図面 (/)

この項目の情報は公開日時点(2020年10月1日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (19)

課題

ヒト非小細胞肺癌(NSCLC)患者から得られる生体試料において突然変異未分化リンパ腫キナーゼ(ALK)ポリヌクレオチドの存在を検出する方法を提供する。

解決手段

特定のアミノ酸配列を有しALKキナーゼ活性を有するALK融合ポリペプチドをコードするALK融合ポリヌクレオチドが該試料中に存在することを検出することを含み、該検出がALK融合ポリヌクレオチドのALK部分にハイブリダイズする一対のオリゴヌクレオチドを用いたポリメラーゼ連鎖反応PCR)の実施を含む、方法。

概要

背景

多くの癌は、細胞過程の異常な制御、又は細胞の無制御の生育及び増殖をもたらす細胞シグナル伝達経路障害によって特徴付けられる。これらの障害はしばしば、キナーゼのような、特定のシグナル伝達タンパク質活性の変化に起因している。これらの癌の代表的なものは、非小細胞肺癌(NSCLC)のような固形腫瘍である。NSCLCは米国における癌による死亡の主要な原因であって、全肺癌の約87%を占めている。米国において年間約151,000のNSCLCの新症例があり、そして米国だけでもこの疾患によって年間120,000人を超える患者が死亡すると予測されている。米国癌協会の「Cancer Facts and Figures 2005」を参照されたい。NSCLCは3つの異なったサブタイプを含んでいて、しばしば転移してからしか検出されないので、診断から2年以内の死亡率は75%である。

キナーゼ融合タンパク質に異常なシグナル伝達活性をもたらす遺伝子の欠失及び転座が幾つかの癌に直接つながり得るということはよく知られている。例えば、チロシンキナーゼ融合タンパク質である、BCR−ABL癌タンパク質はヒトの慢性骨髄性白血病CML)の原因物質であると言うことが直接立証されている。CML症例の少なくとも90〜95%に見出されているBCR−ABL癌タンパク質は、いわゆるフィラデルフィア染色体を生成する、染色体9上のc−ABLタンパクチロシンキナーゼから染色体22上のBCR配列への遺伝子配列の転座によって生成される。例えば、Kurzock et al., N. Engl. J. Med. 319:990-998(1988)を参照されたい。この転座は急性リンパ性白血病及びNSCLCの症例においても観察される。

他の様々の癌に関連している突然変異体及び融合タンパク質をもたらす遺伝子の転座及び欠失が記述されている。例えば、Falini et al,. Blood 99(2):409-426 (2002) は、ALCL(未分化大細胞型リンパ腫Anaplastic Large Cell Lymphoma )に見られるNPM−ALK融合を包含して、血液癌をもたらすことが知られている転座について概説している。今日まで、ノッチ3に関連するt(15;19)転座を含めて、限られた数の肺癌をもたらす遺伝子転座、欠失及び突然変異タンパク質のみが記述されている。Dang et al., J. Natl. Can. Instit. 92(16):1355-1357 (2000) を参照されたい。RNA結合性タンパク質−6(EML−4)の発現及び/又は活性の欠失が、小細胞及び非小細胞の肺癌に見出されている。Drabkin et al., Oncogene 8(16):2589-97 (1999) を参照されたい。しかしながら今日まで、ヒトNSCLC癌におけるプロテインキナーゼに関する転座又は欠失については記述されていない。

大細胞未分化リンパ腫におけるNPMのALKへの融合に起因するALKキナーゼ発現の欠失については記述されている。Morris et al., 1994; Shiota et al., 1994 を参照されたい。モエシン、非筋ミオシン重鎖9(Tort et al., 2001)、クラスリン重鎖(Touriol et al., 2000; Bridge et al., 2001)、トロポミオシン3(TPM3)(Lamant et al., 2000; Bridge et al., 2001)、TRK−融合遺伝子(TGF)(Hernandez et al., Am. J. Path. 160(4):1487-1493 (2002))及び他の遺伝子へのALKの融合について述べられている。特に、TGF−ALK融合は非固形リンパ腫について報告されているが、今日まで固形腫瘍におけるこの融合については述べられていない。癌におけるALKの一般的な役割については述べられている。Pulford et al., J. Cell Physiol. 199(3):330-358 (2004) を参照されたい。しかしながら今日まで、EML−4の発現及び/又は活性化の欠失については記述されていない。

ヒトの癌における突然変異を同定することは、それがそのような融合又は突然変異タンパク質を標的とする新規治療法の開発、及びそのような遺伝子突然変異を有する患者を同定する新規な診断法をもたらすことができるので非常に望ましい。例えば、BCR−ABLは、白血病治療するための治療標的になってきている。最近、ABLキナーゼの低分子阻害剤である、グリーベック登録商標)(Gleevec;メシル酸イマチニブ;Imatinib mesylate;STI−571)がCMLの治療薬として承認された。この薬剤は、ガン細胞の生育を促進するシグナル伝達経路を妨害するようにデザインされた新しい分類抗増殖剤の第1号である。この薬剤の開発は、CML及びALLの従来の治療法である、化学療法及び照射療法(これらはよく知られている副作用によって悩まされ、そして悪性腫瘍根本原因を特異的に標的とすることができないためしばしば限られた効果のみを有している)を越える有意義な進歩を示している。同様に、グリーベック(登録商標)のような標的の阻害剤に対して最も応答可能性がある患者を同定するために、患者におけるBCR−ABL融合タンパク質を特異的に検出する試薬及び方法が記述されている。

概要

ヒト非小細胞肺癌(NSCLC)患者から得られる生体試料において突然変異未分化リンパ腫キナーゼ(ALK)ポリヌクレオチドの存在を検出する方法を提供する。特定のアミノ酸配列を有しALKキナーゼ活性を有するALK融合ポリペプチドをコードするALK融合ポリヌクレオチドが該試料中に存在することを検出することを含み、該検出がALK融合ポリヌクレオチドのALK部分にハイブリダイズする一対のオリゴヌクレオチドを用いたポリメラーゼ連鎖反応PCR)の実施を含む、方法。A

目的

本発明は、1つには、開示した突然変異/融合ALKポリペプチドをコードする単離されたポリヌクレオチド及びベクター、これらを検出するプローブ及びアッセイ、単離された突然変異/融合ALKポリペプチド、組み換え突然変異ポリペプチド、及び突然変異ALKポリヌクレオチド及びポリペプチドを検出する試薬を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

ヒト非小細胞肺癌(NSCLC)患者から得られる生体試料において突然変異未分化リンパ腫キナーゼ(ALK)ポリヌクレオチドの存在を検出する方法であって、配列番号5で表されるアミノ酸配列のうち1116−1383番目アミノ酸残基を含有し且つALKキナーゼ活性を有するALK融合ポリペプチドをコードするALK融合ポリヌクレオチドが該試料中に存在することを検出することを含み、該検出がALK融合ポリヌクレオチドのALK部分にハイブリダイズする一対のオリゴヌクレオチドを用いたポリメラーゼ連鎖反応PCR)の実施を含む、方法。

請求項2

ALK融合ポリヌクレオチドがmRNA又はDNAである、請求項1に記載の方法。

請求項3

検出が、核酸配列決定を含む、請求項1に記載の方法。

請求項4

生体試料が、生検組織試料又は胸水試料である、請求項1〜3の何れか一項に記載の方法。

技術分野

0001

(関連出願)
本出願は、現在審査中の、2006年4月14に出願された米国特許出願番号(USSN)第60/792,364号の優先権を主張し、その開示の全てを参照して本明細書に組み入れる。

0002

本発明は一般に、癌に含まれているタンパク質及び遺伝子、及び癌の検出、診断及び治療に関する。

背景技術

0003

多くの癌は、細胞過程の異常な制御、又は細胞の無制御の生育及び増殖をもたらす細胞シグナル伝達経路障害によって特徴付けられる。これらの障害はしばしば、キナーゼのような、特定のシグナル伝達タンパク質の活性の変化に起因している。これらの癌の代表的なものは、非小細胞肺癌(NSCLC)のような固形腫瘍である。NSCLCは米国における癌による死亡の主要な原因であって、全肺癌の約87%を占めている。米国において年間約151,000のNSCLCの新症例があり、そして米国だけでもこの疾患によって年間120,000人を超える患者が死亡すると予測されている。米国癌協会の「Cancer Facts and Figures 2005」を参照されたい。NSCLCは3つの異なったサブタイプを含んでいて、しばしば転移してからしか検出されないので、診断から2年以内の死亡率は75%である。

0004

キナーゼ融合タンパク質に異常なシグナル伝達活性をもたらす遺伝子の欠失及び転座が幾つかの癌に直接つながり得るということはよく知られている。例えば、チロシンキナーゼ融合タンパク質である、BCR−ABL癌タンパク質はヒトの慢性骨髄性白血病CML)の原因物質であると言うことが直接立証されている。CML症例の少なくとも90〜95%に見出されているBCR−ABL癌タンパク質は、いわゆるフィラデルフィア染色体を生成する、染色体9上のc−ABLタンパクチロシンキナーゼから染色体22上のBCR配列への遺伝子配列の転座によって生成される。例えば、Kurzock et al., N. Engl. J. Med. 319:990-998(1988)を参照されたい。この転座は急性リンパ性白血病及びNSCLCの症例においても観察される。

0005

他の様々の癌に関連している突然変異体及び融合タンパク質をもたらす遺伝子の転座及び欠失が記述されている。例えば、Falini et al,. Blood 99(2):409-426 (2002) は、ALCL(未分化大細胞型リンパ腫Anaplastic Large Cell Lymphoma )に見られるNPM−ALK融合を包含して、血液癌をもたらすことが知られている転座について概説している。今日まで、ノッチ3に関連するt(15;19)転座を含めて、限られた数の肺癌をもたらす遺伝子転座、欠失及び突然変異タンパク質のみが記述されている。Dang et al., J. Natl. Can. Instit. 92(16):1355-1357 (2000) を参照されたい。RNA結合性タンパク質−6(EML−4)の発現及び/又は活性の欠失が、小細胞及び非小細胞の肺癌に見出されている。Drabkin et al., Oncogene 8(16):2589-97 (1999) を参照されたい。しかしながら今日まで、ヒトNSCLC癌におけるプロテインキナーゼに関する転座又は欠失については記述されていない。

0006

大細胞未分化リンパ腫におけるNPMのALKへの融合に起因するALKキナーゼ発現の欠失については記述されている。Morris et al., 1994; Shiota et al., 1994 を参照されたい。モエシン、非筋ミオシン重鎖9(Tort et al., 2001)、クラスリン重鎖(Touriol et al., 2000; Bridge et al., 2001)、トロポミオシン3(TPM3)(Lamant et al., 2000; Bridge et al., 2001)、TRK−融合遺伝子(TGF)(Hernandez et al., Am. J. Path. 160(4):1487-1493 (2002))及び他の遺伝子へのALKの融合について述べられている。特に、TGF−ALK融合は非固形リンパ腫について報告されているが、今日まで固形腫瘍におけるこの融合については述べられていない。癌におけるALKの一般的な役割については述べられている。Pulford et al., J. Cell Physiol. 199(3):330-358 (2004) を参照されたい。しかしながら今日まで、EML−4の発現及び/又は活性化の欠失については記述されていない。

0007

ヒトの癌における突然変異を同定することは、それがそのような融合又は突然変異タンパク質を標的とする新規治療法の開発、及びそのような遺伝子突然変異を有する患者を同定する新規な診断法をもたらすことができるので非常に望ましい。例えば、BCR−ABLは、白血病を治療するための治療標的になってきている。最近、ABLキナーゼの低分子阻害剤である、グリーベック登録商標)(Gleevec;メシル酸イマチニブ;Imatinib mesylate;STI−571)がCMLの治療薬として承認された。この薬剤は、ガン細胞の生育を促進するシグナル伝達経路を妨害するようにデザインされた新しい分類抗増殖剤の第1号である。この薬剤の開発は、CML及びALLの従来の治療法である、化学療法及び照射療法(これらはよく知られている副作用によって悩まされ、そして悪性腫瘍根本原因を特異的に標的とすることができないためしばしば限られた効果のみを有している)を越える有意義な進歩を示している。同様に、グリーベック(登録商標)のような標的の阻害剤に対して最も応答可能性がある患者を同定するために、患者におけるBCR−ABL融合タンパク質を特異的に検出する試薬及び方法が記述されている。

発明が解決しようとする課題

0008

従って、ヒトの癌、特にNSCLCのような肺癌を包含する固形腫瘍の進展に関わる融合又は突然変異のタンパク質をもたらす転座若しくは欠失ような、新規な遺伝子突然変異体の同定、及びそのような融合タンパク質の検討及び検出のための試薬及び方法が必要とされている。とりわけ、そのような融合タンパク質の同定は、標的治療のために患者を選択するための、更にそのような突然変異/融合タンパク質を阻害する新規な薬剤をスクリーニングするための新規な方法を望ましく可能とするであろう。

課題を解決するための手段

0009

(発明の要約)
本発明に従い、ヒト染色体2で生ずる、未分化リンパ腫キナーゼ(ALK)の部分が二次タンパク質と結合している融合タンパク質をもたらす新規の遺伝子の欠失変異が、ヒト固形腫瘍である非小細胞肺癌(NSCLC)中で同定された。ALK融合に関わる二次タンパク質は微小管結合タンパク質様4(EML−4)及びTRK−融合遺伝子(TFG)を包含している。突然変異/融合ALKキナーゼは現在、非小細胞肺癌患者の試料中で観察されている。

