図面 (/)

技術 鋼材およびその製造方法

出願人 日本製鉄株式会社
発明者 高畠勇菅江清信上村隆之
出願日 2019年3月27日 (1年10ヶ月経過) 出願番号 2019-061657
公開日 2020年10月1日 (4ヶ月経過) 公開番号 2020-158853
状態 未査定
技術分野 化学的被覆 鋼の加工熱処理
主要キーワード 海浜地域 塩分環境 メンテナンス費 塩分付着 塩化物溶液中 海岸地域 水素ガス発生反応 海水環境
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2020年10月1日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (0)

図面はありません

課題

塩化物を含む環境において優れた耐食性を有し、初期腐食を抑制することが可能な鋼材およびその製造方法を提供する。

解決手段

母材化学組成が、質量%で、C:0.01〜0.20%、Si:0.01〜1.0%、Mn:0.01〜3.0%、P:0.050%以下、S:0.010%以下、Sn:0.01〜2.0%、Al:0.10%以下、Cu:0〜1.0%、Ni:0〜1.0%、Cr:0〜1.0%、Mo:0〜1.0%、W:0〜1.0%、Sb:0〜0.20%、Ti:0〜0.20%、Zr:0〜0.20%、Ca:0〜0.010%、Mg:0〜0.010%、Nb:0〜0.10%、V:0〜0.50%、B:0〜0.010%、REM:0〜0.010%、残部:Feおよび不純物であり、母材の表面の少なくとも一部に、厚さが0.5〜6.0nmの酸化Sn層を有する、鋼材。

概要

背景

鋼材腐食加速する因子として、塩化物の影響が極めて大きいことがよく知られている。特に、海岸地域にある橋梁等の構造物港湾施設に使用される鋼矢板鋼管杭船舶外板、バラストタンク海洋構造物洋上風力発電設備などにおいては、直接海水飛沫を受け、さらに乾湿繰り返し環境に曝されるため、極めて腐食が大きい。

また、海水中においても、乾湿繰り返し環境ほどではないが腐食が大きい。海浜地域においては海水の飛沫はないものの、海塩粒子飛来により腐食が促進される。内陸部においても、冬季には路面凍結を防ぐために塩化物を含む凍結防止剤散布するなど、塩化物による腐食はいたる所で問題となっている。

さらには、直接海水環境には曝されないが海水による洗浄等が行われる鉱石運搬船または原油タンカータンクなども洗浄後に残留する塩化物による腐食が問題となる。また、原油タンカー内においては高濃度塩化物溶液であるドレン水が存在する厳しい腐食環境となっている。その他、オイルサンド掘削輸送設備においても塩化物による腐食が問題となる。

このような事情により、特に塩化物による腐食が問題となる環境では鋼材を塗装して用いられているが、塗膜劣化により、また鋼材エッジなどの塗膜厚の薄い部分から腐食が発生・進行するため、構造物を長期使用する際にはメンテナンス再塗装)が必須である。

その場合、構造物によっては足場を設置する必要があることなどからメンテナンス費莫大なものとなること、また塗装により人体に有害とされているVOC(揮発性有機化合物)が大量に発生することなどが問題となる。こうしたことから、塗装をしなくても耐食性の良好な鋼材、または再塗装の間隔を延長可能な鋼材の開発が強く望まれてきた。

このような塩化物環境下で耐食性に優れた鋼材として、例えば、特許文献1にはCr含有量を増加させた鋼材が開示されており、特許文献2にはNi含有量を増加させた鋼材等が開示されている。

一方、CrまたはNiを増加させない鋼としては、例えば、特許文献3には、P、Ni、Moを必須元素とし、Sbおよび/またはSnを添加した鋼材が開示され、また、特許文献4には、P、Cu、Ni、Sbを必須添加した鋼材が開示されている。さらに、特許文献5には、Cuを必須元素とし、Sbおよび/またはSnを添加した鋼材が開示されており、特許文献6には、Snを必須元素とした鋼材が開示されている。

概要

塩化物を含む環境において優れた耐食性を有し、初期の腐食を抑制することが可能な鋼材およびその製造方法を提供する。母材化学組成が、質量%で、C:0.01〜0.20%、Si:0.01〜1.0%、Mn:0.01〜3.0%、P:0.050%以下、S:0.010%以下、Sn:0.01〜2.0%、Al:0.10%以下、Cu:0〜1.0%、Ni:0〜1.0%、Cr:0〜1.0%、Mo:0〜1.0%、W:0〜1.0%、Sb:0〜0.20%、Ti:0〜0.20%、Zr:0〜0.20%、Ca:0〜0.010%、Mg:0〜0.010%、Nb:0〜0.10%、V:0〜0.50%、B:0〜0.010%、REM:0〜0.010%、残部:Feおよび不純物であり、母材の表面の少なくとも一部に、厚さが0.5〜6.0nmの酸化Sn層を有する、鋼材。 なし

