図面 (/)

技術 工事図面作成支援システム

出願人 東邦瓦斯株式会社
発明者 吉野充徳
出願日 2019年3月25日 (1年10ヶ月経過) 出願番号 2019-057405
公開日 2020年10月1日 (4ヶ月経過) 公開番号 2020-160626
状態 未査定
技術分野 イメージ処理・作成 光学的手段による測長装置 イメージ分析
主要キーワード レーザースキャン装置 設置溝 略凹字状 凹字形状 工事図面 測位機 肩下がり ドローン
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2020年10月1日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

埋設物の埋め込み前に効率よく敷設状態を記録可能で、現場作業者工事日報を作成する負担を軽減するシステムを提供すること。

解決手段

土木工事により地中埋設されるガス管20や継手21等の埋設物の、土木工事による敷設状態を表す図面を作成する工事図面作成支援システム1において、ガス管20や継手21の地中への配設後であって埋め込み前に少なくともガス管20や継手21のデジタル画像撮影する撮影装置11と、デジタル画像が所定の基準を満たすか否か判定する画像判定部161と、画像判定部161において前記所定の基準を満たすと判断されたデジタル画像を用いて図面を作成する図面生成部162と、を備えること、を特徴とする。

概要

背景

土木工事により地中埋設される埋設物、例えばガス管等を配管する工事が行われる場合、工事現場作業者により工事内容を記録するため、例えば1日毎や1週間毎に報告書(以下、工事日報とする)が作成される。工事日報では、当日の工事で施工したガス管の敷設状態を図面化し、記録される。ガス管の敷設状態を図面化するためには、ガス管の敷設状態(例えばガス管の敷設した距離等)を測定する必要があり、現在はガス管の配設後であって埋め込み前にスケール等を用いて手測定を行い、手測定結果に基づいて製図を行うことが一般的である。
しかし、手測定を行う作業は手間と時間がかかるため、現場の作業者にとって工事日報を作成する負担が大きい。手測定を行う手間と時間を軽減するためには、特許文献1に開示されるような、電磁波を地中に放射し、埋設物からの反射波を受信し、その反射波の強度に基づき、地中における埋設物の位置を検出することが可能な3次元ボクセルデータ表示装置を用いることが考えられる。

概要

埋設物の埋め込み前に効率よく敷設状態を記録可能で、現場の作業者の工事日報を作成する負担を軽減するシステムを提供すること。土木工事により地中に埋設されるガス管20や継手21等の埋設物の、土木工事による敷設状態を表す面を作成する工事面作成支援システム1において、ガス管20や継手21の地中への配設後であって埋め込み前に少なくともガス管20や継手21のデジタル画像撮影する撮影装置11と、デジタル画像が所定の基準を満たすか否か判定する画像判定部161と、画像判定部161において前記所定の基準を満たすと判断されたデジタル画像を用いて面を作成する面生成部162と、を備えること、を特徴とする。

目的

本発明は、上記問題点を解決するためのものであり、埋設物の埋め込み前に効率よく敷設状態を記録可能で、現場の作業者の工事日報を作成する負担を軽減するシステムを提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

土木工事により地中埋設される埋設物の、前記土木工事による敷設状態を表す図面を作成する工事図面作成支援システムにおいて、前記埋設物の地中への配設後であって埋め込み前に少なくとも前記埋設物の画像を撮影する撮影装置と、前記画像が所定の基準を満たすか否か判定する画像判定部と、前記画像判定部において前記所定の基準を満たすと判断された画像を用いて前記図面を作成する図面生成部と、を備えること、を特徴とする工事図面作成支援システム。

請求項2

請求項1に記載の工事図面作成支援システムにおいて、前記図面には、少なくとも3次元図面が含まれること、を特徴とする工事図面作成支援システム。

請求項3

請求項1または2に記載の工事図面作成支援システムにおいて、前記図面には、少なくともオルソ画像が含まれること、を特徴とする工事図面作成支援システム。

請求項4

請求項1乃至3のいずれか1つに記載の工事図面作成支援システムにおいて、前記画像判定部は、前記撮影装置によって前記画像を撮影した撮影環境に基づいて、前記画像が工事図面作成支援システムで利用可能か否かを判断し、利用可能と判断した場合に、前記所定の基準を満たすか否かの判定を行うこと、を特徴とする工事図面作成支援システム。

請求項5

請求項1乃至4のいずれか1つに記載の工事図面作成支援システムにおいて、前記埋設物は、表面の所定の位置に符牒を有すること、前記撮影装置は、前記符牒を含む前記埋設物の画像を撮影すること、前記画像判定部は、前記画像が所定の基準を満たすか否か、少なくとも前記画像に写った前記符牒により判定すること、を特徴とする工事図面作成支援システム。

請求項6

請求項5に記載の工事図面作成支援システムにおいて、前記符牒は、少なくとも前記埋設物の形状および大きさの情報を含むこと、前記図面生成部は、前記符牒が含む情報を保有した前記図面を作成すること、を特徴とする工事図面作成支援システム。

請求項7

請求項6に記載の工事図面作成支援システムにおいて、前記符牒は、所定の色を備える複数のセルが2次元的に配列されたものであって、前記符牒の領域の位置を検出するための切欠部を備え、色の組み合わせにより前記埋設物の前記情報を表すものであること、を特徴とする工事図面作成支援システム。

請求項8

請求項5乃至7のいずれか1つに記載の工事図面作成支援システムにおいて、前記符牒の位置情報を取得する位置情報取得部を備え、前記図面生成部は、前記位置情報取得部により取得された前記位置情報を保有した前記図面を作成すること、を特徴とする工事図面作成支援システム。

請求項9

請求項8に記載の工事図面作成支援システムにおいて、前記位置情報取得部は、前記撮影装置により撮影された画像に基づいて、所定の基準位置に対する前記符牒の相対座標を算出する相対座標算出部からなること、前記位置情報には、少なくとも前記相座標が含まれること、を特徴とする工事図面作成支援システム。

請求項10

請求項8に記載の工事図面作成支援システムにおいて、前記位置情報取得部は、前記埋設物の地中への配設後であって埋め込み前に、前記符牒の絶対座標を取得する測位機器からなること、前記位置情報には、少なくとも前記絶対座標が含まれること、を特徴とする工事図面作成支援システム。

請求項11

請求項8に記載の工事図面作成支援システムにおいて、前記位置情報取得部は、前記撮影装置により撮影された画像に基づいて、所定の基準位置に対する前記符牒の相対座標を算出する相対座標算出部と、前記埋設物の地中への配設後であって埋め込み前に、前記符牒の絶対座標を取得する測位機器と、からなること、前記位置情報には、前記相対座標と、前記絶対座標と、が含まれること、を特徴とする工事図面作成支援システム。

請求項12

請求項1乃至11のいずれか1つに記載の工事図面作成支援システムにおいて、前記画像判定部は、前記所定の基準を満たすか否かの判定結果を、工事図面作成支援システムの使用者通知すること、前記所定の基準を満たさないと判断された場合には、前記通知とともに、前記所定の基準を満たすための方法を提案すること、を特徴とする工事図面作成支援システム。

技術分野

0001

本発明は、土木工事により地中埋設される埋設物の、土木工事による敷設状態を表す図面を作成する工事図面作成支援システムに関するものである。

背景技術

0002

土木工事により地中に埋設される埋設物、例えばガス管等を配管する工事が行われる場合、工事現場作業者により工事内容を記録するため、例えば1日毎や1週間毎に報告書(以下、工事日報とする)が作成される。工事日報では、当日の工事で施工したガス管の敷設状態を図面化し、記録される。ガス管の敷設状態を図面化するためには、ガス管の敷設状態(例えばガス管の敷設した距離等)を測定する必要があり、現在はガス管の配設後であって埋め込み前にスケール等を用いて手測定を行い、手測定結果に基づいて製図を行うことが一般的である。
しかし、手測定を行う作業は手間と時間がかかるため、現場の作業者にとって工事日報を作成する負担が大きい。手測定を行う手間と時間を軽減するためには、特許文献1に開示されるような、電磁波を地中に放射し、埋設物からの反射波を受信し、その反射波の強度に基づき、地中における埋設物の位置を検出することが可能な3次元ボクセルデータ表示装置を用いることが考えられる。

先行技術

0003

特開2000−221266号公報

発明が解決しようとする課題

0004

しかしながら、上記従来技術には次のような問題があった。
特許文献1に開示される3次元ボクセルデータ表示装置は、ガス管等の埋設物を地中に埋め込んだ後に用いるものである。土壌性質は不均一であることが多く、電磁波の強度にばらつきが生じるため、埋設物の正確な位置が検出できないおそれがある。また、地中に埋め込んだ後では、検出結果が正しいかどうか確認することができない。
そこで、埋設物の埋め込み前に測定するのが望ましいと考えられる。埋め込み前に効率良く埋設物の敷設状態を記録する方法としては、レーザースキャンによってガス管の敷設状態を3次元データ化して記録することも考えられるが、装置が非常に高価である点が問題となる。すなわち、1日あたり100件の工事が行われることがあれば、それぞれの現場で敷設状態を記録するためには、100台のレーザースキャン装置を準備しなければならず、コストが膨大となり現実的でない。したがって、現状、埋設物の埋め込み前にスケール等を用いて手測定する方法をとることが一般的となっているため、効率よく埋設物の敷設状態を記録することが困難であり、作業者にとって工事日報を作成する負担が大きいという問題がある。

0005

本発明は、上記問題点を解決するためのものであり、埋設物の埋め込み前に効率よく敷設状態を記録可能で、現場の作業者の工事日報を作成する負担を軽減するシステムを提供することを目的とする。

課題を解決するための手段

0006

上記課題を解決するために、本発明の工事図面作成支援システムは、次のような構成を有している。
(1)土木工事により地中に埋設される埋設物の、土木工事による敷設状態を表す図面を作成する工事図面作成支援システムにおいて、埋設物の地中への配設後であって埋め込み前に少なくとも埋設物の画像を撮影する撮影装置と、画像が所定の基準を満たすか否か判定する画像判定部と、画像判定部において所定の基準を満たすと判断された画像を用いて前記図面を作成する図面生成部と、を備えること、を特徴とする。

0007

(2)(1)に記載の工事図面作成支援システムにおいて、図面には、少なくとも3次元図面が含まれること、を特徴とする。
(3)(1)または(2)に記載の工事図面作成支援システムにおいて、図面には、少なくともオルソ画像が含まれること、を特徴とする。

0008

(4)(1)乃至(3)のいずれか1つに記載の工事図面作成支援システムにおいて、画像判定部は、撮影装置によって画像を撮影した撮影環境に基づいて、画像が工事図面作成支援システムで利用可能か否かを判断し、利用可能と判断した場合に、所定の基準を満たすか否かの判定を行うこと、を特徴とする。

