図面 (/)

この項目の情報は公開日時点(2020年10月8日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (6)

課題

細胞または対象のゲノム内の、例えばヒトゲノム内の単一部位編集等の標的を定めた核酸編集に有用である戦略、システム試薬、方法およびキットを提供する。

解決手段

いくつかの実施形態では、Cas9と、核酸編集酵素または核酸編集酵素ドメイン、例えばデアミナーゼドメインとの融合タンパク質が提供される。いくつかの実施形態では、標的を定めた核酸編集の方法が提供される。いくつかの実施形態では、標的を定めた核酸編集タンパク質、例えばCas9と核酸編集酵素または核酸編集ドメインとの融合タンパク質を生成するための試薬およびキットが提供される。

概要

背景

核酸配列の標的を定めた編集、例えば特定の修飾のゲノムDNAへの導入は、遺伝子機能の研究にとって非常に有望なアプローチであり、ヒト遺伝性疾患の新たな治療法を提供する可能性も有する1。理想的な核酸編集技法は下記の3つの特徴を有する:(1)所望の修飾の高効率の導入、(2)最小限のオフターゲット活性、および(3)所与の核酸における任意の部位、例えばヒトゲノム内の任意の部位を正確に編集するようにプログラムされる能力2。現在のゲノム操作ツールにより、例えば操作されたジンクフィンガーヌクレアーゼ(ZFN)3、転写活性化因子エフェクターヌクレアーゼ(TALEN)4およびごく最近ではRNA誘導性DNAエンドヌクレアーゼCas95により、ゲノム中で配列特異的なDNA切断がもたらされる。このプログラム可能な切断によって、非相同末端結合(NHEJ)により切断部位でDNAの変異が生じ得るか、または相同組み換え修復(homology−directed repair)(HDR)により切断部位の周囲のDNAの置換が生じ得る6、7。

概要

細胞または対象のゲノム内の、例えばヒトゲノム内の単一部位の編集等の標的を定めた核酸編集に有用である戦略、システム試薬、方法およびキットを提供する。いくつかの実施形態では、Cas9と、核酸編集酵素または核酸編集酵素ドメイン、例えばデアミナーゼドメインとの融合タンパク質が提供される。いくつかの実施形態では、標的を定めた核酸編集の方法が提供される。いくつかの実施形態では、標的を定めた核酸編集タンパク質、例えばCas9と核酸編集酵素または核酸編集ドメインとの融合タンパク質を生成するための試薬およびキットが提供される。

目的

核酸配列の標的を定めた編集、例えば特定の修飾のゲノムDNAへの導入は、遺伝子機能の研究にとって非常に有望なアプローチであり、ヒト遺伝性疾患の新たな治療法を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

(i)ヌクレアーゼ不活性型Cas9ドメインと、(ii)核酸編集ドメインとを含む融合タンパク質

請求項2

前記核酸編集ドメインがDNA編集ドメインである、請求項1に記載の融合タンパク質。

請求項3

前記核酸編集ドメインがデアミナーゼドメインである、請求項1に記載の融合タンパク質。

請求項4

デアミナーゼがシチジンデアミナーゼである、請求項1に記載の融合タンパク質。

請求項5

デアミナーゼがアポリポタンパク質mRNA編集複合体(APBECファミリのデアミナーゼである、請求項1に記載の融合タンパク質。

請求項6

デアミナーゼがAPOBEC1ファミリのデアミナーゼである、請求項5に記載の融合タンパク質。

請求項7

デアミナーゼが活性化誘導シチジンデアミナーゼAID)である、請求項5に記載の融合タンパク質。

請求項8

デアミナーゼがACF1/ASEデアミナーゼである、請求項1に記載の融合タンパク質。

請求項9

デアミナーゼがアデノシンデアミナーゼである、請求項1に記載の融合タンパク質。

請求項10

デアミナーゼがADATファミリのデアミナーゼである、請求項9に記載の融合タンパク質。

請求項11

前記核酸編集ドメインが前記Cas9ドメインのN末端に融合している、請求項1に記載の融合タンパク質。

請求項12

前記核酸編集ドメインが前記Cas9ドメインのC末端に融合している、請求項1に記載の融合タンパク質。

請求項13

前記Cas9ドメインおよび前記核酸編集ドメインがリンカーを介して融合している、請求項1に記載の融合タンパク質。

請求項14

リンカーが、(GGGGS)n(配列番号91)、(G)n、(EAAAK)n(配列番号5)、(GGS)n、SGSETPGSESATPES(配列番号93)もしくは(XP)nモチーフまたはこれらのうちのいずれかの組み合わせを含み、nが独立して1〜30の整数である、請求項1に記載の融合タンパク質。

請求項15

DNA編集の方法であって、DNA分子と、(a)ヌクレアーゼ不活性型Cas9ドメインおよび核酸編集ドメインを含む融合タンパク質、および(b)前記(a)の融合タンパク質の標的を前記DNA分子の標的DNA配列に定めるsgRNAとを接触させることを含み、前記DNA分子が、前記DNA分子のヌクレオチド塩基脱アミノ化に有効な量で、および前記脱アミノ化に適した条件下で前記融合タンパク質および前記sgRNAと接触させられる、方法。

請求項16

前記核酸編集ドメインがデアミナーゼドメインである、請求項15に記載の方法。

請求項17

デアミナーゼがシチジンデアミナーゼである、請求項16に記載の方法。

請求項18

前記デアミナーゼがアポリポタンパク質BmRNA編集複合体(APOBEC)ファミリのデアミナーゼである、請求項16または17に記載の方法。

請求項19

デアミナーゼがAPOBEC1ファミリのデアミナーゼである、請求項16に記載の方法。

請求項20

デアミナーゼが活性化誘導シチジンデアミナーゼ(AID)である、請求項16に記載の方法。

請求項21

デアミナーゼがACF1/ASEデアミナーゼである、請求項16に記載の方法。

請求項22

デアミナーゼがアデノシンデアミナーゼである、請求項16に記載の方法。

請求項23

デアミナーゼがADATファミリのデアミナーゼである、請求項16に記載の方法。

請求項24

前記核酸編集ドメインが前記Cas9ドメインのN末端に融合している、請求項15〜23のいずれか一項に記載の方法。

請求項25

前記核酸編集ドメインが前記Cas9ドメインのC末端に融合している、請求項15〜23のいずれか一項に記載の方法。

請求項26

前記Cas9ドメインおよび前記核酸編集ドメインがリンカーを介して融合している、請求項15〜25のいずれか一項に記載の方法。

請求項27

前記リンカーが、(GGGGS)n(配列番号91)、(G)n、(EAAAK)n(配列番号5)、(GGS)n、SGSETPGTSESATPES(配列番号93)もしくは(XP)nモチーフまたはこれらのうちのいずれかの組み合わせを含み、nが独立して1〜30の整数である、請求項26に記載の方法。

請求項28

前記標的DNA配列が疾患または障害に関連する配列を含み、前記ヌクレオチド塩基の前記脱アミノ化により、疾患または障害に関連しない配列が生じる、請求項15〜27のいずれか一項に記載の方法。

請求項29

前記標的DNA配列が疾患または障害に関連する点変異を含み、前記脱アミノ化により前記点変異が修正される、請求項28に記載の方法。

請求項30

前記標的DNA配列が、疾患または障害に関連するT→CまたはA→G点変異を含み、変異CまたはG塩基の脱アミノ化により、疾患または障害に関連しない配列が生じる、請求項15〜28のいずれか一項に記載の方法。

請求項31

前記疾患または障害に関連する前記配列がタンパク質をコードし、前記脱アミノ化により、前記疾患または障害に関連する前記配列に終止コドンが導入され、その結果、前記コードされたタンパク質が短縮される、請求項28〜30のいずれか一項に記載の方法。

請求項32

前記接触させることが、疾患もしくは障害を有するか、または疾患もしくは障害と診断されている対象中におけるインビボである、請求項28〜31のいずれか一項に記載の方法。

請求項33

前記疾患または障害が、嚢胞性線維症フェニルケトン尿症表皮剥離性角化症(EHK)、シャルコー・マリー・トゥース病4J型、神経芽細胞腫(NB)、フォンウィルブランド病(vWD)、先天性筋強直症遺伝性腎アミロイドーシス拡張型心筋症(DCM)、遺伝性リンパ水腫家族性アルツハイマー病プリオン病慢性乳児経皮関節症候群(CINCA)、デスミン関連心筋症(DRM)または変異PI3KCAタンパク質に関連する腫瘍性疾患である、請求項28〜32のいずれか一項に記載の方法。

請求項34

前記標的DNA配列が、野生型PI3Kタンパク質と比較してPI3KCAタンパク質においてアミノ酸配列変異が生じるT→Cおよび/またはA→G点変異を含み、前記方法により変異CまたはG塩基が脱アミノ化される、請求項15〜33のいずれか一項に記載の方法。

請求項35

前記点変異が、H1047R置換が生じるA3140G変異である、請求項34に記載の方法。

請求項36

前記標的DNA配列が、野生型PSEN1タンパク質と比較してPSEN1タンパク質においてアミノ酸配列変異が生じるT→Cおよび/またはA→G点変異を含み、前記方法により変異CまたはG塩基が脱アミノ化される、請求項15〜33のいずれか一項に記載の方法。

請求項37

前記PSEN1タンパク質がPSEN1遺伝子のコドン143におけるA→G点変異に起因するI143V置換を含む、請求項36に記載の方法。

請求項38

前記PSEN1点変異がアルツハイマー病に関連している、請求項36または37に記載の方法。

請求項39

前記接触させることにより、前記PSEN1遺伝子のコドン143における変異シチジン残基が脱アミノ化され、そのため前記A→G点変異が修正される、請求項36〜38のいずれか一項に記載の方法。

請求項40

前記標的DNA配列が、野生型α−抗トリプシンタンパク質と比較してα−抗トリプシンタンパク質においてアミノ酸配列変異が生じるT→Cおよび/またはA→G点変異を含み、前記方法により変異CまたはG塩基が脱アミノ化される、請求項15〜33のいずれか一項に記載の方法。

請求項41

前記α−抗トリプシンタンパク質がα−抗トリプシン遺伝子のコドン55におけるT→C点変異に起因するL55P置換を含む、請求項40に記載の方法。

請求項42

前記α−抗トリプシン点変異が慢性閉塞性肺疾患COPD)に関連する、請求項40または41に記載の方法。

請求項43

前記接触させることにより、前記α−抗トリプシン遺伝子のコドン55における変異シチジン残基が脱アミノ化され、そのため前記T→C点変異が修正される、請求項40〜42のいずれか一項に記載の方法。

請求項44

前記標的DNA配列が、野生型vWFタンパク質と比較してvWFタンパク質においてアミノ酸配列変異が生じるT→Cおよび/またはA→G点変異を含み、前記方法により変異CまたはG塩基が脱アミノ化される、請求項15〜33のいずれか一項に記載の方法。

請求項45

前記vWFタンパク質がvWF遺伝子のコドン509におけるT→C点変異に起因するC509A置換を含む、請求項44に記載の方法。

請求項46

前記vWF点変異がフォン・ウィルブランド病に関連する、請求項45に記載の方法。

請求項47

前記接触させることにより、前記vWF遺伝子のコドン509における変異シチジン残基が脱アミノ化され、そのため前記T→C点変異が補正される、請求項44または45に記載の方法。

請求項48

前記標的DNA配列が、野生型カスパーゼ−9タンパク質と比較してカスパーゼ−9タンパク質においてアミノ酸配列変異が生じるT→Cおよび/またはA→G点変異を含み、前記方法により変異CまたはG塩基が脱アミノ化される、請求項15〜33のいずれか一項に記載の方法。

請求項49

前記カスパーゼ−9タンパク質がカスパーゼ−9遺伝子のコドン197におけるT→C点変異に起因するL197P置換を含む、請求項48に記載の方法。

請求項50

前記カスパーゼ−9点変異が神経芽細胞腫に関連する、請求項48または49に記載の方法。

請求項51

前記接触させることにより、前記カスパーゼ−9遺伝子のコドン197における変異シチジン残基が脱アミノ化され、そのため前記T→C点変異が修正される、請求項48〜50のいずれか一項に記載の方法。

請求項52

前記ヌクレオチド塩基の前記脱アミノ化を検出することを更に含む、請求項15〜51のいずれか一項に記載の方法。

請求項53

前記検出することがPCRによる、請求項52に記載の方法。

請求項54

前記融合タンパク質が請求項1〜14のいずれか一項に記載の融合タンパク質である、請求項15〜53のいずれか一項に記載の方法。

請求項55

Cas9DNA編集タンパク質のDNA編集活性を検出するためのレポーター構築物であって、(a)Cas9DNA編集タンパク質用の標的部位を含むレポーター遺伝子であって、標的を定めたDNA編集により前記レポーター遺伝子の発現が増加する、レポーター遺伝子と、(b)前記レポーター遺伝子の発現を制御するプロモーター配列とを含むレポーター構築物。

請求項56

前記構築物が、(c)前記Cas9DNA編集タンパク質の標的を前記レポーター遺伝子の標的部位に定めるsgRNAをコードする配列であって、前記sgRNAの発現が前記レポーター遺伝子の前記発現から独立している、配列を更に含む、請求項55に記載のレポーター構築物。

請求項57

前記レポーター遺伝子の前記標的部位が未成熟終止コドンを含み、前記Cas9DNA編集タンパク質による鋳型鎖の標的を定めたDNA編集により、前記未成熟終止コドンがアミノ酸残基をコードするコドンに変換される、請求項55または56に記載のレポーター構築物。

請求項58

前記レポーター遺伝子が、ルシフェラーゼ蛍光タンパク質または抗生物質耐性マーカーをコードする、請求項55〜57のいずれか一項に記載のレポーター構築物。

請求項59

核酸構築物であって、ヌクレアーゼ不活性型Cas9配列をコードする配列、前記Cas9をコードする配列と核酸編集酵素または核酸編集酵素ドメインをコードする配列とのインフレームでのクローニングを可能にするように位置するクローニング部位を含む配列、任意選択的に、前記Cas9をコードする配列と前記クローニング部位との間に位置するリンカーをコードする配列を含む核酸と、Cas9核酸編集融合タンパク質を生成するための、核酸編集酵素または核酸編集酵素ドメインをコードする配列の前記核酸構築物中へのインフレームでのクローニングに好適な試薬緩衝液および/または使用説明書とを含むキット

請求項60

前記クローニング部位を含む前記配列が前記Cas9配列のN末端である、請求項59に記載のキット。

請求項61

前記クローニング部位を含む前記配列が前記Cas9配列のC末端である、請求項59に記載のキット。

請求項62

前記コードされたリンカーが、(GGGGS)n(配列番号91)、(G)n、(EAAAK)n(配列番号5)、(GGS)n、SGSETPGTSESATPES(配列番号93)もしくは(XP)nモチーフまたはこれらのうちのいずれかの組み合わせを含み、nが独立して1〜30の整数である、請求項59〜62のいずれか一項に記載のキット。

技術分野

0001

関連出願
本出願は、35U.S.C.§119(e)の下で、2013年12月12日に出願された米国仮特許出願第61/915,386号明細書および2014年4月16日に出願された米国仮特許出願第61/980,333号明細書に対する優先権を主張し、35U.S.C.§120の下で、米国特許出願第14/325,815号明細書、米国特許出願第14/326,109号明細書、米国特許出願第14/326,140号明細書、米国特許出願第14/326,269号明細書、米国特許出願第14/326,290号明細書、米国特許出願第14/326,318号明細書および米国特許出願第14/326,303号明細書(全て2014年7月8日に出願されている)に対する優先権も主張し、これらはそれぞれ参照により本明細書に援用される。

0002

政府支援
本発明は、国防高等研究計画局(DARPA)により付与された助成金HR0011−11−2−0003、国立衛生研究所(NIH)により付与された助成金GM095501、ならびに宇宙および海軍戦闘システムセンター(Space and Naval Warfare Systems Center)(SPAWAR)により付与された助成金N66001−12−C−4207の下で米国政府の支援によってなされた。米国政府は本発明においてある程度の権利を有する。

背景技術

0003

核酸配列の標的を定めた編集、例えば特定の修飾のゲノムDNAへの導入は、遺伝子機能の研究にとって非常に有望なアプローチであり、ヒト遺伝性疾患の新たな治療法を提供する可能性も有する1。理想的な核酸編集技法は下記の3つの特徴を有する:(1)所望の修飾の高効率の導入、(2)最小限のオフターゲット活性、および(3)所与の核酸における任意の部位、例えばヒトゲノム内の任意の部位を正確に編集するようにプログラムされる能力2。現在のゲノム操作ツールにより、例えば操作されたジンクフィンガーヌクレアーゼ(ZFN)3、転写活性化因子エフェクターヌクレアーゼ(TALEN)4およびごく最近ではRNA誘導性DNAエンドヌクレアーゼCas95により、ゲノム中で配列特異的なDNA切断がもたらされる。このプログラム可能な切断によって、非相同末端結合(NHEJ)により切断部位でDNAの変異が生じ得るか、または相同組み換え修復(homology−directed repair)(HDR)により切断部位の周囲のDNAの置換が生じ得る6、7。