0010

従って本発明は、1つには、開示した突然変異/融合ALKポリペプチドをコードする単離されたポリヌクレオチド及びベクター、これらを検出するプローブ及びアッセイ、単離された突然変異/融合ALKポリペプチド、組み換え突然変異ポリペプチド、及び突然変異ALKポリヌクレオチド及びポリペプチドを検出する試薬を提供する。開示する、これらの新規な変異ALKキナーゼ及び転座/欠失の同定は、生体試料における変異ALKポリヌクレオチド又はポリペプチドの存在を判定する新規な方法、突然変異キナーゼタンパク質を阻害する化合物をスクリーニングする方法、及び突然変異ALKポリヌクレオチド又はポリペプチドの発現によって特徴付けられる癌の進展を阻害する方法を可能として、これらもまた本発明により提供される。
すなわち、本発明は、以下の(1)から(43)に関する。
(1)(a)配列番号1又は配列番号18のアミノ酸配列を含有している微小管結合タンパク質様4/未分化リンパ腫キナーゼ(Echinoderm Microtubule-Associated Protein-Like 4/Anaplastic Lymphoma Kinase;EML4−ALK)融合ポリペプチドをコードするヌクレオチド配列
(b)EML4−ALK融合ポリペプチドをコードするヌクレオチド配列であって、そのヌクレオチド配列は配列番号2又は配列番号19のヌクレオチド配列を含有している;
(c)EML−4のN−末端アミノ酸配列(配列番号3の残基1−233又は配列番号3の残基1−495)及びALKのキナーゼドメイン(配列番号5の残基1116−1383)を含有しているEML4−ALK融合ポリペプチドをコードするヌクレオチド配列;
(d)EML−4のN−末端ヌクレオチド配列(配列番号4の1−700ヌクレオチド又は配列番号4の1−1486ヌクレオチド)及びALKのキナーゼドメインヌクレオチド配列(配列番号6の3348−4149ヌクレオチド)を含有しているヌクレオチド配列;
(e)EML4−ALK融合ポリヌクレオチドの融合接合部(配列番号2の700−701ヌクレオチド又は配列番号19の1486−1487ヌクレオチド)を包含するする少なくとも6つの隣接ヌクレオチドを含有しているヌクレオチド配列;
(f)EML4−ALK融合ポリペプチドの融合接合部(配列番号1の残基233−234又は配列番号18の残基495−496)を包含する少なくとも6つの隣接アミノ酸を含有しているポリペプチドをコードするヌクレオチド配列;及び
(g)(a)〜(f)のヌクレオチド配列の何れかと相同性があるヌクレオチド配列:
よりなる群から選ばれる配列と少なくとも95%の相同性を有するヌクレオチド配列を含有している、単離されたポリヌクレオチド。
(2)ストリンジェントハイブリダイゼーション条件下で前記(1)に記載のポリヌクレオチドにハイブリダイズする単離されたポリヌクレオチドであって、当該ハイブリダイズする単離されたポリヌクレオチドがストリンジェントなハイブリダイゼーション条件下でA残基のみ又はT残基のみを含有するヌクレオチド配列を有するポリヌクレオチドにハイブリダイズしない、単離されたポリヌクレオチド。
(3)当該ポリヌクレオチドが更に検出可能な標識を含有している、前記(2)に記載の単離されたポリヌクレオチド。
(4)前記(1)に記載の単離された核酸分子をベクターに挿入することを含有してなる、組み換えベクターを形成する方法。
(5)前記(4)に記載の方法で作成された組み換えベクター。
(6)前記(5)に記載の組み換えベクターを宿主細胞に導入することを含有してなる、組み換え宿主細胞を作成する方法。
(7)前記(6)に記載の方法で形成された組み換え宿主細胞。
(8)当該方法がEML4−ALK融合ポリペプチドの発現に適している条件下で、前記(7)に記載の組み換え宿主細胞を培養し、そして当該ポリペプチドを回収することを含有してなる、組み換えEML4−ALK融合ポリペプチド又は切断された活性ALKポリペプチドを作成する方法。
(9)(a)配列番号1又は配列番号18のアミノ酸配列を含有している、EML4−ALK融合ポリペプチドをコードするアミノ酸配列;
(b)EML−4のN−末端アミノ酸配列(配列番号3の残基1−233又は配列番号3の残基1−495)及びALKのキナーゼドメイン(配列番号5の残基1116−1383)を含有している、EML4−ALK融合ポリペプチドをコードするアミノ酸配列;及び
(c)EML4−ALK融合ポリペプチドの融合接合部(配列番号1の残基233−234又は配列番号18の残基495−496)を包含する少なくとも6つの隣接アミノ酸を含有しているポリペプチドをコードするアミノ酸配列:
よりなる群から選ばれる配列に少なくとも95%の相同性を有するアミノ酸配列を含有している、単離されたポリペプチド。
(10)前記(5)に記載の組み換えベクター又は前記(7)に記載の組み換え宿主細胞を用いて作成された組み換えEML4−ALK融合ポリペプチド又は切断された活性ALKポリペプチド。
(11)前記(9)に記載のEML4−ALK融合ポリペプチドに特異的に結合するか又はこれを検出するが、野生型のEML−4又は野生型のALKの何れとも結合しないか又はこれを検出しない、単離された試薬。
(12)当該試薬が抗体又は重同位体標識化(AQUAペプチドである、前記(11)に記載の単離された試薬。
(13)当該試薬がポリメラーゼ連鎖反応PCR)プローブ又は蛍光in situハイブリダイゼーション(FISH)プローブである、前記(11)に記載の単離された試薬。
(14)当該ペプチドがEML4−ALK融合ポリペプチドの融合接合部又は野生型ALKの切断点のアミノ酸配列を含有している、前記(12)に記載の重同位体標識化(AQUA)ペプチド。
(15)当該方法が工程:
(a)哺乳類の癌から生体試料を得ること;及び
(b)融合ポリヌクレオチド、又はALKの部分と二次タンパク質の部分を含有している、そのコードされた融合ポリペプチドを検出する少なくとも1つの試薬を用いて、ALK突然変異ポリヌクレオチド及び/又はそのコードされた突然変異ALKポリペプチドが当該生体試料中に存在するか否かを判定すること:
を含有してなる、哺乳類の癌から得られる生体試料における、突然変異ALKポリヌクレオチド又はそれがコードする突然変異ALKポリペプチドの存在を検出する方法。
(16)当該癌が固形腫瘍、肉腫又は癌腫である、前記(15)に記載の方法。
(17)当該癌腫が肺癌である、前記(16)に記載の方法。
(18)当該肺癌が非小細胞肺癌(NSCLC)である、前記(17)に記載の方法。
(19)当該突然変異ALKポリペプチドが、ALK(配列番号5)の残基1116−1383と当該二次タンパク質の部分を含有している融合ポリペプチドである、前記(15)に記載の方法。
(20)当該二次タンパク質が、EML−4(配列番号3)及びTRK−融合遺伝子(TFG)タンパク質(配列番号22)よりなる群から選ばれる、前記(15)又は(16)に記載の方法。
(21)当該融合ポリペプチドがEML−4(配列番号3)の残基1−233又は残基1−495、又はTFG(配列番号22)の残基1−138を含有している、前記(20)に記載の方法。
(22)当該融合ポリヌクレオチドが、EML4−ALK融合ポリヌクレオチド(配列番号2又は19)又はTFG−ALK融合ポリヌクレオチド(配列番号21)を含有している、前記(15)に記載の方法。
(23)当該融合ポリペプチドが、EML4−ALK融合ポリペプチド(配列番号1又は18)又はTFG−ALK融合ポリペプチド(配列番号20)を含有している、前記(15)に記載の方法。
(24)当該融合ポリヌクレオチドが、前記(1)に記載の融合ポリヌクレオチドである、前記(15)に記載の方法。
(25)当該融合ポリペプドが、前記(9)に記載の融合ポリペプドである、前記(15)に記載の方法。
(26)当該試薬が、前記(1)に記載のポリヌクレオチド及び/又は前記(11)に記載の少なくとも1つの試薬を含有している、前記(15)に記載の方法。
(27)当該試薬が、TFG−ALK融合ポリペプチド(配列番号20)又はTFG−ALK融合ポリヌクレオチド(配列番号21)と特異的に結合するか又はこれを検出するが、野生型のTFG又は野生型のALKの何れとも結合しないか又は検出しない単離された試薬を含有している、前記(15)に記載の方法。
(28)当該試薬が抗体又は重同位体標識化(AQUA)ペプチドである、前記(27)に記載の方法。
(29)当該試薬がポリメラーゼ連鎖反応(PCR)プローブ又は蛍光in situハイブリダイゼーション(FISH)プローブである、前記(27)に記載の方法。
(30)当該重同位体標識化(AQUA)ペプチドがTGF−ALK融合ポリペプチドの融合接合部又は野生型ALKの切断点のアミノ酸配列を含有している、前記(28)に記載の方法。
(31)当該方法が、フローサイトメトリー(FC)、免疫組織化学検査(IHC)、又は免疫蛍光法(IF)のアッセイ形式で実施される、前記(15)に記載の方法。
(32)当該方法が、蛍光in situハイブリダイゼーション(FISH)又はポリメラーゼ連鎖反応(PCR)のアッセイ形式で実施される、前記(15)に記載の方法。
(33)当該ALK融合ポリペプチドの活性を検出する、前記(15)に記載の方法。
(34)当該方法が、当該癌におけるALK融合ポリペプチドの発現及び/又は活性を当該化合物が阻害するか否かを判定する工程を含有してなる、化合物がALK融合ポリペプチドの発現を特徴としている哺乳類の固形腫瘍の進展を阻害するか否かを判定する方法。
(35)当該ALK融合ポリペプチドが、ALK(配列番号5)の残基1116−1383と当該二次タンパク質の部分を含有している、前記(34)に記載の方法。
(36)当該二次タンパク質が、EML−4(配列番号3)及びTRK−融合遺伝子(TFG)タンパク質(配列番号22)よりなる群から選ばれる、前記(34)に記載の方法。
(37)当該融合ポリペプチドがEML−4(配列番号3)の残基1−233又は残基1−495、又はTFG(配列番号22)の残基1−138を含有している、前記(36)に記載の方法。
(38)当該ALK融合ポリペプチドの発現及び/又は活性の阻害が、前記(1)に記載のポリヌクレオチドを検出する少なくとも1つの試薬及び/又は前記(11)に記載の少なくとも1つの試薬及び/又はTFG−ALK融合ポリヌクレオチド又はポリペプチドを検出する少なくとも1つの試薬を用いて判定される、前記(34)に記載の方法。
(39)当該方法が、当該癌における当該EML4−ALK融合ポリペプチドの発現及び/又は活性を阻害する工程を含有してなる、EML4−ALK融合ポリペプチドを発現する癌の進展を阻害する方法。
(40)当該方法が、当該癌における当該TFG−ALK融合ポリペプチドの発現及び/又は活性を阻害する工程を含有してなる、TFG−ALK融合ポリペプチドを発現する固形腫瘍の進展を阻害する方法。
(41)当該癌又は当該固形腫瘍が肺癌である、前記(39)又は(40)に記載の方法。
(42)当該肺癌が非小細胞肺癌(NSCLC)である、前記(41)に記載の方法。
(43)当該EML4−ALK融合ポリペプチド又は当該TFG−ALK融合ポリペプチドの発現及び/又は活性が、WHI−131及び/又はWHI−154、又はその類縁体を含有している組成物で阻害される、前記(39)又は(40)に記載の方法。
本発明の態様及び実施態様を以下により詳細に記載する。

図面の簡単な説明

0011

図1Aは、染色体2上のEML−4遺伝子及びALK遺伝子の位置(上の図)、及び全長EML−4及びALKタンパク質ドメイン位置、更にはEML4−ALK融合タンパク質(短い変異体)のドメイン位置(下の図)を示し;融合接合部がアミノ酸233−234に生じ、そして融合タンパク質がALKのキナーゼドメイン(膜貫通及び細胞外ではないドメイン)を含んでいる。EML4エクソン6/イントロン6/ALKエクソン20融合接合部領域のDNA(及びタンパク質)配列(それぞれ、配列番号7及び配列番号8)も示している(下の図)。
図1Bは、染色体2上のEML−4遺伝子及びALK遺伝子の位置(上の図)、及び全長EML−4及びALKタンパク質のドメイン位置、更にはEML4−ALK融合タンパク質(長い変異体)のドメイン位置(下の図)を示し;融合接合部がアミノ酸495−496に生じ、そして融合タンパク質がALKのキナーゼドメイン(膜貫通及び細胞外ではないドメイン)を含んでいる。EML4エクソン13/ALKエクソン20融合接合部領域のDNA(及びタンパク質)配列(それぞれ、配列番号24及び配列番号25)も示している(下の図)。
図1Cは、染色体6上のTFG遺伝子及び染色体2上のALK遺伝子の位置(上の図)、及び全長TFG及びALKタンパク質のドメイン位置、更にはTFG−ALK融合タンパク質のドメイン位置(下の図)を示し;融合接合部がアミノ酸138−139に生じ、そして融合タンパク質がALKのキナーゼドメイン(膜貫通及び細胞外ではないドメイン)を含んでいる。TFGエクソン3/ALKエクソン20融合接合部領域のDNA(及びタンパク質)配列(それぞれ、配列番号26及び配列番号27)も示している(下の図)。
図2Aは、ヒトEML4−ALK融合タンパク質(短い変異体)のアミノ酸配列(1文字コード)(配列番号1)(上の図)であって、コードするDNA配列(配列番号2)(下の図)も示している。EML−4部分の残基はイタリック体であり、一方、ALKのキナーゼドメインはボールド体である。
図2Bは、ヒトEML4−ALK融合タンパク質(長い変異体)のアミノ酸配列(1文字コード)(配列番号18)(上の図)であって、コードするDNA配列(配列番号19)(下の図)も示している。EML−4部分の残基はイタリック体であり、一方、ALKのキナーゼドメインはボールド体である。
図2Bは、ヒトEML4−ALK融合タンパク質(長い変異体)のアミノ酸配列(1文字コード)(配列番号18)(上の図)であって、コードするDNA配列(配列番号19)(下の図)も示している。EML−4部分の残基はイタリック体であり、一方、ALKのキナーゼドメインはボールド体である。
図2Cは、ヒトTFG−ALK融合タンパク質のアミノ酸配列(1文字コード)(配列番号20)(上の図)であって、コードするDNA配列(配列番号21)(下の図)も示している。TFG部分の残基はイタリック体であり、一方、ALKのキナーゼドメインはボールド体である。
図3A−3Bは、ヒトEML−4タンパク質のアミノ酸配列(1文字コード)(配列番号3)(SwissProt Accession No.061936)であって、コードするDNA配列(配列番号4)(GeneBank Accession No.NM019063)も示している。欠失変異体の短い変異体に保持されている残基は下線付きで、一方、長い変異体に保存されている残基はイタリック体である。
図3A−3Bは、ヒトEML−4タンパク質のアミノ酸配列(1文字コード)(配列番号3)(SwissProt Accession No.061936)であって、コードするDNA配列(配列番号4)(GeneBank Accession No.NM019063)も示している。欠失変異体の短い変異体に保持されている残基は下線付きで、一方、長い変異体に保存されている残基はイタリック体である。
図3A−3Bは、ヒトEML−4タンパク質のアミノ酸配列(1文字コード)(配列番号3)(SwissProt Accession No.061936)であって、コードするDNA配列(配列番号4)(GeneBank Accession No.NM019063)も示している。欠失変異体の短い変異体に保持されている残基は下線付きで、一方、長い変異体に保存されている残基はイタリック体である。
図4A−4Bは、ヒトALKキナーゼのアミノ酸配列(1文字コード)(配列番号5)(SwissProt Accession No.Q9UM73)であって、コードするDNA配列(配列番号6)(GeneBank Accession No.HSU66559)も示している。欠失変異体に保持されている残基は下線付きで、一方、キナーゼドメインの残基はボールド体である。
図4A−4Bは、ヒトALKキナーゼのアミノ酸配列(1文字コード)(配列番号5)(SwissProt Accession No.Q9UM73)であって、コードするDNA配列(配列番号6)(GeneBank Accession No.HSU66559)も示している。欠失変異体に保持されている残基は下線付きで、一方、キナーゼドメインの残基はボールド体である。
図4A−4Bは、ヒトALKキナーゼのアミノ酸配列(1文字コード)(配列番号5)(SwissProt Accession No.Q9UM73)であって、コードするDNA配列(配列番号6)(GeneBank Accession No.HSU66559)も示している。欠失変異体に保持されている残基は下線付きで、一方、キナーゼドメインの残基はボールド体である。
図4C−4Dは、ヒトTFGタンパク質のアミノ酸配列(1文字コード)(配列番号22)(SwissProt Accession No.Q92734)であって、コードするDNA配列(配列番号23)(GeneBank Accession No.NM006070)も示している。欠失変異体に保持されている残基は下線付きである。
図4C−4Dは、ヒトTFGタンパク質のアミノ酸配列(1文字コード)(配列番号22)(SwissProt Accession No.Q92734)であって、コードするDNA配列(配列番号23)(GeneBank Accession No.NM006070)も示している。欠失変異体に保持されている残基は下線付きである。
図5は、(A)PCRの第2ラウンド後のALKプライマーでの5’RACE生成によるALKの検出;UAPは、ユニバーサル増幅プライマー(Universal Amplification Primer)を示し、GSPは遺伝子特異的プライマー(Gene Specific Primer)を示す、(B)RT−PCRによるEML−4及びALK欠失変異体によって形成された融合遺伝子の検出、を表しているゲルである。
図5は、(C)5’RACEによるヒトNSCLC腫瘍試料中のEML4−ALK融合遺伝子(短い変異体及び長い変異体)の検出、そして(D)5’RACEによるヒトNSCLC腫瘍試料中のTFG−ALK融合遺伝子の検出、を表しているゲルである。
図6は、ALK遺伝子の切断点2p23の両側にプローブを含有している、2色(橙色/緑色)分解プローブを用いるFISHアッセイによるH2228細胞中のEML−4及びALKの転座によって形成された融合遺伝子の検出を表している画像であって;プローブの大きさ及び位置が上の図に示されている。