目的

本発明は、上記の課題を解決し、塩化物を含む環境において優れた耐食性を有し、初期の腐食を抑制することが可能な鋼材およびその製造方法を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

母材化学組成が、質量%で、C:0.01〜0.20%、Si:0.01〜1.0%、Mn:0.01〜3.0%、P:0.050%以下、S:0.010%以下、Sn:0.01〜2.0%、Al:0.10%以下、Cu:0〜1.0%、Ni:0〜1.0%、Cr:0〜1.0%、Mo:0〜1.0%、W:0〜1.0%、Sb:0〜0.20%、Ti:0〜0.20%、Zr:0〜0.20%、Ca:0〜0.010%、Mg:0〜0.010%、Nb:0〜0.10%、V:0〜0.50%、B:0〜0.010%、REM:0〜0.010%、残部:Feおよび不純物であり、前記母材の表面の少なくとも一部に、厚さが0.5〜6.0nmの酸化Sn層を有する、鋼材

請求項2

前記母材の化学組成が、質量%で、Cu:0.02〜1.0%、Ni:0.01〜1.0%、Cr:0.01〜1.0%、Mo:0.01〜1.0%、W:0.01〜1.0%、Sb:0.01〜0.20%、Ti:0.001〜0.20%、Zr:0.001〜0.20%、Ca:0.0002〜0.010%、Mg:0.0002〜0.010%、Nb:0.001〜0.10%、V:0.005〜0.50%、B:0.0003〜0.010%、REM:0.0002〜0.010%、から選択される1種以上を含有する、請求項1に記載の鋼材。

請求項3

請求項1または請求項2に記載の化学組成を有する母材の表面に、厚さが4.5nm以下の金属Sn層を形成する工程を備える、鋼材の製造方法。

請求項4

前記金属Sn層を形成する工程において、前記母材をpHが3.0以下の水溶液曝す、請求項3に記載の鋼材の製造方法。

請求項5

前記水溶液が、0.1〜2.0mol/Lの濃度の塩化物イオンを含有する、請求項4に記載の鋼材の製造方法。

請求項6

前記金属Sn層を形成する工程において、前記母材を前記水溶液に曝す時間が1分間以上である、請求項3または請求項4に記載の鋼材の製造方法。

技術分野

0001

本発明は、鋼材およびその製造方法に関する。

背景技術

0002

鋼材の腐食加速する因子として、塩化物の影響が極めて大きいことがよく知られている。特に、海岸地域にある橋梁等の構造物港湾施設に使用される鋼矢板鋼管杭船舶外板、バラストタンク海洋構造物洋上風力発電設備などにおいては、直接海水飛沫を受け、さらに乾湿繰り返し環境に曝されるため、極めて腐食が大きい。

0003

また、海水中においても、乾湿繰り返し環境ほどではないが腐食が大きい。海浜地域においては海水の飛沫はないものの、海塩粒子飛来により腐食が促進される。内陸部においても、冬季には路面凍結を防ぐために塩化物を含む凍結防止剤散布するなど、塩化物による腐食はいたる所で問題となっている。

0004

さらには、直接海水環境には曝されないが海水による洗浄等が行われる鉱石運搬船または原油タンカータンクなども洗浄後に残留する塩化物による腐食が問題となる。また、原油タンカー内においては高濃度塩化物溶液であるドレン水が存在する厳しい腐食環境となっている。その他、オイルサンド掘削輸送設備においても塩化物による腐食が問題となる。

0005

このような事情により、特に塩化物による腐食が問題となる環境では鋼材を塗装して用いられているが、塗膜劣化により、また鋼材エッジなどの塗膜厚の薄い部分から腐食が発生・進行するため、構造物を長期使用する際にはメンテナンス再塗装)が必須である。

0006

その場合、構造物によっては足場を設置する必要があることなどからメンテナンス費莫大なものとなること、また塗装により人体に有害とされているVOC(揮発性有機化合物)が大量に発生することなどが問題となる。こうしたことから、塗装をしなくても耐食性の良好な鋼材、または再塗装の間隔を延長可能な鋼材の開発が強く望まれてきた。

0007

このような塩化物環境下で耐食性に優れた鋼材として、例えば、特許文献1にはCr含有量を増加させた鋼材が開示されており、特許文献2にはNi含有量を増加させた鋼材等が開示されている。

0008

一方、CrまたはNiを増加させない鋼としては、例えば、特許文献3には、P、Ni、Moを必須元素とし、Sbおよび/またはSnを添加した鋼材が開示され、また、特許文献4には、P、Cu、Ni、Sbを必須添加した鋼材が開示されている。さらに、特許文献5には、Cuを必須元素とし、Sbおよび/またはSnを添加した鋼材が開示されており、特許文献6には、Snを必須元素とした鋼材が開示されている。