発明が解決しようとする課題

0004

現在の技法の1つの欠点は、NHEJおよびHDRの両方が、中程度の遺伝子編集効率と、所望の改変競合する可能性がある望ましくない遺伝子改変とが概してもたらされる確率的プロセスであるということである8。原理上、ゲノム中の特定の位置で特定のヌクレオチド変化(例えば、疾患関連遺伝子の特定のコドンにおけるCからTへの変化)を生じさせることにより、多くの遺伝性疾患を処置し得ることから9、そのような正確な遺伝子編集を達成するようにプログラム可能な方法の開発により、遺伝子編集をベースとするヒト治療法に対する強力な新規調査ツールおよび潜在的な新規のアプローチの両方が示されるであろう。

課題を解決するための手段

0005

クラスター化され、規則的に間隔が開いた短パリンドローム反復(clustered regularly interspaced short palindromic repeat)(CRISPR)システムは、様々な生物および細胞株において頑強で一般的なゲノム操作を可能にするように修飾されている11最近発見された原核生物適応免疫システムである10。CRISPR−Cas(CRISPR関連)システムはタンパク質RNA複合体であり、この複合体は、この複合体を塩基対合により標的DNA配列局在化させるためのガイドとしてRNA分子(sgRNA)を使用する12。天然のシステムでは、Casタンパク質は次いで、標的としたDNA配列を切断すべくエンドヌクレアーゼとして作用する13。標的DNA配列はsgRNAに対して相補的でなければならず、また、このシステムを機能させるために相補領域の3’末端で「プロトスペーサー隣接モチーフ(protospacer−adjacent motif)」(PAM)ジヌクレオチドを含まなければならない(図1)14。既知のCasタンパク質の中でも、S.ピオゲネス(S.pyogenes)のCas9がゲノム操作用のツールとしてほぼ広範に使用されている15。このCas9タンパク質は、2種の異なるヌクレアーゼドメインを含む大きくてマルチドメインのタンパク質である。点変異をCas9に導入してヌクレアーゼ活性失活させることができ、その結果、sgRNAプログラム方式でDNAに結合する能力を依然として保持する失活型Cas9(dCas9)が生じる16。原理上、別のタンパク質またはドメインに融合した場合、dCas9は、このタンパク質の標的を、適切なsgRNAとの同時発現によってのみ、実質的にはあらゆるDNA配列に定めることができる。

0006

ゲノム操作目的でのdCas9複合体の潜在力は非常に大きい。理論上、sgRNAによりプログラムされるゲノム中の特定の部位にタンパク質を導く独特の能力を、ヌクレアーゼを超えた様々な部位特異的ゲノム編集ツール、例えば転写活性化因子、転写抑制因子ヒストン修飾タンパク質、インテグラーゼおよびリコンビナーゼへと発展させることができる11。これらの潜在的用途のうちのいくつかは、RNA誘導性の転写活性化因子17、18、転写抑制因子16、19、20およびクロマチン修飾酵素21を供給するために、転写活性化因子を有するdCas9融合体により最近実施されている。この融合体と様々なsgRNAとの単純な同時発現により、標的遺伝子の特定の発現が生じる。この将来性のある研究は、ゲノムの正確な操作のための容易にプログラム可能な配列特異的エフェクタの設計および構築のために道を開いている。

0007

重要なことに、ヒト疾患の原因となるタンパク質変異の80〜90%が、1個のみのヌクレオチドの置換、欠失または挿入により起こる6。しかしながら、一般的で直接的な方法で1個のヌクレオチドの操作を可能にするゲノム操作ツールは依然として開発されていない。一塩基遺伝子修正のための最近の戦略として、操作されたヌクレアーゼ(二本鎖切断DSB)の構築、続いて確率的で非効率的な相同組み換え修復(HDR)に依存する)およびDNA−RNAキメラオリゴヌクレオチドが挙げられる22。後者の戦略は、編集するヌクレオチドを除くゲノムDNA中の特定の配列と塩基対を作るRNA/DNA配列の設計を含む。結果として生じるミスマッチは、細胞内因性修復システムにより認識されて修復され、キメラまたはゲノムのいずれかの配列中に変化を引き起こす。これらの戦略は両方とも、低い遺伝子編集効率および望ましくない遺伝子改変に悩まされる。なぜならば、これらの戦略は、HDRの偶然性およびHDRと非相同末端結合(NHEJ)との間の競合の両方を受けることになるからである23〜25。HDR効率は、ゲノム内の標的遺伝子の位置26、細胞周期の状態27および細胞/組織の種類28に従って変化する。従って、酵素のような効率でおよび偶然性ではないゲノムDNA中の正確な位置での特定のタイプの塩基修飾の導入のための直接的でプログラム可能な方法の開発により、遺伝子編集をベースとする調査ツールおよびヒト治療法に対する強力な新規のアプローチが示されるであろう。

0008

本開示のいくつかの態様は、対象のゲノム内の、例えばヒトゲノム内の単一部位の編集等の標的を定めた核酸編集に有用である戦略、システム、試薬、方法およびキットを提供する。いくつかの実施形態では、Cas9と、核酸編集酵素または核酸編集酵素ドメイン、例えばデアミナーゼドメインとの融合タンパク質が提供される。いくつかの実施形態では、標的を定めた核酸編集の方法が提供される。いくつかの実施形態では、標的を定めた核酸編集タンパク質、例えばCas9と核酸編集酵素または核酸編集ドメインとの融合タンパク質を生成するための試薬およびキットが提供される。

0009

本開示のいくつかの態様は、(i)ヌクレアーゼ不活性型CAS9ドメインと、(ii)核酸編集ドメインとを含む融合タンパク質を提供する。いくつかの実施形態では、この核酸編集ドメインはDNA編集ドメインである。いくつかの実施形態では、この核酸編集ドメインはデアミナーゼドメインである。いくつかの実施形態では、このデアミナーゼはシチジンデアミナーゼである。いくつかの実施形態では、このデアミナーゼはアポリポタンパク質mRNA編集複合体(APBECファミリのデアミナーゼである。いくつかの実施形態では、このデアミナーゼはAPOBEC1ファミリのデアミナーゼである。いくつかの実施形態では、このデアミナーゼは活性化誘導シチジンデアミナーゼAID)である。いくつかの実施形態では、このデアミナーゼはACF1/ASEデアミナーゼである。いくつかの実施形態では、このデアミナーゼはアデノシンデアミナーゼである。いくつかの実施形態では、このデアミナーゼはADATファミリのデアミナーゼである。いくつかの実施形態では、この核酸編集ドメインはCAS9ドメインのN末端に融合している。いくつかの実施形態では、この核酸編集ドメインはCAS9ドメインのC末端に融合している。いくつかの実施形態では、このCAS9ドメインおよびこの核酸編集ドメインはリンカーを介して融合している。いくつかの実施形態では、このリンカーは、(GGGGS)n(配列番号91)、(G)n、(EAAAK)n(配列番号5)、(GGS)n、SGSETPGSESATPES(配列番号93)(例えばGuilinger JP,Thompson DB,Liu DR.Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification.Nat.Biotechnol.2014;32(6):577−82を参照されたい。内容全体が参照により本明細書に援用される)もしくは(XP)nモチーフまたはこれらのうちのいずれかの組み合わせを含み、nは独立して1〜30の整数である。

0010

本開示のいくつかの態様は、DNA編集の方法を提供する。いくつかの実施形態では、この方法は、DNA分子と、(a)ヌクレアーゼ不活性型Cas9ドメインおよびデアミナーゼドメインを含む融合タンパク質、および(b)(a)の融合タンパク質の標的をDNA鎖標的ヌクレオチド配列に定めるsgRNAとを接触させることを含み、DNA分子が、ヌクレオチド塩基脱アミノ化に有効な量で、およびこの脱アミノ化に適した条件下で融合タンパク質およびsgRNAと接触させられる。いくつかの実施形態では、この標的DNA配列は疾患または障害に関連する配列を含み、ヌクレオチド塩基の脱アミノ化により、疾患または障害に関連しない配列が生じる。いくつかの実施形態では、このDNA配列は、疾患または障害に関連するT>CまたはA>G点変異を含み、変異CまたはG塩基の脱アミノ化により、疾患または障害に関連しない配列が生じる。いくつかの実施形態では、この脱アミノ化により、疾患または障害に関連する配列における点変異が修正される。いくつかの実施形態では、疾患または障害に関連する配列はタンパク質をコードし、脱アミノ化により、疾患または障害に関連する配列に終止コドンが導入され、その結果、コードされたタンパク質が短縮される。いくつかの実施形態では、脱アミノ化によりPI3KCA遺伝子における点変異が修正され、そのためH1047R変異および/またはA3140G変異が修正される。いくつかの実施形態では、接触させることが、疾患もしくは障害を有しやすいか、疾患もしくは障害を有するか、または疾患もしくは障害と診断されている対象においてインビボで実施される。いくつかの実施形態では、この疾患または障害は、ゲノム中における点変異または単一塩基変異に関連する疾患である。いくつかの実施形態では、この疾患は、遺伝性疾患、がん代謝性疾患またはリソソーム蓄積症である。

0011

本開示のいくつかの態様は、Cas9:DNA編集ドメイン融合タンパク質の核酸編集活性を検出するためのレポーター構築物を提供する。いくつかの実施形態では、この構築物は、(a)Cas9 DNA編集タンパク質用の標的部位を含むレポーター遺伝子であって、標的を定めたDNA編集によりレポーター遺伝子の発現が増加する、レポーター遺伝子と、(b)レポーター遺伝子の発現を制御するプロモーター配列とを含む。いくつかの実施形態では、この構築物は、(c)Cas9 DNA編集タンパク質の標的をレポーター遺伝子の標的部位に定めるsgRNAをコードする配列であって、sgRNAの発現がレポーター遺伝子の発現から独立している、配列を更に含む。いくつかの実施形態では、レポーター遺伝子の標的部位は未成熟終止コドンを含み、Cas9 DNA編集タンパク質による鋳型鎖の標的を定めたDNA編集により、未成熟終止コドンがアミノ酸残基をコードするコドンに変換される。いくつかの実施形態では、このレポーター遺伝子は、ルシフェラーゼ蛍光タンパク質または抗生物質耐性マーカーをコードする。

0012

本開示のいくつかの態様は、ヌクレアーゼ不活性型Cas9配列をコードする配列、このCas9をコードする配列と核酸編集酵素または核酸編集酵素ドメインをコードする配列とのインフレームでのクローニングを可能にするように位置するクローニング部位を含む配列、および任意選択的に、Cas9をコードする配列とクローニング部位との間に位置するリンカーをコードする配列を含む核酸構築物を含む、キットを提供する。加えて、いくつかの実施形態では、このキットは、Cas9核酸編集融合タンパク質を生成するための、核酸編集酵素または核酸編集酵素ドメインをコードする配列の核酸構築物中へのインフレームでのクローニングに好適な試薬、緩衝液および/または使用説明書を含む。いくつかの実施形態では、このクローニング部位を含む配列はCas9配列のN末端である。いくつかの実施形態では、このクローニング部位を含む配列はCas9配列のC末端である。いくつかの実施形態では、コードされたリンカーは、(GGGGS)n(配列番号91)、(G)n、(EAAAK)n(配列番号5)、(GGS)n、SGSETPGTSESATPES(配列番号93)(例えばGuilinger JP,Thompson DB,Liu DR.Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification.Nat.Biotechnol.2014;32(6):577−82を参照されたい。内容全体が参照により本明細書に援用される)もしくは(XP)nモチーフまたはこれらのうちのいずれかの組み合わせを含み、nは独立して1〜30の整数である。

0013

本開示のいくつかの態様は、ヌクレアーゼ不活性型Cas9ドメインと核酸編集酵素または核酸編集酵素ドメインとを含む融合タンパク質、および任意選択的な、Cas9ドメインと核酸編集酵素または核酸編集酵素ドメインとの間に位置するリンカーを含むキットを提供する。加えて、いくつかの実施形態では、このキットは、例えばインビトロでのまたはインビボでのDNAまたはRNAの編集に好適な試薬、緩衝液、および/または融合タンパク質の使用説明書を含む。いくつかの実施形態では、このキットは、核酸配列の標的を定めた編集に好適なsgRNAの設計および使用に関する使用説明書を含む。

0014

上記概要は、本明細書に開示する技法の実施形態、利点、特徴および使用のうちのいくつかを非限定的な方法で説明するように意図されている。本明細書に開示する技法のその他の実施形態、利点、特徴および使用は、詳細な説明、図面、実施例および特許請求の範囲から明らかであるであろう。

図面の簡単な説明

0015

Cas9/sgRNA−DNA複合体である。sgRNAの3’末端はCas9ヌクレアーゼとリボ核タンパク質複合体を形成し、sgRNAの20ntの5’末端は、DNAにおけるこの5’末端の相補ストレッチを認識する。DNA結合には、標的DNAに対して3−ntのPAM配列5’が必要である。wtCas9の場合には、PAMから3ntで二本鎖DNA切断が起きて平滑末端が生成される(矢印で示す)。このバブルの大きさは未知であることに留意すべきである。
APOBEC3G(PDB ID 3E1U)の触媒ドメイン結晶構造である。全ファミリにわたり保存されると考えられるコア二次構造は、6つのαヘリクスが隣接する5本鎖のβシート(矢印)からなる。活性中心ループ活性部位ループ)が脱アミノ化の特異性の決定に関与すると考えられる。触媒活性に関与するZn2+を球形で示す。配列は完全に配列番号97〜98に対応する。
ルシフェラーゼをベースとするレポーターアッセイの設計である。変異した開始コドンを標的とするために、ルシフェラーゼ遺伝子の前の領域およびこの遺伝子を含む領域に対応する多くの配列を標的とするようにsgRNAが変更される(C末端に下線を引いている)。開始コドンとルシフェラーゼ遺伝子との間に「バッファー」領域を追加してAのみのコドンおよびTのみのコドン((ZZZ)Xとして示す)を含ませる。シャインダルガノ配列を示す。いくつかの実施形態では、オフターゲット効果を防ぐために全てのCの塩基対を維持することが好ましい。
デアミナーゼアッセイである。配列は完全に配列番号99〜105に対応する。
Cas9−APOBEC1融合タンパク質で編集したssDNAのSDS PAGEゲルである。

0016

定義
本明細書および特許請求の範囲で使用する場合、単数形「1つの(a)」、「1つの(an)」および「その(the)」は、文脈別途明確に示さない限り単数への言及および複数への言及を含む。そのため、例えば「薬剤」への言及は、単一の薬剤および複数のそのような薬剤を含む。

0017

用語「Cas9」または「Cas9ヌクレアーゼ」は、Cas9タンパク質またはこの断片(例えば、Cas9の活性DNA切断ドメインもしくは不活性DNA切断ドメインおよび/またはCas9のgRNA結合ドメインを含むタンパク質)を含むRNA誘導性ヌクレアーゼを意味する。Cas9ヌクレアーゼは、casn1ヌクレアーゼまたはCRISPR(クラスター化され、規則的に間隔が開いた短パリンドローム反復)関連ヌクレアーゼと称されるときもある。CRISPRは、可動遺伝因子ウイルス転位因子および接合性プラスミド)に対する防御を提供する適応免疫システムである。CRISPRクラスターは、スペーサー、先行する可動因子に相補的な配列、および核酸に侵入する標的を含む。CRISPRクラスターは転写されてプロセシングされ、CRISPR RNA(crRNA)になる。II型CRISPRシステムでは、プレcrRNAの正確なプロセシングには、トランスにコードされた低分子RNA(tracrRNA)、内因性リボヌクレアーゼ3(rnc)およびCas9タンパク質が必要である。tracrRNAは、プレcrRNAのリボヌクレアーゼ3によるプロセシングのガイドとして機能する。その後、Cas9/crRNA/tracrRNAは、スペーサーに相補的な直鎖のまたは環状のdsDNA標的をエンドヌクレアーゼ的に切断する。crRNAに相補的でない標的鎖が最初にエンドヌクレアーゼ的に切断され、次いで3’−5’エクソヌクレアーゼ的に整えられる。天然では、DNAの結合および切断は、タンパク質および両方のRNAを概して必要とする。しかしながら、単一のガイドRNA(「sgRNA」または単に「gRNA」)を、crRNAおよびtracrRNAの両方の態様を単一のRNA種に組み込むように操作し得る。例えばJinek M.,Chylinski K.,Fonfara I.,Hauer M.,Doudna J.A.,Charpentier E.Science 337:816−821(2012)を参照されたい。この内容全体を参照により援用する。Cas9は、CRISPR反復配列中の短いモチーフ(PAMまたはプロトスペーサー隣接モチーフ)を認識し、自己非自己との区別に役立つ。Cas9ヌクレアーゼの配列および構造は当業者に公知である(例えば“Complete genome sequence of an M1 strain of Streptococcus pyogenes.”Ferretti et al.,J.J.,McShan W.M.,Ajdic D.J.,Savic D.J.,Savic G.,Lyon K.,Primeaux C.,Sezate S.,Suvorov A.N.,Kenton S.,Lai H.S.,Lin S.P.,Qian Y.,Jia H.G.,Najar F.Z.,Ren Q.,Zhu H.,Song L.,White J.,Yuan X.,Clifton S.W.,Roe B.A.,McLaughlin R.E.,Proc.Natl.Acad.Sci.U.S.A.98:4658−4663(2001)、“CRISPR RNA maturation by trans−encoded small RNA and host factorRNaseIII.”Deltcheva E.,Chylinski K.,Sharma C.M.,Gonzales K.,Chao Y.,Pirzada Z.A.,Eckert M.R.,Vogel J.,Charpentier E.,Nature 471:602−607(2011)および“A programmable dual−RNA−guided DNA endonuclease in adaptive bacterial immunity.”Jinek M.,Chylinski K.,Fonfara I.,Hauer M.,Doudna J.A.,Charpentier E.Science 337:816−821(2012)を参照されたい。これらのそれぞれの内容全体が参照により本明細書に援用される)。Cas9の相同分子種が様々な種で説明されており、この種としてS.ピオゲネス(S.pyogenes)およびS.サーモフィルス(S.thermophilus)が挙げられるがこれらに限定されない。追加の好適なCas9のヌクレアーゼおよび配列が、本開示をベースとして当業者に明らかであるであろう。そのようなCas9のヌクレアーゼおよび配列として、Chylinski,Rhun,and Charpentier,“The tracrRNA and Cas9 families of type II CRISPR−Cas immunity systems”(2013)RNA Biology 10:5,726−737(この内容全体が参照により本明細書に援用される)に開示されている生物および座位からのCas9配列が挙げられる。いくつかの実施形態では、Cas9ヌクレアーゼは、不活性(例えば不活性化)DNA切断ドメインを有する。