0009

(5)(1)乃至(4)のいずれか1つに記載の工事図面作成支援システムにおいて、埋設物は、表面の所定の位置に符牒を有すること、撮影装置は、符牒を含む埋設物の画像を撮影すること、画像判定部は、画像が所定の基準を満たすか否か、少なくとも画像に写った符牒により判定すること、を特徴とする。

0010

(6)(5)に記載の工事図面作成支援システムにおいて、符牒は、少なくとも埋設物の形状および大きさの情報を含むこと、図面生成部は、符牒が含む情報を保有した図面を作成すること、を特徴とする。
(7)(6)に記載の工事図面作成支援システムにおいて、符牒は、所定の色を備える複数のセルが2次元的に配列されたものであって、符牒の領域の位置を検出するための切欠部を備え、色の組み合わせにより埋設物の情報を表すものであること、を特徴とする。

0011

(8)(5)乃至(7)のいずれか1つに記載の工事図面作成支援システムにおいて、符牒の位置情報を取得する位置情報取得部を備え、図面生成部は、位置情報取得部により取得された位置情報を保有した図面を作成すること、を特徴とする。

0012

(9)(8)に記載の工事図面作成支援システムにおいて、位置情報取得部は、撮影装置により撮影された画像に基づいて、所定の基準位置に対する符牒の相対座標を算出する相対座標算出部からなること、位置情報には、少なくとも相対座標が含まれること、を特徴とする。

0013

(10)(8)に記載の工事図面作成支援システムにおいて、位置情報取得部は、埋設物の地中への配設後であって埋め込み前に、符牒の絶対座標を取得する測位機器からなること、位置情報には、少なくとも絶対座標が含まれること、を特徴とする。

0014

(11)(8)に記載の工事図面作成支援システムにおいて、位置情報取得部は、撮影装置により撮影された画像に基づいて、所定の基準位置に対する符牒の相対座標を算出する相対座標算出部と、埋設物の地中への配設後であって埋め込み前に、符牒の絶対座標を取得する測位機器と、からなること、位置情報には、相対座標と、絶対座標と、が含まれること、を特徴とする。

0015

(12)(1)乃至(11)のいずれか1つに記載の工事図面作成支援システムにおいて、画像判定部は、所定の基準を満たすか否かの判定結果を、工事図面作成支援システムの使用者通知すること、所定の基準を満たさないと判断された場合には、通知とともに、所定の基準を満たすための方法を提案すること、を特徴とする。

発明の効果

0016

本発明の工事図面作成支援システムは、上記構成を有することにより次のような作用・効果を有する。
(1)に記載の工事図面作成支援システムによれば、埋設物の埋め込み前に効率よく敷設状態を記録可能で、現場の作業者の工事日報を作成する負担を軽減することができる。
つまり、まず現場の作業者が、撮影装置により埋設物の地中への配設後であって埋め込み前に少なくとも埋設物の画像を撮影する。そして、画像判定部により画像が所定の基準を満たすか否か判定し、図面生成部において、画像判定部において所定の基準を満たすと判断された画像を用いて図面を作成する。現場の作業者は、当該図面を利用して工事日報を作成することができるため、従来のように埋設物の敷設状態を図面化するために手測定を行う時間と手間をかける必要がなく埋設物の敷設状態を記録可能であり、現場の作業者の工事日報を作成する負担を軽減することができる。
なお、所定の基準とは、例えば、シャープネス、明るさ、ISO値、画像中の被写体の位置、画像同士のラップ率等である。

0017

(2)に記載の工事図面作成支援システムによれば、図面生成部が生成する図面には、少なくとも3次元図面が含まれるため、レーザースキャン等の高価な装置を用いることなく、埋設物の敷設状態を3次元図面として記録可能である。
(3)に記載の工事図面作成支援システムによれば、図面生成部が生成する図面には、少なくともオルソ画像が含まれる。
撮影装置により撮影した画像は、中心投影であるため、撮影装置のレンズの中心から撮影対象物との距離の違いにより、画像上の像に歪みが生じてしまう。そのような中心投影の画像を正射投影に変換し、歪みを補正した画像がオルソ画像である。歪みが補正されたオルソ画像が生成されることで、オルソ画像上で埋設物の位置等を正確に計測することができるようになる。オルソ画像上で埋設物の位置等を正確に計測することができるようになれば、現場の作業者は、工事日報を作成するために測量を行う手間を省くことができ、工事日報を作成する負担が軽減される。

0018

(4)に記載の工事図面作成支援システムによれば、まず撮影環境に基づき、撮影装置により撮影した画像が工事図面作成支援システムで利用可能か否かを判断し、その後に所定の基準に基づきデジタル画像を判定する。撮影環境に基づき、利用可能でないと判定されれば、その後の所定の基準を満たすか否かの判定を行う必要がなくなるため、判定処理の無駄をなくすことができる。

0019

(5)に記載の工事図面作成支援システムによれば、画像判定部における所定の基準を満たすか否かの判定が容易となり、工事図面作成支援システムにおいて、よりスムーズに図面作成を行うことができる。例えば、所定の基準として、画像のシャープネスが適切であるか否か判断するとした場合、符牒自体の画像がどの程度ぼけているのか、または符牒と埋設物の境目がどの程度ぼけているのかによって、シャープネスを判定することができる。その他にも、画像上の符牒の粗さにより、画像の粗さが基準に達しているか否か判断したり、画像上の符牒の位置により、埋設物が画像上において適切な位置に写っているかを判断したりすることが可能である。

0020

(6)に記載の工事図面作成支援システムによれば、現場の作業者の工事日報を作成する負担が軽減される。
工事日報には、埋設物の形状や大きさ等の情報が書き込まれるのが一般的であるため、作業者は作業中に埋設物の形状や大きさ等の情報をメモしておき、当該メモに基づいて工事日報に埋設物の情報を書き込むことが行われている。このような作業は煩雑であり、記載ミス等が起こり得るため、正確な情報の記入保証されにくい。そこで、埋設物に備えられた符牒に埋設物の情報を含ませ、符牒が含む情報を保有させた図面を作成するものとしておけば、現場作業者は、形状や大きさ等をわざわざ確認するという煩雑な作業をせずにすみ、現場の作業者の工事日報を作成する負担が軽減される。

0021

(7)に記載の工事図面作成支援システムによれば、符牒は、所定の色を備える複数のセルが2次元的に配列されたものであって、色の組み合わせにより埋設物の情報を表すものであるため、撮影装置により撮影された画像に写った符牒の色の組み合わせを検出することで、埋設物の情報(埋設物の形状や大きさ等)を読み取ることができる。また、符牒の領域の位置を検出するための切欠部を備えているため、撮影装置により撮影された画像に写った符牒が傾いていたとしても、符牒の上下左右判別が可能であり、正確に符牒が有する埋設物の情報を読み取ることが可能である。

0022

(8)に記載の工事図面作成支援システムによれば、埋設物の形状や大きさの情報を含む符牒の位置により位置情報を取得し、位置情報を保有した図面が作成される。よって、どのような埋設物がどこに敷設されているのか管理が容易となり、現場の作業者の工事日報を作成する負担が軽減される。

0023

(9)に記載の工事図面作成支援システムによれば、相対座標に基づいて敷設状態を表す図面を生成することができる。例えば、土木工事により埋設したガス管を、将来的に交換のための工事を行う場合、相対座標に基づいて生成された図面があれば、所定の基準位置からスケール等で測定することで、ガス管の位置を特定することが可能となる。

0024

(10)に記載の工事図面作成支援システムによれば、埋設物の形状や大きさの情報を含む符牒の位置により絶対座標を取得し、絶対座標に関する情報を保有した図面が作成されることで、どのような埋設物がどこに埋設されているのか管理が容易となる。例えば、土木工事により埋設したガス管を、将来的に交換のための工事を行う場合、絶対座標に基づいて生成された図面があれば、GPS機器を用いることでガス管の位置を特定することが可能となる。現在、GPS機器が高価であるため、スケール等により相対座標に基づいてガス管の位置を特定することが一般的に行われているが、将来的にGPS機器が普及することで、本発明の有用性が高まる。

0025

(11)に記載の工事図面作成支援システムによれば、相対座標や絶対座標に基づいて敷設状態を表す図面を生成することができる。例えば、土木工事により埋設したガス管を、将来的に交換のための工事を行う場合、相対座標および絶対座標に基づいて生成された図面があれば、所定の基準位置からスケール等で測定を行うか、GPS機器を用いるかすればガス管の位置を特定することが可能となる。GPS機器は高価であり、複数台準備できない場合が考えられる。そうすると、複数個所で同時に工事が行われるとした場合、GPS機器を用いることができない現場がある。そのような場合、相対座標と絶対座標の双方でガス管位置を特定できるようにしておけば、柔軟に対応することができる。

0026

(12)に記載の工事図面作成支援システムによれば、工事図面作成支援システムの使用者(例えば工事現場の作業者等)は画像判定部が行う画像が所定の基準を満たすか否かの判定の結果を知ることができるとともに、所定の基準を満たさないと判断された場合には、所定の基準を満たすための方法の提案を受けることができる。所定の基準を満たすための方法とは、例えば、シャッタースピードの調整等の撮影機器による撮影の方法に関するものである。

図面の簡単な説明

0027

工事図面作成支援システムの構成の一例を示すブロック図である。
撮影装置を用いてガス管を撮影する様子の一例を示す図である。
ガス管と継手の敷設状態の一例を示す図である。
(a)は、2次元コードの一例を示す図であり、(b)は、セルの色と色に対応する番号の一例を示す図である。
2次元コードのセルの色の組み合わせを示す一覧表である。
2次元コードのセルの色の組み合わせを示す一覧表である。
2次元コードのセルの色の組み合わせを示す一覧表である。
2次元コードのセルの色の組み合わせを示す一覧表である。
2次元コードのセルが、画像処理の関係上一体化してしまった場合の認識方法の一例を示す図である。
(a)は2次元コードの底辺部の一部が欠損してデジタル画像に写った場合を示す図であり、(b)は2次元コードの角部と底辺部の一部が欠損してデジタル画像に写った場合の一例を示す図であり、(c),(d),(e)は、2次元コードの横方向の端部の一部が欠損してデジタル画像に写った場合を示す図である。
2次元コードの表す数列とガス管情報対応表である。
照度差判定基準の一例を示す図である。
フラッシュガイドナンバーの判定基準の一例を示す図である。
シャッタースピードの判定基準の一例を示す図である。
ISO値の判定基準の一例を示す図である。
明るさの判定基準の一例を示す図である。
(a),(b),(c)は、シャープネスの判定基準の一例を示す図である。
ラップ率の判定方法の一例を示す図である。
(a),(b),(c),(d)は、被写体の位置の判定方法の一例を示す図である。
画像判定部の判定処理のフローを表す図である。
オルソ画像のイメージ図である。
オルソ画像により、相対座標を算出する方法の一例を表す図である。
次元点群データのイメージ図である。
(a)はメッシュ化のイメージ図であり、(b)はポリゴンデータのイメージ図であり、(c)はポリゴンデータにデジタル画像を貼り付けた状態のイメージ図である。
3次元CAD図面のイメージ図である。
2次元コードの変形例を表す図である。
2次元コードの変形例を表す図である。
2次元コードの変形例を表す図である。
2次元コードの変形例を表す図である。
2次元コードの変形例を表す図である。
2次元コードの変形例を表す図である。
2次元コードの変形例を表す図である。
2次元コードの変形例を表す図である。
2次元コードの変形例を表す図である。
2次元コードの変形例を表す図である。
2次元コードの変形例を表す図である。
2次元コードの変形例を表す図である。
2次元コードの変形例を表す図である。
2次元コードの変形例を表す図である。
工事図面作成支援システムの構成の変形例を示すブロック図である。
工事図面作成支援システムの構成の変形例を示すブロック図である。