先行技術

0009

特開平9−176790号公報
特開平5−51668号公報
特開平10−251797号公報
特開2002−53929号公報
特開平9−25536号公報
特開2012−255184号公報

発明が解決しようとする課題

0010

CrおよびNiは、一般に鋼材の耐食性に寄与する元素である。しかし、特許文献1および2に開示される鋼材は、非常に厳しい塩化物環境においては、耐食性の面で改善の余地が残されている。加えて、CrおよびNiは高価な元素であるため、CrおよびNiの含有量の増加は、コストの面でも問題となる。

0011

また、特許文献3に開示される溶接構造物用鋼材は、溶接性阻害するPを多量に含有することから、溶接性の面で問題がある。一方、特許文献4に開示される鋼材は、飛来塩分量0.8mddの環境において耐候性が良好であるとしているにすぎず、それを超えるような厳しい塩分飛来環境下においては、耐候性が十分でないという問題がある。

0012

さらに、特許文献5に開示される鋼材は、重油などを燃焼させたときに排出される燃焼排ガスに対する耐食性を有する鋼材であって、塩化物環境下とは大きく異なる環境下で使用する鋼材である。したがって、必ずしもこのような鋼材を塩化物環境下で適用することはできない。

0013

そして、特許文献6に開示される鋼材は、塩化物を含む乾湿繰り返し環境下で用いられる耐食性に優れた鋼材である。しかし、使用環境中で腐食を受けて鋼材中からSnがある程度溶出することによって耐食性が向上するため、初期の腐食を抑制する観点からは改善の余地が残されている。

0014

本発明は、上記の課題を解決し、塩化物を含む環境において優れた耐食性を有し、初期の腐食を抑制することが可能な鋼材およびその製造方法を提供することを目的とする。

課題を解決するための手段

0015

本発明は、上記の課題を解決するためになされたものであり、下記の鋼材およびその製造方法を要旨とする。

0016

(1)母材化学組成が、質量%で、
C:0.01〜0.20%、
Si:0.01〜1.0%、
Mn:0.01〜3.0%、
P:0.050%以下、
S:0.010%以下、
Sn:0.01〜2.0%、
Al:0.10%以下、
Cu:0〜1.0%、
Ni:0〜1.0%、
Cr:0〜1.0%、
Mo:0〜1.0%、
W:0〜1.0%、
Sb:0〜0.20%、
Ti:0〜0.20%、
Zr:0〜0.20%、
Ca:0〜0.010%、
Mg:0〜0.010%、
Nb:0〜0.10%、
V:0〜0.50%、
B:0〜0.010%、
REM:0〜0.010%、
残部:Feおよび不純物であり、
前記母材の表面の少なくとも一部に、厚さが0.5〜6.0nmの酸化Sn層を有する、
鋼材。

0017

(2)前記母材の化学組成が、質量%で、
Cu:0.02〜1.0%、
Ni:0.01〜1.0%、
Cr:0.01〜1.0%、
Mo:0.01〜1.0%、
W:0.01〜1.0%、
Sb:0.01〜0.20%、
Ti:0.001〜0.20%、
Zr:0.001〜0.20%、
Ca:0.0002〜0.010%、
Mg:0.0002〜0.010%、
Nb:0.001〜0.10%、
V:0.005〜0.50%、
B:0.0003〜0.010%、
REM:0.0002〜0.010%、
から選択される1種以上を含有する、
上記(1)に記載の鋼材。

0018

(3)上記(1)または(2)に記載の化学組成を有する母材の表面に、厚さが4.5nm以下の金属Sn層を形成する工程を備える、
鋼材の製造方法。

0019

(4)前記金属Sn層を形成する工程において、前記母材をpHが3.0以下の水溶液曝す
上記(3)に記載の鋼材の製造方法。

0020

(5)前記水溶液が、0.1〜2.0mol/Lの濃度の塩化物イオンを含有する、
上記(4)に記載の鋼材の製造方法。

0021

(6)前記金属Sn層を形成する工程において、前記母材を前記水溶液に曝す時間が1分間以上である、
上記(3)または(4)に記載の鋼材の製造方法。

発明の効果

0022

本発明によれば、塩化物を含む環境において優れた耐食性を有し、初期の腐食を防止することが可能な鋼材が得られる。

0023

塩化物の多い環境においては、FeCl3溶液の乾湿繰り返しが生じ、Fe3+の加水分解により腐食界面のpHが低下した状態で、かつFe3+が酸化剤として作用することによって腐食を加速する。

0024

このときの腐食反応は、以下に示すとおりである。
カソード反応:Fe3++e−→Fe2+(Fe3+の還元反応
アノード反応:Fe→Fe2++2e−(Feの溶解反応

0025

したがって、腐食の総括反応は、下記(i)式のとおりである。
2Fe3++Fe→3Fe2+ ・・・(i)