0012

(発明の詳細な説明)
本発明により、未分化リンパ腫キナーゼ(ALK)の部分が二次タンパク質の部分と結合している突然変異融合タンパク質をもたらす従来知られていない遺伝子の欠失及び転座が、ヒト固形腫瘍である非小細胞肺癌(NSCLC)中で同定された。発見されたALK融合に関わる二次タンパク質は微小管結合タンパク質様4(EML−4)及びTRK−融合遺伝子(TFG)を包含している。

0013

EML4と染色体2上のALK遺伝子の間に生じる本開示の二つの欠失は、401のアミノ酸の微小管結合タンパク質であるEML−4のN−末端が、1620のアミノ酸の膜チロシンキナーゼであるキナーゼドメイン及びALKのC−末端と結合する融合タンパク質を産生する。それぞれ796のアミノ酸(短い変異体)及び1059のアミノ酸(長い変異体)であって、ALKキナーゼ活性を保持している、生じたEML4−ALK融合タンパク質が、NSCLCを包含するヒト固形腫瘍サブセットの増殖及び生存を促進すると考えられる。

0014

染色体6上のTFG遺伝子と染色体2上のALK遺伝子の間に生じる本開示の転座は、400のアミノ酸タンパク質であるTFGのN−末端が、1620のアミノ酸の膜チロシンキナーゼであるキナーゼドメイン及びALKのC−末端と結合する融合タンパク質を産生する。得られるTFG−ALK融合タンパク質は、701のアミノ酸であり、非固形ヒトリンパ腫で以前に観察されている(Hernadez et al. (2002)、supra.)が、固形腫瘍については未だ記述されていない。TFG−ALK融合タンパク質はALKキナーゼ活性を保持しており、そしてNSCLCを包含するヒト固形腫瘍のサブセットの増殖及び生存を促進することが考えられる。

0015

ノッチ3に関するt(15;19)転座(Dang et al., supra.)を含む、異常な融合タンパク質をもたらす幾つかの遺伝子転座又は欠失が、NSCLCにおいて述べられているが、本開示のEML4−ALKの欠失変異体及び融合タンパク質は新規である。同様に、TFG−ALKの転座変異体及び融合タンパク質は、リンパ腫のような非固形腫瘍においては知られているが、固形腫瘍であるNSCLにおいては新規である。EML−4は、殆どのヒト組織中で発現される微小管関連タンパク質である。現在まで、EML−4の発現及び/又は活性の欠陥については報告されていない。ALKは膜チロシンキナーゼであって、ヒトにおいては、脳及びCNS組織、さらに小腸及び睾丸においても発現されるが、正常なリンパ細胞では発現されない。これは神経系の正常な発達及び機能において重要な役割を果たしている(Iwahara et al., 1997)。

0016

ALKの発現及び/又は活性の異常は大細胞型未分化リンパ腫及び神経芽細胞腫において見出されている(Morris et al., 1994, Osajima-Hakomori et al., 2005 を参照されたい)。モエシン、非筋ミオシン重鎖9、クラスリン重鎖トロミシン3(TPM3)、TRK融合遺伝子(TFG)、及び他の遺伝子へのALKの融合が記述されている。Tort et al.; Tourio et al., Hernadez et al., supra.を参照されたい。興味深いことに、開示されているEML−4のALK(短い変異体)への融合は、他のALK融合突然変異体について既に記載されているように、野生型ALK(アミノ酸1058個)と正確に同じ位置で生じる。

0017

以下に更に詳細に述べるように、EML4−ALK欠失変異体及び発現された融合タンパク質が単離され、配列決定され、融合タンパク質を発現するcDNAが産生される。従って、本発明は、一つには、EML4−ALKの融合ポリペプチドをコードする単離されたポリヌクレオチド、そのようなポリヌクレオチドへハイブリダイズする核酸プローブ、及び組み換えの突然変異ALKポリペプチドを産生するためのそのようなポリヌクレオチドを利用するための方法、ベクター及び宿主細胞を提供する。本発明は、一つには、EML4−ALKの融合ポリペプチドをコードするアミノ酸配列を含んでいる単離されたポリペプチド、組み換えの突然変異ポリペプチド、及びEML4−ALKの融合ポリペプチドと特異的に結合及び/又はこれを検出するが、野生型のEML−4又は野生型のALKの何れとも結合又はこれを検出しない単離された試薬も提供する。以下に更に詳細に述べている、本発明のこれらの態様は、とりわけ、突然変異ALKキナーゼの発現/活性によって促進される癌のメカニズムの更なる研究、固形腫瘍(例えば、肺癌を包含する癌腫及び肉腫)及び開示のALK欠失及び転座変異及び/又は融合タンパク質によって特徴付けられる他の癌の同定、及び以下に更に記載するような本発明の方法の実施において有用であろう。

0018

新規なALKキナーゼの突然変異体及び遺伝子の欠失及び転座変異は、これらの融合タンパク質の1つ又はそれ以上により特徴付けられる、NSCLCのような、固形腫瘍の潜在的診断及び治療において重要な意味を有している。例えば、NSCLCは多くの場合に、それが転移した後にしか検出されないので、診断2年以内の死亡率は75%である。従って、NSCLCを引き起こす遺伝子突然変異を有している患者をできるだけ早く同定することが非常に望ましい。

0019

従って、固形腫瘍(NSCLC)の増殖及び生存を促進すると考えられる、遺伝子欠失によってもたらされるEML4−ALK融合タンパク質(短い又は長い変異体)及び遺伝子転座によってもたらされるTFG−ALK融合タンパク質の発見は、肺癌(NSCLCのような)を含む哺乳類の固形腫瘍を、更にはALK融合タンパク質(EML4−ALK又はTFG−ALKのような)が発現される他の癌を的確に同定する重要な新規な方法を可能にする。これらの癌は、WHI−131又はWHI−154のような、突然変異ALKタンパク質のキナーゼ活性の阻害剤に応答する可能性が最も高い。突然変異ALKタンパク質キナーゼによって促進される癌をできるだけ早く同定することは、どの療法又は併用療法が特定の患者に対して最も適しているかを臨床的に判断するのに大いに役立ち、実際には癌を促進する主要なシグナル伝達分子ではない、他のキナーゼを標的とする阻害剤の処方を避けることに役立つであろう。

0020

従って、本発明は、一つには、癌におけるALK突然変異ポリヌクレオチド及び/又は融合ポリペプチドの存在を、本発明の融合特異的及び突然変異体特異的な試薬を用いて検出する方法を提供する。そのような方法は、例えば、タンパク質のALKキナーゼ活性の阻害剤に応答すると思われる、NSCLCのような、固形腫瘍を同定するために実施することができる。本発明は、一つには、ある化合物がEML4−ALK融合ポリペプチドによって特徴付けられる癌の進展を阻害するか否かを判定する方法も提供する。更に、突然変異ポリペプチドの発現及び/又は活性を阻害することによって、EML4−ALK融合ポリペプチド又はTFG−ALK融合ポリペプチドを発現する固形腫瘍の進展を阻害する方法が本発明によって提供される。そのような方法を以下に詳細に記述する。

0021

本発明の更なる態様、利益及び具体的態様は以下により詳細に記述されている。本明細書で引用する全ての文献はその全てを参照して本明細書に取り込まれる。

0022

(定義)
本明細書では、以下の用語は表記の意味を有している。
「抗体」(複数を含む)は、Fab又はその抗原認識断片を包含し、キメラポリクローナル及びモノクローナル抗体を包含する、IgGIgMIgA、及びIgEを含んでいる全てのタイプの免疫グロブリンを示す。本明細書では、用語「ヒト化抗体」は、元の結合能力を保持しながら、ヒト抗体により酷似するように、非抗原結合領域のアミノ酸を置き換えた抗体を示す。

0023

用語「生物学的に活性な」は、天然に存在する分子構造的、調節的、又は生化学的機能を有しているタンパク質を示す。同様に、「免疫学的に活性な」は、天然、組み換え、又は合成のEML4−ALK又はTFG−ALK融合ポリペプチド、又はそれらのオリゴペプチドの、しかるべき動物又は細胞に特異的な免疫応答を誘発して特異抗体と結合する能力を示す。

0024

用語「生体試料」は、その広い意味で用いられて、ALK融合のポリヌクレオチド又はポリペプチド又はその断片(EML4−ALK及びTFG−ALKの融合ポリヌクレオチド及びポリペプチドを包含する)を含有していることが推測される何れかの生体試料を意味し、そして細胞、細胞から単離された染色体(例えば、分裂中期染色体の核酸)、ゲノムDNA(溶液中又はサウザン分析用のように固体支持体に結合して)、RNA(溶液中又はノーザン分析用のように固体支持体に結合して)、cDNA(溶液中又は固体支持体に結合して)、細胞からの抽出物、血液、尿、骨髄、又は組織などを含有していてよい。

0025

癌及び突然変異ALKポリヌクレオチド及びポリペプチドに関する「によって特徴付けられる」は、遺伝子の欠失又は転座及び/又は発現されたALKに関するポリペプチドが、そのような遺伝子欠失及び/又は融合ポリペプチドが存在していない癌と比べて、存在している癌を示す。突然変異ポリペプチドの存在が、全部又は一部において、そのような癌の生育又は生存を促進する可能性がある。

0026

コンセンサス配列」は、不要な塩基を削除するめに再配列されている、又はXL−PCR(登録商標、Perkin Elmer, Norwalk, Conn.)を用いて5’及び/又は3’方向に延伸されて再配列されている、又はGELVIEW(登録商標)のフラグメントアセンブリーシステムGCG, Madison, Wis.)を用いて2つ以上のインサイトクローン重複配列構築されている、又は延伸され構築されている、核酸配列を示す。

0027

「ALKキナーゼ阻害療法剤」は、野生型又は切断型のALKキナーゼの発現又は活性を、単独で及び/又は融合タンパク質(EML4−ALK融合タンパク質又はTFG−ALK融合タンパク質のような)の一部として、直接的又は間接的の何れかで阻害する、1つ又はそれ以上の化学的又は生物学的な化合物を含有している何れかの組成物を意味する。

0028

誘導体化」は、開示した融合ポリヌクレオチドをコードする核酸配列又はコードされたポリペプチド自体の化学修飾を示す。そのような修飾の例はアルキル基アシル基、又はアミノ基による水素置換であるだろう。核酸誘導体は天然の分子の必須の生物学的特性を保持しているポリペプチドをコードするであろう。

0029

本明細書に開示されるポリペプチド、ポリヌクレオチド、又は試薬に関する「検出可能な標識」は、これに限定されないが、蛍光、質量、残基、染色、放射性同位体、標識、又はタグ修飾等を包含し、これによって目的の分子の存在を検出できる、化学的、生物学的又は他の修飾を意味する。

0030

生体試料中のALK融合ポリペプチドに関する「発現」又は「発現された」は、この融合ポリペプチドが有意に発現されない対照試料と比べて、有意に発現されることを意味する。

