑コンデンサ4との接続点と、ノイズ除去コンデンサ9ynの低電位側電極との間の部分の配線インダクタンスである。インダクタンスLn2は、低電位電力ライン7nのうち、ノイズ除去コンデンサ9ynとの接続点と、N端子5nとの間の部分の配線インダクタンスである。インダクタンスLn3は、Nバスバー140の対向部145とN端子5nとの間の部分の配線インダクタンスである。これらのインダクタンスLn1,Ln2,Ln3は互いに直列接続されている。

0063

ノイズ除去コンデンサ9ypの高電位側と第1容量Cpとを接続する配線経路に寄生するインダクタンスを、第4インダクタンスLpとする。第4インダクタンスLpは、例えば以下に説明するインダクタンスLp1,Lp2,Lp3の合成とみなすことができる。

0064

インダクタンスLp1は、高電位電力ライン7pのうち平滑コンデンサ4との接続点と、ノイズ除去コンデンサ9ypの高電位側電極との間の部分の配線インダクタンスである。インダクタンスLp2は、高電位電力ライン7pのうち、ノイズ除去コンデンサ9ypとの接続点と、P端子5pとの間の部分の配線インダクタンスである。インダクタンスLp3は、Pバスバー130の対向部135とP端子5pとの間の部分の配線インダクタンスである。これらのインダクタンスLp1,Lp2,Lp3は互いに直列接続されている。

0065

図7に示すように、第1容量Cp、第2容量Cn、第3容量Cyn、第3インダクタンスLn、第4容量Cypおよび第4インダクタンスLpは、ホイーストンブリッジ回路(HB回路)を形成することとなる。また、第5容量Cgの高電位側は、第1容量Cpと第2容量Cnとの接続点に接続されることとなる。第5容量Cgの低電位側は、第3容量Cynと第4容量Cypとの接続点に接続されることとなる。

0066

上記HB回路において、以下に説明する各々のインピーダンスZ1、Z2、Z3、Z4は、Z1・Z3=Z2・Z4といった平衡条件を満たしている。第1インピーダンスZ1は、第1容量Cpによって形成されるインピーダンスである。第2インピーダンスZ2は、第2容量Cnによって形成されるインピーダンスである。第3インピーダンスZ3は、第3容量Cynと第3インダクタンスLnによって形成されるインピーダンスである。第4インピーダンスZ4は、第4容量Cypと第4インダクタンスLpによって形成されるインピーダンスである。

0067

例えば、Pバスバー130、Nバスバー140および出力バスバー150の各形状、大きさ、位置関係等が、上記平衡条件を満たすように調整されている。また、第3インダクタンスLnを形成する導体の形状や大きさ、および第4インダクタンスLpを形成する導体の形状や大きさが、上記平衡条件を満たすように調整されている。

0068

なお、上記平衡条件は、Z1・Z3とZ2・Z4が厳密に同一である場合に限らず、各バスバーの製造誤差の範囲で異なる値となっていてもよい。例えば±10%の製造誤差、望ましくは±5%の製造誤差、より望ましくは±3%の製造誤差の範囲であればよい。

0069

作用効果
本実施形態によれば、以下に詳述するように、寄生インダクタンス低減とノーマルモードノイズ低減との両立を図ることができる。

0070

先ず、寄生インダクタンス低減について説明する。

0071

図4に示すように、上アーム6Uのオン作動に伴いPバスバー130と出力バスバー150にP電流が流れる。この時、Pバスバー130を流れるP電流(矢印Ip参照)によって生じる磁束と、出力バスバー150を流れるP電流(矢印Ipo参照)によって生じる磁束とは打ち消し合う。このように打ち消し合う作用は、Pバスバー130と出力バスバー150が積層配置されていることで増大する。よって、Pバスバー130と出力バスバー150による配線インダクタンスを低減できる。

0072

下アーム6Lのオン作動に伴いNバスバー140と出力バスバー150にN電流が流れる。この時、Nバスバー140を流れるN電流(矢印In参照)によって生じる磁束と、出力バスバー150を流れるN電流(矢印Ino参照)によって生じる磁束とは打ち消し合う。このように打ち消し合う作用は、Nバスバー140と出力バスバー150が積層配置されていることで増大する。よって、Nバスバー140と出力バスバー150による配線インダクタンスを低減できる。