0026

上記(i)式の反応により生成したFe2+は、空気酸化によりFe3+に酸化され、生成したFe3+は再び酸化剤として腐食を加速する。この際、Fe2+の空気酸化の反応速度は低pH環境では一般に遅いが、濃厚塩化物溶液中では加速され、Fe3+が生成されやすくなる。このようなサイクリックな反応のため、飛来塩分量の非常に多い環境において鋼の耐食性が著しく劣化する。

0027

また、塩化物が非常に多い環境においてはさび層の保護性は期待できないので、鋼自身のアノード溶解反応を遅くすることが耐食性改善に有用である。すなわち、塩化物が非常に多い環境では低pH塩化物溶液中におけるアノード溶解反応を抑制することが重要となる。

0028

さらに、低pH環境では以下に示す水素イオンの還元反応が進行し、Fe溶解のアノード反応が促進される。
2H++2e−→H2

0029

Sn表面における上記反応の進行速度は、Fe表面と比較して小さいことが知られている。すなわち、鋼表面Sn層を形成することで水素発生反応を抑制し、結果として鋼のアノード溶解反応をすることができる。

0030

本発明者等は、このような塩分環境における腐食のメカニズムを基に、耐食性を向上する方法について検討した結果、下記の(a)〜(e)に示す知見を得た。

0031

(a)Snは、腐食環境において陽イオンSn2+となって溶解し、酸性塩化物溶液中でのインヒビター作用により腐食を抑制する作用を有する。また、Fe3+を速やかに還元させ、酸化剤としてのFe3+濃度を低減する作用を有することにより、Fe3+の腐食促進作用を抑制する。さらに、Snには鋼のアノード溶解反応を抑制し耐食性を向上させる作用がある。

0032

(b)しかし、前述のように、使用環境中で腐食を受けて鋼材中からSnがある程度溶出しないと、腐食促進作用を抑制する効果が得られないという問題がある。

0033

(c)そこで、本発明者らが初期の腐食を抑制する方法についてさらに検討したところ、Snを含む層を鋼材の表面に形成しておくことが有効であることを見出した。ただし、Snめっきを形成するといった方法では、コストが大幅に上昇するため、好ましくない。加えて、構造材料用の鋼板の場合には、大きさおよび形状の問題でめっきが困難であり、現実的でない。

0034

(d)ここで、本発明者らは、Snを含む鋼材を、Snのアンダーポテンシャル析出(UPD)が生じる条件で水溶液に曝すことで、鋼材の表面に極めて薄い金属Sn層を形成することができることを見出した。

0035

(e)形成された金属Sn層は、大気中の酸素と反応し、速やかに酸化Sn層となるが、酸化SnであってもFe3+の腐食促進作用を抑制する効果を発揮する。

0036

本発明は上記の知見に基づいてなされたものである。以下、本発明の各要件について詳しく説明する。

0037

(A)化学組成
各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。

0038

C:0.01〜0.20%
Cは材料としての強度を確保するために必要な元素である。しかし、過剰に含有させると溶接性が著しく低下する。また、C含有量の増大とともに、pHが低下する環境でカソードとなって腐食を促進するセメンタイト生成量が増大するため、耐食性が低下する。そのため、C含有量は0.01〜0.20%とする。C含有量は0.02%以上であるのが好ましく、0.03%以上であるのがより好ましい。また、C含有量は0.18%以下であるのが好ましく、0.16%以下であるのがより好ましい。

0039

Si:0.01〜1.0%
Siは脱酸に必要な元素である。しかし、過剰に含有させると母材および溶接継手部の靱性が損なわれる。そのため、Si含有量は0.01〜1.0%とする。Si含有量は0.03%以上であるのが好ましく、0.05%以上であるのがより好ましい。また、Si含有量は0.80%以下であるのが好ましく、0.60%以下であるのがより好ましい。

0040

Mn:0.01〜3.0%
Mnは低コストで鋼の強度を高める作用を有する元素である。しかし、過剰に含有させると溶接性が劣化するとともに継手靱性も劣化する。そのため、Mn含有量は0.01〜3.0%とする。Mn含有量は0.20%以上であるのが好ましく、0.40%以上であるのがより好ましい。また、Mn含有量は2.5%以下であるのが好ましく、2.0%以下であるのがより好ましい。

0041

P:0.050%以下
Pは鋼材中に不純物として存在する元素である。Pは耐酸性を低下させる元素であり、腐食界面のpHが低下する塩化物腐食環境においては耐食性を低下させる。さらには溶接性および溶接熱影響部の靱性を低下させることから、含有量は少なければ少ないほどよい。そのため、P含有量は0.050%以下に制限する。P含有量は0.030%以下であるのが好ましく、0.010%未満であるのがより好ましい。