0031

「重同位体標識化ペプチド」(AQUAペプチドと同義語で用いられる)は、少なくとも1つの重同位体標識を含んでいるペプチドを意味し、これは、更に以下で検討する、国際公開WO第03/016861号公報、「多段階質量分析よるタンパク質及びその修飾形態の絶対的定量化」(Gygi et al.) に記載されているような、タンパク質の絶対的定量化又は検出に適している。そのようなAQUAペプチドに関する、用語「特異的に検出する」は、ペプチドが、AQUAペプチド配列を含有しているポリペプチド及びタンパク質のみを検出及び定量化して、AQUAペプチド配列を含有していないポリペプチド及びタンパク質を実質的に検出しないであろうことを意味する。

0032

「単離された」(又は「実質的に精製された」)は、それらの天然環境から取り出され、単離又は分離された核酸又はアミノ酸配列を示す。これらは好ましくは、これらが天然で結合していた他の成分を、少なくとも60%、より好ましくは75%、そして最も好ましくは90%又はそれ以上含んでいない。

0033

模倣物質」は、その構造がALK融合ポリペプチド又はそのタンパク質の構造的認識から生じていて、タンパク質様分子に関する転座の作用の幾つか又は全てに影響を与え得るような、分子を示す。

0034

「突然変異ALK]又は「融合」ポリヌクレオチド又はポリペプチドは、本明細書に記載されているような、ALK及び二次タンパク質(例えば、EML−4又はTFG)を含有している融合ポリヌクレオチド又はポリペプチドを意味する。

0035

「ポリヌクレオチド」(又は「ヌクレオチド配列」)は、オリゴヌクレオチド、ヌクレオチド又はポリヌクレオチド、及びそれらの断片又は部分、及び一本鎖又は二本鎖で、センス又はアンチセンス鎖を表してもよい、ゲノム又は合成由来のDNA又はRNAを示す。

0036

「ポリペプチド」(又は「アミノ酸配列」)は、オリゴペプチド、ペプチド、ポリペプチド、又はタンパク質配列、及びそれらの断片又は部分を示し、そして天然の又は合成の分子を示す。ここで、「アミノ酸配列」が本明細書で天然のタンパク質分子のアミノ酸配列を示すように述べられているときは、「アミノ酸配列」及び、「ポリペプチド」又は「タンパク質」のような同様な用語は、アミノ酸配列を、述べられているタンパク質分子に関連する完全な、元のアミノ酸配列に限定することを意味していない。

0037

「EML4−ALK融合ポリヌクレオチド」は、何れかの種、特に、ウシヒツジブタネズミウマ及び好ましくはヒトを包含する哺乳類から、天然、合成、半合成、又は組み換えか何れかの起源から得られる、本明細書に記載のような、実質的に精製されているEML4−ALK欠失変異遺伝子の産物又は融合ポリヌクレオチド(短い又は長い変異体)の核酸配列を示す。

0038

「EML4−ALK融合ポリペプチド」は、何れかの種、特に、ウシ、ヒツジ、ブタ、ネズミ、ウマ及び好ましくはヒトを包含する哺乳類から、天然、合成、半合成、又は組み換えの何れかの起源から得られる、本明細書に記載の、実質的に精製されているEML4−ALK融合ポリペプチド(短い又は長い変異体)のアミノ酸配列を示す。

0039

「TFG−ALK融合ポリヌクレオチド」は、何れかの種、特に、ウシ、ヒツジ、ブタ、ネズミ、ウマ及び好ましくはヒトを包含する哺乳類から、天然、合成、半合成、又は組み換えの何れかの起源から得られる、本明細書に記載のような、実質的に精製されているTFG−ALKの転座変異遺伝子の産物又は融合ポリヌクレオチドの核酸配列を示す。

0040

「TFG−ALK融合ポリペプチド」は、何れかの種、特に、ウシ、ヒツジ、ブタ、ネズミ、ウマ及び好ましくはヒトを包含する哺乳類から、天然、合成、半合成、又は組み換えの何れかの起源から得られる、本明細書に記載の、実質的に精製されているTFG−ALK融合ポリペプチドのアミノ酸配列を示す。

0041

抗体とタンパク質又はペプチドとの相互作用に関する用語「に特異的に結合する」(又は「特異的な結合」又は「特異結合」)は、相互作用がタンパク質上の特定な構造(すなわち、抗原決定基又はエピトープ)によって決まること;言い換えると、抗体は一般のタンパク質ではなく特定のタンパク質構造を認識して結合するということを意味している。特異的であるもの以外の配列又は抗原決定基への抗体の結合に関する用語「結合しない」は、抗体が特異的な抗原決定基又は配列への抗体の結合と比べて、実質的に反応しないことを意味する。

0042

配列又はプローブのハイブリダイゼーション条件に関する用語「ストリンジェントな条件」は、約Tmマイナス5℃(プローブ又は配列の融解温度(Tm)より5℃低い)からTmより約20℃〜25℃低いまでの範囲以内を生ずる「厳しさ」である。典型的なストリンジェント条件は次の通りである;50%のホルムアミド、5倍のSSC(750mMのNaCl、75mMのクエン酸三ナトリウム)、50mMのリン酸ナトリウム(pH7.6)、5倍のデンハーズ溶液(Denhardt's solution)、10%のデキストラン硫酸、及び20マイクログラム/mlの変性せん断サケ精子DNAを含有する溶液中で42℃にて1晩培養してから、約65℃で濾液を0.1倍のSSC中で洗浄する。当業者によって理解されるように、ハイブリダイゼーションのストリンジェントな条件を、相同な又は関連するポリヌクレオチド配列を同定若しくは検出するために改変できる。

0043

突然変異ALKポリペプチドの「変異体」は、1つ又はそれ以上のアミノ酸が改変されているアミノ酸配列を示す。変異体は「保存的な」変化を有していて、置換されたアミノ酸は同様な構造又は化学的な性質を有している(例えば、イソロイシンロイシンを置換)。より希には、変異体は「非保存的な」変化、例えば、トリプトファンによるグリシンの置換、を有している。同様な軽微な変異は、アミノ酸の欠失又は挿入、又はその両方も包含している。生物学的又は免疫学的な活性を無くさずに、どのアミノ酸を置換、挿入又は欠失させるかを判定する指針は、当該技術分野で公知のコンピュータープログラム、例えばDNASTARソフトウェアを用いて見い出すことができるだろう。

0044

A.ヒト固形腫瘍における突然変異ALKキナーゼの同定
染色体2上で生じて、EML−4のN末端をキナーゼドメイン及びALKのC末端と結合する2つの融合タンパク質変異体の発現をもたらす、本明細書に開示されている新規なヒト遺伝子欠失が、非小細胞肺癌(NSCLC)細胞株(H2228を含む)及び患者の固形腫瘍の抽出物における、広範囲ホスホペプチドプロファイル実験中に、意外にも同定された。固形腫瘍である、NSCLCは肺癌の亜類型である。これら欠失融合に含まれるタンパク質は図1A−1Bの上の図に示されている。

0045

H2228細胞株のリン酸化プロファイルを、最近記述された、複合混合物由来の修飾ペプチドの単離技術及び質量分析による特徴付け(Rush et al., の米国特許出願公開第20030044848号、「複合混合物由来の修飾ペプチドの免疫親和性単離(「IAP」技術)を参照されたい)を用いて、以下の実施例1に更に記載されるように、初めて明らかにした。ホスホチロシン特異抗体(CELLSIGNALING TECHNOLOGY, INC., Beverly, MA, 2003/04 Cat. #9411) を用いるIAP技術の適用は、H2228細胞株はALKキナーゼを発現するが、このタンパク質は明らかに切断されないことを明確にした。このスクリーニングでは細胞株中の、肺癌中で活性化されることが知られている幾つかを含む、多くの他の活性化キナーゼを同定した。5'RACEによるALKへの配列5’の分析は、次いでこのキナーゼがEML−4のN−末端に融合していることを明確にした(図6を参照されたい)。

0046

同様の広範なホスホプロファイリング手段を用いる、NSCLC患者由来の154癌試料のその後の実験は、これらの患者集団中にEML4−ALK(短い変異体の)突然変異の存在を確認したばかりでなく、その他の患者集団中に第2のEML4−ALK(長い変異体)の存在及びTFG−ALK突然変異の存在も明らかにした(実施例1B及び1Cを参照されたい)。

0047

突然変異ALKタンパク質がこれらのNSCLC癌において細胞の増殖及び生存を促進していることを、siRNAサイレンシングを用いて細胞を阻害することによって確認することができる(実施例3参照されたい)。

0048

EML4−ALK融合遺伝子(短い及び長い変異体)及びTFG−ALK融合遺伝子をPCRで増幅し、単離して、配列を決定した(実施例3を参照されたい)。図1A−1Bの下の図から明らかなように、このEML4−ALKの欠失は、野生型EML−4のN−末端(短い変異体のアミノ酸1−123、又は長い変異体のアミノ酸1−495のどちらか)を、野生型ALKのキナーゼドメイン及びC−末端(アミノ酸1057−1620)と結合する(配列番号3及び5も参照されたい)。融合接合部はまさに野生型ALKのC−末端から膜貫通ドメインまでに生じる(図1A−1Bを参照されたい)。EML4−ALK融合ポリペプチドは、このタンパク質のコイルドコイルドメインを含む、EML−4のN−末端アミノ酸233又は495をそれぞれ保持している。796のアミノ酸(短い変異体)又は1059のアミノ酸(長い変異体)からなる、得られたEML4−ALK融合タンパク質は、ALKのキナーゼ活性を保持している。関連するエクソン及び融合接合部を図1A−1B下の図に示す。融合接合部は、エクソン6に続くEML−4のイントロン6(短い変異体)、又はEML−4のエクソン13(長い変異体)を包含している。

0049

図1Cの下の図に示すように、TFG−ALK転座は、野生型TFGのN−末端(アミノ酸1−138)を、野生型ALKのキナーゼドメイン及びC−末端(アミノ酸1057−1620)と結合する(配列番号22及び5;及び図1Cの下の図及び図4C(配列番号20及び1)も参照されたい)。融合接合部はまさに野生型ALKのC−末端から膜貫通ドメインまでに生じ(図1Cを参照されたい)、そしてALKのキナーゼ活性を保持している。関連するエクソン及び融合接合部を図1C(下の図)に示す。融合接合部は、TFGのエクソン3及びALKのエクソン20を包含している。

0050

FISHプローブを、パラフィン包埋ヒトNSCLC試料400個の群におけるEML4−ALK(短い変異体)融合タンパク質の存在を検出するために用いた(実施例6及び7;図6を参照されたい)。この試料サイズにおけるこの短い変異体の突然変異の出現率は非常に低かった。しかしながら、患者由来の凍結ヒトNSCLC癌試料154個の別の群においては、広範なリン酸化プロファイルを試験するIAP技術を用いて、TFG−ALK融合タンパク質をより高い発現率で検出した(実施例1Bを参照されたい)。

0051

B.単離されたポリヌクレオチド。
本発明は、一つには、EML4−ALK融合ポリペプチドをコードする単離されたポリヌクレオチド、そのようなポリヌクレオチドにハイブリダイズするヌクレオチドプローブ、及び組み換えの融合ポリペプチドを産生するためにそのようなポリヌクレオチドを用いるための方法、ベクター、及び宿主細胞を提供する。

0052

他に指示がない限り、本明細書におけるDNA分子の配列決定によって決定された全てのヌクレオチド配列は、自動DNAシークエンサー(Applied Biosystems Inc. のモデル373のような)を用いて決定され、本明細書において決定されたDNA分子によってコードされるポリペプチドの全てのアミノ酸配列は、自動ペプチドシークエンサーを用いて決定された(実施例2を参照されたい)。この自動化手段によって決定されたDNA配列について当該技術分野で知られているように、本明細書で決定された何れかのヌクレオチド配列も幾つかの誤差を含んでいてもよい。自動化によって決定されたヌクレオチド配列は一般に、配列決定されたDNA分子の実際のヌクレオチド配列に対して、少なくとも約90%の相同性を有していて、より典型的には少なくとも約95%〜少なくとも約99.9%の相同性を有する。実際の配列は、当該技術分野で公知のDNA配列決定方法マニュアルを含む、他の手段によってより正確に決定することができる。当該技術分野でも知られているように、実際の配列に比べ、決定されたヌクレオチド配列における単一の挿入又は欠失は、決定されたヌクレオチド配列によってコードされる予測アミノ酸配列が、配列決定されたDNA分子によって実際にコードされるアミノ酸配列と完全に異なるように、ヌクレオチド配列の翻訳において、そのような挿入又は欠失位置から始まる、読み枠移動をもたらすであろう。

0053

他に指示がない限り、本明細書に示されているそれぞれのヌクレオチド配列は、デオキシリボヌクレオチド(A、G、C、Tと省略)の配列として表されている。しかしながら、特定のデオキシリボヌクレオチド配列におけるそれぞれのチミジンデオキシリボヌクレオチド(T)がリボヌクレオチドウリジン(U)に置換されている場合には、DNA分子又はポリヌクレオチド、デオキシリボヌクレオチドの配列、及びRNA分子又はポリヌクレオチドに対する、核酸分子、又はポリヌクレオチドの「ヌクレオチド配列」は、リボヌクレオチド(A、G、C及びU)の対応する配列を意図している。例えば、デオキシリボヌクレオチドの略号を用いて示されている配列番号2の配列を有するRNA分子への参照は、配列番号2のそれぞれのデオキシリボヌクレオチドA、G又はCが、対応するリボヌクレオチドA、G又はCで置換されていて、それぞれのデオキシリボヌクレオチドTがリボヌクレオチドUによって置換されている配列を有するRNA分子を示すことを意図している。