実施例

0028

本発明の工事図面作成支援システム1の実施形態について、図面を参照しながら詳細に説明する。
図1は本実施形態の工事図面作成支援システム1の構成の一例を示すブロック図である。
撮影装置11と、測位機器12と、通信端末18とは、インターネット等の通信回線19を介して工事図面作成支援システム1と接続されている。

0029

撮影装置11は、後述する図面を作成するためのデジタル画像を取得するために、工事現場の作業者が埋設物としてのガス管20や継手21を撮影するデジタルカメラである。図2に示すように、撮影装置11に把手11aが接続されており、工事現場の作業者は、地面30に立った状態で、土木工事により掘り起こされた設置溝30aに配設されたガス管20を上空から撮影可能である。撮影は、ガス管20や継手21の設置溝30aへの配設後であって埋め込み前に行われるものであり、一日の工事で約200枚のデジタル画像の撮影が行われる。なお、本実施形態においては、作業者自身が撮影装置11を用いて撮影することとしているが、ドローン等の遠隔操縦可能な無人航空機に撮影装置11を搭載し、上空から撮影することとしても良い。さらには、作業者が撮影装置11を手に持って撮影を行うこととしてもよい。この場合、撮影位置が把手11aやドローンを用いる場合よりも低い位置となり、撮影範囲が狭くなるため、撮影枚数は把手11aやドローンを用いる場合よりも多くなる。

0030

設置溝30aに配設されるガス管20や継手21の表面には、符牒としての2次元コード40が貼付されており(図3参照)、撮影装置11は、ガス管20や継手21に含めて2次元コード40も撮影する。
2次元コード40は、ガス管20や継手21の形状や大きさ等の情報(以下、ガス管情報)を含んでおり、後述する処理部16は、デジタル画像に写った2次元コード40を認識することで、デジタル画像に写ったガス管20や継手21の形状や大きさ等の情報を判別することができる。2次元コード40の詳細については後述する。

0031

測位機器12は、工事現場の作業者が、ガス管20や継手21の設置溝30aへの配設後であって埋め込み前に、ガス管20や継手21に貼付された2次元コード40の絶対座標を取得するものである。測位機器12により取得した位置情報は、後述する図面に埋設物の位置情報として含められる。

0032

撮影装置11は、通信回線19を介して撮影したデジタル画像を工事図面作成支援システム1に送信し、測位機器12は、通信回線19を介して取得した絶対座標に関する情報を工事図面作成支援システム1に送信する。

0033

工事図面作成支援システム1は、通信部13と、登録部14と、データベース15と、処理部16と、通信部17とからなる。

0034

通信部13は、撮影装置11や測位機器12から送信されるデジタル画像や絶対座標に関する情報を受信する。そして、通信部13が受信した情報は、登録部14によってデータベース15に登録される。

0035

データベース15には登録されたデジタル画像や絶対座標に関する情報の他に、ガス管情報も登録されている。2次元コード40が有するガス管情報と照会され、対応するガス管情報がデータベースから取り出され、処理部16においてガス管情報を保有した図面が生成される。

0036

処理部16は、画像判定部161と、図面生成部162と、相対座標算出部163と、を備える。
画像判定部161は、撮影装置11により撮影されたデジタル画像が工事図面作成支援システム1で利用可能か否かを撮影環境が適正か否かによって判断し、その後、デジタル画像が所定の基準を満たすものか否か判定する。

0037

撮影環境が適正か否かの判断は、機材のタイプ、照度差、フラッシュガイドナンバー、シャッタースピード、ISO値の5つの判定項目において行われる。また、所定の基準とは、明るさ、シャープネス、撮影間隔、デジタル画像同士のラップ率、被写体の位置の6つの判定項目について、撮影されたデジタル画像に基づいて判定を行う。

0038

それぞれの判定項目について説明する。
機材のタイプとは、撮影装置11が工事図面作成支援システム1に対応する指定機材か否かを判定するものである。
撮影装置11が指定機材か否かにより、その後の判定項目の数が異なってくる(図20判定フロー参照。詳細は後述する)。

0039

照度差とは、照度の最も高い箇所と、最も低い箇所の差をいう。
ここで、照度とは、被写体の照らされている部分の明るさのことであり、単位はルクスで表される。
照度差は、0〜10000ルクスが「小」、10000〜60000ルクスが「中」、60000〜100000が「大」の三段階で評価され(図12参照)、どれに該当するかにより、その後の判定項目の数が異なってくる(図20の判定フロー参照。詳細は後述する)。

0040

フラッシュガイドナンバーとは、フラッシュの発光量のことをいい、数値が大きくなるほど発光量が大きくなるため、被写体の明暗差が少なくなる。
フラッシュガイドナンバーが、0〜150の場合に明暗差が「大」、150〜400の場合に明暗差が「中」、400〜500の場合に明暗差が「小」の三段階で評価され(図13参照)、「多い」に該当する場合にNGと判定される。

0041

シャッタースピードとは、撮影装置11が撮影を行う際にシャッターが開いている時間のことをいう。図14に示す1/1や1/100の単位は秒である。作業者は、撮影装置11を一定の速度で、例えばガス管20の長手報告に沿って移動させながら撮影を行うため、シャッタースピードが遅いほど、1回の撮影中に撮影装置が移動する距離が長くなってしまい、被写体のシャープさが損なわれる。図14の例では、作業者が秒速28cmで撮影装置11を移動させながら撮影しているため、シャッタースピードが1/1秒の場合は、1回の撮影中の撮影装置11の移動距離が28cmとなり、被写体のぼけが大きくなる。
シャッタースピードが、1/1〜1/100の場合にシャープさが「ボケ」、1/100〜1/500の場合にシャープさが「中間」、1/500〜1/800の場合にシャープさが「シャープ」の三段階で評価され(図14参照)、「ボケ」に該当する場合にNGと判定される。

0042

ISO値とは、撮影装置11の光に対する感度をいい、数値が高くなるほど感度が高くなり、撮影装置11は光を捉えやすくなる。光のとらえやすさは、ノイズの捉えやすさにも関係するため、ISO値が高くなるほど、ノイズを捉えやすくなり、撮影装置11が撮影する画像が粗くなるおそれがある。
ISO値が、800〜700の場合に粗さが「粗い」、700〜300の場合に粗さが「中間」、300〜100の場合に粗さが「なめらか」の三段階で評価され(図15参照)、「粗い」に該当する場合にNGと判定される。

0043

明るさとは、デジタル画像を構成するピクセル輝度をいう。例えば、輝度を0から100までを、輝度0、輝度10、輝度20、輝度30、輝度40、輝度50、輝度60、輝度70、輝度80、輝度90、輝度100、というように、11のグループ分類し、分類された輝度ごとに、該当するピクセルが、デジタル画像中に何個あるかを検出し、デジタル画像の輝度の平均値や、平均値に基づいて算出される分散の値をもとに「オーバー」、「アンダー」、「ハイコントラスト」、「適切」の4段階で評価を行う。

0044

「オーバー」は、輝度の高いピクセルの数が多く、デジタル画像の明るさが明るい状態である。「アンダー」は、輝度の低いピクセルの数が多く、デジタル画像の明るさが暗い状態である。「ハイコントラスト」は、輝度の高いピクセルと、輝度の低いピクセルの数が多い一方で、中間的な輝度をもつピクセルの数が少ないため、デジタル画像のコントラストが高い状態である。「適切」は、輝度の高いピクセルと、輝度の低いピクセルの数が少ない一方で、中間的な輝度をもつピクセルの数が多く、最も図面作成に適したデジタル画像である。本実施例においては、「適切」以外はNGと判定される。

0045

デジタル画像が、「オーバー」、「アンダー」、「ハイコントラスト」、「適切」のいずれに該当するのかは、以下のように判断される。
まず、デジタル画像の輝度の平均値を算出し、「オーバー」または「アンダー」の判断を行う。輝度の平均値とは、上記分類した輝度ごとに、輝度の値にピクセルの個数を乗じて求めた値を合計し、総ピクセル数で除した値である。すなわち、輝度0のピクセルの個数をn1、輝度10のピクセルの個数をn2、輝度20のピクセルの個数をn3、輝度30のピクセルの個数をn4、輝度40のピクセルの個数をn5、輝度50のピクセルの個数をn6、輝度60のピクセルの個数をn7、輝度70のピクセルの個数をn8、輝度80のピクセルの個数をn9、輝度90のピクセルの個数をn10、輝度100のピクセルの個数をn11とすると、平均値X=(0×n1+10×n2+20×n3+30×n4+40×n5+50×n6+60×n7+70×n8+80×n9+90×n10+100×n11)/(n1+n2+n3+n4+n5+n6+n7+n8+n9+n10+n11)である。平均値Xが、40以下の場合に「アンダー」、60以上の場合に「オーバー」に該当し、NGとなる。「ハイコントラスト」、「適切」は双方とも平均値Xが40から60の間となるため、ここでは判定ができない。

0046

したがって、次に分散の値を求め、「ハイコントラスト」か「適切」か判定する。分散とは、上記分類した輝度ごとに、輝度の値から平均値Xを減じた値を2乗し、さらにピクセルの個数を乗じて求めた値を合計し、総ピクセル数で除した値である。すなわち、分散Y={(0−X)2×n1+(10−X)2×n2+(20−X)2×n3+(30−X)2×n4+(40−X)2×n5+(50−X)2×n6+(60−X)2×n7+(70−X)2×n8+(80−X)2×n9+(90−X)2×n10+(100−X)2×n11}/(n1+n2+n3+n4+n5+n6+n7+n8+n9+n10+n11)である。
分散Yの値が、800以下の場合に「適正」、1000以上の場合に「ハイコントラスト」に該当し、「ハイコントラスト」に該当する場合はNGである。