0018

ヌクレアーゼ不活性型Cas9タンパク質を、(ヌクレアーゼ「失活」Cas9の場合に)「dCas9」タンパク質と互換的に称することもできる。不活性DNA切断ドメインを有するCas9タンパク質(またはこの断片を)を生成する方法は既知である(例えば、Jinek et al.,Science.337:816−821(2012)、Qi et al.,“Repurposing CRISPR as an RNA−Guided Platform for Sequence−Specific Control of Gene Expression”(2013)Cell.28;152(5):1173−83を参照されたい。これらのそれぞれの内容全体が参照により本明細書に援用される)。例えば、Cas9のDNA切断ドメインは、2個のサブドメイン、即ちHNHヌクレアーゼサブドメインおよびRuvC1サブドメインを含むことが知られている。HNHサブドメインはgRNAに相補的な鎖を切断し、RuvC1サブドメイは非相補鎖を切断する。これらのサブドメイン内の変異により、Cas9のヌクレアーゼ活性を沈黙させることができる。例えば、変異D10Aおよび変異H841Aは、S.ピオゲネス(S.pyogenes)のCas9のヌクレアーゼ活性を完全に不活性化する(Jinek et al.,Science.337:816−821(2012)、Qi et al.,Cell.28;152(5):1173−83(2013)。いくつかの実施形態では、Cas9の断片を含むタンパク質が提供される。例えば、いくつかの実施形態では、タンパク質は、下記の2種のCas9ドメインのうちの一方を含む:(1)Cas9のgRNA結合ドメインまたは(2)Cas9のDNA切断ドメイン。いくつかの実施形態では、Cas9またはこの断片を含むタンパク質は「Cas9多様体」と称される。Cas9多様体は、Cas9またはこの断片と相同性共有する。例えば、Cas9多様体は、野生型Cas9と少なくとも約70%同一であるか、少なくとも約80%同一であるか、少なくとも約90%同一であるか、少なくとも約95%同一であるか、少なくとも約96%同一であるか、少なくとも約97%同一であるか、少なくとも約98%同一であるか、少なくとも約99%同一であるか、少なくとも約99.5%同一であるか、または少なくとも約99.9%ある。いくつかの実施形態では、Cas9多様体は、野生型Cas9の対応する断片と少なくとも約70%同一であるか、少なくとも約80%同一であるか、少なくとも約90%同一であるか、少なくとも約95%同一であるか、少なくとも約96%同一であるか、少なくとも約97%同一であるか、少なくとも約98%同一であるか、少なくとも約99%同一であるか、少なくとも約99.5%同一であるか、または少なくとも約99.9%であるようなCas9の断片(例えばgRNA結合ドメインまたはDNA切断ドメイン)を含む。いくつかの実施形態では、野生型Cas9は、ストレプトコッカス・ピオゲネス(Streptococcus pyogenes)由来のCas9(NCBI参照配列:NC_017053.1、配列番号1(ヌクレオチド);配列番号2(アミノ酸))に対応する。






(一重下線:HNHドメイン、二重下線:RuvCドメイン)

0019

いくつかの実施形態では、野生型Cas9は、配列番号3(ヌクレオチド)および/または配列番号4(アミノ酸)に対応するか、またはそれを含む。






(一重下線:HNHドメイン、二重下線:RuvCドメイン)

0020

いくつかの実施形態では、dCas9は、Cas9ヌクレアーゼ活性を不活性化する1種または複数種の変異を有するCas9アミノ酸配列の一部または全体に対応するか、またはこのアミノ酸配列の一部または全体を含む。例えば、いくつかの実施形態では、dCas9ドメインはD10A変異および/またはH820A変異を含む。
dCas9(D10AおよびH840A):



(一重下線:HNHドメイン、二重下線:RuvCドメイン)

0021

その他の実施形態では、D10AおよびH820A以外の変異を有するdCas9多様体が提供され、このdCas9多様体によりヌクレアーゼが不活性化されたCas9(dCas9)が生じる。そのような変異として、例えば、D10およびH820でのその他のアミノ酸置換、またはCas9のヌクレアーゼドメイン内のその他の置換(例えば、HNHヌクレアーゼサブドメインおよび/もしくはRuvC1サブドメイン中での置換)が挙げられる。いくつかの実施形態では、配列番号34と少なくとも約70%同一であるか、少なくとも約80%同一であるか、少なくとも約90%同一であるか、少なくとも約95%同一であるか、少なくとも98%同一であるか、少なくとも約99%同一であるか、少なくとも約99.5%同一であるか、または少なくとも約99.9%であるdCas9の多様体または相同体(例えば配列番号34の多様体)が提供される。いくつかの実施形態では、配列番号34と比べて約5個のアミノ酸、約10個のアミノ酸、約15個のアミノ酸、約20個のアミノ酸、約25個のアミノ酸、約30個のアミノ酸、約40個のアミノ酸、約50個のアミノ酸、約75個のアミノ酸、約100個のアミノ酸またはより多くのアミノ酸だけ短いまたは長いアミノ酸配列を有するdCas9の多様体(例えば配列番号34の多様体)が提供される。

0022

いくつかの実施形態では、本明細書に記載したCas9融合タンパク質は、Cas9タンパク質の完全長アミノ酸、例えば上記に記載した配列のうちの1つを含む。しかしながら、その他の実施形態では、本明細書に記載した融合タンパク質は完全長Cas9配列を含まず、この断片のみを含む。例えば、いくつかの実施形態では、本明細書に記載したCas9融合タンパク質は、Cas9断片であって、crRNAおよびtracrRNAまたはsgRNAに結合するが、例えばヌクレアーゼドメインの短縮バージョンのみを含むまたはヌクレアーゼドメインを全く含まないという点で機能的ヌクレアーゼドメインを含まないCas9断片を含む。好適なCas9ドメインおよびCas9断片の例示的なアミノ酸配列を本明細書に記載しており、Cas9のドメインおよび断片の追加の好適な配列が当業者に明らかであるであろう。

0023

いくつかの実施形態では、Cas9は、コリネバクテリウム・ウルセランス(Corynebacterium ulcerans)(NCBI参照番号:NC_015683.1、NC_017317.1)、コリネバクテリウム・ジフテリア(Corynebacterium diphtheria)(NCBI参照番号:NC_016782.1、NC_016786.1)、スピロプラズマシルフィディコーラ(Spiroplasma syrphidicola)(NCBI参照番号:NC_021284.1)、プレボテラインテルメディア(Prevotella intermedia)(NCBI参照番号:NC_017861.1)、スピロプラズマ・タイワネンス(Spiroplasma taiwanense)(NCBI参照番号:NC_021846.1)、ストレプトコッカス・イニエ(Streptococcus iniae)(NCBI参照番号:NC_021314.1)、ベルエラバルティカ(Belliella baltica)(NCBI参照番号:NC_018010.1)、シクロフレキサストルキスI(Psychroflexus torquisI)(NCBI参照番号:NC_018721.1)、ストレプトコッカス・サーモフィルス(Streptococcus thermophilus)(NCBI参照番号:YP_820832.1)、リステリア・イノキュア(Listeria innocua)(NCBI参照番号:NP_472073.1)、カンピロバクタージェジュニ(Campylobacter jejuni)(NCBI参照番号:YP_002344900.1)またはネイセリアメニンギティディス(Neisseria.meningitidis)(NCBI参照番号:YP_002342100.1)に由来するCas9を意味する。

0024

用語「デアミナーゼ」は、脱アミノ化反応触媒する酵素を意味する。いくつかの実施形態では、デアミナーゼはシチジンデアミナーゼであり、シチジンまたはデオキシシチジンウラシルまたはデオキシウラシルそれぞれへの加水分解性脱アミノ化を触媒する。

0025

用語「有効量」は本明細書で使用する場合、所望の生物学的反応を誘発するのに十分である生物学的活性な薬剤の量を意味する。例えば、いくつかの実施形態では、ヌクレアーゼの有効量は、特異的に結合してヌクレアーゼにより切断される標的部位の切断を誘発するのに十分であるヌクレアーゼの量を意味し得る。いくつかの実施形態では、本明細書に記載した融合タンパク質の有効量、例えばヌクレアーゼ不活性型Cas9ドメインと核酸編集ドメイン(例えばデアミナーゼドメイン)とを含む融合タンパク質の有効量は、特異的に結合して融合タンパク質により編集される標的部位の編集を誘発するのに十分である融合タンパク質の量を意味し得る。当業者に正しく認識され得るように、ある薬剤の有効量、例えば融合タンパク質、ヌクレアーゼ、デアミナーゼ、リコンビナーゼ、ハイブリッドタンパク質、タンパク質二量体、タンパク質(もしくはタンパク質二量体)とポリヌクレオチドとの複合体またはポリヌクレオチドの有効量は、様々な要因に応じて変動することができ、例えば所望の生物学的反応に応じて、例えば編集される具体的なアレル、ゲノムまたは標的部位に応じて、標的とされる細胞または組織に応じて、および使用される薬剤に応じて変動し得る。

0026

用語「リンカー」は本明細書で使用する場合、2種の分子または部分、例えば融合タンパク質の2種のドメイン、例えばヌクレアーゼ不活性型Cas9ドメインおよび核酸編集ドメイン(例えばデアミナーゼドメイン)等を連結する化学基または分子を意味する。いくつかの実施形態では、リンカーは、Cas9ヌクレアーゼドメイン等のRNAプログラム可能なヌクレアーゼのgRNA結合ドメインと核酸編集タンパク質の触媒ドメインとを連結する。いくつかの実施形態では、リンカーはdCas9と核酸編集タンパク質とを連結する。典型的には、リンカーは、2種の基、分子、またはその他の部分の間に位置しており、またはこれらに隣接しており、共有結合によりそれぞれに連結されており、そのため、これら2種を連結する。いくつかの実施形態では、リンカーは1個のアミノ酸または複数個のアミノ酸(例えばペプチドまたはタンパク質)である。いくつかの実施形態では、リンカーは、有機分子、基、ポリマーまたは化学部分である。いくつかの実施形態では、リンカーは5〜100個のアミノ酸長であり、例えば5個、6個、7個、8個、9個、10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、20個、21個、22個、23個、24個、25個、26個、27個、28個、29個、30個、30〜35個、35〜40個、40〜45個、45〜50個、50〜60個、60〜70個、70〜80個、80〜90個、90〜100個、100〜150個または150〜200個のアミノ酸長である。より長いまたはより短いリンカーも考慮される。

0027

用語「変異」は本明細書で使用する場合、配列内での、例えば核酸配列内でのもしくはアミノ酸配列内での残基の別の残基への置換、または配列内での1個もしくは複数個の残基の欠失もしくは挿入を意味する。本明細書では概して、元々の残基を特定し、続いて配列内の残基の位置を特定し、続いて新たに置換した残基の素性を特定することにより変異を記載する。本明細書に記載したアミノ酸置換(変異)を生じさせる様々な方法が当技術分野で公知であり、例えばGreen and Sambrook,Molecular Cloning:A Laboratory Manual(4thed.,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.(2012))により提供される。

0028

用語「核酸」および「核酸分子」は本明細書で使用する場合、核酸塩基と、酸性部分、例えばヌクレオシド、ヌクレオチド、またはヌクレオチドのポリマーとを含む化合物を意味する。典型的には、ポリマー核酸、例えば3個以上のヌクレオチドを含む核酸分子は直鎖分子であり、この直鎖分子では、隣接するヌクレオチドがホスホジエステル連結により互いに連結されている。いくつかの実施形態では、「核酸」は個々の核酸残基(例えばヌクレオチドおよび/またはヌクレオシド)を意味する。いくつかの実施形態では、「核酸」は、3個以上の個々のヌクレオチド残基を含むオリゴヌクレオチド鎖を意味する。本明細書で使用する場合、「オリゴヌクレオチド」および「ポリヌクレオチド」を、ヌクレオチドのポリマー(例えば少なくとも3個のヌクレオチドのひも)を意味するように互換的に使用し得る。いくつかの実施形態では、「核酸」はRNAならびに一本鎖DNAおよび/または二本鎖DNAを包含する。核酸は天然に存在することができ、例えばゲノム、転写産物、mRNA、tRNA、rRNA、siRNA、snRNA、プラスミドコスミド染色体染色分体またはその他の天然に存在する核酸分子と関連して天然に存在し得る。一方、核酸分子は天然には存在しない分子であることができ、例えば組み換えDNAまたは組み換えRNA、人工染色体、操作されたゲノムもしくはこの断片、もしくは合成DNA、合成RNA、合成DNA/RNAハイブリッドであることができる、または天然には存在しないヌクレオチドもしくはヌクレオシドを含むことができる。更に、用語「核酸」、「DNA」、「RNA」および/または類似の用語は、核酸類似体、例えばリン酸ジエステル骨格以外を有する類似体を含む。核酸を、例えば天然源から精製し得、組み換え発現系を使用して産生して任意選択的に精製し得、化学的に合成し得る。例えば化学的に合成される分子の場合では、必要に応じて、核酸は、化学的に修飾された塩基または糖および骨格修飾を有する類似体等のヌクレオシド類似体を含むことができる。別途示さない限り、核酸配列を5’から3’への方向で表す。いくつかの実施形態では、核酸は、天然ヌクレオシド(例えばアデノシンチミジングアノシン、シチジン、ウリジンデオキシアデノシンデオキシチミジンデオキシグアノシンおよびデオキシシチジン)、ヌクレオシド類似体(例えば2−アミノアデノシン、2−チオチミジン、イノシンピロロピリミジン、3−メチルアデノシン、5−メチルシチジン、2−アミノアデノシン、C5−ブロモウリジン、C5−フルオロウリジン、C5−ヨードウリジン、C5−プロピニル−ウリジン、C5−プロピニル−シチジン、C5−メチルシチジン、2−アミノアデノシン、7−デアザアデノシン、7−デアザグアノシン、8−オキソアデノシン、8−オキソグアノシン、O(6)−メチルグアニンおよび2−チオシチジン)、化学的に修飾された塩基、生物学的に修飾された塩基(例えばメチル化塩基)、インターカレートされた塩基(intercalated base)、修飾された糖(例えば2’−フルオロリボース、リボース、2’−デオキシリボースアラビノースおよびヘキソース)ならびに/もしくは修飾されたホスフェート基(例えばホスホロチオエートおよび5’−N−ホスホラミダイト連結)であるか、またはそれを含む。

0029

用語「増殖性疾患」は本明細書で使用する場合、細胞または細胞集団増殖速度の異常な上昇を示すという点で細胞または組織の恒常性が妨げられているあらゆる疾患を意味する。増殖性疾患として、過増殖性疾患、例えば前腫瘍性過形成状態および腫瘍性疾患が挙げられる。腫瘍性疾患は細胞の異常増殖を特徴とし、この腫瘍性疾患として良性腫瘍および悪性の腫瘍の両方が挙げられる。悪性腫瘍はがんとも称される。