0073

但し、このように積層配置することに起因して、寄生容量である第1容量Cpと第2容量Cnが増大する。その結果、図7に示すHB回路が形成される。スイッチングノイズによる電圧は、HB回路における接続点To,Tgにノイズ源として印加され得る。接続点Toは、第1容量Cpと第2容量Cnと第5容量Cgとの接続点である。接続点Tgは、2つのノイズ除去コンデンサ9yp,9ynと第5容量Cgとの接続点である。

0074

接続点Tpは、第1容量Cpと第4インダクタンスLpとの接続点である。接続点Tnは、第2容量Cnと第3インダクタンスLnとの接続点である。HB回路の平衡条件が満たされていない場合には、2つの接続点Tp,Tn間で電位差VNDが生じて、接続点Tp,Tn間に電流が流れる。この電流は、高電位電力ライン7pと低電位電力ライン7nとの間に電流が流れることを意味し、コモンモードノイズがモード変換されて発生するノーマルモードノイズに相当する。

0075

要するに、バスバーを積層配置すると、寄生インダクタンスを低減できるものの、その背反として寄生容量が形成され、ノーマルモードノイズの増大が懸念されるようになる。この点を鑑み、本実施形態では、HB回路の平衡条件が満たされるように各バスバーの形状等が調整されている。よって、バスバーを積層配置しつつもノーマルモードノイズを低減できる。

0076

さらに本実施形態では、Pバスバー130は対向部135(高電位平板部)を有する。Nバスバー140は対向部145(低電位平板部)を有する。出力バスバー150は対向部155(出力平板部)を有する。そして、高電位平板部と出力平板部とが対向するので、高電位平板部のP電流で生じる磁束と、出力平板部のP電流で生じる磁束とが打ち消し合う効果が高められる。よって、Pバスバー130と出力バスバー150による配線インダクタンス低減を促進できる。また、低電位平板部と出力平板部とが対向するので、低電位平板部のN電流で生じる磁束と、出力平板部のN電流で生じる磁束とが打ち消し合う効果が高められる。よって、Nバスバー140と出力バスバー150による配線インダクタンス低減を促進できる。

0077

さらに本実施形態では、上アーム6Uおよび下アーム6Lに並列接続されたコンデンサ8を備える。Pバスバー130(高電位導体)は、コンデンサ8の正極端子および上アーム6Uと、高電位電力ライン7pとを接続する。Nバスバー140(低電位導体)は、コンデンサ8の負極端子および下アーム6Lと、低電位電力ライン7nとを接続する。

0078

したがって、上アーム6U、下アーム6Lおよびコンデンサユニット190は、電力ラインを含まない閉ループ回路を形成することになる。電力ラインとは、高電位電力ライン7pおよび低電位電力ライン7nのことである。上記閉ループ回路は、コンデンサ8の正極端子、Pバスバー130、上アーム6U、下アーム6L、Nバスバー140及びコンデンサ8の負極端子が順に直列接続された回路である。図1中の矢印Y1は、閉ループ回路での電流の流れを示す。

0079

そのため、上下アーム回路6のスイッチング時に必要な電荷がコンデンサ8から供給されるにあたり、その電荷供給経路には電力ラインが含まれないので、その経路の配線を短くできる。一方、本実施形態に反してコンデンサ8が廃止されている場合、平滑コンデンサ4から上下アーム回路6への電荷供給経路に電力ラインが含まれるので、その経路の配線を十分に短くすることができない。

0080

以上により、上記コンデンサ8を備える本実施形態によれば、サージ電圧発生要因の1つである配線長を短くできる。よって、サージ電圧に係る配線インダクタンスを小さくでき、上下アーム回路6で生じる自己サージ電圧を低減できる。しかも、上記閉ループ回路は電力ラインを含んでいないので、自己サージ電圧が電力ラインに重畳しにくくなる。そのため、電力ラインを通じて他の上下アーム回路6に自己サージ電圧を干渉させてしまうことを抑制できる。また、このように自己サージ電圧を低減させるコンデンサ8が、各相それぞれに設けられている。そのため、電力ラインを通じた上下アーム回路6同士が自己サージ電圧を干渉させ合うことを、より一層抑制できる。