0054

一態様では、本発明は、
(a)配列番号1又は配列番号18のアミノ酸配列を含有している微小管結合タンパク質様4/未分化リンパ腫キナーゼ(Echnoderm Micrutubule-Associated Protein-LIke 4/Anaplastic Lymphoma Kinase;EML4−ALK)融合ポリペプチドをコードするヌクレオチド配列;
(b)EML4−ALK融合ポリペプチドをコードするヌクレオチド配列であって、そのヌクレオチド配列は配列番号2又は配列番号19のヌクレオチド配列を含有している;
(c)EML−4のN−末端アミノ酸配列(配列番号3の残基1−233又は配列番号19の残基1−495)及びALKのキナーゼドメイン(配列番号5の残基1116−1383)を含有しているEML4−ALK融合ポリペプチドをコードするヌクレオチド配列;
(d)EML−4のN−末端ヌクレオチド配列(配列番号4の1−700ヌクレオチド又は配列番号4の1−1486ヌクレオチド)及びALKのキナーゼドメインヌクレオチド配列(配列番号6の3348−4149ヌクレオチド)を含有しているヌクレオチド配列;
(e)EML4−ALK融合ポリヌクレオチドの融合接合部(配列番号2の700−701ヌクレオチド又は配列番号19の1486−1487ヌクレオチド)を包含するする少なくとも6つの隣接ヌクレオチドを含有しているヌクレオチド配列;
(f)EML4−ALK融合ポリペプチドの融合接合部(配列番号1の残基233−234又は配列番号18の残基495−496)を包含する少なくとも6つの隣接アミノ酸を含有しているポリペプチドをコードするヌクレオチド配列;及び
(g)(a)〜(f)のヌクレオチド配列の何れかと相同性を有するヌクレオチド配列:
よりなる群から選ばれる配列に対して少なくとも95%の相同性を有するヌクレオチド配列を含有している単離されたポリヌクレオチドを提供する。

0055

図2(配列番号2)のヌクレオチド配列のような、本明細書で提供されている情報を用いて、本発明の突然変異ALKポリペプチドをコードする本発明の核酸分子は、出発物質としてmRNAを用いるcDNAのクローニングのような、標準的なクローニング及びスクリーニング方法を用いて得ることができる。本発明の実例としては、図2(配列番号2)に記載されているEML4−ALK融合ポリヌクレオチド(短い変異体)は、ヒトNSCLC細胞株由来のゲノムDNAから単離した(以下の実施例2に更に記載されている)。融合遺伝子は、開示されるEML4−ALK遺伝子欠失(染色体2)が生ずる、固形腫瘍を包含する他の癌におけるゲノムDNA又はcDNAライブラリー中でも同定することができる。

0056

決定されたEML4−ALK融合遺伝子のヌクレオチド配列は796のアミノ酸(短い変異体)及び1059のアミノ酸(長い変異体)のそれぞれのキナーゼ融合タンパク質をコードする(図2A−B(配列番号1及び18)及び図1A−Bを参照されたい)。EML4−ALK融合ポリヌクレオチドは、そのタンパク質のN−末端(アミノ酸1−233(短い変異体)又はアミノ酸1−495(長い変異体)をコードする野生型EML−4のヌクレオチド配列(図3(配列番号4)を参照されたい)の部分を、そのタンパク質のキナーゼドメイン及びC−末端をコードする野生型ALKのヌクレオチド配列(図4(配列番号6)を参照されたい)の部分とともに含有している。図1A−Bを参照されたい。キナーゼドメインは短い変異融合タンパク質(短い変異融合ポリヌクレオチドのヌクレオチド874−568によってコードされる)の残基292−568、又は長い変異融合タンパク質(長い変異融合ポリヌクレオチドのヌクレオチド1663−2494によってコードされる)の残基558−831から成っている。図2A−2Bを参照されたい。

0057

示されるように、本発明は一つには、EML4−ALK融合タンパク質の成熟形態を提供する。シグナル仮説によれば、哺乳類の細胞によって分泌されるタンパク質は、増大するタンパク質鎖粗面小胞体を越える移行が開始すると、成熟タンパク質から開裂されるシグナル又は分泌リーダー配列を有している。大部分の哺乳類の細胞及び昆虫の細胞でさえも、同様の特異性で、分泌タンパク質を開裂する。しかしながら、ある場合には、分泌タンパク質の開列は完全に均一ではなく、タンパク質に2つ又はそれ以上の成熟種をもたらす。更に、分泌タンパク質の開裂特異性は完全タンパク質の一次構造よって最終的に決定することが以前から知られている。すなわちそれはポリペプチドのアミノ酸配列に固有なものである。

0058

例えば、寄託されているcDNAクローンによってコードされるアミノ酸配列を有している、成熟したEML4−ALKポリペプチドとは、哺乳類の細胞(例えば、以下に記載のような、3T3細胞)中で、寄託されているクローン又は成熟融合ポリペプチドをコードする他のクローンのヒトDNA配列によってコードされる完全読み込み枠の発現によって産生された融合タンパク質の成熟形態を意味する。

0059

示されるように、本発明のポリヌクレオチドは、mRNAのようなRNAの形態で、又は例えばクローニングよって得られるか又は合成で産生されるcDNA及びゲノムDNAを包含するDNAの形態であってもよい。DNAは二本鎖又は一本鎖であってもよい。一本鎖のDNA又はRNAは、センス鎖としても知られている、コード鎖であってよく、又はアンチセンス鎖としても知られている、非コード鎖であってもよい。

0060

本発明の単離されたポリヌクレオチドは、それらの天然環境から取り出された、核酸分子、DNA又はRNAである。例えば、ベクター中に含まれている組み換えDNA分子は、本発明の目的のために単離されたものと考えられる。単離されたDNA分子の更なる例は、異種の宿主細胞中の組み換えDNA分子、又は溶液中の精製(部分的に又は実質的に)されたDNA分子を包含する。単離されたRNA分子は、本発明のDNA分子のインビボ又はインビトロでのRNA転写物を包含する。本発明による単離された核酸分子は、合成によって産生されるような分子を更に包含する。

0061

本発明の単離されたポリヌクレオチドは、図2A−B(配列番号2及び19)で示されるDNA分子、図1A−B(配列番号1及び18)で示される成熟EML4−ALK融合タンパク質をコードする配列を含有しているDNA分子、及び上記のようなものとは実質的に異なる配列を含有しているが、遺伝子コード縮重によって、本発明のALK突然変異ポリペプチドを未だにコードするDNA分子を包含する。この遺伝子コードは当該技術分野で公知であり、従って、当業者にとってそのような縮重変異体を作成することは通常のことであろう。

0062

別の態様では、本発明は上記の寄託されているcDNAクローンに含まれているEML4−ALK融合ヌクレオチド配列を含有しているEML4−ALK融合ポリペプチドをコードする単離されたポリヌクレオチドを提供する。好ましくは、そのような核酸分子は、上記の寄託されているcDNAクローン、又は本明細書に記載されるEML4−ALK融合タンパク質の全長を発現する別のクローンによって、コードされる成熟融合ポリペプチドをコードするであろう。
別の態様では、本発明は、EML−4のN−末端アミノ酸配列(配列番号3の残基1−233、又は配列番号3の残基1−495)及びALKのキナーゼドメイン(配列番号5の残基1116−1183)を含有しているEML4−ALK融合ポリペプチドをコードする単離されたヌクレオチド配列を提供する。
一態様では、ALKのキナーゼドメインを含有しているポリペプチドは配列番号5の残基1057−1620を含んでいる(図1Cの下の図を参照されたい)。
その他の態様では、上記EML−4のN−末端アミノ酸配列及びALKのキナーゼドメインは配列番号4のヌクレオチド1−700を含有しているヌクレオチド配列又は配列番号4の1−1486のヌクレオチド及び配列番号6の3171−4860のヌクレオチドによってそれぞれコードされる。

0063

本発明は更に、本発明の突然変異ALKポリヌクレオチドの一つと相補的な配列を有するヌクレオチド配列を含む単離されたポリヌクレオチドを提供する。そのような単離された分子、特にDNA分子は、染色体での in situハイブリダイゼーションによる遺伝子マッピング用のプローブとして、そして例えば更に以下のF欄に記載されるているようなノーザンブロット分析による、ヒト組織におけるEML4−ALK融合タンパク質の発現を検出するために有用である。

0064

本発明は更に、本明細書に記載される単離された核酸分子の断片に関する。本発明の単離されたEML4−ALKポリヌクレオチドの断片とは、本明細書で検討される診断用のプローブ及びプライマーとして有用である、長さが少なくとも約15のヌクレオチド、そしてより好ましくは少なくとも約20のヌクレオチド、更に好ましくは少なくとも約30のヌクレオチド、より一層好ましくは少なくとも約40のヌクレオチドの断片を意図している。もちろん、長さが約50〜1500のヌクレオチドのより大きい断片も、寄託されているcDNAか、又は図2(配列番号2)で示されるようなものか、又は図2A−B(配列番号2又は19)で示されるような融合ポリヌクレオチドを発現する他のクローンの全部ではないが、殆どの突然変異ALKヌクレオチド配列に対応する断片として、本発明により有用である。長さが少なくとも20のヌクレオチドである断片とは、例えば、断片が派生するそれぞれのヌクレオチド配列由来の、20又はそれ以上の連続した塩基を含有している断片を意図している。そのようなDNA断片の生成は当業者にとって通常のことであって、例を挙げると、制限エンドヌクレアーゼ切断、又は寄託されているcDNAクローンから入手可能な又は本明細書に開示される配列に従って合成されたDNAの超音波処理によるせん断によって、実施することができる。また、そのような断片を直接合成によって作り出すことができる。

0065

本発明の好ましい核酸断片又はプローブは、EML4−ALKの融合遺伝子産物の融合接合部(図1A−B、下の図を参照されたい)をコードする核酸分子を包含する。例えば、ある好ましい態様では、本発明の単離されたポリヌクレオチドは、EML4−ALK融合ポリヌクレオチドの融合接合部(配列番号2のヌクレオチド700−701、又は配列番号19のヌクレオチド1486−1487)を包含する少なくとも6つの隣接ヌクレオチドよりなるヌクレオチド配列/断片を含んでいる(図1A−B、下の図(配列番号8及び25)を参照されたい)。
その他の好ましい態様では、本発明の単離されたポリヌクレオチドは、EML4−ALK融合ポリペプチドの融合接合部(配列番号1の残基233−234又は配列番号18の残基495−496)を包含する少なくとも6つの隣接アミノ酸を含むポリペプチドをコードするヌクレオチド配列/断片を含んでいる(図1A−B、最下図(配列番号7及び24)を参照されたい)。

0066

別の態様では、本発明は、ストリンジェントなハイブリダイゼーション条件下で、本明細書に記載されるような本発明の突然変異ALKポリヌクレオチドの一部にハイブリダイズする、単離されたポリヌクレオチドを提供する。「ストリンジェントなハイブリダイゼーション条件」とは、50%のホルムアミド、5倍のSSC(750mMのNaCl、75mMのクエン酸三ナトリウム)、50mMのリン酸ナトリウム(pH7.6)、5倍のデンハーズ溶液(Denhardt's solution)、10%のデキストラン硫酸、及び20マイクログラム/mlの変性、せん断サケ精子DNAを含有する溶液中で42℃で1晩培養してから、約65℃で濾液を0.1倍のSSC中で洗浄することを意図している。

0067

ポリヌクレオチドの「一部」にハイブリダイズするポリヌクレオチドとは、参照ポリヌクレオチドの少なくとも約15のヌクレオチド(nt)に、そしてより好ましくは少なくとも約20のnt、更により好ましくは少なくとも約30のnt、そしてより一層好ましくは約30〜70のntにハイブリダイズするポリヌクレオチド(DNA又はRNAの何れか)を意図している。これらは上記そして以下で更に詳細に検討されるような診断用のプローブ又はプライマーとして有用である。

0068

もちろん、参照ポリヌクレオチド(例えば、図2(配列番号2)に記載されている成熟EML4−ALK融合ポリヌクレオチド)のより大きい部分(例えば、長さが50〜750のnt、又は参照ポリヌクレオチドの全長に至るまで)にハイブリダイズするポリヌクレオチドも、寄託されているcDNAのヌクレオチド配列又は図2A−B(配列番号2又は19)又は図1A−B(下の図)(配列番号7及び24)に示されるヌクレオチド配列の全てでなくても、殆どに対応するポリヌクレオチドであるので、本発明によるプローブとして有用である。

0069

「長さが少なくとも20」のポリヌクレオチドの一部とは、例えば、参照ポリヌクレオチドのヌクレオチド配列由来の20又はそれ以上の隣接ヌクレオチドを意図している。示されるように、そのような部分は、例えば、 MOLECULAR CLONING, A LABORATORYMANUAL, 2nd Ed., Sambrook, J., Fritsch, E.F. and Maniatis, T., eds., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)(その開示の全てを参照して本明細書に取り込む)に記述のように、従来のDNAハイブリダイゼーション技術によるプローブか又はポリメラーゼ連鎖反応(PCR)による標的配列を増幅するプライマーかのどちらかとして診断的に有用である。もちろん、ポリA配列(図2(配列番号2)に示されるEML−4−ALK配列の3'末端ポリ(A)トラクトのような)のみにハイブリダイズするポリヌクレオチドは、そのようなポリヌクレオチドがポリ(A)延伸体又はそれらに相補的なもの(例えば、実質的に二本鎖のcDNAクローンの何れか)を含有している核酸分子のいずれかにハイブリダイズするであろうために、本発明の核酸の一部にハイブリダイズするために用いる本発明のポリヌクレオチドに含まれないであろう。

0070

示されるように、本発明の突然変異ポリペプチドをコードする、本発明の核酸分子は、これに限定されないが、単独で成熟ポリペプチドのアミノ酸配列をコードするようなもの;成熟ポリペプチドをコードする配列、及びプレ−、又はプロ−、プレ−プロ−タンパク質配列のようなリーダー又は分泌配列をコードするもののような、付加配列;成熟ポリペプチドのコード配列であって、例えばこれに限定されないが、スプライシング及びポリアデニル化シグナル、例えばリボソーム結合及びmRNAの安定化を含む、転写、mRNAプロセッシングとしての役割を果たす、転写、非翻訳配列のような、イントロン及び非コード5’及び3’配列を包含する、付加、非コード配列と共に、前記の付加コード配列を有しているか又は有していないないもの;付加機能を提供するような、付加アミノ酸をコードする付加コード配列を包含してもよい。

0071

従って、ポリペプチドをコードする配列は、融合タンパク質の精製を容易にするペプチドをコードする配列ような、マーカー配列に融合していてもよい。
本発明のこの態様のある好ましい実施態様では、マーカーアミノ酸配列は、pQEベクター(Qiagen,Inc.)に備わっている標識のような、ヘキサヒスチジンペプチドであり、とりわけこれらの多くは市販されている。Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989) に記載されているように、例えばヘキサ−ヒスチジンは融合タンパク質の簡便な精製を提供する。「HA」標識は、インフルエンザ血球凝集素タンパク質由来の抗原決定基に対応する、精製に有用な別のペプチドであり、Wilson et al., Cell 37:767 (1984) によって記載されている。以下で検討するように、他のそのような融合タンパク質は、自体がN−又はC−末端のFcと融合しているEML4−ALK融合ポリペプチドを包含する。