0030

用語「タンパク質」、「ペプチド」および「ポリペプチド」を本明細書では互換的に使用し、これらは、ペプチド(アミド)結合により互いに連結されたアミノ酸残基のポリマーを意味する。この用語は、あらゆるサイズの、構造のまたは機能のタンパク質、ペプチドまたはポリペプチドを意味する。典型的には、タンパク質、ペプチドまたはポリペプチドは、少なくとも3個のアミノ酸長である。タンパク質、ペプチドまたはポリペプチドは、個々のタンパク質または一群のタンパク質を意味し得る。タンパク質中の、ペプチド中のまたはポリペプチド中のアミノ酸のうちの1個または複数個を、例えば化学物質、例えば炭水化物基、水酸基リン酸基ファルネシル基、イソファルネシル基、脂肪酸基接合用の、機能化用のまたはその他の修飾用のリンカー等の付加により修飾し得る。タンパク質、ペプチドまたはポリペプチドはまた、単一種の分子であることもできる、または複数種の分子の複合体であることもできる。タンパク質、ペプチドまたはポリペプチドは、天然に存在するタンパク質またはペプチドの単なる断片であることができる。タンパク質、ペプチドまたはポリペプチドは、天然に存在し得るか、組み換えであり得るか、もしくは合成であり得るか、またはこれらの任意の組み合わせであり得る。用語「融合タンパク質」は本明細書で使用する場合、少なくとも2種の異なるタンパク質に由来するタンパク質ドメインを含むハイブリッドポリペプチドを意味する。一方のタンパク質は、融合タンパク質のアミノ末端(N末端)部分またはカルボキシ末端(C末端)タンパク質に位置することができ、そのため「アミノ末端融合タンパク質」または「カルボキシ末端融合タンパク質」をそれぞれ形成する。タンパク質は様々なドメインを含むことができ、例えば核酸結合ドメイン(例えば、タンパク質の標的部位への結合を誘導するCas9のgRNA結合ドメイン)および核酸切断ドメインまたは核酸編集タンパク質の触媒ドメインを含むことができる。いくつかの実施形態では、タンパク質は、タンパク様部分、例えば核酸結合ドメインを構成するアミノ酸配列と、有機化合物、例えば核酸切断剤として作用し得る化合物とを含む。いくつかの実施形態では、タンパク質は、核酸、例えばRNAとの複合体中に存在する、またはこの核酸と関連している。本明細書に記載したタンパク質のうちのいずれかを、当技術分野で既知の任意の方法により製造し得る。例えば、本明細書に記載したタンパク質を組み換えタンパク質発現および精製により製造することができ、この組み換えタンパク質発現および精製は、ペプチドリンカーを含む融合タンパク質に特に適している。組み換えタンパク質発現および精製の方法は公知であり、この方法として、Green and Sambrook,Molecular Cloning:A Laboratory Manual(4thed.,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.(2012))により説明されているものが挙げられ、この内容全体が参照により本明細書に援用される。

0031

用語「RNAプログラム可能なヌクレアーゼ」および「RNA誘導性ヌクレアーゼ」を本明細書では互換的に使用し、これらは、切断の標的ではない1種または複数種のRNAと複合体を形成する(例えばこのRNAに結合するまたは関連する)ヌクレアーゼを意味する。いくつかの実施形態では、RNAプログラム可能なヌクレアーゼは、RNAとの複合体中の場合にヌクレアーゼ:RNA複合体と称され得る。典型的には、結合したRNAはガイドRNA(gRNA)と称される。gRNAは、2種以上のRNAの複合体として存在し得るか、または単一種のRNA分子として存在し得る。単一種のRNA分子として存在するgRNAは単一ガイドRNA(sgRNA)と称され得るが、「gRNA」は、単一種の分子または2種以上の分子の複合体のいずれかとして存在するガイドRNAを意味するように互換的に使用される。典型的には、単一RNA種として存在するgRNAは、2種のドメイン、即ち(1)標的核酸と相同性を共有する(例えば、およびCas9複合体の標的への結合を誘導する)ドメインならびに(2)Cas9タンパク質に結合するドメインを含む。いくつかの実施形態では、ドメイン(2)は、tracrRNAとして既知である配列に対応し、ステム−ループ構造を含む。例えば、いくつかの実施形態では、ドメイン(2)は、Jinek et al.,Science 337:816−821(2012)の図1に示すようにtracrRNAと相同であり、この内容全体が参照により本明細書に援用される。gRNAのその他の例(例えばドメイン2を含むもの)を、2013年9月6日に出願された「Switchable Cas9 Nucleases And Uses Thereof」という名称の米国仮特許出願第61/874,682号明細書および2013年9月6日に出願された「Delivery System For Functional Nucleases」という名称の米国仮特許出願第61/874,746号明細書に見出すことができ、これらの内容全体は、それらの全体を参照することにより援用される。いくつかの実施形態では、gRNAは2種以上のドメイン(1)およびドメイン(2)を含み、「伸張gRNA」と称され得る。例えば、伸張gRNAは、本明細書に記載したように、例えば2種以上のCas9タンパク質に結合することでき、2箇所以上の別々の領域で標的核酸に結合し得る。このgRNAは、標的部位を補完するヌクレオチド配列を含み、このヌクレオチド配列はヌクレアーゼ/RNA複合体の前記標的部位への結合を媒介し、ヌクレアーゼ:RNA複合体の配列特異性を付与する。いくつかの実施形態では、RNAプログラム可能なヌクレアーゼは(CRISPR関連システム)Cas9エンドヌクレアーゼであり、例えばストレプトコッカス・ピオゲネス(Streptococcus pyogenes)に由来するCas9(Csn1)である(例えば、“Complete genome sequence of an M1 strain of Streptococcus pyogenes.”Ferretti J.J.,McShan W.M.,Ajdic D.J.,Savic D.J.,Savic G.,Lyon K.,Primeaux C.,Sezate S.,Suvorov A.N.,Kenton S.,Lai H.S.,Lin S.P.,Qian Y.,Jia H.G.,Najar F.Z.,Ren Q.,Zhu H.,Song L.,White J.,Yuan X.,Clifton S.W.,Roe B.A.,McLaughlin R.E.,Proc.Natl.Acad.Sci.U.S.A.98:4658−4663(2001)、“CRISPR RNA maturation by trans−encoded small RNA and host factorRNaseIII.”Deltcheva E.,Chylinski K.,Sharma C.M.,Gonzales K.,Chao Y.,Pirzada Z.A.,Eckert M.R.,Vogel J.,Charpentier E.,Nature 471:602−607(2011)および“A programmable dual−RNA−guided DNA endonuclease in adaptive bacterial immunity.”Jinek M.,Chylinski K.,Fonfara I.,Hauer M.,Doudna J.A.,Charpentier E.Science 337:816−821(2012)を参照されたい。これらのそれぞれの内容全体が参照により本明細書に援用される。

0032

RNAプログラム可能なヌクレアーゼ(例えばCas9)は、標的DNA切断部位に対するRNA:DNAハイブリダイゼーションを使用することから、原理上、このタンパク質の標的を、ガイドRNAにより指定される任意の配列に定めることができる。部位特異的切断のための(例えばゲノムを修飾するための)Cas9等のRNAプログラム可能なヌクレアーゼの使用方法は当技術分野で既知である(例えば、Cong,L.et al.Multiplex genome engineering using CRISPR/Cas systems.Science 339,819−823(2013)、Mali,P.et al.RNA−guided human genome engineering via Cas9.Science 339,823−826(2013)、Hwang,W.Y.et al.Efficient genome editing in zebrafish using a CRISPR−Cas system.Nature biotechnology 31,227−229(2013)、Jinek, M.et al.RNA−programmed genome editing in human cells.eLife 2,e00471(2013)、Dicarlo,J.E.et al.Genome engineering in Saccharomyces cerevisiae using CRISPR−Cas systems.Nucleic acidsresearch(2013)、Jiang, W.et al.RNA−guided editing of bacterial genomes using CRISPR−Cas systems.Nature biotechnology 31,233−239(2013)を参照されたい。これらのそれぞれの内容全体が参照により本明細書に援用される)。

0033

用語「対象」は本明細書で使用する場合、個々の生物を意味しており、例えば個々の哺乳動物を意味する。いくつかの実施形態では、対象はヒトである。いくつかの実施形態では、対象は非ヒト哺乳動物である。いくつかの実施形態では、対象は非ヒト霊長類である。いくつかの実施形態では、対象は齧歯動物である。いくつかの実施形態では、対象は、ヒツジウシヤギネコまたはイヌである。いくつかの実施形態では、対象は、脊椎動物、両生動物爬虫類魚類昆虫ハエまたは線形動物である。いくつかの実施形態では、対象は研究動物である。いくつかの実施形態では、対象は遺伝子操作されており、例えば遺伝子操作された非ヒト対象である。対象は、どちらか一方の性別および任意の発達段階であることができる。

0034

用語「標的部位」は、デアミナーゼまたはデアミナーゼを含む融合タンパク質(例えば、本明細書に記載したdCas9−デアミナーゼ融合タンパク質)により脱アミノ化される核酸分子内の配列を意味する。

0035

用語「処置」、「処置する(treat)」および「処置する(treating)」は、本明細書に記載したように、疾患もしくは障害またはこれらの1種もしくは複数種の症状を回復させるか、緩和するか、これらの発症遅延させるか、またはこれらの進行を阻害することを目的とした臨床的介入を意味する。本明細書で使用する場合、用語「処置」、「処置する(treat)」および「処置する(treating)」は、本明細書に記載したように、疾患もしくは障害またはこれらの1種もしくは複数種の症状を回復させるか、緩和するか、これらの発症を遅延させるか、またはこれらの進行を阻害することを目的とした臨床的介入を意味する。いくつかの実施形態では、1種もしくは複数種の症状が発症した後におよび/または疾患が診断された後に、処置を施すことができる。その他の実施形態では、例えば、症状の発症を予防するためにもしくは遅延させるために、または疾患の発症もしくは進行を阻害するために、症状がない状態で処置を施すことができる。例えば、(例えば症状歴を考慮しておよび/または遺伝因子もしくはその他の感受性因子を考慮して)症状の発症前に、感受性個体に処置を施すことができる。症状が消散された後も処置を続けて、例えばこの症状の再発を予防するまたは遅延させることもできる。

0036

本開示のいくつかの態様は、ガイドRNA(gRNAまたはsgRNAとも称される)に結合し、次いで鎖ハイブリダイゼーションにより標的核酸配列に結合するCas9ドメインと、DNA編集ドメイン、例えば核酸塩基(例えばシチジン等)を脱アミノ化し得るデアミナーゼドメインとを含む融合タンパク質を提供する。デアミナーゼによる核酸塩基の脱アミノ化により各残基で点変異を引き起こすことができ、この点変異は本明細書では核酸編集と称される。そのため、Cas9多様体またはCas9ドメインとDNA編集ドメインとを含む融合タンパク質を、核酸配列の標的を定めた編集に使用し得る。そのような融合タンパク質は、インビトロでのDNAの標的を定めた編集に有用であり、例えば変異細胞または変異動物の生成;標的を定めた変異の導入、例えばエキソビボでの細胞における遺伝的欠陥の修正、例えば、ある対象から得て、後に同じまたは別の対象に再導入する細胞における遺伝的欠陥の修正;および標的を定めた変異の導入、例えば、遺伝的欠陥の修正または対象における疾患関連遺伝子での不活性化変異の導入に有用である。典型的には、本明細書に記載した融合タンパク質のCas9ドメインは、いかなるヌクレアーゼ活性も有しておらず、代わりにCas9断片またはdCas9タンパク質もしくはdCas9ドメインである。本明細書に記載したCas9融合タンパク質の使用方法も提供される。

0037

非限定的で例示的なヌクレアーゼ不活性型Cas9ドメインを本明細書に記載する。好適なヌクレアーゼ不活性型Cas9ドメインの一例は、下記のD10A/H840A Cas9ドメイン変異体である:



(配列番号37、例えばQi et al.,Repurposing CRISPR as an RNA−guided platform for sequence−specific control of gene expression.Cell.2013;152(5):1173−83を参照されたい。この内容全体が参照により本明細書に援用される)。

0038

追加の好適なヌクレアーゼ不活性型Cas9ドメインが、本開示をベースとして当業者に明らかであろう。そのような追加の好適なヌクレアーゼ不活性型Cas9ドメインの例として、D10A変異ドメイン、D10A/D839A/H840A変異ドメインおよびD10A/D839A/H840A/N863A変異ドメインが挙げられるがこれらに限定されない(例えばPrashant et al.,CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering.Nature Biotechnology.2013;31(9):833−838を参照されたい。この内容全体が参照により本明細書に援用される)。

0039

Cas9と核酸編集酵素または核酸編集ドメインとの融合タンパク質
本開示のいくつかの態様は、(i)ヌクレアーゼ不活性型Cas9酵素またはヌクレアーゼ不活性型Cas9ドメインと、(ii)核酸編集酵素または核酸編集ドメインとを含む融合タンパク質を提供する。いくつかの実施形態では、この核酸編集酵素または核酸編集ドメインは、DNA編集酵素またはDNA編集ドメインである。いくつかの実施形態では、この核酸編集酵素はデアミナーゼ活性を有する。いくつかの実施形態では、この核酸編集酵素または核酸編集ドメインは、デアミナーゼドメインを含む、またはデアミナーゼドメインである。いくつかの実施形態では、このデアミナーゼはシチジンデアミナーゼである。いくつかの実施形態では、このデアミナーゼは、アポリポタンパク質BmRNA編集複合体(APOBEC)ファミリのデアミナーゼである。いくつかの実施形態では、このデアミナーゼはAPOBEC1ファミリのデアミナーゼである。いくつかの実施形態では、このデアミナーゼは活性化誘導シチジンデアミナーゼ(AID)である。いくつかの実施形態では、このデアミナーゼはACF1/ASEデアミナーゼである。いくつかの実施形態では、このデアミナーゼはアデノシンデアミナーゼである。いくつかの実施形態では、このデアミナーゼはADATファミリのデアミナーゼである。数種類の核酸編集酵素および核酸編集ドメイン、ならびにそのような酵素またはドメインを含むCas9融合タンパク質を本明細書において詳細に説明する。追加の好適な核酸編集酵素または核酸編集ドメインが、本開示をベースとして当業者に明らかであろう。

0040

本開示は、様々な構成のCas9:核酸編集酵素/ドメイン融合タンパク質を提供する。いくつかの実施形態では、核酸編集酵素または核酸編集ドメインはCas9ドメインのN末端に融合している。いくつかの実施形態では、核酸編集酵素または核酸編集ドメインはCas9ドメインのC末端に融合している。いくつかの実施形態では、Cas9ドメインおよび核酸編集編集酵素または核酸編集編集ドメインは、リンカーを介して融合している。いくつかの実施形態では、このリンカーは、(GGGGS)n(配列番号91)、(G)n、(EAAAK)n(配列番号5)、(GGS)n、SGSETPGTSESATPES(配列番号93)(例えばGuilinger JP,Thompson DB,Liu DR.Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification.Nat.Biotechnol.2014;32(6):577−82を参照されたい。この内容全体が参照により本明細書に援用される)もしくは(XP)nモチーフまたはこれらのうちのいずれかの組み合わせを含み、nは独立して1〜30の整数である。いくつかの実施形態では、nは独立して1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29もしくは30であるか、または複数個のリンカーもしくは複数個のリンカーモチーフが存在する場合には、これらのいずれかの組み合わせである。追加の好適なリンカーモチーフおよびリンカーの構成が当業者に明らかであろう。いくつかの実施形態では、好適なリンカーのモチーフおよび構成として、Chen et al.,Fusion protein linkers:property,design and functionality.Adv Drug Deliv Rev.2013;65(10):1357−69に記載されているものが挙げられ、この内容全体が参照により本明細書に援用される。追加の好適なリンカー配列が、本開示をベースとして当業者に明らかであろう。

0041

いくつかの実施形態では、本明細書に記載した例示的なCas9融合タンパク質の一般的な構成は下記の構造を含む:
[NH2]−[核酸編集酵素または核酸編集ドメイン]−[Cas9]−[COOH]、または
[NH2]−[Cas9]−[核酸編集酵素または核酸編集ドメイン]−[COOH]
(上記構造中、NH2は融合タンパク質のN末端であり、COOHは融合タンパク質のC末端である)。

0042

追加の特徴、例えばNLSと融合タンパク質の残部との間のおよび/または核酸編集酵素もしくは核酸編集ドメインとCas9との間の1種または複数種のリンカー配列が存在し得る。存在し得るその他の例示的な特徴は、局在化配列、例えば核局在化配列、細胞質局在化配列、核外輸送配列等の輸送配列またはその他の局在化配列、ならびに融合タンパク質の可溶化、精製または検出に有用な配列タグである。好適な局在化シグナル配列およびタンパク質タグの配列を本明細書に記載しており、ビオチンカルボキシラーゼキャリアタンパク質(BCCP)タグ、myc−タグ、カルモジュリン−タグ、FLAG−タグ、ヘマグルチニンHA)−タグ、ヒスチジンタグまたはHis−タグとも称されるポリヒスチジンタグマルトース結合タンパク質(MBP)−タグ、nus−タグ、グルタチオン−S−トランスフェラーゼ(GST)−タグ、緑色蛍光タンパク質(GFP)−タグ、チオレドキシン−タグ、S−タグ、Sofタグ(例えばSofタグ1、Sofタグ3)、strep−タグ、ビオチンリガーゼタグ、FlAsHタグ、V5タグおよびSBP−タグが挙げられるがこれらに限定されない。追加の好適な配列が当業者に明らかであろう。