0047

また、図16に示すように、各輝度におけるピクセル数をグラフ化すると、「オーバー」は右肩上がり波形、「アンダー」は右肩下がりの波形、「ハイコントラスト」は凹状の波形、「適切」は凸状の波形となるため、波形の形状によっても、「オーバー」、「アンダー」、「ハイコントラスト」、「適切」の判定が可能である。

0048

シャープネスとは、デジタル画像中の被写体の輪郭境界線強調度合いをいう。
例えば、図17に示すように被写体として緑色のものと黄色のものが隣接してデジタル画像中に写っているとすると、画像処理の関係上、緑色のものと黄色のものの境界部には、緑色と黄色が混ざった黄緑色のピクセルが生じてしまう。境界部において、当該黄緑色のピクセルの数が少ないほど、デジタル画像はシャープネスが強くなり、輪郭や境界線が強調される。一方で、境界部において、当該黄緑色のピクセルの数が多くなるほど、デジタル画像はシャープネスが弱くなり、輪郭や境界線がぼけてしまう。
本実施例においては、混ざった色のピクセルが2ピクセル分の範囲で生じている場合を「シャープ」(図17(a)参照)、4ピクセル分の範囲で生じている場合を「中間」(図17(b)参照)、6ピクセル分以上の範囲で生じている場合を「ぼけ」(図17(c)参照)の3段階で評価し、「ぼけ」に該当する場合にNGと判定される。

0049

撮影間隔とは、撮影装置11による撮影と撮影の間の時間をいう。
撮影装置11により撮影したデジタル画像から後述する3次元図面やオルソ画像を生成するために、同一の被写体について、異なる視点から撮影した複数のデジタル画像を撮影し、その視差によって三角測量の原理により埋設物の奥行や形状を求める必要がある。したがって、同じ被写体(ガス管20や継手21)が複数のデジタル画像に写っている必要がある。
作業者は、撮影装置11を一定の速度で移動させながら撮影を行うため、撮影間隔が大きいと、同じ被写体が複数のデジタル画像に写らなくなるおそれがある。そこで、写真撮影時刻に基づいて撮影間隔の判定を行うこととしており、0.5秒以内の間隔で撮影されることが望ましく、0.5秒を超える場合はNGと判定される。なお、撮影間隔は、撮影装置11の設定に基づいても判定可能であり、この場合は、撮影環境の判定において、撮影間隔の判定が行われる。

0050

ラップ率とは、デジタル画像同士の重複度をいう。
上記の通り、同じ被写体が複数のデジタル画像に写っている必要があるため、連続して撮影されたデジタル画像1とデジタル画像2の重複部分(図18参照)が、デジタル画像の面積に対して何%であるかを判定する。
重複部分がデジタル画像の面積に対して75%以下である場合はNG、75%を超える場合にOKと判断される。
なお、本実施形態においては、75%を超える場合は全てOKの判断としているが、90%を超える場合、図面生成部162は、図面を生成する際に、例えば連続して200枚撮影されたデジタル画像から2枚おきに間引くなどして、デジタル画像を用いることとなるため、間引くための作業時間を要することとなってしまう。また、間引かない場合には、図面生成部162の処理時間が増大する可能性がある。したがって、作業時間の削減や、図面生成部162の処理時間の削減のために、90%超える場合にはNGと判断することとしても良い。この場合には、ラップ率が75〜90%の範囲内にある場合にOKの判断となる。

0051

被写体の位置とは、一枚のデジタル画像中に写るガス管20や継手21が、デジタル画像中のどの位置にあるかを判定するものである。
例えば、ガス管20を撮影した場合、図19(a)に示すように、デジタル画像の長手方向とガス管20の長手方向とが平行であり、かつ、デジタル画像の短手方向の略中央にガス管20が写っていることが望ましく、この場合に適切であると判定される。図19(b)のように、デジタル画像の長手方向とガス管20の長手方向とが平行であっても、デジタル画像の縦方向の中央からずれてしまっている場合はNGとなる。他にも、図19(c)や図19(d)のように、デジタル画像の短手方向とガス管20の長手方向とが平行になっている場合もNGと判定される。
なお、上記に記したそれぞれの判定項目における判定基準は、あくまでも一例であり、図面生成の要求精度によって調整されることがある。

0052

また、画像判定部161による判定処理は、図20のフローに示す順番で、それぞれの判定項目において判定が行われる。
まず、機材のタイプについて判定が行われる(S11)。撮影装置11が指定機材であれば(S11:YES)、次に照度差について判定が行われる(S12)。そして、照度差が「大」に該当すると判定されると(S12:大)、次にフラッシュガイドナンバーの判定を行い(S13)、フラッシュガイドナンバーによる明暗差が「中」または「小」に該当すると判定されると(S13:YES)、次にシャッタースピードの判定が行われる(S14)。シャッタースピードによるシャープさが「中間」または「シャープ」に該当すると判定されると(S14:YES)、次にISO値の判定が行われる(S15)。ISO値による粗さが「中間」または「なめらか」に該当すると判定されると(S15:YES)、次に明るさの判定が行われる(S16)。明るさが「適切」に該当すると判定されると(S16:YES)、次にシャープネスの判定が行われる(S17)。シャープネスが「シャープ」または「中間」に該当すると判定されると(S17:YES)、次に撮影間隔の判定が行われる(S18)。撮影間隔が0.5秒以内であると判定されると(S18:YES)、次にラップ率の判定が行われる(S19)。ラップ率が75%を超えていると判定されると(S19:YES)、次に被写体の位置の判定が行われる(S20)。そして、被写体の位置が適切であると判定されると(S20:YES)、判定処理は完了となる。

0053

S13からS20においてNGと判定された場合には、(S13:NO,S14:NO,S15:NO,S16:NO,S17:NO,S18:NO,S19:NO,S20:NO)、処理部16は通信部17を介して、後述する通信端末18に通知を行い(S21)、撮影装置11によるデジタル画像の再取得を促す。

0054

また、撮影装置11が指定機材でない場合(S11:NO)にも、S13からS20の順で判定が行われる。

0055

S12において、照度差が「中」に該当すると判定された場合(S12:中)、次にフラッシュガイドナンバーの判定を行い(S22)、フラッシュガイドナンバーによる明暗差が「中」または「小」に該当すると判定されると(S22:YES)、次にシャッタースピードの判定が行われる(S23)。シャッタースピードによるシャープさが「中間」または「シャープ」に該当すると判定されると(S23:YES)、次にISO値の判定が行われる(S24)。ISO値による粗さが「中間」または「なめらか」に該当すると判定されると(S24:YES)、次に撮影間隔の判定が行われる(S25)。撮影間隔が0.5秒以内であると判定されると(S25:YES)、次に被写体の位置の判定が行われる(S26)。そして、被写体の位置が適切であると判定されると(S26:YES)、判定処理は完了となる。

0056

S22からS26においてNGと判定された場合には、(S22:NO,S23:NO,S24:NO,S25:NO,S26:NO)、処理部16は通信部17を介して、後述する通信端末18に通知を行い(S27)、撮影装置11によるデジタル画像の再取得を促す。また、通知の際、NGと判定された項目の基準を満たすための方法を提案することとする。

0057

S12において、照度差が「小」に該当すると判定された場合(S12:小)、次にシャッタースピードの判定が行われる(S28)。シャッタースピードによるシャープさが「中間」または「シャープ」に該当すると判定されると(S28:YES)、次にISO値の判定が行われる(S29)。ISO値による粗さが「中間」または「なめらか」に該当すると判定されると(S29:YES)、次に撮影間隔の判定が行われる(S30)。撮影間隔が0.5秒以内であると判定されると(S30:YES)、次に被写体の位置の判定が行われる(S31)。そして、被写体の位置が適切であると判定されると(S31:YES)、判定処理は完了となる。

0058

S28からS31においてNGと判定された場合には、(S28:NO,S29:NO,S30:NO,S31:NO)、処理部16は通信部17を介して、後述する通信端末18に通知を行い(S27)、撮影装置11によるデジタル画像の再取得を促す。

0059

また、上記のS21またはS27で行われる通知の際には、NGと判定された項目の基準を満たすための方法を提案することとする。
例えば、フラッシュガイドナンバーがNGである場合には、フラッシュの光量を強めることを提案する。
シャッタースピードがNGの場合には、撮影装置11のシャッタースピードを速くする等の調整を行うことを調整する。
ISO値がNGの場合には、撮影装置11のISO値の設定を小さくする等の調整を行うことを提案する。

0060

明るさがアンダーと判定されてNGとなった場合には、撮影装置11のフラッシュの光量を強めること、絞りを開けること、シャッタースピードを遅くすること、ISO値を大きくすること等を提案する。
明るさがオーバーと判定されてNGとなった場合は、撮影装置11のフラッシュの光量を弱めること、絞りを絞ること、シャッタースピードを速くすること、ISO値を小さくすること等を提案する。
明るさがハイコントラストと判定されてNGとなった場合は、撮影装置11のフラッシュの光量を強めること、撮影装置11を被写体に近づけること等を提案する。

0061

シャープネスがNGの場合には、撮影装置11のシャッタースピードを速くすること、ISO値を小さくすること、絞りを絞ること等を提案する。ただし、シャープネスがNGであっても、撮影環境の判定においてISO値がOK範囲の限度に非常近い状態でOKと判定されている場合がある。この場合には、シャッタースピードの変更のみを提案する。
撮影間隔やラップ率がNGの場合には、撮影間隔を短くすることを提案する。
被写体の位置がNGの場合には、被写体がデジタル画像の中央に写るように撮影装置11の位置を変えることを提案する。

0062

図面生成部162は、画像判定部161により、所定の基準を満たすと判断されたデジタル画像に基づいて、図面を生成する。ここで、図面とは、3次元図面としての3次元点群データ,3次元メッシュデータ,3次元CAD図面と、2次元図面としてのオルソ画像,2次元CAD図面と、3次元CAD図面および2次元CAD図面の基となるベクトルデータと、を指す。

0063

図面生成部162は以下のように図面を生成する。
まず、デジタル画像をもとに3次元点群データを生成する。3次元点群データとは、図23に示すような、点の集合によりガス管20や継手21の3次元画像を描画したものであり、高精度にガス管20や継手21の敷設状態を表すことができる。

0064

3次元点群データは、高精度に敷設状態が描画されるため、データサイズが非常に大きく、一般的な電子計算機ではスムーズに動作しない場合がある。そこで、図面生成部162は、3次元点群データに基づいて、よりデータサイズの小さい3次元メッシュデータを生成することができる。