0072

本発明は更に、本明細書に開示されているEML4−ALK融合ポリペプチドの一部、類縁体又は誘導体をコードする、本発明の核酸分子の変異体に関する。変異体は、自然の対立遺伝子変異体のように、自然に発生してもよい。「対立遺伝子変異体」とは、有機体の染色体上に所定の遺伝子配座占有している遺伝子の幾つかの代替的形態の一つを意図している。例えば、GEENS II,Lewin, B., ed., John Wiley & Sons, New York (1985) を参照されたい。非天然の変異体を公知の突然変異生成技術を用いて産生することができる。

0073

そのような変異体は、ヌクレオチドの置換、欠失又は付加によって産生されたものを包含する。この置換、欠失又は付加は、一つ又はそれ以上のヌクレオチドを含む。変異体はコード領域、非コード領域又はその両方を改変することができる。コード領域の改変は、保存的な又は非保存的なアミノ酸置換、欠失又は付加を産生することができる。これらのうちで特に好ましいのは、本発明で開示されている突然変異ALKポリペプチドの性質及び活性(例えば、キナーゼ活性)を変化させない、緩和な置換、付加及び欠失である。またこれに関して特に好ましいのは保存的置換である。

0074

本発明の更なる態様は、本発明の突然変異ALKポリヌクレオチド(例えば、図2(配列番号1)で示される完全アミノ酸配列を有するEML4−ALK融合ポリペプチドをコードするポリヌクレオチド配列;又はEML−4のN-末端及びALKのキナーゼドメインをコードするヌクレオチド配列(図1A-B、下の図;及び図3及び4を参照されたい);又はそのような例示の配列と相補的なヌクレオチド)と、少なくとも90%の相同性を有していて、そしてより好ましくは少なくとも95%、96%、97%、98%又は99%の相同性を有する。

0075

突然変異ALKポリペプチドをコードする参照ヌクレオチド配列と少なくとも、例えば95%「相同な」ヌクレオチド配列を有しているポリヌクレオチドとは、ポリヌクレオチドのヌクレオチド配列が、突然変異ALKポリペプチドをコードする参照ヌクレオチド配列の各々の100ヌクレオチド当たり、最大5箇所の突然変異を含んでいてもよいことを除いて、参照配列と相同であることを意図している。すなわち、参照ヌクレオチド配列と少なくとも95%相同なヌクレオチド配列を有するポリヌクレオチドを得るためには、参照配列中のヌクレオチドの最大5%を別のヌクレオチドで欠失又は置換させてもよい、又は参照配列中の総ヌクレオチドの最大5%のヌクレオチドの数を参照配列に挿入してもよい。参照配列のこれらの突然変異は、参照ヌクレオチド配列の5’−又は3’−末端位置で、又はこれらの末端の間の何処かで、参照配列中のヌクレオチドの間に個々に組み込むか、又は参照配列中に1つ又はそれ以上の連続群を組み込むかの何れかで、引き起こすことができる。

0076

実際に、何れの特定の核酸分子が、例えば、図2A−B(配列番号2及び19)で示されるヌクレオチド配列、又は上記の寄託されているcDNAクローンのヌクレオチド配列と少なくとも90%、95%、96%、97%、98%又は99%の相同性を有するか否かについては、ベストフィットプログラム(Bestfit program; Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, Wis. 53711) のような、公知のコンピュータープログラムを用いて通常の方法で判定することができる。ベストフィットは、二つの配列間の最良の相同性部分を見出すために、Smith and Waterman の局所相同性アルゴリズム(Advances in Applied Mathematics 2:482-489 (1981)) を用いる。特定の配列が、参照EML4−ALK融合ポリヌクレオチド配列又は本発明による切断されたALKポリヌクレオチド配列と、例えば、95%の相同性を有するか否かを判定するために、ベストフィット又は他の配列配置プログラムの何れかを用いるときは、もちろん、参照ヌクレオチド配列の全長に対しての相同性のパーセントが計算されるように、そして参照配列の総ヌクレオチド数の最大5%の相同性のずれが許容されるように、パラメーターがセットされる。

0077

本発明はその範囲に、それらがALKキナーゼ活性を有するポリペプチドをコードするか否かに関わりなく、図2(配列番号2)で示される核酸配列又は寄託されているcDNAの核酸配列と、少なくとも90%、95%、96%、97%、98%又は99%の相同性を有する核酸分子を包含している。これは特定の核酸分子がALKキナーゼ活性を有する融合ポリペプチドをコードしなくても、当業者はこの核酸分子を如何に用いるか、例えばハイブリダイゼーションプローブとして又はポリメラーゼ連鎖反応(PCR)のプライマーとして用いるかを既に知っているからである。キナーゼを有しているポリペプチドをコードしない本発明の核酸分子の用途は、とりわけ、(1)EML4−ALK欠失遺伝子、又は切断されたALK遺伝子、又はcDNAライブラリー中のその対立遺伝子変異体を単離すること;(2)Verma et al., の HUMANCHROSOMES: A MANUAL OFBASICTECHNIQUES, Pergamon Press, New York (1988) に記載のように、分裂中期の染色体拡散を、in situハイブリダイゼーション(例えば「FISH」)してEML4−ALK欠失遺伝子又は切断されたALK遺伝子の正確な染色体位置を提供すること;及び特定組織での、EML4−ALK融合タンパク質又は切断されたALKキナーゼmRNAの発現を検出するためのノーザンブロット分析を包含する。

0078

しかしながら、実際にALKキナーゼ活性を有する融合ポリペプチドをコードする、本発明の突然変異ALKポリペプチド又は寄託されているcDNAの核酸配列と少なくとも95%相同な配列を有する核酸分子が好ましい。そのような活性は、特定な生物学的アッセイで測定して、本明細書に開示されるEML4−ALK融合タンパク質(全長のタンパク質、成熟タンパク質、又はキナーゼ活性を保持しているタンパク質断片の何れか)と、同様であってよく、同一である必要はない。例えば、ALKのキナーゼ活性は、1つ又はそれ以上のチロシン含有ペプチド基質、例えば、ALKキナーゼの基質である、インシュリン受容体基質1又は2(IRS1、IRS2)をリン酸化する能力を判定するために試験することができる。

0079

遺伝子コードを縮重すれば、寄託されているcDNAの核酸配列又は図2A-B(配列番号2及び19)に示される核酸配列と少なくとも90%、95%、96%、97%、98%又は99%相同な配列を有する多くの核酸分子が、ALK活性を有する突然変異ポリペプチドをコードするであろうことを当業者は直ちに認識するであろう。実際に、これらのヌクレオチド配列の縮重変異体の全てが同様なペプチドをコードするので、このことは上記の比較アッセイを行わなくても、当業者に明確であろう。更に、縮重変異体ではないそのような核酸分子に関しては、相当数がALK活性を保持しているポリペプチドをコードするであろうことが、当該技術分野で認識されるだろう。それは、タンパク質機能に重要な影響を及ぼすことが殆ど無いか又は可能性がないアミノ酸置換(例えば、1つの脂肪族アミノ酸を第2の脂肪族アミノ酸で置換する)を、当業者が充分に認識しているからである。

0080

例えば、表現型の上では軽微なアミノ酸置換を如何に行うかについての助言が、Bowie et al., 「Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitutions」, Science 247:1306-1310 (1990) に掲載されており、これは改変するアミノ酸配列の許容範囲を検討する2つの主要なアプローチを記載している。第一の方法は、突然変異は自然淘汰によって受け入れられるか又は拒絶されるかの何れかであるという、進化過程に因っている。第2のアプローチは、クローン遺伝子の特定部位アミノ酸変化を導入するための遺伝子組み換え技術、及び機能性を保持している配列を同定するための選択又はスクリーニングを利用している。これらの検討は、タンパク質がアミノ酸置換に意外に耐えるということを明確にした。そのような技術に精通している当業者は、タンパク質のある特定の位置においてどのアミノ酸変化が許容可能であるかも理解される。例えば、殆どの埋設アミノ酸残基非極性の側鎖を必要としているのに対して、殆どの表面側鎖の特性は一般に保護されていない。他のそのような表現型の上での軽微な置換は、Bowie et al., supra.及びそこで引用されている引例に記載されている。

0081

当該技術分野で公知かつ一般に利用可能な、DNA配列を決定する方法は、本発明のポリヌクレオチドの態様の何れかを実施するために用いることができる。この方法は、DNAポリメラーゼ1のクレノウ断片(Klenow fragement)、SEQUENASE(登録商標)(US Biochemical Corp, Cleveland, Ohio)、Taqポリメラーゼ(Perkin Elmer)、熱安定T7ポリメラーゼ(Amersham, Chicago,IL)、又は組み換えポリメラーゼと、GibcoBRL(Gaithersburg, Md.) が市販しているELONGASE Amplification Systemのような校正エクソヌクレアーゼとの組合わせのような酵素を用いることができる。この工程は、Hamilton Micro Lab 2200 (Hamilton, Reno, Nev.)、Peltier Thermal Cycler (PTC200; MJ Research, Watertown, Mass.) 及びABI377 DNA sequencers (Perkin Elmer) のような器械を用いて自動化することが好ましい。

0082

本発明の突然変異ALKポリペプチドをコードするポリヌクレオチド配列は、ヌクレオチド配列の部分を用い、プロモーター及び制御エレメントのような上流配列を検出するための、当該技術分野で公知の多数の方法を利用して拡張することができる。例えば、利用できる一つの方法である、「制限部位」PCRは、公知の遺伝子座に隣接している未知の配列を検索するユニバーサルプライマーを用いる(Sarkar, G., PCR MethodsApplic. 2:318-322(1993))。特に、ゲノムDNAは、リンカー配列に対するプライマー及び公知領域に特異的なプライマーの存在下で、最初に増幅される。典型的なプライマーは本明細書の実施例2に記載されるようなものである。増幅された配列は次いで、最初のDNA内部に同じリンカープライマー及び別の特異的プライマーを用いて、2回目のPCRを受ける。PCRの各回の産物を適切なRNAポリメラーゼを用いて転写して、逆転写酵素を用いて配列を決定する。

0083

逆PCRも、公知領域に基づく分岐プライマーを用いて、配列を増幅又は拡張するために利用することができる(Triglia et al., Nucleic AcidsRes. 16:8186 (1988))。プライマーは、OLIGO 4.06 Primer Analysis software (National Biosciences Inc., Plymouth, Minn.)、又は別の適切なプログラムを用いて、22−30のヌクレオチドの長さに、50%又はそれ以上のGC含量を有するように、そして約68〜72℃の温度で標的配列にアニールするように設計することができる。この方法は、遺伝子の公知領域に適切な断片を産生するために幾つかの制限酵素を用いる。この断片は次いで、分子内ライゲーションによって環化されてPCRテンプレートとして利用される。

0084

使用可能な別の方法は、ヒト及び酵母人工染色体DNAにおける公知配列に隣接するDNA断片のPCR増幅を含む捕捉PCRである(Lagerstrom et al., PCR MethodsApplic. 1:111-119 (1991))。この方法では、PCRの実施前にDNA分子の未知部分へ改変二本鎖配列を挿入するために、多数の制限酵素による消化及びライゲーションを用いることもできる。未知の配列を検索するために用いることとができる別の方法は、Parker et al., Nucleic Acids Res. 19:3055-3060 (1991) に記載されているものである。更に、PCR、ネステッドプライマー(nested primers)、及びゲノムDNAを扱うPROMOTERFINDER(登録商標)ライブラリーを用いることができる(Clontech, Palo Alto, Calif.)。この処理はスクリーンライブラリーを必要とせず、イントロン/エクソン連結を検出するために有用である。

0085

全長のcDNAをスクリーニングする場合には、より大きいcDNAを包含するためにサイズ選択されているライブラリーを用いることが好ましい。また、ランダムプライムライブラリーは、遺伝子の5’領域を含むより多くの配列を含有しているので好ましい。ランダムプライムライブラリーは特に、オリゴd(T)ライブラリーが全長のcDNAをもたらさない状況で有用であろう。ゲノムライブラリーは5’及び3’非転写制御領域への配列の拡張のために有用であろう。

0086

市販されているキャピラリー電気泳動ステムを、シーケンシング又はPCR産物のサイズを分析するために又はヌクレオチド配列を確認するために用いることができる。特に、キャピラリーシーケシングは、電気泳動分離のための流動性ポリマーレーザーで活性化される4つの異なった蛍光染料(一つは各ヌクレオチド用)、及び電荷結合素子カメラによる放出波長の検出を利用する。光出力強度は適切なソフトウェア(例えば、GENOTYPER(登録商標)及びSEQUENCE NAVIGATOR(登録商標)、Perkin Elmer)を用いて電気信号に変換でき、試料の挿入からコンピュータ分析及び電気データの表示までの全ての過程をコンピュータ制御できる。キャピラリー電気泳動は、特定試料に限られた量で存在しているかもしれないDNAの小片の配列決定のために特に好ましい。

0087

C.ベクター及び宿主細胞
本発明は、本発明の単離されたポリヌクレオチドを含有する組み換えベクター、組み換えベクターで遺伝子操作された宿主細胞、及び組み換え技術による組み換えEML4−ALKポリペプチド又はその断片の産生も提供する。

0088

組み換え構築物を、感染、形質導入トランスフェクショントランスクション、電気穿孔法及び形質転換のような周知の技術を用いて宿主細胞に導入することができる。ベクターは例えば、ファージプラスミドウィルス又はレトロウィルスのベクターであってよい。レトロウィルスベクター複製可能又は複製欠損であってもよい。後者の場合は、ウィルスの増殖は一般に、相補宿主細胞中のみで起こるであろう。

0089

ポリヌクレオチドを、宿主における増殖を選択可能なマーカーを含有しているベクターに結合することができる。一般に、プラスミドベクターは、リン酸カルシウム沈殿物のような沈殿物、又は荷電脂質との錯体に導入される。ベクターがウィルスの場合は、適切なパッケージング細胞株を用いてインビトロでパッケージングし、次いで宿主細胞に形質導入することができる。