0081

さらに本実施形態では、第1インピーダンスZ1と第2インピーダンスZ2とが同じ値に設定されている。そのため、第3インピーダンスZ3と第4インピーダンスZ4とを同じ値にすれば平衡条件をみたすこととなる。そして、第3インピーダンスZ3と第4インピーダンスZ4は、2つのノイズ除去コンデンサ9yp,9ynの容量Cyp,Cynを同一にしつつ、2つのインダクタンスLp,Lnを同一にすれば実現できる。容量Cyp,Cynの同一化やインダクタンスLp,Lnの同一化は、調整容易である。以上により、Z1=Z2に設定されている本実施形態によれば、平衡条件を満たすようにするための調整を容易にできる。

0082

(他の実施形態)
この明細書および図面等における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様包含する。たとえば開示は、実施形態において示された部品及び/又は要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品及び/又は要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品及び/又は要素の置き換え、又は組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。

0083

上記第1実施形態では、各々のインピーダンスZ1、Z2、Z3、Z4は、Z1・Z3=Z2・Z4の関係を満たしている。そして、Z1・Z3とZ2・Z4が厳密に同一である場合に限らず、製造誤差の範囲で異なる値となっていることを許容している。これに対し、以下の条件1または条件2を満たしていれば、製造誤差の範囲を超えてZ1・Z3とZ2・Z4が異なる値になっていてもよい。条件1は、Z1<Z4かつZ3>Z2の大小関係である。条件2は、Z1>Z4かつZ3<Z2の大小関係である。

0084

上記第1実施形態では、ノイズ除去コンデンサ9yp,9ynが、ケース187内に収容されて、パワーモジュール110の構成部品として組み付けられている。これに対し、ノイズ除去コンデンサ9yp,9ynは、ケース187の外に設けられていても良く、パワーモジュール110とは別体に配置されていてもよい。例えば、ノイズ除去コンデンサ9yp,9ynは、直流電源2のバッテリケース内や、昇圧回路ケース内に配置されていてもよい。

0085

上記第1実施形態では、出力バスバー150とケース187との間で生じる寄生容量を第5容量Cgとしている。これに対し、出力バスバー150のうち対向部155の部分とケース187との間で生じる寄生容量を第5容量Cgとしてもよい。或いは、出力バスバー150と熱交換部123との間で生じる寄生容量を第5容量Cgとしてもよい。或いは、出力バスバー150と駆動基板160との間で生じる寄生容量を第5容量Cgとしてもよい。

0086

ケース187のZ方向の長さは特に限定されない。金属製のケース187は、ノイズに対する遮蔽板として機能する。よって、ケース187のZ方向の長さを、半導体装置20、冷却器120およびコンデンサユニット190の積層体よりも長くするとよい。これによれば、ケース187によって、外来ノイズを効果的に遮蔽することができる。また、半導体装置20の生じたノイズが外部へ伝搬するのを効果的に遮蔽することができる。

0087

上記第1実施形態では、冷却器120によりケース187の開口部187aを閉塞する例を示したが、これに限定されない。駆動基板160によりケース187の開口部187aを閉塞してもよい。

0088

上記第1実施形態では、駆動基板160が開口部187a側に配置される例を示したが、これに限定されない。駆動基板160が、冷却器120に対してコンデンサユニット190と反対側に配置された構成としてもよい。この場合、駆動基板160と冷却器120の両方により、開口部187aを閉塞する構成としてもよい。

0089

上記第1実施形態では、各アームを構成するスイッチング素子としてIGBTを採用しているが、電界効果トランジスタMOSFET)を採用してもよい。また、上記第1実施形態では、スイッチング素子とは別に、還流ダイオードであるFWD6dが逆並列に接続されている。これに対し、還流ダイオードとして、MOSFETのボディダイオードを採用してもよい。

0090

6上下アーム回路、 130高電位導体、 135 高電位平板部、 140低電位導体、 145低電位平板部、 150出力導体、 155 出力平板部、 187ケース、 6L 下アーム、 6U 上アーム、 7n 低電位電力ライン、 7p 高電位電力ライン、 8コンデンサ、 9yn 低電位側コンデンサ、 9yp 高電位側コンデンサ、 Cn 第2容量、 Cp 第1容量、 Cyn 第3容量、 Cyp 第4容量、 Ln 第3インダクタンス、 Lp 第4インダクタンス、 Z1 第1インピーダンス、 Z2 第2インピーダンス、 Z3 第3インピーダンス、 Z4 第4インピーダンス。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

該当するデータがありません

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

この 技術と関連性が強い技術

該当するデータがありません

この 技術と関連性が強い法人

該当するデータがありません

この 技術と関連性が強い人物

該当するデータがありません

この 技術と関連する社会課題

該当するデータがありません

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