0042

S:0.010%以下
Sは鋼材中に不純物として存在する元素である。Sは鋼中に腐食の起点となるMnSを形成し、その含有量が過剰であると、耐食性の低下が顕著になる。そのため、S含有量は0.010%以下に制限する。S含有量は0.008%以下であるのが好ましく、0.006%以下であるのがより好ましい。

0043

Sn:0.01〜2.0%
Snは鋼の耐食性を向上させる作用を有する元素である。加えて、上述のように、鋼材中にSnが含まれることにより、事前に鋼材の表面に酸化Sn層を形成することが可能となる。酸化Sn層を有することにより、低pH塩化物環境において鋼のアノード溶解反応および水素発生反応を著しく抑制するため、塩化物腐食環境における耐食性を大幅に向上させる作用を有する。

0044

しかし、過剰に含有させても前記の効果は飽和するばかりでなく、母材および大入熱溶接継手の靱性が劣化する。そのため、Sn含有量は0.01〜2.0%とする。Sn含有量は0.10%以上であるのが好ましく、0.15%以上であるのがより好ましい。また、Sn含有量は1.0%以下であるのが好ましく、0.50%以下であるのがより好ましい。

0045

Al:0.10%以下
Alは鋼の脱酸に有効な元素である。本発明では鋼中に脱酸効果を有するSiを含有させるので、Alで脱酸処理することは必ずしも必要でない。しかし、Siに加えて、さらにAlを含有させて複合脱酸することもできる。ただし、Alの含有量が0.1%を超えると、低pH環境における耐食性が低下するため塩化物腐食環境における耐食性が低下するばかりでなく、窒化物が粗大化するために靱性の低下を引き起こす。したがって、Alを含有させる場合の含有量の上限を0.10%以下とする。Al含有量は0.060%以下であるのが好ましい。なお、Alによる脱酸効果を安定的に得るためには、Al含有量を0.010%以上とすることが好ましく、0.030%以上とすることがより好ましい。

0046

Cu:0〜1.0%
Cuは低pH環境における鋼のアノード溶解を抑制することにより耐食性を向上させる作用を有するので、必要に応じて含有させることができる。ただし、過剰に含有させると効果が飽和するだけでなく、脆化を起こす原因となる。したがって、その含有量は1.0%以下とする。上記効果を安定的に得るためには、Cu含有量を0.02%以上とすることが好ましく、0.03%以上とすることがより好ましい。

0047

なお、鋼中にCuを含有させた場合には、CuとSnとが共存することになるため、製造方法によっては圧延割れが生じることもある。圧延割れを抑制するためには、Cu含有量を少なくした上で、Sn含有量に対するCuの含有量の比、Cu/Snを小さくすることが重要となる。よって、Cuを含有させる場合には、Cuの含有量を0.20%未満とし、Cu/Snを1.0以下とすることが好ましい。Cu含有量は0.10%未満とすることがより好ましい。

0048

Ni:0〜1.0%
NiもCuと同様に、低pH環境における鋼のアノード溶解を抑制することにより耐食性を向上させる作用を有するので、必要に応じて含有させることができる。ただし、過剰に含有させると効果が飽和するだけでなく、コストの著しい上昇につながる。したがって、その含有量は1.0%以下とする。Ni含有量は0.80%以下であるのが好ましい。上記効果を安定的に得るためには、Ni含有量を0.01%以上とすることが好ましく、0.02%とすることがより好ましい。

0049

Cr:0〜1.0%
Crは耐食性を向上させる作用を有するので、必要に応じて含有させることができる。ただし、過剰に含有させると耐酸性が低下することから、塩化物が多い環境においては耐食性が低下する場合がある。一方、1.0%以下の含有量であれば耐酸性の低下は見られないことから、Cr含有量は1.0%以下とする。Cr含有量は0.80%以下であるのが好ましい。耐食性向上効果を安定的に得るためには、Cr含有量を0.01%以上とすることが好ましく、0.02%以上とすることがより好ましい。

0050

Mo:0〜1.0%
Moは溶解して酸素酸イオンMoO42−の形でさびに吸着し、さび層中の塩化物イオンの透過を抑制する作用効果を有する元素であるので、必要に応じて含有させることができる。ただし、過剰に含有させると効果が飽和するだけでなく、鋼材のコストが大幅に上昇する。したがって、Mo含有量は1.0%以下とする。Mo含有量は0.70%以下であるのが好ましい。上記効果を安定的に得るためには、Mo含有量を0.01%以上とすることが好ましく、0.02%以上とすることがより好ましい。

0051

W:0〜1.0%
WはMoと同様に、溶解して酸素酸イオンWO42−の形で存在し、さび層中の塩化物イオンの透過を抑制する作用効果を有する元素であるので、必要に応じて含有させることができる。ただし、過剰に含有させると効果が飽和するだけでなく、鋼材のコストが大幅に上昇する。したがって、W含有量は1.0%以下とする。W含有量は0.70%以下であるのが好ましい。上記効果を安定的に得るためには、W含有量を0.01%以上とすることが好ましく、0.02%以上とすることがより好ましい。