0090

目的のポリヌクレオチドに対してシス作用制御領域を含有しているベクターが好ましい。適切なトランス作用因子を、宿主によって供給、相補ベクターによって供給、又は宿主に導入することによりベクター自身によって供給できる。これに関するある好ましい態様では、ベクターは、誘導可能な及び/又は細胞型固有の、特定な発現を行う。そのようなベクターのうち特に好ましいものは、温度及び栄養素添加物のような、容易に操作できる環境因子によって誘導可能なものである。

0091

本発明で有用な発現ベクターは、染色体、エピソーム、及びウィルス由来のベクター、例えば細菌プラスミド、バクテリオファージ、酵母エピソーム、酵母染色体要素、バキュロウィルスパポバウィルスワクシナウィルス、アデノウィルス家禽ジフテリアウィルス、仮性狂犬病ウィルス及びレトロウィルス、及びコスミド及びファージミドのような、これらの組合わせ由来のベクターを包含する。

0092

EML4−ALKポリヌクレオチド又は本発明のポリヌクレオチドを含むDNAの挿入物は、数例を挙げると、ラムダファージPLプロモーター、大腸菌lac、trp及びtacプロモーター、SV40早期及び後期プロモーター及びレトロウィルスLTRsのプロモーターのような、適切なプロモーターと操作可能に結合しなければならない。他の適切なプロモーターは当業者に公知である。発現構築物は更に、転写を開始、終了するための部位、及び転写領域に翻訳のためのリボソーム結合部位を含有しているであろう。この構築物によって発現された成熟転写物のコード部分は、翻訳されるポリペプチドの末端に正確に位置している開始及び終止コドン(UAA、UGA又はUAG)に翻訳開始部位を包含していることが好ましいだろう。

0093

示されるように、発現ベクターは少なくとも1つの選択可能なマーカーを包含していることが好ましいだろう。そのようなマーカーは、真核細胞の培養のためのジヒドロ葉酸還元酵素又はネオマイシン耐性、及び大腸菌及び他の細菌培養におけるテトラサイクリン又はアンピシリン耐性遺伝子を包含する。適切な宿主の代表的な例は、これに限定されないが、大腸菌、ストレプトミセス及びネズミチフス菌細胞のような細菌細胞酵母細胞のような、真菌細胞ショウジョウバエS2及びスポドプテラ(Spodoptera)Sf9細胞のような昆虫細胞;CHO、COS及びボーズ(Bowes)メラノーマ細胞のような動物細胞;及び植物細胞を包含する。上記宿主細胞のための適切な培養培地及び条件は当該技術分野で公知である。

0094

細菌において用いられるベクターで好ましいものは、Quiagen から入手できる、pQE70、pQE60及びpQE−9;Stratagene から入手できるpBSベクター、ファージスクリプト(Phagescript) ベクター、ブルースクリプト (Bluescript) ベクター、pNH8A、pNH16a、pNH18A、pNH46A;及び Pharmacia から入手できるptrc99a、pKK223−3、pKK233−3、pDR540、pRIT5を包含する。真核ベクターのうち好ましいものは、Stratagene から入手できるpWLNEO、pSVCAT、pOG44、pXT1及びpSG;及び Pharmacia から入手できるpSVK3、pBPV、pMSG及びpSVLである。他の適切なベクターは当業者にとって明白であろう。

0095

公知の細菌プロモーターのうち本発明で用いるのに適しているものは、大腸菌lac1及びlacZプロモーター、T3及びT7プロモーター、gptプロモーター、ラムダPR及びPLプロモーター及びtrpプロモーターを包含する。適切な真核プロモーターはCMV前初期プロモーター、HSVチミジンキナーゼプロモーター、後期及び前期SV40プロモーター、ラウス肉腫ウィルス(RSV)のような、レトロウィルスLTRsのプロモーター、及びマウスメタロチオネイン−1プロモーターのような、メタロチオネインプロモーターを包含する。

0096

酵母、サッカロマイセスセレヴィシエ(Saccharomyces cerevisiae)においては、アルファ因子アルコールオキシダーゼ、及びPGHのような、構成的又は誘導性のプロモーターを含む多くのベクターを用いることができる。総説については、Ausubel et al. (1989) CURRENTPROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, N.Y. 及び Grant et al., MethodsEnzymol. 153:516-544 (1997) を参照されたい。

0097

この構築物の宿主細胞への導入は、リン酸カルシウムトランスフェクション、DEAEデキストラン介在トランスフェクション、陽イオン性脂質介在トランスフェクション、電気穿孔法、形質導入、感染又は他の方法によって達成できる。そのような方法は、Davis et al.,BASICMETHODS IN MOLECULAR BIOLOGY (1986) のような、多くの標準的な実験用マニュアルに記載されている。

0098

高等真核生物による、本発明のEML4−ALK融合ポリペプチドをコードするDNAの転写は、ベクターにエンハンサー配列を挿入することによって増進させることができる。エンハンサーは、所定の宿主細胞においてプロモーターの転写活性を増大するように働く通常約10〜300bpである、DNAのシス作用性要素である。エンハンサーの例は、塩基対100〜270の複写起点の後期部位に位置しているSV40エンハンサー、サイトメガロウィルス前期プロモーターエンハンサー、複写起点の後期部位にあるポリオーマエンハンサー、及びアデノウィルスエンハンサーを包含する。

0099

翻訳されたタンパク質の、小胞体内腔への、細胞膜周辺腔への、又は細胞外環境への分泌のために、適切な分泌シグナルを発現されたポリペプチド中に組み入れることができる。このシグナルはポリペプチドに対して内因性であってよく、又はこれらは異種シグナルであってもよい。

0100

ポリペプチドを、融合タンパク質(例えば、GST−融合)のような改変形態で発現してよく、そして分泌シグナルだけではなく、更なる異種の機能領域を含んでいてもよい。例えば、追加のアミノ酸、特に荷電したアミノ酸の領域を、精製中、又はその後の処理又は貯蔵中に、安定性及び宿主細胞への残存を改善するために、ポリペプチドのN−末端に付加することができる。また、精製を促進するために、ペプチド残基をこのポリペプチドに付加してもよい。そのような領域はポリペプチドの最終調製の前に除去することができる。とりわけ、分泌又は排出を引き起こすための、安定性を改善するための、そして精製を促進するための、ペプチド残基のポリペプチドへの付加は当該技術分野でよく知られていて通常の手法である。好ましい融合タンパク質はタンパク質を可溶化するのに有用な免疫グロブリン由来の異種領域を含有している。

0101

EML4−ALK融合ポリペプチドを、硫酸アンモニウム又はエタノール沈殿、酸による抽出、アニオン又はカチオン交換クロマトグラフィーリン酸セルロースクロマトグラフィー疎水性相互作用クロマトグラフィー親和性クロマトグラフィーヒドロキシルアパタイトクロマトグラフィー及びレクチンクロマトグラフィーを包含する、公知の方法で組み換え細胞培養物から回収及び精製することができる。高性能液体クロマトグラフィー(「HPLC」)を精製に用いることが最も好ましい。本発明のポリペプチドは、天然精製産物化学合成過程の産物、及び例えば、細菌、酵母、高等植物、昆虫及び哺乳類の細胞を含む、原核及び真核宿主から組み換え技術によって産生された産物を包含する。組み換え産生過程で用いられる宿主によって、本発明のポリペプチドはグリコシル化されていても、又はグリコシル化されていなくてもよい。更に、本発明のポリペプチドは、ある場合は宿主介在過程の結果、初期改変メチオニン残基を含有していてもよい。

0102

従って、ある態様では、本発明は、組み換え宿主細胞(上記のような)を融合ポリペプチドの発現に適している条件下で培養して、ポリペプチドを回収することによって組み換えEML4−ALK融合ポリペプチドを産生する方法を提供する。宿主細胞の生育及びそのような細胞からの組み換えポリペプチドの発現に適している培養条件は、当業者にとって公知である。例えば、CURRENTPROTOCOLS IN MOLECULAR BIOLOGY, AusbelFMet al., eds., Volume 2, Chapter 16, Wiley Interscience を参照されたい。

0103

D.単離されたポリペプチド。
本発明は、ある部分では、単離された突然変異ALKキナーゼポリペプチド及びその断片を提供する。一態様では、本発明は、
(a)配列番号1又は配列番号18のアミノ酸配列を含有しているEML4−ALK融合ポリペプチドをコードするアミノ酸配列;
(b)EML−4のN−末端アミノ酸配列(配列番号3の残基1−123、又は配列番号3の残基1−495)及びALKのキナーゼドメイン(配列番号5の残基1116−1383)を含有しているEML4−ALK融合ポリペプチドをコードするアミノ酸配列;及び
(c)EML4−ALK融合ポリペプチドの融合接合部(配列番号1の残基233−234、又は配列番号18の残基495−496)を包含する少なくとも6つの隣接アミノ酸を含有しているポリペプチドをコードするアミノ酸配列:
よりなる群から選ばれる配列と少なくとも95%の相同性を有するアミノ酸配列を含有する単離されたポリペプチドを提供する。

0104

一つの好ましい態様では、上記のような組み換えベクター又は組み換え宿主細胞を用いて産生できる、本発明の組み換え突然変異ALKポリペプチドを提供する。

0105

EML4−ALK融合ポリペプチド又は切断された活性ALKキナーゼポリペプチドのアミノ酸配列の幾つかを、突然変異タンパク質の構造又は機能に有意な影響をもたらさずに、改変できるということは当該技術分野で認識されるであろう。配列中のそのような相違を検討する場合は、タンパク質に活性を決める重要な部位(例えばALKのキナーゼドメイン)があるようにすることを配慮すべきである。一般に、同じような機能を示す残基を用いれば、三次構造を形成する残基を置き換えることが可能である。他の例では、改変をタンパク質の重要ではない領域で行う場合は、残基のタイプは全く重要でなくてよい。

0106

従って、本発明は更に、実質的なALKキナーゼ活性を保持しているか、又は以下で検討するようなタンパク質部分のような、EML−4又はALKタンパク質の他の領域を含有している、EML4−ALK融合ポリペプチドの変異体を包含している。そのような突然変異体は、欠失、挿入、反転、反復、及びタイプ置換(例えば、一つの親水性残基を別のものと置換するが、一般に親水性の強いものを疎水性の強いものとは置換しない)を包含する。小さな改変又は「中性」アミノ酸置換のようなものは、一般に活性に殆ど影響がないであろう。

0107

保存的置換として典型的に見られるものは、脂肪族アミノ酸Ala、Val、Leu及びIleの間での互いの置換;ヒドロキシ残基SerとThrの交換酸性残基ASpとGluの交換、アミド残基AsnとGlnの間での置換、塩基残基LysとArgの交換、及び芳香族残基Phe、Tyr間の置き換えである。当業者に知られている保存的アミノ酸置換の例は;芳香族フェニルアラニン、トリプトファン、チロシン;疎水性:ロイシン、イソロイシン、バリン極性グルタミンアスパラギン塩基性アルギニンリジン、ヒスチジン;酸性:アスパラギン酸グルタミン酸;小分子:アラニンセリンスレオニンメチオニン、グリシン;である。上で詳細に示したように、どのアミノ酸交換表現型的に軽微であると思われるか(すなわち、機能に対して有意な悪影響をおよばさないと思われるか)についての更なる手引きをBowie et al., Science 247, supra に見出すことができる。

0108

本発明のポリペプチドは単離された形態、好ましくは実質的に精製された形態で、提供されることが好ましい。本発明のEML4−ALK融合ポリペプチドの組み換え産生物は、Smith and Johnson, Gene 67:31-40 (1988) に記載されている一工程方法で実質的に精製することができる。

0109

本発明のポリペプチドは、図2A−B(配列番号1及び18)(リーダー配列を含んでいてもいなくても)のEML4−ALK融合ポリペプチド、EML−4のN−末端アミノ酸配列(配列番号3の残基1−123、又は配列番号3の残基1−495)及びALKのキナーゼドメイン(配列番号5の残基1116−1383)を含有しているEML4−ALK融合ポリペプチドをコードするアミノ酸配列、及びEML4−ALK融合ポリペプチドの融合接合部(配列番号1の残基233−234、又は配列番号18の残基495−496)を包含する少なくとも6つの隣接アミノ酸を含有しているポリペプチドをコードするアミノ酸配列(図1A−B、最下図も参照されたい)を、更に、上記のものと少なくとも90%の相同性、好ましくは少なくとも95%の相同性、そして更に好ましくは少なくとも96%、97%、98%又は99%の相同性を有するポリペプチドも包含する。

0110

二つのポリペプチドに対する「%」の相同性とは、ベストフィットプログラム(Bestfit program; Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, Wis. 53711) 及び相同性を判定するためのデフォルト設定を用いて二つのポリペプチドのアミノ酸配列を比較して作成した相同性スコアーを意図している。ベストフィットは、二つの配列間の相同性の最良の部分を見出すために、Smith and Waterman の局所相同性アルゴリズム(Advances in Applied Mathematics 2:482-489 (1981)) を用いる。

0111

ポリペプチドが、本発明のEML4−ALK融合ポリペプチドの参照アミノ酸配列と、例えば少なくとも95%「相同な」アミノ酸配列を有しているとは、このポリペプチドのアミノ酸配列が、突然変異ALKポリペプチドの参照アミノ酸配列の各々の100のアミノ酸当たり5個までのアミノ酸改変をアミノ酸配列が含有していてもよいことを除いて、参照配列と相同であることを意図している。すなわち、参照アミノ酸配列と少なくとも95%相同なアミノ酸配列を有するポリペプチドを得るためには、参照配列の5%までのアミノ酸残基を欠失又は他のアミノ酸と置換させてもよい、又は参照配列中の総アミノ酸残基の5%までのアミノ酸の数を、参照配列に挿入してもよい。参照配列のこれらの改変は、参照アミノ酸配列のアミノ末端又はカルボキシ末端位置、又はこれら末端位置の間の何れかの位置に、参照配列中の残基間に個々に、又は参照配列内の1つ又はそれ以上の隣接基散在させて、生じさせることができる。

0112

特定の配列が、本発明による参照配列と、例えば、95%の相同性を有するか否かを判定するために、ベストフィット又は他の配列配置プログラムの何れかを用いるときは、もちろん、参照アミノ酸配列の全長に対して相同性のパーセントが計算されるように、そして参照配列のアミノ酸残基の総数の最大5%の相同性のずれが許容されるように、パラメーターがセットされる。