0043

いくつかの実施形態では、核酸編集酵素または核酸編集ドメインはデアミナーゼである。例えば、いくつかの実施形態では、デアミナーゼ酵素またはデアミナーゼドメインを有する例示的なCas9融合タンパク質の一般的な構成は下記の構造を含む:
[NH2]−[NLS]−[Cas9]−[デアミナーゼ]−[COOH]、
[NH2]−[NLS]−[デアミナーゼ]−[Cas9]−−[COOH]、
[NH2]−[Cas9]−[デアミナーゼ]−[COOH]、または
[NH2]−[デアミナーゼ]−[Cas9]−[COOH]
(上記構造中、NLSは核局在化シグナルであり、NH2は融合タンパク質のN末端であり、COOHは融合タンパク質のC末端である)。いくつかの実施形態では、Cas9とデアミナーゼとの間にリンカーが挿入されている。いくつかの実施形態では、NLSはデアミナーゼおよび/またはCas9ドメインのC末端に位置している。いくつかの実施形態では、NLSはデアミナーゼとCas9ドメインとの間に位置している。配列タグ等の追加の特徴も存在し得る。

0044

好適な種類の核酸編集酵素および核酸編集ドメインの一例はシトシンデアミナーゼであり、例えばAPOBECファミリのシトシンデアミナーゼである。シトシンデアミナーゼ酵素のアポリポタンパク質BmRNA編集複合体(APOBEC)ファミリは、制御されているおよび有利な方法で変異誘発を開始するのに役立つ11種のタンパク質を包含する29。ファミリの一メンバーである活性化誘導シチジンデアミナーゼ(AID)は、転写依存的で鎖が偏向した様式でssDNA中のシトシンをウラシルに変換することにより、抗体の成熟に関与する30。アポリポタンパク質B編集複合体3(APOBEC3)酵素は、逆転写されたウイルスssDNA中のシトシンの脱アミノ化により、ある種のHIV−1株からヒト細胞を保護する31。これらのタンパク質は全て、触媒活性にZn2+配位モチーフ(His−X−Glu−X23〜26−Pro−Cys−X2〜4−Cys)および結合した水分子を必要とする。Glu残基は、脱アミノ化反応における求核攻撃用に水分子を水酸化亜鉛に活性化するように作用する。ファミリの各メンバーはそれ自体の特定の「ホットスポット」で優先的に脱アミノ化し、hAIDの場合のWRC(WはAまたはTであり、RはAまたはGである)からhAPOBEC3Fの場合のTTCまで多岐にわたる32。APOBEC3Gの触媒ドメインの最近の結晶構造(図2)から、6つのαヘリクスが隣接する5本鎖のβシートコアで構成されている二次構造が明らかになっており、この構造は全ファミリにわたり保存されると考えられる33。活性中心ループがssDNA結合および「ホットスポット」の同一性の決定の両方に関与することが分かっている34。これらの酵素の過剰発現はゲノムの不安定性およびがんと関連しており、そのため配列特異的に標的を定めることの重要性が強調される35。

0045

好適な種類の核酸編集酵素および核酸編集ドメインの別の例はアデノシンデアミナーゼである。例えば、ADATファミリのアデノシンデアミナーゼを、Cas9ドメイン、例えばヌクレアーゼ不活性型Cas9ドメインに融合させることができ、このようにしてCas9−ADAT融合タンパク質が得られる。

0046

本開示のいくつかの態様は、Cas9と、デアミナーゼ酵素、例えばAPOBEC酵素等のシトシンデアミナーゼ酵素またはADAT酵素等のアデノシンデアミナーゼ酵素との系統立った一連の融合体を提供し、この融合体は、これらのデアミナーゼの酵素活性をゲノムDNA中の特定の部位に誘導するために生成されている。認識剤としてCas9を使用する利点は下記の2つである:(1)sgRNA配列を変えるだけでCas9の配列特性を容易に変更させることができる、および(2)dsDNAを変性させることによりCas9がその標的配列に結合し、単鎖であるDNAのストレッチが生じ、従って、デアミナーゼにとって実行可能な基質が生じる。ヒトデアミナーゼドメインおよびマウスデアミナーゼドメイン、例えばAIDドメインとの融合タンパク質の生成に成功している。ヒトAIDおよびマウスAIDの触媒ドメインとCas9との様々なその他の融合タンパク質も考慮される。その他の触媒ドメイン、またはその他のデアミナーゼからの触媒ドメインを使用してCas9との融合タンパク質も生成することができ、本開示はこの点に関して限定されないことが理解されるであろう。

0047

いくつかの実施形態では、Cas9とAIDとの融合タンパク質が提供される。ssDNA中での変異率を高めるようにCas9融合タンパク質を操作するために、マウスAIDおよびヒトAIDの両方を繊維状ファージの遺伝子V(非特異的ssDNA結合タンパク質)に繋ぎ止めた。結果として生じた融合タンパク質は、細胞ベースのアッセイにおいて野生型酵素と比較して変異活性の増強を示した。この研究は、このタンパク質の酵素活性が維持され、融合タンパク質により、この酵素活性の標的を遺伝子配列にうまく定めることできることを実証する36。

0048

Cas9(更にCas9のsgRNAおよび標的DNAとの複合体におけるCas9)のいくつかの結晶構造が報告されているが(例えばJinek M,Jiang F,TaylorDW,Sternberg SH,Kaya E,Ma E,Anders C,Hauer M,Zhou K,Lin S,Kaplan M,Iavarone AT,Charpentier E,Nogales E,Doudna JA.Structures of Cas9 endonucleases reveal RNA−mediated conformational activation.Science.2014;343(6176):1247997.PMID:24505130およびNishimasu H,RanFA,Hsu PD,Konermann S,Shehata SI,Dohmae N,Ishitani R,Zhang F,Nureki O.Crystal structure of Cas9 in complex with guide RNA and target DNA.Cell.2014;156(5):935−49.PMID:24529477を参照されたい。これらのそれぞれの内容全体が参照により本明細書に援用される)、DNAにおいてCas9−DNA複合体中で単鎖である部分(Cas9−DNAバブルの大きさ)は未知である。しかしながら、複合体が転写を妨げるために特に設計されているsgRNAを有するdCas9システムでは、転写干渉が、sgRNAが非鋳型鎖に結合する場合にのみ起こることが分かっている。この結果は、DNA−Cas9複合体におけるDNAのある部分がCas9により保護されておらず、融合タンパク質中のデアミナーゼの潜在的な標的となる可能性があることを示唆する(Qi LS,LarsonMH,Gilbert LA,Doudna JA,Weissman JS,ArkinAP,Lim WA.Repurposing CRISPR as an RNA−guided platform for sequence−specific control of gene expression.Cell.2013;152(5):1173−83.PMID:23452860を参照されたい。この内容全体が参照により本明細書に援用される)。エクソヌクレアーゼIIIおよびヌクレアーゼP1(基質としてのssDNAにのみ作用する)によるフットプリント実験により、非鋳型鎖上の少なくとも26塩基がこれらの酵素により消化されやすいことが明らかになっており(Jinek M,Jiang F,Taylor DW,Sternberg SH,Kaya E,Ma E,Anders C,Hauer M,Zhou K,Lin S,Kaplan M,Iavarone AT,Charpentier E,Nogales E,Doudna JA.Structures of Cas9 endonucleases reveal RNA−mediated conformational activation.Science.2014;343(6176):1247997.PMID:24505130を参照されたい)、この考えが更に支持されている。ある場合には、Cas9が、15%の高さの頻度にてDNAの感受性の鎖中で単一塩基置換変異を誘発することも報告されている(Tsai SQ,Wyvekens N,Khayter C,Foden JA,Thapar V,Reyon D,Goodwin MJ,Aryee MJ,Joung JK.Dimeric CRISPR RNA−guided FokI nucleases for highly specific genome editing.Nat Biotechnol.2014;32(6):569−76.PMID:24770325を参照されたい。この内容全体が参照により本明細書に援用される)。これらの変異の導入の機構は不明ではあるが、全ての場合において変異される塩基はシトシンであり、このことは、シトシンデアミナーゼ酵素の関与を示す可能性がある。まとめると、これらのデータは、単鎖でありその他の酵素に対して感受性である標的DNAの一部と明確に一致する。複合体が転写を妨げるために特に設計されているsgRNAを有するdCas9システムでは、転写干渉が、sgRNAが非鋳型鎖に結合する場合にのみ起こることが分かっている。この結果は、DNA−Cas9複合体中のDNAのある部分がCas9で保護されておらず、融合タンパク質中のAIDの潜在的な標的となる可能性があることを示唆する16。従って、デアミナーゼドメインとのCas9のN末端融合体およびC末端融合体の両方が本開示の態様に従って有用である。

0049

いくつかの実施形態では、デアミナーゼドメインおよびCas9ドメインがリンカーにより互いに融合されている。特定の用途を目的とするデアミナーゼ活性のために最適な長さを達成すべく、デアミナーゼドメイン(例えばAID)とCas9ドメインとの間のリンカーの様々な長さおよび柔軟性を利用し得る(例えば、非常に柔軟なリンカーである形(GGGGS)n(配列番号91)、(GGS)nおよび(G)nからより強固なリンカーである形(EAAAK)n(配列番号5)、SGSETPGTSESATPES(配列番号93)(例えばGuilinger JP,Thompson DB,Liu DR.Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification.Nat.Biotechnol.2014;32(6):577−82を参照されたい。内容全体が参照により本明細書に援用される)および(XP)nまで多岐にわたる)37。

0050

本開示の態様に従ってCas9ドメインに融合され得る好適な核酸編集酵素および核酸編集ドメインのいくつかの例、例えばデアミナーゼおよびデアミナーゼドメインを下記に記載する。いくつかの実施形態では、各配列の活性ドメイン、例えば局在化シグナル(核局在化シグナル、核外輸送シグナルを除く、細胞質局在化シグナル)を有しないドメインを使用し得ることが理解されるであろう。

0051

ヒトAID:



(下線:核局在化シグナル、二重下線:核外輸送シグナル)
マウスAID:



(下線:核局在化シグナル、二重下線:核外輸送シグナル)
イヌAID:



(下線:核局在化シグナル、二重下線:核外輸送シグナル)
ウシAID:



(下線:核局在化シグナル、二重下線:核外輸送シグナル)
マウスAPOBEC−3:



イタリック:核酸編集ドメイン)
ラットAPOBEC−3:



(イタリック:核酸編集ドメイン)
アカゲザルAPOBEC−3G:



(イタリック:核酸編集ドメイン、下線:細胞質局在化シグナル)
チンパンジーAPOBEC−3G:



(イタリック:核酸編集ドメイン、下線:細胞質局在化シグナル)
ドリザルAPOBEC−3G:



(イタリック:核酸編集ドメイン、下線:細胞質局在化シグナル)
ヒトAPOBEC−3G:



(イタリック:核酸編集ドメイン、下線:細胞質局在化シグナル)
ヒトAPOBEC−3F:



(イタリック:核酸編集ドメイン)
ヒトAPOBEC−3B:



(イタリック:核酸編集ドメイン)
ヒトAPOBEC−3C:



(イタリック:核酸編集ドメイン)
ヒトAPOBEC−3A:



(イタリック:核酸編集ドメイン)
ヒトAPOBEC−3H:



(イタリック:核酸編集ドメイン)
ヒトAPOBEC−3D:



(イタリック:核酸編集ドメイン)
ヒトAPOBEC−1:



マウスAPOBEC−1:



ラットAPOBEC−1:



ヒトADAT−2:



マウスADAT−2:



マウスADAT−1:



(イタリック:核酸編集ドメイン)
ヒトADAT−1:



(イタリック:核酸編集ドメイン)

0052

いくつかの実施形態では、上記に記載した融合タンパク質は、核酸編集酵素の完全長アミノ酸、例えば上記に記載した配列のうちの1つを含む。しかしながら、その他の実施形態では、本明細書に記載した融合タンパク質は核酸編集酵素の完全長配列を含まず、この断片のみを含む。例えば、いくつかの実施形態では、本明細書に記載した融合タンパク質は、Cas9ドメインと、核酸編集酵素の断片であって、例えば核酸編集ドメインを含む断片とを含む。核酸編集ドメインの例示的なアミノ配列を上記配列中においてイタリック体で示しており、そのようなドメインの追加の好適な配列が当業者に明らかであろう。

0053

本発明の態様に従って使用することができ、例えばヌクレアーゼ不活性型Cas9ドメインに融合させることができる追加の好適な核酸編集酵素配列、例えばデアミナーゼ酵素配列およびデアミナーゼドメイン配列が、本開示をベースとして当業者に明らかであろう。いくつかの実施形態では、そのような追加の酵素配列は、本明細書に記載した配列と少なくとも70%類似するか、少なくとも75%類似するか、少なくとも80%類似するか、少なくとも85%類似するか、少なくとも90%類似するか、少なくとも95%類似するか、少なくとも96%類似するか、少なくとも97%類似するか、少なくとも98%類似するか、または少なくとも99%類似するデアミナーゼ酵素配列またはデアミナーゼドメイン配列を含む。追加の好適なCas9ドメイン、Cas9多様体およびCas9配列も当業者に明らかであろう。そのような追加の好適なCas9ドメインの例として、D10A変異ドメイン、D10A/D839A/H840A変異ドメインおよびD10A/D839A/H840A/N863A変異ドメインが挙げられるがこれらに限定されない(例えばPrashant et al.,CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering.Nature Biotechnology.2013;31(9):833−838を参照されたい。この内容全体が参照により本明細書に援用される)。

0054

Cas9ドメインとデアミナーゼドメインとを含む融合タンパク質を生成するのに好適な追加の戦略は、当技術分野での一般的知識と組み合わせた本開示をベースとして当業者に明らかであろう。リンカーを使用してまたはリンカーを使用することなく本開示の態様に従って融合タンパク質を生成するのに好適な戦略も、本開示および当技術分野での知識を考慮して当業者に明らかであろう。例えば、Gilbert et al.,CRISPR−mediated modular RNA−guided regulation of transcription in eukaryotes.Cell.2013;154(2):442−51は、リンカー(SPKKKRKVEAS、配列番号29)として2NLSを使用したCas9とVP64とのC末端融合体を転写活性化に利用し得ることを示した。Mali et al.,CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering.Nat Biotechnol.2013;31(9):833−8は、リンカーを介さないVP64とのC末端融合体を転写活性化に利用し得ることを報告した。更に、Maeder et al.,CRISPR RNA−guided activation of endogenous human genes.Nat Methods.2013;10:977−979は、Gly4Ser(配列番号91)リンカーを使用したVP64とのC末端融合体を転写活性化剤として使用し得ることを報告した。最近では、dCas9−FokIヌクレアーゼ融合体の生成が成功しており、このdCas9−FokIヌクレアーゼ融合体は、親Cas9酵素と比較して改善された酵素特異性を示す(Guilinger JP,Thompson DB,Liu DR.Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification.Nat.Biotechnol.2014;32(6):577−82およびTsai SQ,Wyvekens N,Khayter C,Foden JA,Thapar V,Reyon D,Goodwin MJ,Aryee MJ,Joung JK.Dimeric CRISPR RNA−guided FokI nucleases for highly specific genome editing.Nat Biotechnol.2014;32(6):569−76.PMID:24770325、FokI−dCas9融合タンパク質においてSGSETPGTSESATPES(配列番号93)リンカーまたはGGGGS(配列番号91)リンカーがそれぞれ使用された)。

0055

疾患関連変異を修正するためのCas9 DNA編集融合タンパク質の使用
いくつかの実施形態は、本明細書に記載したCas9 DNA編集融合タンパク質の使用方法を提供する。いくつかの実施形態では、この融合タンパク質を使用して、標的核酸塩基、例えばC残基を脱アミノ化させることにより核酸に点変異を導入する。いくつかの実施形態では、標的核酸塩基の脱アミノ化により遺伝的欠陥が修正され、例えば遺伝子産物の機能の喪失を引き起こす点変異が修正される。いくつかの実施形態では、遺伝的欠陥は疾患または障害に関連しており、例えばI型糖尿病等のリソソーム蓄積障害または代謝性疾患に関連している。いくつかの実施形態では、本明細書に記載した方法を使用して、疾患または障害に関連する遺伝子産物をコードする遺伝子またはアレルに不活性型の点変異を導入する。例えば、いくつかの実施形態では、本明細書において、(例えば増殖性疾患の処置で)Cas9 DNA編集融合タンパク質を利用して発がん遺伝子に不活性型の点変異を導入する方法が提供される。いくつかの実施形態では、不活性型の変異によりコート配列中に未成熟終止コドンが生成され得、これにより短縮遺伝子産物が発現され、例えば完全長タンパク質の機能を欠く短縮タンパク質が発現され得る。