0052

Sb:0〜0.20%
Sbは耐酸性を向上させる作用を有する元素であり、低pH環境において鋼のアノード溶解反応を抑制するとともに、水素ガス発生反応およびFe3+の還元反応を抑制することで塩化物環境における耐食性を向上させるので、必要に応じて含有させることができる。ただし、過剰に含有させると靱性が著しく劣化する。したがって、Sb含有量は0.20%以下とする。Sb含有量は0.15%以下であるのが好ましい。上記効果を安定的に得るためには、Sb含有量を0.01%以上とすることが好ましく、0.02%以上とすることがより好ましい。

0053

Ti:0〜0.20%
Tiは硫化物の形成により腐食の起点となるMnSの形成を抑える作用効果を有する元素であるので、必要に応じて含有させることができる。ただし、過剰に含有させると効果が飽和するだけでなく鋼材のコストが上昇する。したがって、Ti含有量は0.20%以下とする。Ti含有量は0.15%以下であるのが好ましい。上記効果を安定的に得るためには、Ti含有量を0.001%以上とすることが好ましく、0.005%以上とすることがより好ましい。

0054

Zr:0〜0.20%
ZrはTiと同様に、硫化物を形成することにより腐食の起点となるMnSの形成を抑える作用効果を有しているので、必要に応じて含有させることができる。ただし、過剰に含有させると効果が飽和するだけでなく鋼材のコストが上昇する。したがって、Zr含有量は0.20%以下とする。Zr含有量は0.15%以下であるのが好ましい。上記効果を安定的に得るためには、Zr含有量を0.001%以上とすることが好ましく、0.005%以上とすることがより好ましい。

0055

Ca:0〜0.010%
Caは鋼中に酸化物の形で存在し、腐食反応部における界面のpHの低下を抑制して、腐食の促進を抑える作用を有しているので、必要に応じて含有させることができる。ただし、過剰に含有させると効果が飽和する。したがって、Ca含有量は0.010%以下とする。Ca含有量は0.0050%以下であるのが好ましい。上記効果を安定的に得るためには、Ca含有量を0.0002%以上とすることが好ましく、0.0005%以上とすることがより好ましい。

0056

Mg:0〜0.010%
MgはCaと同様に、腐食反応部における界面のpHの低下を抑制するので、必要に応じて含有させることができる。ただし、過剰に含有させると効果が飽和する。したがって、Mg含有量は0.010%以下とする。Mg含有量は0.0050%以下であるのが好ましい。上記効果を安定的に得るためには、Mg含有量を0.0002%以上とすることが好ましく、0.0005%以上とすることがより好ましい。

0057

Nb:0〜0.10%
Nbは鋼材の強度を上昇させる元素であるので、必要に応じて含有させることができる。ただし、過剰に含有させると効果が飽和するため、Nb含有量は0.10%以下とする。Nb含有量は0.050%以下であるのが好ましい。上記効果を安定的に得るためには、Nb含有量を0.001%以上とすることが好ましく、0.003%以上とすることがより好ましい。

0058

V:0〜0.50%
VはNbと同様に鋼材の強度を上昇させる元素であり、また、MoおよびWと同様に、溶解して酸素酸イオンの形で存在しさび層中の塩化物イオンの透過を抑制する作用も有するので、必要に応じて含有させることができる。ただし、過剰に含有させると効果が飽和するばかりでなくコストが著しく上昇する。したがって、V含有量は0.50%以下とする。V含有量は0.30%以下であるのが好ましい。上記効果を安定的に得るためには、V含有量を0.005%以上とすることが好ましく、0.010%以上とすることがより好ましい。

0059

B:0〜0.010%
Bは焼入性を向上させて強度を高める元素であるので、必要に応じて含有させることができる。ただし、過剰に含有させると強度を高める効果が飽和し、また、母材、HAZともに靱性劣化の傾向が著しくなる。したがって、B含有量は0.010%以下とする。上記効果を安定的に得るためには、B含有量を0.0003%以上とすることが好ましい。

0060

REM:0〜0.010%
REM(希土類元素)は鋼の溶接性を向上させる作用を有するので、必要に応じて含有させることができる。ただし、過剰に含有させると効果が飽和するため、REM含有量は0.010%以下とする。REM含有量は0.0050%以下であるのが好ましい。上記効果を安定的に得るためには、REM含有量を0.0002%以上とすることが好ましく、0.0005%以上とすることがより好ましい。

0061

ここで、REMとは、ランタノイドの15元素にYおよびScをあわせた17元素の総称であり、これらの元素のうちの1種または2種以上を含有させることができる。なお、REMの含有量はこれら元素の合計含有量を意味する。