0065

3次元メッシュデータとは、3次元点群データをメッシュ化し(図24(a)参照)、ポリゴンデータ(図24(b)参照)に変換することで、ガス管20や継手21の3次元画像を描画したものである。
よりデータサイズの小さい3次元メッシュデータが生成されることで、一般的な電子計算機でもガス管20や継手21の敷設状態をスムーズに確認できるようになる。ポリゴンデータには、デジタル画像をテクスチャとして貼り付けることができ、図24(c)に示すように、現実に即したガス管20や継手21の敷設状態を表すことができる。

0066

また、図面生成部162は、3次元点群データに基づいて、オルソ画像を生成することができる。
オルソ画像とは、図21に示すような正射投影による画像をいう。撮影装置11により撮影したデジタル画像は、中心投影であるため、撮影装置11のレンズの中心から撮影対象物であるガス管20や継手21との距離の違いにより、デジタル画像上の像に歪みが生じてしまう。そのような中心投影の画像を正射投影に変換し、歪みを補正した画像がオルソ画像である。歪みが補正されたオルソ画像が生成されることで、オルソ画像上でガス管20や継手21の位置等を正確に計測することができるようになる。

0067

さらに、図面生成部162は、3次元点群データ、3次元メッシュデータ、オルソ画像のいずれかに基づいて、ベクトルデータを生成することができる。
ベクトルデータとは、ガス管20や継手21を点データ、線データ、面データ、体データによって、埋設物の敷設状態を簡易的に表した図面である。
例えば、直管であるガス管20が、2本直列に接続されており、接続されたガス管20の間と、両端との3か所に継手21が敷設されているとした場合、ベクトルデータとしては、3次元点群データまたは3次元メッシュデータまたはオルソ画像に描画される3つの継手21それぞれについて点をプロットし、プロットされた3つの点が線で接続されることで、敷設状態を簡易的に描画する。このとき、継手21の位置のプロットや線の接続は、電子計算機内の自動処理として行われても良いし、電子計算機の画面上で作業者の操作により行うこととしてもよい。また、測位機器12により取得した絶対座標をデータベース15から読み出し、絶対座標に基づいて継手21をプロットすることも可能である。
ベクトルデータには、描画された線や点の属性としてガス管情報を保有させることが可能である。

0068

なお、ベクトルデータは、3次元CAD図面や、2次元CAD図面と同種のデータであるが、ここでは、3次元CAD図面や、2次元CAD図面は、敷設されているガス管20や継手21の外観や、周囲の状況(道路建物等)が描画された完成された図面を指し、ベクトルデータとは分けて説明する。
例えば、図面の作成を外部会社に依頼する場合、完成された3次元CAD図面や、2次元CAD図面を作成するルール図枠や図面内に記載する文言等)が会社によって異なることがあるため、依頼先依頼元の間では、簡易的な図面であるベクトルデータのみで取引が行われ、完成された図面である3次元CAD図面や、2次元CAD図面は依頼元で製作される場合がある。したがって、簡易的なベクトルデータであっても、それ単体で取引される有用な図面データである。

0069

さらにまた、図面生成部162は、ベクトルデータを基に、3次元CAD図面や2次元CAD図面を生成することができる。
3次元CADとは、図25に示すように、3次元関数によりガス管20や継手21の3次元画像を描画したものである。ベクトルデータに基づき、ベクトルデータ上でプロットされている点上には継手を描画し、点を接続する線上にはガス管20が描画することで3次元CAD図面を生成する。このとき、描画されるガス管20と継手21の種類は、2次元コード40により表されるガス管情報に基づいて特定される。描画された内容の編集が容易であるため、例えば、描画されたガス管20や継手21の移動、拡大、縮小短絡延伸等を図面上で行うことができ、図面上で将来行う改修の検討を行うことが可能である。

0070

3次元CAD図面には、2次元コード40が含むガス管20や継手21のガス管情報を、図面上に表されているガス管20や継手21の属性として保有させることができる。3次元CADに保有させたガス管情報を、図面の利用者が確認する方法は、以下の4つの方法が考えられる。1つ目は、電子計算機の画面上で、図面上のガス管20をクリックすると、クリックしたガス管20に対応するガス管情報が記載されたウインドウが開き、利用者が確認することができるという方法。2つ目は、マウスポインタをガス管20に近づけると、ポインタを近づけたガス管20に対応するガス管情報が記載された小さいウインドウが、ポインタ付近に表示され、利用者が確認することができるという方法。3つ目は、図面上に表されているガス管20や継手21のそれぞれのガス管情報が、図面表示画面の空いたスペース常時表示されていて、利用者が確認することができるという方法。4つ目は、ガス管情報の一覧表を図面とは別に出力するという方法である。
このように、ガス管情報の確認を3次元CAD図面によって容易にすることができれば、竣工後検収業務や、精算業務負担軽減となる。

0071

また、2次元図面の層と、3次元図面の層とを重ね合わせた多層的な図面も作成可能である。2次元図面の表示と3次元図面の表示とを必要に応じて切換えながら利用することができる。

0072

次に、2次元CAD図面とは、ガス管20や継手21の敷設状態を表す平面図、断面図、側面図などを指す。ベクトルデータに基づき、ベクトルデータ上でプロットされた点上には継手を描画し、点を接続する線上にはガス管20を描画することで2次元CAD図面を生成する。このとき、描画されるガス管20と継手21の種類は、2次元コード40により表されるガス管情報に基づいて特定される。

0073

そして、2次元CAD図面には、2次元コード40が含むガス管20や継手21のガス管情報を、図面上に表されているガス管20や継手21の属性として保有させることができる。2次元CAD図面に保有させたガス管情報を、図面の利用者が確認する方法は、3次元CAD図面に保有させたガス管情報を確認する4つの方法と同様の方法を用いることが考えられる。

0074

また、オルソ画像の層と2次元CAD図面の層とを重ね合わせた多層的な図面も作成可能である。オルソ画像の表示と2次元CAD図面の表示とを必要に応じて切換えながら利用することができる。

0075

図面生成部162は、上記に説明した3次元点群データ、3次元メッシュデータ、オルソ画像、3次元CAD図面、2次元CAD図面に、測位機器12によって取得した、絶対座標に関する情報を保有させることができる。絶対座標に関する情報を保有した図面が作成されることで、どのような埋設物がどこに埋設されているのか管理が容易となる。例えば、土木工事により埋設したガス管を、将来的に交換のための工事を行う場合、絶対座標に基づいて生成された図面があれば、GPS機器を用いることでガス管の位置を特定することが可能となる。

0076

また、図面生成部162は、3次元点群データ、3次元メッシュデータ、オルソ画像、3次元CAD図面、2次元CAD図面に、相対座標算出部163が各図面に基づいて算出した相対座標に関する情報を保有させることができる。上記各図面が相対座標に関する情報を保有していれば、土木工事により埋設したガス管を、将来的に交換のための工事を行う場合、相対座標に基づいて生成された図面があれば、所定の基準位置からスケール等で測定することで、ガス管の位置を特定することが可能となる。

0077

相対座標算出部163は、図面生成部162により生成される3次元点群データ、3次元メッシュデータ、オルソ画像、3次元CAD図面、2次元CAD図面に基づいて、基準位置に対する2次元コード40の相対座標を算出する。例えば、図面上に道路の交差点などが写っていれば、当該交差点を基準位置として、2次元コード40の相対座標を算出可能である。

0078

例えば、オルソ画像を用いて相対座標を算出する方法を説明すると、オルソ画像中に道路の交差点などが写っていれば、当該交差点を基準位置として、2次元コード40の相対座標を算出可能である。
オルソ画像中に基準位置となるものが写っていない場合、例えば、図22に示すように、基準位置31(例えば交差点)が、ガス管20の埋設位置から離れているために、オルソ画像に写っていない場合には、工事現場で本来の基準位置31を基準に、中継基準点32を埋設物付近に設け、中継基準点32の、基準位置31に対する相対座標を測位しておく。その上で、撮影装置11により、中継基準点32を含めてガス管20や継手21を撮影し、オルソ画像を作成する。そして、オルソ画像上で、任意の箇所の位置を知りたい場合には、当該任意の箇所の中継基準点32に対する相対位置を計測すれば、中継基準点32の基準位置31からの相対座標は測位により取得されているため、オルソ画像中にはない基準位置31を基準とした相対座標を算出可能である。

0079

また、相対座標算出部163は、測位機器12により2次元コード40や交差点の絶対座標を取得しておけば、当該絶対座標を基準とした任意の位置の相対座標の算出も可能である。そのほか、例えば、図面生成部162により生成された図面中の2か所に2次元コード40が表示されている場合、一方の2次元コード40の絶対座標と、他方の2次元コード40の絶対座標とから、どちらか一方の2次元コード40を基準として、基準としなかった方の2次元コード40の相対座標を算出することもできる。

0080

さらに、図面生成部162は、3次元CAD図面や、2次元CAD図面を、地理情報システム連携させた、地理情報システムデータを生成することが可能である。
地理情報システムデータとは、3次元CAD図面や、2次元CAD図面をもとにガス管20等の敷設状態を地図上に可視化したもので、過去に行われた工事によるガス管等の敷設状態が全て記録されているものである。
地理情報システムデータが生成されることで、将来的に行われるガス管の改修工事だけでなく、下水管の工事等、地中で行う必要がある工事であり、ガス管位置に配慮しなければならない場合に活用することができる。

0081

なお、図面生成部162は、画像判定部161により、所定の基準を満たすと判断されたデジタル画像に基づいて、図面を生成することとしているが、一日に撮影される200枚全てが基準を満たすことが望ましいものの、図面をあくまで参考図として利用する場合など、図面の描画精度の高さを求めない場合には、一部のデジタル画像が基準を満たしていなくても図面を生成可能である場合がある。

0082

通信端末18は、現場の作業者が有するタブレット等であり、通信回線19を介して工事図面作成支援システム1と接続されている。よって、処理部16は、通信部17を介して、画像判定部161が判定した結果や、図面生成部162が生成した図面を送信可能である。現場の作業者は、画像判定部161の判定結果を通信端末18で受信することで、判定結果に応じて、撮影装置11による撮影のし直しが必要か否かを知ることができる。また、図面生成部162が生成した図面を受信することで、受信した図面を用いて通信端末18上で工事日報を作成することも可能である。

0083

次に、2次元コード40について、詳細に説明する。
2次元コード40は、例えば図4(a)に示すように、5つのセル401が2次元的に配列され、切欠部404を備えることで、角部402と底辺部403を有する凹字形状に形成されたものである。切欠部404を備えることで、2次元コード40の領域の位置を検出することができるため、撮影装置11によって撮影したデジタル画像に写った2次元コード40が傾いていたり、逆さまになっていたりしても、処理部16は2次元コード40の上下左右を判別することが可能となる。