0056

いくつかの実施形態では、本明細書に記載した方法の目的は、ゲノム編集により機能不全遺伝子の機能を回復させることである。本明細書に記載したCas9デアミナーゼ融合タンパク質は、例えばヒト細胞培養物中において疾患関連変異を修正することによる、インビトロでの遺伝子編集に基づくヒト治療に有効であることができる。本明細書に記載した融合タンパク質、例えばCas9ドメインと核酸デアミナーゼドメインとを含む融合タンパク質を使用して任意の単一点T−>CまたはA−>G変異を修正し得ることが当業者に理解されるであろう。前者のケースでは、Uに戻る変異Cの脱アミノ化により変異が修正され、後者のケースでは、変異Gと塩基対を作るCの脱アミノ化後の一連の複製により変異が修正される。

0057

提供する融合タンパク質によりインビトロまたはインビボで修正され得る疾患関連変異の一例は、PI3KCAタンパク質におけるH1047R(A3140G)多型である。触媒アルファサブユニット(PI3KCA)タンパク質であるホスホイノシチド−3−キナーゼは、ホスファチジルイノシトールイノシトール環の3−OH基リン酸化するように作用する。PI3KCA遺伝子は多様ながん腫で変異することが分かっており、そのため、このPI3KCA遺伝子は強力な発がん遺伝子であると見なされる50。実際には、A3140G変異が数種のNCI−60がん細胞株、例えばHCT116細胞株、SKOV3細胞株およびT47D細胞株等で存在しており、これらの細胞株はAmerican Type Culture Collection(ATCC)から容易に入手可能である51。

0058

いくつかの実施形態では、PI3KCAタンパク質中でH1047R置換を生じさせる、修正される変異を保有する細胞、例えば点変異を保有する細胞、例えばPI3KCA遺伝子のエクソン20中にA3140G点変異を保有する細胞を、Cas9デアミナーゼ融合タンパク質をコードする発現構築物およびこの融合タンパク質の標的をコーディングPI3KCA遺伝子中の各変異部位に定める適切に設計されたsgRNAと接触させる。sgRNAが、この融合酵素の標的をPI3KCA遺伝子内である非C残基に定めるように設計されているコントロール実験を実施し得る。処置した細胞のゲノムDNAを抽出し、PI3KCA遺伝子の関連配列PCR増幅させてヒト細胞培養物での融合タンパク質の活性を評価するために配列決定し得る。

0059

PI3KCA中の点変異の修正に関するこの例は説明を目的として記載されており、本開示を限定することは意図されていないことが理解されるであろう。本開示のDNA編集融合タンパク質を使用して、その他の点変異ならびにその他のがんおよびその他の増殖性疾患等のがん以外の疾患に関連する変異を修正し得ることを当業者は理解するであろう。

0060

疾患に関連した遺伝子およびアレルにおける点変異の修正の成功により、治療および基礎研究での適用による遺伝子修正の新たな戦略が開発される。Cas9とデアミナーゼ酵素またはデアミナーゼドメインとの本開示の融合体のような部位特異的な単一塩基修飾システムは、ある種の遺伝子機能が意図的に抑制されているまたは無効にされている「逆」遺伝子治療での適用も有する。この場合では、未成熟終止コドン(TAA、TAG、TGA)に部位特異的に変異するTrp(TGG)残基、Gln(CAAおよびCAG)残基またはArg(CGA)残基を使用して、インビトロで、エキソビボでまたはインビボでタンパク質機能を無効にし得る。

0061

本開示は、本明細書に記載したCas9 DNA編集融合タンパク質により修正され得る点変異に関連するまたはこの点変異に起因する疾患と診断されている対象の処置方法を提供する。例えば、いくつかの実施形態では、そのような疾患、例えば上記に記載したPI3KCA点変異に関連するがんを有する対象に、点変異を修正するまたは疾患関連遺伝子に不活性化変異を導入する有効量のCas9デアミナーゼ融合タンパク質を投与することを含む方法が提供される。いくつかの実施形態では、この疾患は増殖性疾患である。いくつかの実施形態では、この疾患は遺伝性疾患である。いくつかの実施形態では、この疾患は腫瘍性疾患である。いくつかの実施形態では、この疾患は代謝性疾患である。いくつかの実施形態では、この疾患はリソソーム蓄積症である。点変異の修正によりまたは不活性化変異の疾患関連遺伝子への導入により処置し得るその他の疾患は当業者に既知であり、本開示はこの点において限定されない。

0062

本開示は、追加の疾患または障害、例えばデアミナーゼにより媒介される遺伝子編集により修正され得る点変異に関連するまたはこの点変異に起因する疾患または障害の処置方法を提供する。数種のそのような疾患が本明細書に記載されており、本明細書に記載した戦略および融合タンパク質により処置され得る追加の好適な疾患が、本開示をベースとして当業者に明らかであろう。好適な疾患および障害の例を下記に列挙する。各配列での具体的な位置または残基のナンバリングは、使用する特定のタンパク質およびナンバリングスキームに依存することが理解されるであろう。ナンバリングは例えば成熟タンパク質の前駆体およびこの成熟タンパク質で異なる場合があり、種毎の配列の差異がナンバリングに影響を及ぼす可能性がある。当業者は、当技術分野で公知の方法により、例えば相同残基の配列アラインメントおよび決定により、任意の相同タンパク質中のおよび各コード核酸中の各残基を同定し得るであろう。好適な疾患および障害の例として、下記が挙げられるがこれらに限定されない:嚢胞性線維症(例えば、Schwank et al.,Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoidsof cystic fibrosis patients.Cell stem cell.2013;13:653−658およびWu et.al.,Correction of a genetic disease in mouse via use of CRISPR−Cas9.Cell stem cell.2013;13:659−662を参照されたい。これらはいずれも遺伝的欠陥を修正するためにデアミナーゼ融合タンパク質を使用しない);フェニルケトン尿症− 例えばフェニルアラニンヒドロキシラーゼ遺伝子における835位(マウス)もしくは240位(ヒト)または相同残基でのフェニルアラニンからセリンへの変異(T>C変異)− 例えばMcDonald et al.,Genomics.1997;39:402−405を参照されたい;ベルナール・スーリエ症候群BSS)− 例えば血小板膜糖タンパク質IXにおける55位もしくは相同残基でのフェニルアラニンからセリンへの変異または残基24もしくは相同残基でのシステインからアルギニン(T>C変異)− 例えばNoris et al.,British Journal of Haematology.1997;97:312−320およびAli et al.,Hematol.2014;93:381−384を参照されたい;表皮剥離性角化症(EHK)− 例えばケラチン1における160位もしくは161位(開始メチオニンを含む場合)または相同残基でのロイシンからプロピンへの変異(T>C変異)− 例えばChipev et al.,Cell.1992;70:821−828を参照されたい。また、www[dot]uniprot[dot]orgでのUNIPROTデータベースにおける受入番号P04264も参照されたい;慢性閉塞性肺疾患COPD)− 例えば、プロセシングされた形態のα1−抗トリプシンにおける54位もしくは55位(開始メチオニンを含む場合)または相同残基でのまたはプロセシングされていない形態または相同残基における残基78でのロイシンからプロリンへの変異(T>C変異)− 例えばPoller et al.,Genomics.1993;17:740−743を参照されたい。また、UNIPROTデータベースにおける受入番号P01011も参照されたい;Charcot−Marie−Toot病4J型 − 例えばFIG4における41位または相同残基でのイソロイシンからトレオニンへの変異(T>C変異)− 例えばLenk et al.,PLoS Genetics.2011;7:e1002104を参照されたい;神経芽細胞腫(NB)− 例えばカスパーゼ−9における197位または相同残基でのロイシンからプロリンへの変異(T>C変異)− 例えばKundu et al.,3 Biotech.2013,3:225−234を参照されたい;フォンウィルブランド病(vWD)− 例えばプロセシングされた形態のフォン・ウィルブランド因子における509位もしくは相同残基でのまたはプロセシングされていない形態のフォン・ウィルブランド因子における1272位もしくは相同残基でのシステインからアルギニンへの変異(T>C変異)− 例えばLavergne et al.,Br.J.Haematol.1992を参照されたい。また、UNIPROTデータベースにおける受入番号P04275;82:66−72も参照されたい;先天性筋強直症− 例えば筋肉塩化物チャンネル遺伝子CLCN1における277位または相同残基でのシステインからアルギニンへの変異(T>C変異)− 例えばWeinberger et al.,The J.of Physiology.2012;590:3449−3464を参照されたい;遺伝性腎アミロイドーシス− 例えばプロセシングされた形態のアポリポタンパク質AIIにおける78位もしくは相同残基でのまたはプロセシングされていない形態における101位もしくは相同残基での終止コドンからアルギニンへの変異(T>C変異)− 例えばYazaki et al.,Kidney Int.2003;64:11−16を参照されたい;拡張型心筋症(DCM)− 例えばFOXD4遺伝子における148位または相同残基でのトリプトファンからアルギニンへの変異(T>C変異)、例えばMinoretti et.al.,Int.J.of Mol.Med.2007;19:369−372を参照されたい;遺伝性リンパ水腫− 例えばVEGFRチロシンキナーゼにおける1035位または相同残基でのヒスチジンからアルギニンへの変異(A>G変異)、例えばIrrthum et al.,Am.J.Hum.Genet.2000;67:295−301を参照されたい;家族性アルツハイマー病− 例えばプレセニリン1における143位または相同残基でのイソロイシンからバリンへの変異(A>G変異)、例えばGallo et.al.,J.Alzheimer’s disease.2011;25:425−431を参照されたい;プリオン病− 例えばプリオンタンパク質における129位または相同残基でのメチオニンからバリンへの変異(A>G変異)− 例えばLewis et.al.,J.of General Virology.2006;87:2443−2449を参照されたい;慢性乳児経皮関節症候群(CINCA)− 例えばクリオピリンにおける570位または相同残基でのチロシンからシステインへの変異(A>G変異)− 例えばFujisawa et.al.Blood.2007;109:2903−2911を参照されたい;ならびにデスミン関連心筋症(DRM)− 例えばαBクリスタリンにおける120位または相同残基でのアルギニンからグリシンへの変異(A>G変異)− 例えばKumar et al.,J.Biol.Chem.1999;274:24137−24141を参照されたい。全ての参考文献およびデータベースエントリの内容全体が参照により本明細書に援用される。

0063

本明細書で開示したCas9:核酸編集酵素/ドメイン融合タンパク質の標的を標的部位、例えば編集する点変異を有する部位に定めるためには、Cas9:核酸編集酵素/ドメイン融合タンパク質とガイドRNA、例えばsgRNAとを同時に発現させることが概して必要であることが当業者に明らかであろう。本明細書の別の箇所でより詳細に説明するように、ガイドRNAは、Cas9結合を可能にするtracrRNAフレームワークガイド配列とを概して含み、このガイド配列は、Cas9:核酸編集酵素/ドメイン融合タンパク質に配列特異性を付与する。いくつかの実施形態では、このガイドRNAは構造5’−[ガイド配列]−guuuuagagcuagaaauagcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu−3’(配列番号38)を含み、この構造中、ガイド配列は、標的配列に相補的である配列を含む。このガイド配列は、典型的には20ヌクレオチド長である。Cas9:核酸編集酵素/ドメイン融合タンパク質の標的を特定のゲノム標的部位に定めるのに好適なガイドRNAの配列は、本開示をベースとして当業者に明らかであろう。そのような好適なガイドRNA配列は、編集する標的ヌクレオチドの50ヌクレオチド上流内のまたは下流内の核酸配列に相補的であるガイド配列を概して含む。Cas9:核酸編集酵素/ドメイン融合タンパク質の標的を特定の標的配列に定めるのに適したガイドRNA配列のいくつかの例を下記に記載する。

0064

ホスホイノシチド−3−キナーゼ触媒アルファサブユニット(PI3KCAまたはPIK3CA)におけるH1047R(A3140G)多型(変異したヌクレオチドの位置および各コドンに下線を引いている):



(ヌクレオチド配列− 配列番号39、タンパク質配列− 配列番号40)。

0065

Cas9:核酸編集酵素/ドメイン融合タンパク質の標的を変異A3140G残基に定めるのに好適なガイド配列の例として、5’−aucggaauctauuuugacuc−3’(配列番号41)、5’−ucggaaucuauuuugacucg−3’(配列番号42)、5’−cuuagauaaaacugagcaag−3’(配列番号43)、5’−aucuauuuugacucguucuc−3’(配列番号44)、5’−uaaaacugagcaagaggcuu−3’(配列番号45)、5’−ugguggcuggacaacaaaaa−3’(配列番号46)、5’−gcuggacaacaaaaauggau−3’(配列番号47)、5’−guguuaauuugucguacgua−3’(配列番号48)が挙げられるがこれらに限定されない。Cas9:核酸編集酵素/ドメイン融合タンパク質の標的を、変異PI3KCA配列、下記に記載する追加の配列のうちのいずれか、または疾患と関連する追加の変異配列に定めるのに好適な追加のガイド配列が、本開示をベースとして当業者に明らかであろう。

0066

フェニルケトン尿症フェニルアラニンヒドロキシラーゼ遺伝子における残基240でのフェニルアラニンのセリンへの変異(T>C変異)(変異したヌクレオチドの位置および各コドンの位置に下線を引いている):



(ヌクレオチド配列− 配列番号49、タンパク質配列− 配列番号50)。
ベルナール・スーリエ症候群(BSS)−血小板膜糖タンパク質IXにおける残基24でのシステインからアルギニン(T>C変異):



(ヌクレオチド配列 − 配列番号51、タンパク質配列 − 配列番号52)。
表皮剥離性角化症(EHK)−ケラチン1における残基161でのロイシンからプロリンへの変異(T>C変異):



(ヌクレオチド配列 − 配列番号53、タンパク質配列 − 配列番号54)。
慢性閉塞性肺疾患(COPD)− α1−抗トリプシンにおける残基54でのロイシンからプロリンへの変異(T>C変異):



(ヌクレオチド配列 − 配列番号55、タンパク質配列 − 配列番号56)。
慢性閉塞性肺疾患(COPD)− α1−抗キモトリプシンにおける残基78でのロイシンからプロリンへの変異(T>C変異):



(ヌクレオチド配列 − 配列番号89、タンパク質配列 − 配列番号90)。
神経芽細胞腫(NB)−カスパーゼ−9における残基197でのロイシンからプロリンへの変異(T>C変異):



(ヌクレオチド配列 − 配列番号57、タンパク質配列 − 配列番号58)。
シャルコー・マリー・トゥース病4J型 − FIG4における残基41でのイソロイシンからトレオニンへの変異(T>C変異):



(ヌクレオチド配列 − 配列番号59、タンパク質配列 − 配列番号60)。
フォン・ウィルブランド病(vWD)− フォン・ウィルブランド因子における残基1272でのシステインからアルギニンへの変異(T>C変異):



(ヌクレオチド配列 − 配列番号61、タンパク質配列 − 配列番号62)。
先天性筋強直症−筋肉の塩化物チャンネル遺伝子CLCN1における277位でのシステインからアルギニンへの変異(T>C変異):



(ヌクレオチド配列 − 配列番号63、タンパク質配列 − 配列番号64)。
遺伝性腎アミロイドーシス−アポリポタンパク質AIIにおける残基111での終止コドンからアルギニンへの変異(T>C変異):



(ヌクレオチド配列 − 配列番号65、タンパク質配列 − 配列番号66)。
拡張型心筋症(DCM)− FOXD4遺伝子における148位でのトリプトファンからアルギニンへの変異(T>C変異):



(ヌクレオチド配列 − 配列番号67、タンパク質配列 − 配列番号68)。
遺伝性リンパ水腫−VEGFR3チロシンキナーゼにおける残基1035でのヒスチジンからアルギニンへの変異(A>G変異):



(ヌクレオチド配列 − 配列番号69、タンパク質配列 − 配列番号70)。
家族性アルツハイマー病−プレセニリン1における残基143でのイソロイシンからバリンへの変異(A>G変異):



(ヌクレオチド配列 − 配列番号71、タンパク質配列 − 配列番号72)。
プリオン病−プリオンタンパク質における残基129でのメチオニンからバリンへの変異(A>G変異):



(ヌクレオチド配列 − 配列番号73、タンパク質配列 − 配列番号74)。
慢性乳児神経皮膚関節症候群(CINCA)−クリオピリンにおける残基570でのチロシンからシステインへの変異(A>G変異):



(ヌクレオチド配列 − 配列番号75、タンパク質配列 − 配列番号76)。
デスミン関連心筋症(DRM)− αBクリスタリンにおける残基120でのアルギニンからグリシンへの変異(A>G変異):