0062

本発明に係る鋼材は、上記の化学組成を有し、残部がFeおよび不純物からなる。ここで、不純物とは、鋼材を工業的に製造する際に鉱石スクラップ等のような原料をはじめとして製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。

0063

(B)酸化Sn層
本発明に係る鋼材は、母材の表面の少なくとも一部に、厚さが0.5〜6.0nmの酸化Sn層を有する。上述のように、酸化Sn層を事前に形成しておくことによって、使用環境中での初期の腐食を抑制することが可能となる。

0064

なお、Snが単原子層を形成していても効果が得られることから、本来、Sn原子の直径である0.28nm程度が実質的な下限である。しかしながら、本発明に係る鋼材にはSnが含まれるため、酸化Sn層を形成しない場合であっても鋼材表面分析した際にSnが検出され、酸化Sn層と区別するのが困難である。そのため、本発明においては、分析精度も考慮し、酸化Sn層の厚さを0.5nm以上とする。

0065

一方、耐食性の観点において、酸化Sn層の厚さに上限を設ける必要はないが、後述する方法で酸化Sn層を形成する場合には、形成可能な厚さの上限が6.0nmとなる。酸化Sn層の厚さは1.0nm以上であるのが好ましい。また、酸化Sn層の厚さは5.0nm以下であるのが好ましく、4.0nm以下であるのがより好ましい。

0066

なお、本発明において、酸化Sn層の厚さの測定は、光電子分光器を用いたXPS深さ分析法により行うものとする。X線源にはAl Kα(hν=1486.6eV)を用い、X線径は直径約200μm、検出器取込角度は45°とする。また、スパッタ条件としては、イオン種:Ar+、加速電圧1kV、スキャン領域:3mm×3mm、スパッタ速度:0.5〜1.0nm/min(SiO2換算)とする。

0067

(C)防食被膜
上記に説明した本発明の酸化Sn層を有する鋼材は、そのまま使用しても良好な耐食性を示す。しかし、その表面に防食処理を施した場合、具体的には有機樹脂または金属からなる防食被膜で表面を被覆した場合には、従来の鋼材に比べ防食被膜の耐久性が向上し、耐食性が一段と向上する。

0068

ここで、有機樹脂からなる防食被膜としては、ビニルブチラール系、エポキシ系、ウレタン系、フタル酸系等の樹脂被膜などが挙げられる。また、金属からなる防食被膜としては、Zn、Al、Zn−Al等のメッキ被膜またはZn、Al、Al−Mgなどの溶射被膜などを挙げることができる。

0069

防食被膜の耐久性が向上するのは、下地である本発明鋼材の腐食が著しく抑制される結果として、防食被膜欠陥部からの下地鋼材腐食に起因する防食被膜のふくれまたは剥離が抑制されるためであると考えられる。

0070

(D)製造方法
本発明に係る鋼材は、鋼中にSnを含有する母材を、SnのUPDが生じる条件で水溶液に曝し、母材の表面に、厚さが4.5nm以下の金属Sn層を形成することによって製造することができる。形成された金属Sn層は、大気中の酸素と反応し、速やかに酸化Sn層となる。SnのUPDが生じる条件について具体的に説明する。

0071

母材の表面に金属Sn層を形成するためには、母材から溶出したSnがイオン(Sn2+)として水溶液中に安定して存在する必要がある。金属Sn層の形成に用いる水溶液のpHが高いと、Sn2+は水溶液中に安定して存在することが困難となり、UPDが生じなくなる。したがって、水溶液のpHは3.0以下とする。Sn2+をより安定した状態で存在させるためには、pHを1.0以下にすることが好ましい。

0072

水溶液の種類については特に限定されないが、例えば、過塩素酸水溶液を用いることができる。その他にも、塩酸硫酸硝酸などの無機酸であってもよい。ただし、硫酸中の硫酸イオン、硝酸中の硝酸イオンは鋼材表面に吸着し、SnのUPDに影響を与える可能性がある。この場合、電極電位がSnのUPD電位域に保持されるように硫酸イオンまたは硝酸イオンの濃度を調整する必要がある。

0073

また、SnのUPDが起こる電位域はEeq(Sn2+/Sn)に依存するが、Sn2+が水溶液中の塩化物イオンとの間で錯体を形成するとEeq(Sn2+/Sn)はシフトするため、Sn−塩化物錯体の形成に伴い、UPD電位域もシフトする。このとき、塩化物イオン濃度が低すぎる場合、Snの析出はUPDによる単原子層の析出ではなく従来のめっき析出となる。また、塩化物イオン濃度が高すぎる場合、Snの析出は起こらずに鋼材の溶解反応が進行する。したがって、自然浸漬状態で鋼材の表面電位をUPD電位域に保持するためには、水溶液中の塩化物イオン濃度は0.1〜2.0mol/Lであることが望ましい。