0084

セル401は所定の色からなるものであり、本実施例においては赤、青、緑の3色のいずれかの色によってなる。なお、セル401の色は、当該3色に限定されるものではなく、その他の色を設定しても良い。

0085

そして、2次元コード40は、赤、青、緑の3色の組み合わせによって、ガス管20や継手21のガス管情報を表すことが可能である。
詳しく説明すると、処理部16が2次元コード40から情報を読み出す際には、図4(a)中の矢印Yに示す順番で、各セル401の色を読み取る。なお、矢印Yに示す方向とは逆の順番で各セル401を認識することとしても良い。そして、図4(b)に示すように、赤色に対応する番号は1、青色に対応する番号は2、緑色に対応する番号は3と予め定められており、例えば、図4(a)に示す2次元コード40は青、赤、赤、赤、緑の順に並んでいるため、各色に対応する番号を当てはめると、21113という数列を表すこととなる。なお、図4(a)に示される2次元コード40においては、作業者の視認性向上のため、セル401中に対応する番号を記載し、2次元コード40が表す数列も切欠部404に表示しているが、表示をせずともよい。

0086

図4(a)に示す2次元コード40は一例であり、2次元コード40は赤、青、緑の3色のいずれかの色によってなるセル401が5つ並ぶことで構成されているため、全部で243通りの数列の組み合わせを作ることができる。

0087

図4(a)に示される切欠部404において、2次元コード40が表す数列の上に記されている「5」という数字は、2次元コード40のコード番号であり、セル401の色の組み合わせ毎に1から243まで存在する。

0088

コード番号は、図5図6図7図8の表に示すような法則に従って付与される。なお、図5に示す表の最下段の行と図6に示す表の最上段の行とを縦に隣接させ、図6に示す表の最下段の行と図7に示す表の最上段の行とを縦に隣接させ、図7に示す表の最下段の行と図8に示す表の最上段の行とを縦に隣接させることで、図5図6図7図8の表を連続的に表すべきであるが、便宜上分割している。

0089

図5図6図7図8の表に示される2次元コード40は、表の横方向にコード番号が1ずつ増えていき、縦方向は9ずつ増えていくようになっている。
表の横方向は、底辺部403を構成するセル401の色は変わらずに、角部402を構成する左右のセル401の色が「赤赤」、「赤青」、「赤緑」、「青青」、「青緑」、「青赤」、「緑緑」、「緑赤」、「緑青」の順に展開されている。
表の縦方向は、角部402を構成するセル401の色は変わらずに、底辺部403を構成するセル401の色や色の位置が変化していく。
縦項目の「青×1」、「青×2」、「青×3」は底辺部403を構成する青色のセル401の個数を表すものであり、図6における「緑×1」、「緑×2」、「緑×3」も同様に緑色のセル401の個数を表すものである。
そして、図7における「2色」とは、赤色のセル401の他に青色と緑色の2色のセル401を有することを意味する。赤色を色数に含めていないのは、コード番号1の底辺部403が赤色のみで構成されていることを基準としているためである。さらに、図8における「青×2+2色」とは、青色のセル401の個数が2個であり、青色と緑色の2色からなることを意味する。「緑×2+2色」も同様に、緑色のセル401の個数が2個であり、青色と緑色の2色からなることを意味する。
図5図6図7図8のように法則性をもってセル401を配列すれば、現場の作業者にとっても視認性がよくなることが期待される。

0090

セル401を配列させる法則は図5図6図7図8に示す例には限らない。例えば、2次元コード40が表す数列「11111」をコード番号1、「11112」をコード番号2、「11113」をコード番号3、「11121」をコード番号4、「11122」をコード番号5というように、2次元コード40が表す数列が3進法で増加していくのに従い、コード番号を増加させていくという方法もある。

0091

そして、数列毎にガス管情報を定めておけば、処理部16は、2次元コード40を認識することで、データベース15に保存されたガス管情報のうちから、対応するガス管情報を取り出すことが可能となる。

0092

データベース15に保存されたガス管情報は、例えば、図11に示す表のように、2次元コード40が表す数列に対応した状態となっている。
本実施例においては、ガス管情報は、ガス管20や継手21の「型番」、「種類」、「名称」、「材質」、「サイズ」、「延長」、「金額」により構成されている。

0093

「型番」は、ガス管20や継手21を判別するための個別の番号である。ここでは数列により表しているが、英字のみや英数字による文字列などで表してもよい。

0094

「種類」は、埋設物がガス管20と継手21のどちらであるかを表すものである。ここでは単に「管」や「継手」と表しているが、記号や英字によって表してもよい。

0095

「名称」はガス管20や継手21の種別を表すもので、ここでは「PE直管」や「溶接鋼直管」などと表しているが、記号や英字によって表してもよい。

0096

「材質」は、ガス管20と継手21を構成する材質を表すものである。ここでは、「ポリエチレン」や「鋼」と表しているが、記号や英字により表しても良い。

0097

「サイズ」は、ガス管20と継手21は口径を表している。ここでは、75A、200A等の呼び径で表しているが、実際の寸法値を表しても良い。

0098

「延長」は、ガス管20や継手21の長さを表す。ここでは、5m、5.5m等の記載をしているが、単位をmmとしても良い。

0099

「金額」は、ガス管20と継手21の価格を表している。単位は円であり、ここでは、「2000」、「50000」等で表しているが、千円単位等で表しても良い。

0100

なお、上記ガス管情報は一例であり、図11に示す項目に限定されない。例えば、ガス管20や継手21の種類によって、埋設にどの程度の工賃がかかるのかは経験上把握されているため、工賃に関する情報を含めることも可能である。図面生成部162によって生成される図面に保有されるガス管情報として、工賃に関する情報が含められれば、工事費の算出も容易となる。ここでいう工事費は、経験上把握されている工賃に基づいて算出されるものであるため、概算の工事費と言える。正確な工事費は、ガス管20や継手21の敷設にあたり、どの程度の深さまで地面30を掘り起こしたかに左右される。そのため、設置溝30aの深さの情報を有する3次元点群データ、3次元メッシュデータ、3次元CAD図面、2次元CAD図面に基づき、正確な工事費は算出される。

0101

次に処理部16が2次元コード40を認識する手順について説明する。
通常は、まず、撮影装置11が撮影したデジタル画像に写った2次元コード40の凹字形状を認識し、2次元コード40の向きを確認する。これにより、角部402と底辺部403の位置を割り出す。そして、矢印Yに示す順番で、各セル401の色を読み取り、各色に対応する番号から2次元コード40が表す数列を導き出す。

0102

しかし、画像処理の関係上、図9(a)に示すようにセル401間の隙間が埋まってしまい、各セル401が一体化してしまう場合がある。
そのような場合には、まず、2次元コード40の凹字形状を認識し、2次元コード40の向きを確認する。そして、切欠部404を基準に、5つのセル401に分割する。例えば、図9(b)に示すように、切欠部404を基準に設けられる分割線405によって、5つのセルに分割する。
5つのセル401に分割することで、5つのセルがそれぞれ何色かを認識することが可能となり、各色に対応する番号から2次元コード40が表す数列を導き出すことができるようになる。

0103

また、ガス管20や継手21は円筒形状であるため、ガス管20や継手21に貼付された2次元コード40は、円筒形状にならって丸まってしまう。すると、図10(a)−(e)に示すように、撮影装置11で撮影した際に、2次元コード40の全体が写らずに一部が欠損してしまうおそれがある(以下、欠損した部分を欠損部406という)。そのような場合には、以下のように2次元コード40の認識を行う。

0104

まず、図10(a),(b)に示すように、角部402や、底辺部403の一部に欠損部406が生じてしまった場合を説明する。
はじめに、凹字形状を認識し、2次元コード40の向きを確認する。これにより、角部402と底辺部403の位置を割り出す。
そして、2次元コード40が何色から構成されているかを認識する。図10(a),(b)に示す例では、青色と赤色の2色で構成されていると認識する。
次に、角部402の色を認識する。図10(a),(b)に示す例では、左右ともに青色であると認識する。
その後、底辺部403を構成する色を認識する。図10(a),(b)に示す例では、底辺部403が青色と赤色によって構成されていると認識する。
底辺部403を構成する色を認識した後は、底辺部403を構成する色の図中横方向の長さを認識する。図10(a),(b)に示す例では、青色が1セル分の長さ、赤色が2セル分の長さである。これにより底辺部403の一部が欠損していても、底辺部403を構成する3つのセル401が何色の順で並んでいるのかを認識可能である。
以上により、図10(a),(b)に示す2次元コード40が、図4(a)中の矢印Yの順番でいえば、青、青、赤、赤、青で構成されていることが認識可能となり、各色に対応する番号から2次元コード40が表す数列を導き出すことができる。

0105

次に、図10(c),(d),(e)に示すように、2次元コード40の図中横方向の端部に欠損部406が生じてしまった場合について説明する。
まず、凹字形状を認識し、2次元コード40の向きを確認する。これにより、角部402と底辺部403の位置を割り出す。
そして、2次元コード40が何色から構成されているかを認識する。
図10(c),(d),(e)に示す例では、2次元コード40が青色と赤色の2色で構成されていると認識する。
次に、角部402の色を認識する。図10(c),(d),(e)に示す例では、左右ともに青色であると認識する。
その後、底辺部403を構成する色を認識する。図10(c),(d),(e)に示す例では、青色と赤色によって構成されていると認識する。

0106

底辺部403を構成する色を認識した後は、底辺部403を構成する色の図中横方向の長さを認識する。図10(c)に示す例では、青色が欠損により0.5セル分の長さとなっており、赤色が2セル分の長さである。図10(d)に示す例では、青色が1セル分の長さ、赤色が欠損により1.5セル分の長さとなっている。図10(e)に示す例では、欠損により青色が0.5セル分の長さ、赤色が1.5セル分の長さである。
次に、角部402の図中横方向の長さを認識する。図10(c)に示す例では、左側の青色が欠損により0.5セル分の長さとなっており、右側の青色が1セル分の長さである。図10(d)に示す例では、左側の青色が1セル分の長さ、右側の青色が欠損により0.5セル分の長さとなっている。図10(e)に示す例では、左右ともに欠損により青色が0.5セル分の長さである。

0107

底辺部403の図中横方向の長さと、角部402の図中横方向の長さとを認識することで、2次元コード40の左右がどの程度欠損しているのかが判別可能となるため、欠損長さを算出する。図10(c)に示す例では、角部402と底辺部403ともに左側が0.5セル分欠損しているため、2次元コード40全体として左側が0.5セル分欠損していると算出される。同様にして、図10(d)に示す例では、2次元コード40の右側が0.5セル分欠損していると算出され、図10(e)に示す例では、2次元コード40の左右が0.5セル分欠損していると算出される。