(ヌクレオチド配列 − 配列番号77、タンパク質配列 − 配列番号78)。

0067

ベータサラセミア− 一例は、ヘモグロビンBにおける残基115でのロイシンからプロリンへの変異である。



(ヌクレオチド配列− 配列番号79、タンパク質配列− 配列番号80)。
上記に記載した配列は例示であり、本開示の範囲を限定することは意図されていないことを理解しなければならない。疾患と関連しているおよびCas9:核酸編集酵素/ドメイン融合タンパク質による修正に適している点変異の好適な追加の配列、ならびに好適なガイドRNA配列が、本開示をベースとして当業者に明らかであろう。

0068

レポーターシステム
本開示のいくつかの態様は、本明細書に記載した融合タンパク質のデアミナーゼ活性の検出に使用し得るレポーターシステムを提供する。いくつかの実施形態では、このレポーターシステムは、デアミナーゼ活性がルシフェラーゼの発現をもたらすルシフェラーゼベースのアッセイである。デアミナーゼドメイン(例えばAIDドメイン)の潜在的な基質無差別性の影響を最小化するために、非意図的に脱アミノ化の標的となる可能性がある残基(例えば、レポーターシステム内のssDNA上に潜在的に存在する可能性があるオフターゲットC残基)の数を最小化する。いくつかの実施形態では、目的の標的残基は、翻訳を開始することができないルシフェラーゼ遺伝子のACG変異した開始コドンに位置し得る。所望のデアミナーゼ活性によりACG>AUG修飾が生じ、そのため、ルシフェラーゼの翻訳ならびにデアミナーゼ活性の検出および定量化が可能になる。

0069

いくつかの実施形態では、一本鎖C残基を最小化するために、変異した開始コドンと、Lys(AAA)、Asn(AAT)、Leu(TTA)、Ile(ATT、ATA)、Tyr(TAT)、またはPhe(TTT)残基のストレッチからなるルシフェラーゼ遺伝子の先頭との間にリーダー配列が挿入されている。リーダー配列がルシフェラーゼの発現または活性に悪影響を及ぼさないことを確認するために、結果として生じた変異体を試験し得る。変異した開始コドンによるルシフェラーゼのバックグラウンド活性も決定し得る。

0070

このレポーターシステムを使用して多くの異なるsgRNAを試験し、例えば各デアミナーゼ(例えばAID酵素)が標的にし得る標的DNA配列に対する残基を決定し得る(図3)。Cas9−DNAのバブルの大きさが未知であることから、特定のCas9デアミナーゼ融合タンパク質のオフターゲット効果を評価するために、非鋳型鎖を標的とするsgRNAも試験し得る。いくつかの実施形態では、そのようなsgRNAは、変異した開始コドンがsgRNAと塩基対を作り得ないように設計される。

0071

プログラム可能で部位特異的なCからUへの修飾が可能である融合タンパク質を同定すると、このタンパク質の活性を更に特徴付けることができる。ルシフェラーゼアッセイからのデータを、例えば、sgRNA標的DNAに対するヌクレオチドが特定の融合タンパク質による脱アミノ化の標的とされることを説明するヒートマップに組み込むことができる。いくつかの実施形態では、各融合体に関するルシフェラーゼアッセイにおいて最高活性が生じる位置が「標的」位置と見なされ、その他の全てがオフターゲット位置と見なされる。

0072

いくつかの実施形態では、様々なAPOBEC3酵素またはこのデアミナーゼドメインとのCas9融合体が提供される。いくつかの実施形態では、その他の核酸編集酵素または触媒ドメインとのCas9融合タンパク質が提供され、このCas9融合タンパク質として、例えばシチジンデアミナーゼAPOBEC1およびACF1/ASF等のssRNA編集酵素、ならびにCas9に融合するとssDNA編集活性に使用され得るアデノシンデアミナーゼのADATファミリ38が挙げられる。そのような融合タンパク質の活性を、上記に記載した同じレポーターシステムおよびアッセイを使用して試験し得る。

0073

いくつかの実施形態では、本明細書において、不活性化された開始コドン、例えば3’−TAC−5’から3’−CAC−5’の鋳型鎖上の変異を含むレポーター遺伝子を含むレポーターシステムが提供される。標的Cの脱アミノ化に成功すると、対応するmRNAを5’−GUG−3’の代わりに5’−AUG−3’として転写することができ、レポーター遺伝子の翻訳が可能になる。好適なレポーター遺伝子は当業者に明らかであろう。

0074

上記レポーターシステムの例示的な実施形態の説明は説明のみを目的として記載されており、限定することは意図されていない。追加のレポーターシステム、例えば上記で詳細に説明した例示的なシステムの変形も本開示に包含される。

0075

実施例1:融合タンパク質
例示的なCas9:デアミナーゼ融合タンパク質を下記に記載する。
Cas9:ヒトAID融合体(C末端)



(下線:核局在化シグナル、二重下線:核外搬出シグナル、太字:リンカー配列)
Cas9:ヒトAID融合体(N末端)



(下線:核局在化シグナル、太字:リンカー配列)
Cas9:マウスAID融合体(C末端)



(下線:核局在化シグナル、太字:リンカー配列、二重下線:核外搬出シグナル)
Cas9:ヒトAPOBEC−3G融合体(N末端)



(下線:核局在化シグナル、太字:リンカー(1NLS)
Cas9:ヒトAPOBEC−1融合体(N末端)



(下線:核局在化シグナル、太字:リンカー(1NLS)、(配列番号92)
Cas9:ヒトADAT1融合体(N末端)



(下線:核局在化シグナル、太字:リンカー配列)
Cas9:ヒトADAT1融合体(末端)



(下線:核局在化シグナル、太字:リンカー配列)

0076

実施例2:Cas9融合タンパク質によるPI3K点変異の修正
結果としてPI3Kタンパク質においてH1047Rアミノ酸置換が生じる、PI3KCA遺伝子のエクソン20におけるA3140G点変異を、この変異タンパク質をコードする核酸と、Cas9:AID(配列番号30)融合タンパク質またはCas9:APOBEC1(配列番号92)融合タンパク質およびこの融合タンパク質の標的をこのコーディングPI3KCA遺伝子中の変異部位に定める適切に設計したsgRNAとを接触させることにより修正する。各エクソン20配列のゲノムPCR、例えば3000〜3250個のヌクレオチドのPCR増幅産物の生成、およびその後のPCT増幅産物の配列決定により、A3140G点変異を確認する。

0077

エクソン20中にA3140G点変異を含む変異PI3Kタンパク質を発現する細胞と、Cas9:AID(配列番号30)融合タンパク質またはCas9:APOBEC1(配列番号92)融合タンパク質をコードする発現構築物およびこの融合タンパク質の標的をこのコーディングPI3KCA遺伝子のアンチセンス鎖中の変異部位に定める適切に設計したsgRNAとを接触させる。このsgRNAは、配列5’−aucggaauctauuuugacucguuuuagagcuagaaaua gcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu 3’(配列番号81);5’−ucggaaucuauuuugacucgguuuuagagcuagaaauagcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaa guggcaccgagucggugcuuuuu−3’(配列番号82);5’−cuuagauaaaacugagcaagguuuuagagcuagaa auagcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu−3’(配列番号83);5’−aucuauuuugacucguucucguuuuagagcuagaaauagcaaguuaaaauaaaggcuaguccguuaucaacuug aaaaaguggcaccgagucggugcuuuuu−3’(配列番号84);5’−uaaaacugagcaagaggcuuguuuuagagcua gaaauagcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu−3’(配列番号85);5’−ugguggcuggacaacaaaaaguuuuagagcuagaaauagcaaguuaaaauaaaggcuaguccguuaucaa cuugaaaaaguggcaccgagucggugcuuuuu−3’(配列番号86);5’−gcuggacaacaaaaauggauguuuua gagcuagaaauagcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu−3’(配列番号87);または5’−guguuaauuugucguacguaguuuuagagcuagaaauagcaaguuaaaauaaaggcua guccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu(配列番号88)である。

0078

Cas9:AID融合タンパク質またはCas9:APOBEC1融合タンパク質のシトシンデアミナーゼ活性により、変異G3140と塩基対を形成するシトシンのウリジンへの脱アミノ化が生じる。1回の複製後に野生型A3140を回復させる。処置した細胞のゲノムDNAを抽出し、3000〜3250個のヌクレオチドのPCR増幅産物を適切なPCRプライマー増幅させる。このPCR増幅産物の配列決定により、融合タンパク質による細胞の処置後のA3140G点変異の修正を確認する。

0079

実施例3:Cas9融合タンパク質によるプレセニリン1点変異の修正
結果としてPSEN1タンパク質においてI143Vアミノ酸置換が生じる、プレセニリン1(PSEN1)遺伝子のコドン143におけるA−>G点変異を、この変異PSEN1タンパク質をコードする核酸と、Cas9:AID(配列番号30)融合タンパク質またはCas9:APOBEC1(配列番号92)融合タンパク質およびこの融合タンパク質の標的をこのコーディングPSEN1遺伝子中の変異部位に定める適切に設計したsgRNAとを接触させることにより修正する。家族性アルツハイマー病に関連する例示的なPSEN1 I143V変異の説明に関して例えばGallo et.al.,J.Alzheimer’s disease.2011;25:425−431を参照されたい。各PSEN1配列のゲノムPCR、例えばエクソン143を中心とする約100〜250個のヌクレオチドのPCR増幅産物の生成、およびその後のPCT増幅産物の配列決定により、A−>G点変異を確認する。

0080

この変異PSEN1タンパク質を発現する細胞と、Cas9:AID(配列番号30)融合タンパク質またはCas9:APOBEC1(配列番号92)融合タンパク質をコードする発現構築物およびこの融合タンパク質の標的をこのコーディングPSEN1遺伝子のアンチセンス鎖中の変異部位に定める適切に設計したsgRNAとを接触させる。Cas9:AID融合タンパク質またはCas9:APOBEC1融合タンパク質のシトシンデアミナーゼ活性により、コドン143中の変異Gと塩基対を形成するシトシンのウリジンへの脱アミノ化が生じる。1回の複製後に野生型Aを回復させる。処置した細胞のゲノムDNAを抽出し、100〜250個のヌクレオチドのPCR増幅産物を適切なPCRプライマーで増幅させる。このPCR増幅産物の配列決定により、融合タンパク質による細胞の処置後のA−>G点変異の修正を確認する。

0081

実施例4:Cas9融合タンパク質によるα1−抗トリプシン点変異の修正
結果としてα1−抗トリプシンタンパク質においてL55Pアミノ酸置換が生じる、α1−抗トリプシン遺伝子のコドン55におけるT−>C点変異を、この変異α1−抗トリプシンタンパク質をコードする核酸と、Cas9:ADAT1融合タンパク質(配列番号35または配列番号36)およびこの融合タンパク質の標的をこのコーディングα1−抗トリプシン遺伝子中の変異部位に定める適切に設計したsgRNAとを接触させることにより修正する。慢性閉塞性肺疾患(COPD)に関連する例示的なコドン55 T−>C変異のより詳細な説明に関して例えばPoller et al.,Genomics.1993;17:740−743を参照されたい。コドン55をコードする各α1−抗トリプシン配列のゲノムPCR、例えば約100〜250個のヌクレオチドのPCR増幅産物の生成、およびその後のPCT増幅産物の配列決定により、T−>C点変異を確認する。

0082

この変異α1−抗トリプシンタンパク質を発現する細胞と、Cas9:AID(配列番号30)融合タンパク質またはCas9:APOBEC1(配列番号92)融合タンパク質をコードする発現構築物およびこの融合タンパク質の標的をこのコーディングα1−抗トリプシン遺伝子中のセンス鎖上のコドン55における変異ヌクレオチドに定める適切に設計したsgRNAとを接触させる。Cas9:ADAT1融合タンパク質のシトシンデアミナーゼ活性により変異シトシンのウリジンへの脱アミノ化が生じ、そのため、この変異が修正される。処置した細胞のゲノムDNAを抽出し、100〜250個のヌクレオチドのPCR増幅産物を適切なPCRプライマーで増幅させる。このPCR増幅産物の配列決定により、融合タンパク質による細胞の処置後のα1−抗トリプシン遺伝子のコドン55におけるT−>C点変異の修正を確認する。

0083

実施例5:Cas9融合タンパク質によるフォン・ウィルブランド因子点変異の修正
結果としてフォン・ウィルブランド因子タンパク質においてC509Aアミノ酸置換が生じる、フォン・ウィルブランド因子遺伝子のコドン509におけるT−>C点変異を、この変異フォン・ウィルブランド因子タンパク質をコードする核酸と、Cas9:ADAT1融合タンパク質(配列番号35または配列番号36)およびこの融合タンパク質の標的をこのコーディングフォン・ウィルブランド因子遺伝子のセンス鎖中の変異部位に定める適切に設計したsgRNAとを接触させることにより修正する。フォン・ウィルブランド病(vWD)に関連する例示的なフォン・ウィルブランド因子C509A変異の説明に関して例えばLavergne et al.,Br.J.Haematol.1992;82:66−7を参照されたい。各フォン・ウィルブランド因子ゲノム配列のゲノムPCR、例えばエクソン509を中心とする約100〜250個のヌクレオチドのPCR増幅産物の生成、およびその後のPCT増幅産物の配列決定により、T−>C点変異を確認する。

0084

この変異フォン・ウィルブランド因子タンパク質を発現する細胞と、Cas9:ADAT1融合タンパク質(配列番号35または配列番号36)をコードする発現構築物およびこの融合タンパク質の標的をこのコーディングフォン・ウィルブランド因子遺伝子のセンス鎖における変異部位に定める適切に設計したsgRNAとを接触させる。Cas9:ADAT1融合タンパク質のシトシンデアミナーゼ活性によりコドン509中の変異シトシンのウリジンへの脱アミノ化が生じ、そのため、この変異が修正される。処置した細胞のゲノムDNAを抽出し、100〜250個のヌクレオチドのPCR増幅産物を適切なPCRプライマーで増幅させる。このPCR増幅産物の配列決定により、融合タンパク質による細胞の処置後のフォン・ウィルブランド因子遺伝子のコドン509におけるT−>C点変異の修正を確認する。

0085

実施例6:Cas9融合タンパク質によるカスパーゼ9点変異の修正−神経芽細胞腫
結果としてカスパーゼ−9タンパク質においてL197Pアミノ酸置換が生じる、カスパーゼ−9遺伝子のコドン197におけるT−>C点変異を、この変異カスパーゼ−9タンパク質をコードする核酸と、Cas9:ADAT1融合タンパク質(配列番号35または配列番号36)およびこの融合タンパク質の標的をこのコーディングカスパーゼ−9遺伝子のセンス鎖中の変異部位に定める適切に設計したsgRNAとを接触させることにより修正する。神経芽細胞腫(NB)に関連する例示的なカスパーゼ−9 L197P変異の説明に関して例えばLenk et al.,PLoS Genetics.2011;7:e1002104を参照されたい。各カスパーゼ−9ゲノム配列のゲノムPCR、例えばエクソン197を中心とする約100〜250個のヌクレオチドのPCR増幅産物の生成、およびその後のPCT増幅産物の配列決定により、T−>C点変異を確認する。

0086

この変異カスパーゼ−9タンパク質を発現する細胞と、Cas9:ADAT1融合タンパク質(配列番号35または配列番号36)をコードする発現構築物およびこの融合タンパク質の標的をこのコーディングカスパーゼ−9遺伝子のセンス鎖における変異部位に定める適切に設計したsgRNAとを接触させる。Cas9:ADAT1融合タンパク質のシトシンデアミナーゼ活性によりコドン197中の変異シトシンのウリジンへの脱アミノ化が生じ、そのため、この変異が修正される。処置した細胞のゲノムDNAを抽出し、100〜250個のヌクレオチドのPCR増幅産物を適切なPCRプライマーで増幅させる。このPCR増幅産物の配列決定により、融合タンパク質による細胞の処置後のカスパーゼ−9遺伝子のコドン197におけるT−>C点変異の修正を確認する。

0087

実施例7:2種のdCas9−APOBEC1融合タンパク質のデアミナーゼ活性
下記の異なるリンカーを有する2種のdCas9−APOBEC1融合タンパク質を生成した。
rAPOBEC1_GGS_dCas9:



下線=rAPOBEC1、二重下線=dCas9。
rAPOBEC1_(GGS)3_dCas9:



下線=rAPOBEC1、二重下線=dCas9。

0088

両方の融合タンパク質のデアミナーゼ活性を調べた。デアミナーゼアッセイはNuc.AcidsRes.2014,42,p.1095、J.Biol.Chem.2004,279,p53379、J.Virology 2014,88,p.3850およびJ.Virology 2006,80,p.5992を出典としており、これらのそれぞれの内容全体が参照により援用される。