0074

さらに、酸性水溶液に曝す時間が短すぎると母材中のSnの溶出が十分ではなく、金属Sn層が母材表面を十分に覆うことができない場合がある。したがって、水溶液に曝す時間は1分間以上であるのが好ましい。また、時間が長すぎると処理に時間がかかってしまうため、水溶液に曝す時間の上限は60分間であることが望ましい。

0075

また、Eeq(Sn2+/Sn)は温度に依存したパラメータであるため、水溶液の温度によってUPD電位域はシフトする。このとき、温度が低すぎると溶存酸素量が多くなり、酸素の還元反応によって電極電位がシフトしてしまう。よって、温度の下限は20℃であることが望ましい。また、酸性水溶液の温度が高すぎると塩酸が揮発するおそれがある。よって、温度の上限は40℃であることが望ましい。

0076

鋼材を酸性溶液に曝す方法としては、母材を水溶液中に浸漬することができる。その他にも、例えば、刷毛による塗布またはスプレーノズルを用いた噴霧であってもよい。ただし、刷毛またはスプレーノズルを用いる際は、ムラなく鋼材全面に溶液が付着するように注意する必要がある。

0077

なお、母材の製造方法については特に制限はなく、例えば、上述した化学組成を有するインゴットに対して、熱間圧延を施すことで製造することができる。熱間圧延を行うに際しての加熱条件については特に制限はなく、通常の条件を採用すればよい。加熱温度は、例えば、950〜1250℃の範囲とすることができる。

0078

また、上述した防食被膜で覆う処理は通常の方法で行えばよい。また、必ずしも鋼材の全面に防食被膜を施す必要はなく、腐食環境に曝される面としての鋼材の片面、鋼管であれば外面または内面だけ、すなわち鋼材表面の少なくとも一部を防食処理するだけでもよい。

0079

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。

0080

表1に示す化学組成を有する鋼を溶製し、50kgのインゴットとした後、熱間鍛造して、厚さが60mmのブロックを作製した。次いで、上記ブロックを、1120℃で1時間加熱してから熱間圧延し、850℃で厚さ20mmに仕上げ、その後室温まで大気中で放冷して鋼板とした。そして、各鋼板から、幅が10mm、長さが10mm、厚さが3mmの試験片採取した。

0081

0082

その後、pH0.8の過塩素酸水溶液に塩化ナトリウムを溶解し、表2に示す塩化物イオン濃度に調製した水溶液中に各試験片を浸漬し、試験材試験No.1〜28)を得た。塩化物イオン濃度が0.1mol/Lよりも小さい場合、Snのめっき析出が起こるため、本実施例からは除外した。なお、浸漬は24℃の室温下で行い、30分間後に取り出し直ちに水洗し、ブロワーで乾燥させて表面の水分を取り除いた。

0083

0084

母材表面に形成した酸化Sn層の厚さの分析は、光電子分光器(Versa Probe III、Ulvac-Phi社製)を用いたXPS深さ分析法により行った。各試験材は、ブロワーで乾燥させてから5分以内に鋼材を窒素置換されたグローブボックスに移し、窒素雰囲気下でXPS用の試料輸送するためのトランスファーベッセル内へと封入した。この操作により、空気中の酸素による試料表面の酸化反応を最小限に抑えつつ、試料を分光器真空分析室に導入することができる。鋼材表面をAr+でスパッタしつつ光電子スペクトルを取得し、Snに由来した光電子ピークをスパッタ深さごとに記録した。

0085

さらに、各試験材を用いて、初期腐食の評価を行った。腐食試験はSAE(Society of Automotive Engineers)J2334試験を用いた。J2334試験は、湿潤(50℃、100%RH)6時間、塩分付着(0.5%NaCl、0.1%CaCl2、0.075%NaHCO3水溶液浸漬)0.25時間、乾燥(60℃、50%RH)17.75時間を1サイクル(合計24時間)とした加速試験であり、腐食形態が塩化物を含む腐食環境に類似しているとされている(長野博夫、山下正人、内田著:環境材料学、共立出版(2004)、p.74)。

0086

J2334試験40サイクル終了後、各試験片の表面のさび層を除去し、板厚減少量(mm)を測定した。本発明においては、上記試験における板厚減少量が0.15mm以下である場合に、「○:耐食性に優れる」、0.15mmを超える場合に、「×:耐食性に劣る」と判断することとした。

0087

酸化Sn層の厚さの測定結果および初期腐食の評価結果を表2に併せて示す。

実施例

0088

表2から分かるように、0.5nm以上の厚さの酸化Sn層を有する試験No.1〜3および5〜26では、優れた耐食性を有する結果となった。それに対して、試験No.4、27および28では、板厚減少量が0.15mmを超え、耐食性に劣る結果となった。

0089

本発明によれば、塩化物を含む環境において優れた耐食性を有し、初期の腐食を防止することが可能な鋼材が得られる。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

該当するデータがありません

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

該当するデータがありません

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