0108

算出した欠損長さに基づき、底辺部403の横方向の長さを補正し、底辺部403を構成する色がそれぞれ何個のセルであるのか認識する。図10(c)に示す例では、底辺部403左側の0.5セル分の欠損を補正する。図10(d)に示す例では、底辺部403右側の0.5セル分の欠損を補正する。図10(e)に示す例では、底辺部403左右の0.5セル分の欠損を補正する。この補正により、図10(c),(d),(e)に示される2次元コード40の底辺部403が、青色1セル、赤色2セルで構成されていると認識することができるようになる。なお、角部402については、左右それぞれが何色であるか認識できれば足りるため、補正を行う必要はない。
以上により、図10(c),(d),(e)に示す2次元コード40が、図4(a)中の矢印Yの順番でいえば、青、青、赤、赤、青で構成されていることが認識可能となる。
以上、説明した通り、2次元コード40によれば、一部欠損した状態であっても、2次元コード40が表す内容を認識することが可能である。

0109

また、画像判定部161により行われるデジタル画像が所定の基準を満たすものか否かの判定は、デジタル画像に写るガス管20や、継手21によって判定が可能なほか、ガス管20や、継手21に貼付された2次元コード40によっても判定することが可能である。
2次元コード40で判定可能な判定項目は、例えばシャープネス、明るさ、被写体の位置である。

0110

シャープネスは、例えば、赤色のセル401と青色のセル401が隣接するとした場合に、赤色のセル401と青色のセル401の間に、赤色と青色とが混ざった紫色のピクセルが、どれだけ生じているかによって判定する。
明るさは、デジタル画像中の2次元コード40の像を構成しているピクセルの輝度により判定する。

0111

被写体の位置は、例えば、2次元コード40の図4(a)に示す縦方向の中心線と、ガス管20の長手方向の中心線とが揃うように、2次元コード40をガス管20に貼付するように定めておくなどしておけば、デジタル画像中の2次元コード40の位置と向きを検出することで、判定可能となる。

0112

また、セル401の配列パターンは、2次元コード40の凹字状に限らない。
図26に示すように、6つのセル401を2次元的に配列し、切欠部404を備えることで、略凹字状に2次元コード41を形成することも可能である。切欠部404を備えることで、処理部16は2次元コード41の上下左右を判別することが可能となる。そして、矢印Yに示す順番で、各セル401の色を読み取り、各色に対応する番号から2次元コード41が表す数列を導き出すことができる。
なお、2次元コード41によれば、赤、青、緑の3色のいずれかの色によってなるセル401が6つ並ぶことで構成されるものであるため、全部で729通りの数列の組み合わせを作ることができる。

0113

略凹字状の変形例としては、その他にも図27図28図29図30に示す2次元コード42,43,44,45のようなセル401の配列パターンが考えられる。それぞれ、切欠部404により、処理部16は2次元コード42,43,44,45の上下左右を判別することが可能である。そして、矢印Yに示す順番で、各セル401の色を読み取り、各色に対応する番号から2次元コード42,43,44,45が表す数列を導き出すことができる。
なお、2次元コード42によれば、赤、青、緑の3色のいずれかの色によってなるセル401が6つ並ぶことで構成されるものであるため、全部で729通りの数列の組み合わせを作ることができる。
2次元コード43,44によれば、赤、青、緑の3色のいずれかの色によってなるセル401が7つ並ぶことで構成されるものであるため、全部で2187通りの数列の組み合わせを作ることができる。
2次元コード45によれば、赤、青、緑の3色のいずれかの色によってなるセル401が8つ並ぶことで構成されるものであるため、全部で6561通りの数列の組み合わせを作ることができる。

0114

また、略凹字状の他、図31に示すように、3つのセル401を2次元的に配列し、切欠部404を備えることで、L字状に2次元コード46を形成することも可能である。切欠部404を備えることで、処理部16は2次元コード46の上下左右を判別することが可能となる。そして、矢印Yに示す順番で、各セル401の色を読み取り、各色に対応する番号から2次元コード46が表す数列を導き出す。
なお、2次元コード46によれば、赤、青、緑の3色のいずれかの色によってなるセル401が3つ並ぶことで構成されるものであるため、全部で27通りの数列の組み合わせを作ることができる。

0115

L字状の変形例としては、その他にも図32図33図34図35に示す2次元コード47,48,49,50のようなセル401の配列パターンが考えられる。それぞれ、切欠部404により、処理部16は2次元コード47,48,49,50の上下左右を判別することが可能である。そして、矢印Yに示す順番で、各セル401の色を読み取り、各色に対応する番号から2次元コード47,48,49,50が表す数列を導き出すことができる。
なお、2次元コード47によれば、赤、青、緑の3色のいずれかの色によってなるセル401が4つ並ぶことで構成されるものであるため、全部で81通りの数列の組み合わせを作ることができる。
2次元コード48によれば、赤、青、緑の3色のいずれかの色によってなるセル401が6つ並ぶことで構成されるものであるため、全部で729通りの数列の組み合わせを作ることができる。
2次元コード49,50によれば、赤、青、緑の3色のいずれかの色によってなるセル401が7つ並ぶことで構成されるものであるため、全部で2187通りの数列の組み合わせを作ることができる。

0116

その他の変形例として、図36図37図38図39に示す2次元コード51,52,53,54のようにセル401を配列することが考えられる。
2次元コード51は、7つのセル401が、略四角形状に配列されたものであり、角部分に配置された切欠部404により、処理部16は2次元コード51の上下左右を判別することが可能となる。そして、矢印Yに示す順番で、各セル401の色を読み取り、各色に対応する番号から2次元コード51が表す数列を導き出す。

0117

2次元コード52は、7つのセル401が略状に配列されたものである。切欠部404により、処理部16は2次元コード52の上下左右を判別することが可能となる。そして、矢印Yに示す順番で、各セル401の色を読み取り、各色に対応する番号から2次元コード52が表す数列を導き出す。

0118

2次元コード53は、6つのセル401を2次元的に配列し、略V字状に形成したものである。切欠部404により、処理部16は2次元コード53の上下左右を判別することが可能となる。そして、セル401内に表示されている数字の順に各セル401の色を読み取り、各色に対応する番号から2次元コード53が表す数列を導き出す。なお、セル401内に表示する数字は、説明の便宜上示したもので、セル401内に表示されている必要はない。

0119

2次元コード54は、7つのセル401を2次元的に配列し、略V字状に形成したものである。切欠部404により、処理部16は2次元コード54の上下左右を判別することが可能となる。そして、セル401内に表示されている数字の順に各セル401の色を読み取り、各色に対応する番号から2次元コード54が表す数列を導き出す。なお、セル401内に表示する数字は、説明の便宜上示したもので、セル401内に表示されている必要はない。

0120

なお、2次元コード41,42,43,44,45,46,47,48,49,50,51,52,53,54を構成するセル401の色は、赤、青、緑の3色に限定されるものではなく、その他の色を設定しても良い。

0121

次に、本実施形態の工事図面作成支援システム1の動作について説明する。
撮影装置11により設置溝30aに配設されたガス管20や継手21を、埋め込み前に撮影し、デジタル画像を取得する。そして、取得されたデジタル画像は、通信回線19を介して工事図面作成支援システム1に送信される。
そして、測位機器12により、設置溝30aに配設されたガス管20や継手21に貼付された2次元コード40の絶対座標を、埋め込み前に取得する。取得された絶対座標に関する情報は、通信回線19を介して工事図面作成支援システム1に送信される。以上は、工事現場において作業者が行う。

0122

送信されたデジタル画像と絶対座標に関する情報は、通信部13により受信する。そして、受信されたデジタル画像と絶対座標に関する情報は、登録部14がデータベース15に登録する処理を行う。

0123

そして、処理部16はデータベース15からデジタル画像を読み出し、画像判定部161が図20のフローに基づいてデジタル画像の判定処理を行う。図20中のS21やS27のように通知が行われる場合には、処理部16は、通信部17によって、通信回線19を介して通信端末18に対して通知を行う。工事現場の作業者は、通知が行われたことを確認すると、撮影装置11を用いてデジタル画像の再取得を行う。

0124

判定処理が完了した場合は、図面生成部162が、判定処理が完了したデジタル画像に基づき、図面生成を行う。
図面生成部162は、デジタル画像に基づいて、まずは3次元点群データを生成する。そして、3次元点群データに基づき、3次元メッシュデータ、オルソ画像が生成可能であり、3次元点群データ,3次元メッシュデータ,オルソ画像のいずれかに基づき、ベクトルデータを生成することが可能である。ベクトルデータを生成する際には、データベース15から2次元コード40が表す数列に対応するガス管情報を読み出し、ガス管情報をベクトルデータに保有させる。また、ベクトルデータに基づき3次元CAD図面または2次元CAD図面を生成することが可能であり、さらに、3次元CAD図面または2次元CAD図面に基づいて地理情報システムデータを生成することが可能である。
図面生成部162は、各図面を生成する際には、データベース15から絶対座標に関する情報を読み出し、図面に保有させる。また、相対座標算出部163が、図面生成部162が生成した図面に基づいて2次元コード40の相対座標を算出し、当該相対座標に関する情報を、図面生成部162が図面に保有させる。

0125

工事図面作成支援システム1の使用者は、3次元点群データ,3次元メッシュデータ,オルソ画像,ベクトルデータ,3次元CAD図面,2次元CAD図面の各図面のうち、必要なものを任意に選択して生成することが可能であるし、2次元CAD図面を作成した後に3次元CAD図面を作成するなど、追加的な図面の生成も可能である。

0126

図面生成が完了すると、生成された図面はデータベース15に保存される。また、必要に応じて、通信部17によって、通信回線19を介して通信端末18に生成された図面が送信される。現場の作業者は、受信した図面を用いて、現場で速やかに工事日報を作成することが出来る。

0127

以上説明したように、本実施形態の工事図面作成支援システム1によれば、
(1)土木工事により地中に埋設されるガス管20や継手21等の埋設物の、土木工事による敷設状態を表す図面を作成する工事図面作成支援システム1において、ガス管20や継手21の地中への配設後であって埋め込み前に少なくともガス管20や継手21のデジタル画像を撮影する撮影装置11と、デジタル画像が所定の基準を満たすか否か判定する画像判定部161と、画像判定部161において前記所定の基準を満たすと判断されたデジタル画像を用いて図面を作成する図面生成部162と、を備えること、を特徴とするので、ガス管20や継手21の埋め込み前に効率よく敷設状態を記録可能で、現場の作業者の工事日報を作成する負担を軽減することができる。
つまり、まず現場の作業者が、撮影装置11により、ガス管20や継手21の地中への配設後であって埋め込み前に少なくともガス管20や継手21のデジタル画像を撮影する。そして、画像判定部161によりデジタル画像が所定の基準を満たすか否か判定し、図面生成部162において、画像判定部161において所定の基準を満たすと判断されたデジタル画像を用いて図面を作成する。現場の作業者は、当該図面を利用して工事日報を作成することができるため、従来のようにガス管20や継手21の敷設状態を図面化するために手測定を行う時間と手間をかける必要がなくガス管20や継手21の敷設状態を記録可能であり、現場の作業者の工事日報を作成する負担を軽減することができる。
なお、所定の基準とは、例えば、シャープネス、明るさ、ISO値、デジタル画像中の被写体の位置、デジタル画像同士のラップ率等である。