0089

これらの融合タンパク質をコードする発現構築物を、CMV主鎖プラスミド(Addgeneプラスミド52970、Guilinger JP,Thompson DB,Liu DR.Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification.Nat.Biotechnol.2014;32(6):577−82を参照されたい)に挿入した。TNTQuick Coupled Transcription/Translation System(Promega)を使用して、これらの融合タンパク質を発現させた。90分後、5μLの溶解物を、5’−標識したssDNA基質(Cy3−ATTATTATTATTCCGCGGATTTATTTATTTATTTATTTATTT、配列番号96)およびUDG(ウラシルDNAグリコシラーゼ)と共に37℃で3時間にわたりインキュベートした。次いで、NaOHの1M溶液(10μL)を添加し、脱塩基部位でDNAを切断した。図4を参照されたい。このDNAを、10%TBE PAGEゲル上で分解させた(図5)。pUC19をTNTシステム中でインキュベートした陰性コントロール、およびこのDNAを標的Cの代わりに「U」で合成している陽性コントロールも含めた。図5には、両方の融合タンパク質がシトシンデアミナーゼ活性を示すことが図示されている。

0090

参考文献
1.Humbert O,Davis L,Maizels N.Targeted gene therapies:tools,applications,optimization.Crit Rev Biochem Mol.2012;47(3):264−81.PMID:22530743.
2.Perez−Pinera P,Ousterout DG,Gersbach CA.Advances in targeted genome editing.Curr Opin Chem Biol.2012;16(3−4):268−77.PMID:22819644.
3.UrnovFD,Rebar EJ,Holmes MC,Zhang HS,Gregory PD.Genome editing with engineered zinc finger nucleases.Nat Rev Genet.2010;11(9):636−46.PMID:20717154.
4.Joung JK,Sander JD.TALENs:a widely applicable technology for targeted genome editing.Nat Rev Mol Cell Biol.2013;14(1):49−55.PMID:23169466.
5.Charpentier E,Doudna JA.Biotechnology:Rewriting a genome.Nature.2013;495,(7439):50−1.PMID:23467164.
6.Pan Y,Xia L,Li AS,Zhang X,Sirois P,Zhang J,Li K.Biological and biomedical applications of engineered nucleases.Mol Biotechnol.2013;55(1):54−62.PMID:23089945.
7.De Souza,N.Primer:genome editing with engineered nucleases.Nat Methods.2012;9(1):27.PMID:22312638.
8.Santiago Y,Chan E,Liu PQ,Orlando S,Zhang L,Urnov FD,Holmes MC,Guschin D,Waite A,Miller JC,Rebar EJ,Gregory PD,Klug A,Collingwood TN.Targeted gene knockout in mammalian cells by using engineered zinc−finger nucleases.Proc Natl Acad Sci USA.2008;105(15):5809−14.PMID:18359850.
9.Cargill M,Altshuler D,Ireland J,Sklar P,Ardlie K,Patil N,Lane CR,Lim EP,Kalyanaraman N,Nemesh J,Ziaugra L,Friedland L,Rolfe A,Warrington J,Lipshutz R,Daley GQ,LanderES.Characterization of single−nucleotide polymorphisms in coding regions of human genes.Nat Genet.1999;22(3):231−8.PMID:10391209.
10.Jansen R,van Embden JD,Gaastra W,Schouls LM.Identification of genes that are associated with DNA repeats in prokaryotes.Mol Microbiol.2002;43(6):1565−75.PMID:11952905.
11.Mali P,Esvelt KM,ChurchGM.Cas9 as a versatile tool for engineering biology.Nat Methods.2013;10(10):957−63.PMID:24076990.
12.Jore MM,Lundgren M,van Duijin E,BultemaJB,WestraER,Waghmare SP,Wiedenheft B,Pul U,Wurm R,Wagner R,BeijerMR,Barendregt A,Shou K,SnijdersAP,Dickman MJ,Doudna JA,Boekema EJ,Heck AJ,van der Oost J,Brouns SJ.Structural basis for CRISPR RNA−guided DNA recognition by Cascade.Nat Struct Mol Biol.2011;18(5):529−36.PMID:21460843.
13.Horvath P,Barrangou R.CRISPR/Cas,the immune system of bacteria and archaea.Science.2010;327(5962):167−70.PMID:20056882.
14.Wiedenheft B,Sternberg SH,Doudna JA.RNA−guided genetic silencing systems in bacteria and archaea.Nature.2012;482(7385):331−8.PMID:22337052.
15.Gasiunas G,Siksnys V.RNA−dependent DNA endonuclease Cas9 of the CRISPR system:Holy Grail of genome editing?Trends Microbiol.2013;21(11):562−7.PMID:24095303.
16.Qi LS,LarsonMH,Gilbert LA,Doudna JA,Weissman JS,Arkin AP,Lim WA.Repurposing CRISPR as an RNA−guided platform for sequence−specific control of gene expression.Cell.2013;152(5):1173−83.PMID:23452860.
17.Perez−Pinera P,KocakDD,Vockley CM,AdlerAF,Kabadi AM,Polstein LR,Thakore PI,Glass KA,Ousterout DG,Leong KW,Guilak F,Crawford GE,Reddy TE,Gersbach CA.RNA−guided gene activation by CRISPR−Cas9−based transcription factors.Nat Methods.2013;10(10):973−6.PMID:23892895.
18.Mali P,Aach J,Stranges PB,Esvelt KM,Moosburner M,Kosuri S,Yang L,Church GM.CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering.Nat Biotechnol.2013;31(9):833−8.PMID:23907171.
19.Gilbert LA,Larson MH,Morsut L,Liu Z,Brar GA,Torres SE,Stern−Ginossar N,Brandman O,Whitehead EH,Doudna JA,Lim WA,Weissman JS,Qi LS.CRISPR−mediated modular RNA−guided regulation of transcription in eukaryotes.Cell.2013;154(2):442−51.PMID:23849981.
20.Larson MH,Gilbert LA,Wang X,Lim WA,Weissman JS,Qi LS.CRISPR interference(CRISPRi) for sequence−specific control of gene expression.Nat Protoc.2013;8(11):2180−96.PMID:24136345.
21.Mali P,Yang L,Esvelt KM,Aach J,Guell M,DiCarlo JE,Norville JE,Church GM.RNA−guided human genome engineering via Cas9.Science.2013;339(6121):823−6.PMID:23287722.
22.Cole−Strauss A,Yoon K,Xiang Y,Byrne BC,Rice MC,Gryn J,Holloman WK,Kmiec EB.Correction of the mutation responsible for sickle cell anemia by an RNA−DNA oligonucleotide.Science.1996;273(5280):1386−9.PMID:8703073.
23.Tagalakis AD,Owen JS,Simons JP.Lack of RNA−DNA oligonucleotide(chimeraplast) mutagenic activity in mouse embryos.Mol Reprod Dev.2005;71(2):140−4.PMID:15791601.
24.Ray A,Langer M.Homologous recombination:ends as the means.Trends Plant Sci.2002;7(10):435−40.PMID 12399177.
25.Britt AB,MayGD.Re−engineering plant gene targeting.Trends Plant Sci.2003;8(2):90−5.PMID:12597876.
26.Vagner V,Ehrlich SD.Efficiency of homologous DNA recombination varies along the Bacillus subtilis chromosome.J Bacteriol.1988;170(9):3978−82.PMID:3137211.
27.Saleh−Gohari N,Helleday T.Conservative homologous recombination preferentially repairs DNA double−strand breaks in the S phase of the cell cycle in human cells.Nucleic Acids Res.2004;32(12):3683−8.PMID:15252152.
28.Lombardo A,Genovese P,Beausejour CM,Colleoni S,Lee YL,Kim KA,Ando D,Urnov FD,Galli C,Gregory PD,Holmes MC,Naldini L.Gene editing in human stem cells using zince finger nucleases and integrase−defective lentiviral vector delivery.Nat Biotechnol.2007;25(11):1298−306.PMID:17965707.
29.Conticello SG.TheAID/APOBECfamily of nucleic acid mutators.Genome Biol.2008;9(6):229.PMID:18598372.
30.Reynaud CA,Aoufouchi S,Faili A,Weill JC.What role for AID:mutator,or assembler of the immunoglobulin mutasome?Nat Immunol.2003;4(7):631−8.
31.Bhagwat AS.DNA−cytosine deaminases:from antibody maturation to antiviral defense.DNA Repair(Amst).2004;3(1):85−9.PMID:14697763.
32.Navaratnam N,Sarwar R.An overview of cytidine deaminases.Int J Hematol.2006;83(3):195−200.PMID:16720547.
33.Holden LG,Prochnow C,Chang YP,Bransteitter R,Chelico L,Sen U,Stevens RC,GoodmanMF,Chen XS.Crystal structure of the anti−viral APOBEC3G catalytic domain and functional implications.Nature.2008;456(7218):121−4.PMID:18849968.
34.Chelico L,Pham P,Petruska J,Goodman MF.Biochemical basis of immunological and retroviral responses to DNA−targeted cytosine deamination by activation−induced cytidine deaminase and APOBEC3G.J Biol Chem.2009;284(41).27761−5.PMID:19684020.
35.Pham P,Bransteitter R,Goodman MF.Reward versus risk:DNA cytidine deaminases triggering immunity and disease.Biochemistry.2005;44(8):2703−15.PMID 15723516.
36.Barbas CF,Kim DH.Cytidine deaminase fusions and related methods.PCT Int Appl.2010;WO2010132092A2 20101118.
37.Chen X,Zaro JL,Shen WC.Fusion protein linkers:property,design and functionality.Adv Drug Deliv Rev.2013;65(10):1357−69.PMID:23026637.
38.Gerber AP,Keller W.RNA editing by base deamination:more enzymes,more targets,new mysteries.Trends Biochem Sci.2001;26(6):376−84.PMID:11406411.
39.Yuan L,Kurek I,English J,Keenan R.Laboratory−directed protein evolution.Microbiol Mol Biol Rev.2005;69(3):373−92.PMID:16148303.
40.Cobb RE,Sun N,Zhao H.Directed evolution as a powerful synthetic biology tool.Methods.2013;60(1):81−90.PMID:22465795.
41.Bershtein S,Tawfik DS.Advances in laboratory evolution of enzymes.Curr Opin Chem Biol.2008;12(2):151−8.PMID:18284924.
42.Hida K,Hanes J,Ostermeier M.Directed evolution for drug and nucleic acid delivery.Adv Drug Deliv Rev.2007;59(15):1562−78.PMID:17933418.
43.Esvelt KM,Carlson JC,Liu DR.A system for the continuous directed evolution of biomolecules.Nature.2011;472(7344):499−503.PMID:21478873.
44.Husimi Y.Selection and evolution of bacteriophages in cellstat.Adv Biophys.1989;25:1−43.PMID:2696338.
45.Riechmann L,Holliger P.The C−terminal domain of TolA is the coreceptor for filamentous phage infection of E.coli.Cell.1997;90(2):351−60.PMID:9244308.
46.Nelson FK,FriedmanSM,Smith GP.Filamentous phage DNA cloning vectors:a noninfective mutant with a nonpolar deletion in gene III.Virology.1981;108(2):338−50.PMID:6258292.
47.Rakonjac J,Model P.Roles of pIII in filamentous phage assembly.J Mol Biol.1998;282(1):25−41.
48.Smith GP.Filamentous fusion phage:novel expression vectors that display cloned antigens on the virion surface.Science.1985;228(4705):1315−7.PMID:4001944.
49.Sheridan C.Gene therapy finds its niche.Nat Biotechnol.2011;29(2):121−8.PMID:21301435.
50.Lee JW,Soung YH,Kim SY,Lee HW,Park WS,Nam SW,Kim SH,Lee JY,Yoo NJ,Lee SH.PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas.Oncogene.2005;24(8):1477−80.PMID:15608678.
51.Ikediobi ON,Davies H,Bignell G,Edkins S,Stevens C,O’Meara S,Santarius T,Avis T,Barthorpe S,Brackenbury L,Buck G,Butler A,Clements J,Cole J,Dicks E,Forbes S,Gray K,Halliday K,Harrison R,Hills K,Hinton J,Hunter C,Jenkinson A,Jones D,Kosmidou V,Lugg R,Menzies A,Mironenko T,Parker A,Perry J,Raine K,Richardson D,Shepherd R,Small A,Smith R,Solomon H,Stephens P,Teaque J,Tofts C,Varian J,Webb T,West S,Widaa S,Yates A,Reinhold W,Weinstein JN,Stratton MR,Futreal PA,Wooster R.Mutation analysis of 24 known cancer genes in theNCI−60 cell line set.Mol Cancer Ther.2006;5(11):2606−12.PMID:17088437.

0091

本明細書で言及した、例えば背景、概要、詳細な説明、実施例および/または参考文献セクションで言及した全ての刊行物、特許、特許出願、公報およびデータベースエントリ(例えば配列データベースエントリ)は、個々の刊行物、特許、特許出願、公報およびデータベースエントリが参照により本明細書に具体的におよび個々に援用されたかのようにその全体が参照により援用される。矛盾する場合には、本出願、例えば本明細書における任意の定義が統制するであろう。

0092

均等物および範囲
当業者は、本明細書に記載した実施形態の多くの均等物を認識し得るか、または通常の実験のみを使用して確認することができる。本開示の範囲は上記の説明に限定されることを意図されておらず、特許請求の範囲で規定されている通りである。

0093

「1つの(a)」、「1つの(an)」および「その(the)」等の詞は、反対の指示がない限りまたは文脈から別途明らかでない限り、1つまたは複数を意味し得る。ある群の2つ以上のメンバーの間に「または(or)」を含む請求項または記載は、反対の指示がない限りまたは文脈から別途明らかでない限り、この群のメンバーのうちの1つ、複数または全てが存在する場合に満たされると見なされる。群の2つ以上のメンバーの間に「または(or)」を含む群の開示は、この群の厳密に1つのメンバーが存在する実施形態、この群の複数のメンバーが存在する実施形態、およびこの群のメンバーの全てが存在する実施形態を提供する。簡略化のために、これらの実施形態は本明細書において個々に詳述されていないが、これらの実施形態のそれぞれが本明細書に記載されており、具体的に特許請求されるまたは特許請求されない場合があることが理解されるであろう。

0094

本発明は、1つもしくは複数の請求項からのまたは本明細書の1つもしくは複数の関連部分からの1つまたは複数の限定、要素、節または記述用語が別の請求項に導入される全ての変形形態、組み合わせおよび順列を包含することを理解しなければならない。例えば、別の請求項に依存する請求項を改変して、同じ基礎の請求項に依存する任意のその他の請求項中に見出される限定のうちの1つまたは複数を含ませることができる。更に、特許請求の範囲が組成物を列挙する場合、別途示さない限りまたは矛盾もしくは不一致が生じるであろうことが当業者に明らかでない限り、本明細書に開示した製造方法もしくは使用方法のうちのいずれかに従ってまたは当技術分野で既知の方法(存在する場合)に従って、この組成物を製造する方法または使用する方法が包含されることを理解しなければならない。

0095

要素がリストとして示される場合、例えばマーカッシュ形式で示される場合、この要素のあらゆる可能な部分群も開示されており、任意の要素または要素の部分群をこの群から除去し得ることを理解しなければならない。用語「含む」は開放的であることが意図されており、追加の要素または工程の包含を許容することも留意される。一般に、ある実施形態、ある製品またはある方法が特定の要素、特徴または工程を含むと見なされる場合、そのような要素、特徴または工程からなるまたは本質的になる実施形態、製品または方法も提供されることを理解すべきである。簡略化のために、これらの実施形態は本明細書において個別に詳述されていないが、これらの実施形態のそれぞれが本明細書に記載されており、具体的に特許請求されるまたは特許請求されない場合があることが理解されるであろう。

0096

範囲が示されている場合には終点が含まれる。更に、別途示さない限りまたは文脈および/もしくは当業者の知識から別途明らかでない限り、範囲として表される値は、文脈が別途明確に規定しない限り、いくつかの実施形態では、述べられた範囲内の任意の具体的な値をこの範囲の下限の単位の十分の一まで仮定し得ることを理解しなければならない。簡略化のために、各範囲中の値は本明細書において個別に詳述されていないが、これらの値のそれぞれが本明細書に記載されており、具体的に特許請求されるまたは特許請求されない場合があることが理解されるであろう。別途示さない限りまたは文脈および/もしくは当業者の知識から別途明らかでない限り、範囲として表される値は、示された範囲内の任意の部分範囲を仮定することができ、この部分範囲の終点は、この範囲の下限の単位の十分の一と同程度の正確さまで表されることも理解しなければならない。

実施例

0097

加えて、本発明の任意の特定の実施形態が請求項のうちの任意の1つまたは複数から明確に除外される場合があることを理解しなければならない。範囲が示されている場合、この範囲内の任意の値が請求項のうちの任意の1つまたは複数から明確に除外される場合がある。本発明の組成物および/または方法の任意の実施形態、要素、特徴、用途または態様を任意の1つまたは複数の請求項から除外し得る。簡略化のために、1つまたは複数の要素、特徴、目的または態様が除外されている実施形態の全てが本明細書において明確に規定されているわけではない。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