0128

(2)(1)に記載の工事図面作成支援システム1において、図面には、少なくとも3次元図面が含まれること、を特徴とするので、レーザースキャン等の高価な装置を用いることなく、ガス管20や継手21の敷設状態を3次元図面として記録可能である。

0129

(3)(1)または(2)に記載の工事図面作成支援システム1において、図面には、少なくともオルソ画像が含まれること、を特徴とするので、オルソ画像上でガス管20や継手21の位置等を正確に計測することができるようになり、現場の作業者は、工事日報を作成するために測量を行う手間を省くことができ、工事日報を作成する負担が軽減される。
撮影装置11により撮影したデジタル画像は、中心投影であるため、撮影装置11のレンズの中心から撮影対象物との距離の違いにより、画像上の像に歪みが生じてしまう。そのような中心投影の画像を正射投影に変換し、歪みを補正した画像がオルソ画像である。歪みが補正されたオルソ画像が生成されることで、オルソ画像上でガス管20や継手21の位置等を正確に計測することができるようになるのである。

0130

(4)(1)乃至(3)のいずれか1つに記載の工事図面作成支援システム1において、画像判定部161は、撮影装置11によってデジタル画像を撮影した撮影環境に基づいて、デジタル画像が工事図面作成支援システム1で利用可能か否かを判断し、利用可能と判断した場合に、所定の基準を満たすか否かの判定を行うこと、を特徴とするので、撮影環境に基づき、利用可能でないと判定されれば、その後の所定の基準を満たすか否かの判定を行う必要がなくなるため、判定処理の無駄をなくすことができる。

0131

(5)(1)乃至(4)のいずれか1つに記載の工事図面作成支援システム1において、ガス管20や継手21は、表面の所定の位置に2次元コード40を有すること、撮影装置11は、2次元コード40を含むガス管20や継手21のデジタル画像を撮影すること、画像判定部161は、デジタル画像が所定の基準を満たすか否か、少なくともデジタル画像に写った2次元コード40により判定すること、を特徴とするので、画像判定部における所定の基準を満たすか否かの判定が容易となり、工事図面作成支援システムにおいて、よりスムーズに図面作成を行うことができる。例えば、所定の基準として、画像のシャープネスが適切であるか否か判断するとした場合、符牒自体の画像がどの程度ぼけているのか、または符牒と埋設物の境目がどの程度ぼけているのかによって、シャープネスを判定することができる。その他にも、画像上の符牒の粗さにより、画像の粗さが基準に達しているか否か判断したり、画像上の符牒の位置により、埋設物が画像上において適切な位置に写っているかを判断したりすることが可能である。

0132

(6)(5)に記載の工事図面作成支援システム1において、2次元コード40は、少なくともガス管20や継手21の形状および大きさの情報を含むこと、図面生成部162は、2次元コード40が含む情報を保有した図面を作成すること、を特徴とするので、現場の作業者の工事日報を作成する負担が軽減される。
工事日報には、ガス管20や継手21の形状や大きさ等の情報が書き込まれるのが一般的であるため、作業者は作業中に埋設物の形状や大きさ等の情報をメモしておき、当該メモに基づいて工事日報にガス管20や継手21の情報を書き込むことが行われている。このような作業は煩雑であり、記載ミス等が起こり得るため、正確な情報の記入が保証されにくい。そこで、ガス管20や継手21に備えられた2次元コード40にガス管20や継手21の情報を含ませ、2次元コード40が含む情報を保有させた図面を作成するものとしておけば、現場作業者は、形状や大きさ等をわざわざ確認するという煩雑な作業をせずにすみ、現場の作業者の工事日報を作成する負担が軽減される。

0133

(7)(6)に記載の工事図面作成支援システム1において、2次元コード40は、所定の色を備える複数のセル401が2次元的に配列されたものであって、2次元コード40の領域の位置を検出するための切欠部404を備え、色の組み合わせによりガス管20や継手21の情報を表すものであること、を特徴とするので、撮影装置11により撮影されたデジタル画像に写った2次元コード40の色の組み合わせを検出することで、にガス管20や継手21の情報(にガス管20や継手21の形状や大きさ等)を読み取ることができる。また、2次元コード40の領域の位置を検出するための切欠部404を備えているため、撮影装置11により撮影されたデジタル画像に写った2次元コード40が傾いていたとしても、2次元コード40の上下左右の判別が可能であり、正確に2次元コード40が有するにガス管20や継手21の情報を読み取ることが可能である。

0134

(8)(5)乃至(7)のいずれか1つに記載の工事図面作成支援システム1において、2次元コード40の位置情報を取得する位置情報取得部(測位機器12,相対座標算出部163)を備え、図面生成部162は、位置情報取得部(測位機器12,相対座標算出部163)により取得された位置情報を保有した図面を作成すること、を特徴とするので、ガス管20や継手21の形状や大きさの情報を含む2次元コード40の位置により位置情報を取得し、位置情報を保有した図面が作成される。よって、どのようなガス管20や継手21がどこに埋設されているのか管理が容易となり、現場の作業者の工事日報を作成する負担が軽減される。

0135

(11)(8)に記載の工事図面作成支援システム1において、位置情報取得部は、撮影装置11により撮影された画像に基づいて、所定の基準位置に対する2次元コード40の相対座標を算出する相対座標算出部163と、ガス管20や継手21の地中への配設後であって埋め込み前に、2次元コード40の絶対座標を取得する測位機器12と、からなること、位置情報には、相対座標と、絶対座標と、が含まれること、を特徴とするので、相対座標や絶対座標に基づいて敷設状態を表す図面を生成することができる。例えば、土木工事により埋設したガス管を、将来的に交換のための工事を行う場合、相対座標および絶対座標に基づいて生成された図面があれば、所定の基準位置からスケール等で測定を行うか、GPS機器を用いるかすればガス管の位置を特定することが可能となる。GPS機器は高価であり、複数台準備できない場合が考えられる。そうすると、複数個所で同時に工事が行われるとした場合、GPS機器を用いることができない現場がある。そのような場合、相対座標と絶対座標の双方でガス管位置を特定できるようにしておけば、柔軟に対応することができる。

0136

(12)(1)乃至(8)のいずれか1つに記載の工事図面作成支援システム1において、画像判定部161は、所定の基準を満たすか否かの判定結果を、工事図面作成支援システム1の使用者に通知すること、所定の基準を満たさないと判断された場合には、通知とともに、所定の基準を満たすための方法を提案すること、を特徴とするので、工事図面作成支援システム1の使用者(例えば工事現場の作業者等)は画像判定部161が行う画像が所定の基準を満たすか否かの判定の結果を知ることができるとともに、所定の基準を満たさないと判断された場合には、所定の基準を満たすための方法の提案を受けることができる。所定の基準を満たすための方法とは、例えば、シャッタースピードの調整等の撮影機器による撮影の方法に関するものである。

0137

次に第2の実施形態に係る工事図面作成支援システム2について説明する。
第1の実施形態に係る工事図面作成支援システム1と異なる点は、図40に示すように、測位機器12を有しておらず、位置情報取得部としては、相対座標算出部163のみにより構成されている点である。
図面生成部162は、相対座標と2次元コード40により表されるガス管情報を、図面に保有させる。
その他は、第1の実施形態に係る工事図面作成支援システム1と同様である。

0138

以上、第2の実施形態の工事図面作成支援システム2によれば、
(9)(8)に記載の工事図面作成支援システム2において、位置情報取得部は、撮影装置11により撮影された画像に基づいて、所定の基準位置に対する2次元コード40の相対座標を算出する相対座標算出部163からなること、位置情報には、少なくとも相対座標が含まれること、を特徴とするので、相対座標に関する情報を図面に保有させることができる。例えば、土木工事により埋設したガス管20を、将来的に交換のための工事を行う場合、相対座標に基づいて生成された図面があれば、所定の基準位置からスケール等で測定することで、ガス管20の位置を特定することが可能となる。

0139

次に第3の実施形態に係る工事図面作成支援システム3について説明する。
第1の実施形態に係る工事図面作成支援システム1と異なる点は、図41に示すように、処理部16が相対座標算出部163を有しておらず、位置情報取得部としては、測位機器12のみにより構成されている点である。
図面生成部162は、絶対座標と2次元コード40により表されるガス管情報を、図面に保有させる。
その他は、第1の実施形態に係る工事図面作成支援システム1と同様である。

0140

以上、第3の実施形態の工事図面作成支援システム3によれば、
(10)(8)に記載の工事図面作成支援システム3において、位置情報取得部は、埋設物の地中への配設後であって埋め込み前に、2次元コード40の絶対座標を取得する測位機器12からなること、位置情報には、少なくとも絶対座標が含まれること、を特徴とするので、絶対座標に関する情報を図面に保有させることができる。例えば、土木工事により埋設したガス管20を、将来的に交換のための工事を行う場合、絶対座標に基づいて生成された図面があれば、GPS機器を用いることでガス管20の位置を特定することが可能となる。現在、GPS機器が高価であるため、スケール等により相対座標に基づいてガス管の位置を特定することが一般的に行われているが、将来的にGPS機器が普及することで、本発明の有用性が高まる。

0141

なお、上記第1から第3の実施形態は単なる例示にすぎず、本発明を何ら限定するものではない。したがって本発明は当然に、その要旨を逸脱しない範囲内で様々な改良、変形が可能である。
例えば、上記第1から第3の実施例においては、撮影装置11で取得したデジタル画像や、測位機器12で取得した絶対座標を、インターネット等の通信回線19を介して通信部13が受信することとしているが、有線接続や、メモリーカード等の記憶媒体を用いて、工事図面作成支援システム1に、撮影装置11で取得したデジタル画像や、測位機器12で取得した絶対座標を入力するものとしても良い。
また、上記第1から第3の実施例においては、画像判定部161を、処理部16の一部としているが、例えば、工事現場で作業者が用いるノート型の電子計算機やスマートフォンなどに備えられるものとしても良い。

0142

1工事図面作成支援システム
11撮影装置
20ガス管
21継手
161画像判定部
162 図面生成部

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