0113

本発明のEML4−ALK融合ポリペプチドは、例えば当業者に公知の方法を用いる、SDS−PAGEゲル、モレキュラーシーブゲルろ過カラム上で分子量マーカーとして使用できる。

0114

以下に更に詳細に記載されるように、本発明のポリペプチドは、以下に記載するような突然変異ALKポリペプチドの発現を検出するアッセイに、又は突然変異ALKタンパク質の機能/活性を増強又は阻害することが可能な作動薬又は拮抗薬として有用な、ポリクローナル及びモノクローナル抗体のような融合ポリペプチドに特異的な試薬、又は切断されたポリペプチドに特異的な試薬を作成するためにも用いることができる。更に、そのようなポリペプチドは、EML4−ALK融合ポリペプチド、又は本発明による候補作動薬及び拮抗薬でもある断片ALKキナーゼポリペプチド結合タンパク質を「捕捉」するための、酵母2ハイブリッドシステムで使用することができる。酵母2ハイブリッドシステムは、Fieldsand Song, Nature 340:245-246 (1989) に記載されている。

0115

別の態様では、本発明は、本発明のポリペプチドのエピトープを含む部分、例えばEML4−ALK融合ポリペプチドの融合接合部(図1A−B、最下図を参照されたい)を含有するエピトープ、を含むペプチド又はポリペプチドを提供する。このポリペプチドのエピトープ部分は、本発明のポリペプチドの免疫原性又は抗原性エピトープである。「免疫原性エピトープ」は、全タンパク質が免疫源であるときに抗体応答を誘発するタンパク質の一部分として定義されている。これらの免疫原性エピトープは分子上の幾つかの遺伝子座に閉じこめられると考えられている。一方、抗体が結合できるタンパク質分子の領域は、「抗原エピトープ」と定義されている。タンパク質の免疫原性エピトープの数は一般に抗原エピトープの数より少ない。例えば、Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998-4002 (1983) を参照されたい。本発明の融合ポリペプチドに特異的な抗体の産生は以下に更に詳細に記載されている。

0116

抗原エピトープを含むペプチド又はポリペプチドを用いて産生された抗体は模倣タンパク質の検出に有用であり、そして異なったペプチドに対する抗体は、翻訳後処理を受けているタンパク質前駆体の各種領域運命を追跡するために用いることができる。ペプチド及び抗ペプチド抗体は、例えば、免疫沈降アッセイにおいて、短いペプチド(例えば、約9のアミノ酸)であっても、より大きいペプチドに結合して置き換え得ることが示されているので、模倣タンパク質についての定性及び定量アッセイ、例えば競合アッセイに用いることができる。例えば、Wilson et al., Cell 37:767-778 (1984) at 777 を参照されたい。本発明の抗ペプチド抗体は、例えば、当該技術分野で公知の方法を用いる吸着クロマトグラフィーによる、模倣タンパク質の精製に関して有用である。免疫アッセイの方式は以下により詳細に記載されている。

0117

組み換え突然変異ALKポリペプチドも本発明の範囲内であって、上記B欄に記載されるようにして、本発明のポリヌクレオチドを用いて産生することができる。例えば、本発明はある部分では、組み換え宿主細胞(上記のような)を融合ポリペプチドを発現させるのに適した条件下で培養し、そしてポリペプチドを回収することによる、組み換えEML4−ALK融合ポリペプチドを産生する方法を提供する。宿主細胞の生育及びそのような細胞から組み換えポリペプチドを発現するのに適している条件は当業者にとって公知である。

0118

E.突然変異体に特異的な試薬
開示される方法の実施に有用な突然変異ALKポリペプチドに特異的な試薬は、とりわけ、融合ポリペプチドに特異的な抗体及び対応するAQUAペプチド(重同位体標識化ペプチド)を包含し、そして哺乳類の固形肉腫又は癌腫瘍のような、癌由来の生体試料におけるEML4−ALK融合ポリペプチドの発現を検出及び定量化するのに適している。本発明の切断されたALKキナーゼポリヌクレオチド又はポリペプチドの存在又は非存在を検出するのに適している、抗体、AQUAペプチド又は核酸プローブのような、切断片に特異的な試薬も有用である。融合ポリペプチドに特異的な試薬は、生体試料中に発現されたEML4−ALK融合ポリペプチドに特異的に結合して、その存在/レベルを検出及び/又は定量化できる、生物学的又は化学的試薬の何れかである。この用語は、これに限定されないが、以下で検討する好ましい抗体及びAQUAペプチド試薬を包含し、均等な試薬は本発明の範囲内である。

0119

抗体
本発明方法の実施で用いるのに適している試薬は、EML4−ALK融合ポリペプチドに特異的な抗体及びTFG−ALK融合ポリペプチドに特異的な抗体を包含する。本発明の融合体に特異的な抗体は、本発明のEML4−ALK融合ポリペプチド(例えば、配列番号1)に特異的に結合するが野生型のEML−4又は野生型のALKの何れとも実質的に結合しない、又は本明細書に記載されるTFG−ALK融合ポリペプチド(例えば、配列番号20)に特異的に結合するが野生型のTFG又は野生型のALKの何れとも実質的に結合しない、単離された抗体(複数を含む)である。他の適切な試薬は、野生型ALKタンパク質配列の細胞外ドメイン(このドメインは本明細書に開示される切断された活性ALKキナーゼ中に存在していない)中のエピトープに特異的に結合するので、試料中の野生型ALKの存在(又は非存在)を検出できる、エピトープに特異的な抗体を包含する。

0120

ヒトEML4−ALK又はTFG−ALK融合ポリペプチドに特異的な抗体は、他の哺乳類種、例えばネズミ又はウサギ中の高度に相同性かつ均等性を有するエピトープペプチド配列に結合してもよく、その逆も同様である。本発明の方法を実施するのに有用な抗体は、(a)モノクローナル抗体、(b)標的のポリペプチド(例えば、EML4−ALK融合ポリペプチドの融合接合部(図1A−B、最下図を参照されたい)又はTFG−ALK融合ポリペプチド(図1C、最下図を参照されたい)の融合接合部)に特異的に結合する精製されたポリクローナル抗体、(c)他の非ヒト種(例えば、マウス、ラット)における均等で高度に相同性を有するエピトープか、又はリン酸化部位に結合する、上の(a)〜(b)に記載されているような抗体、及び(d)本明細書に開示される典型的な抗体が結合する抗原(又は、より好ましくはエピトープ)に結合する上記(a)〜(c)の断片を包含する。

0121

本明細書で用いられる用語「抗体(複数を含む)」は、IgG、IgA、IgD、及びIgEを含む、全てのタイプの免疫グロブリンを示す。抗体はモノクローナル又はポリクローナルであってもよく、(例えば)マウス、ラット、ウサギ、ウマ又はヒトを含む、何れかの種を起源としていてもよく、又はキメラ抗体であってもよい。例えば、M. Walker et al., Molec. Immunol. 26:403-11 (1989); Morrison et al., Proc. Natl. Acad. Sci. 81:6851 (1984); Neuberger et al., Nature 312:604 (1984) を参照されたい。抗体は、米国特許第4,474,893号(Reading)又は米国特許第4,816,567号(Cabilly et al.) に開示されている方法によって製造される組み換えモノクローナル抗体であってもよい。抗体は米国特許第4,676,980号(Segel et al.) に開示されている方法によって作成される化学的に構築された特異抗体であってもよい。

0122

本発明のEML4−ALK融合ポリペプチドに特異的な抗体の好ましいエピトープ部位は、本質的にヒトEML4−ALK融合ポリペプチド配列(配列番号1及び18)の約11〜17のアミノ酸から成っているペプチド断片であって、この断片は融合接合部(短い変異融合タンパク質の残基233−234、及び長い変異融合タンパク質の残基495−496に起こる(図1A−B(最下図)を参照されたい)を包含している。EML4−ALK融合ポリペプチドの融合接合部を包含するより短い又はより長いペプチド/エピトープに特異的に結合する抗体が本発明の範囲内であるということは理解されるであろう。

0123

同様に、開示される方法の実施に有用なTFG−ALK融合ポリペプチドに特異的な抗体の好ましいエピトープ部位は、本質的にヒトTFG−ALK融合ポリペプチド配列(配列番号20)の約11〜17のアミノ酸から成っているペプチド断片であって、この断片は融合接合部(残基137−138に起こる(図1C(最下図)を参照されたい)を包含している。

0124

本発明は抗体の使用に限定されず、本発明の方法で有用なEML4−ALK又はTFG−ALK融合ポリペプチドに特異的な抗体が結合するエピトープと本質的に同じエピトープに、融合タンパク質又は切断されたタンパク質に特異的な方法で結合する、タンパク質結合ドメイン又は核酸アプトマーのような、均等な分子の使用も包含する。例えば、Neuberger et al., Nature 312:604 (1984) を参照されたい。そのような均等な非抗体試薬は、以下に更に記載する本発明の方法において適切に利用することができる。

0125

本発明の方法を実施するのに有用なポリクローナル抗体は、公知の手法に従って、適当な動物(例えば、ウサギ、ヒツジなど)を、望ましい融合タンパク質に特異的なエピトープ(例えば、本明細書に記載されるALK融合タンパク質の融合接合部)を包含する抗原で免疫し、動物から免疫血清を集めて、及び免疫血清からポリクロナール抗体を分離して、並びに所望の特異性を有するポリクローナル抗体を精製することによる標準的な技術に従って産生することができる。抗原は、公知の技術に従って選択されて構築された、所望のエピトープ配列を含有している合成ペプチド抗原であってもよい。例えば、ANTIBODIES: A LABORATORYMANUAL, Chapter 5, p.75-76, Harlow & Lane Eds., Cold Spring Harbor Laboratory (1988); Czernik, Methods in Enzymology, 201:264-283 (1991); Merrifield, J. Am. Chem. Soc. 85:21-49 (1962) を参照されたい。本明細書に記載のようにして産生したポリクローナル抗体は、以下に更に記載されるようにして、スクリーニング及び単離することができる。

0126

モノクローナル抗体も本発明の方法で便利に利用することができ、Kohler and Milstein の公知技術に従ってハイブリドーマ細胞株中に産生することができる。Nature 265:495-97 (1975); Kohler and Milstein, Eur. J. Immunol. 6:511 (1976); CURRENTPROTOCOLS IN MOLECULAR BIOLOGY、Ausbel et al. Eds. (1989) も参照されたい。このようにして産生したモノクローナル抗体は高度に特異的で、本発明で提供されるアッセイ方法選択性及び特異性を増強する。例えば、適切な抗原(例えば、EML4−ALK融合ポリペプチドの融合接合部を含有している合成ペプチド)を含有している溶液をマウスに注射して、十分な時間の後(通常の技術で保持して)、マウスをと殺して、脾臓細胞を得ることができる。次いでこの脾臓細胞を、一般にポリエチレングリコールの存在下で、骨髄腫細胞と融合して不死化してハイブリドーマ細胞を産生する。ウサギ融合ハイブリドーマは、例えば、1997年10月7日登録の米国特許第5,675,063号(K.Knight)に記載されているようにして産生できる。次いでハイブリドーマ細胞を、ヒポキサンチンアミノプテリン−チミジン(HAT)のような、適切な選択培地中で生育して、上澄液を、以下に記載するような、所望の特異性を有するモノクローナル抗体についてスクリーニングする。分泌された抗体を、沈殿イオン交換、親和性クロマトグラフィーなどのような通常の方法で組織培養上澄液から回収することができる。

0127

モノクローナルFab断片も、当該技術分野で公知の組み換え技術によって大腸菌中に産生することができる。例えば、W. Huse, Science 246:1275-81 (1989); Mullinax et al., Proc. Natl. Acad. Sci. 87:8095 (1990) を参照されたい。1つのイソタイプのモノクローナル抗体が特定の適用に関して好ましい場合は、特定のイソタイプを最初の融合体から選択して直接的に作成するか、又はクラススイッチ変異体を単離するための同胞選択技術(Steplewski, et al., Proc. Natl. Acad. Sci., 82:8653 (1985); Spira et al., J. Immunol. Methods, 74:307 (1984))を用いて、異なるイソタイプのモノクローナル抗体を分泌する親ハイブリドーマから二次的に作成することができる。モノクローナル抗体の抗原結合部位を、PCR及びファージディスプレー組み換え抗体又は大腸菌可溶性抗体のように産生させた単鎖抗体によってクローン化できる(例えば、ANTIBODY ENGINEERING PROTOCOLS, 1995, Humana Press, Sudhir Paul editor を参照されたい)。

0128

更に、米国特許第5,194,392号(Geysen, 1990)は、目的の抗体の特定パラトープ(抗原結合部位)と相補的なエピトープ(すなわち、「ミモトープ」)の位相同型であるモノマー(アミノ酸又は他の化合物)の配列を検出又は決定する一般的な方法を記載している。より一般的には、この方法は、目的の特定の受容体リガンド結合部位と相補的であるリガンドの局所的同型であるモノマーの配列の検出又は決定を含む。同様に、米国特許第5,480,971号(Houghten et al., 1996)は、直鎖C1−C−アルキルアルキル化オリゴペプチド及びセット及びそのようなペプチドのライブラリーを、更にそのようなペプチドセット及びライブラリーを用いて、目的の受容体分子優先的に結合する過アルキル化オリゴペプチドの配列を決定する方法も開示している。本発明のエピトープを含むペプチドの非ペプチド類縁体も、これらの方法で普通に作成することができる。

0129

本発明の方法において有用な抗体は、ポリクローナル又はモノクローナルであろうと、標準的な技術によって、エピトープ及び融合タンパク質特異性についてスクリーニングすることができる。例えば、Czernik et al., Methodsin Enzymology, 201:264-283 (1991) を参照されたい。例えば、抗体を、所望の抗体に対する特異性及び、所望により、例えば本発明のEML4−ALK融合ポリペプチドとのみ反応して野生型のEML−4又は野生型のALKとは反応しないという特異性の両方を確証するために、ELISAによってペプチドライブラリーに対してスクリーニングすることができる。抗体を、所望の標的のみとの反応性を確認するために、そしてALKを含む他の融合タンパク質と感知可能程度に結合しないことを確証するために、標的タンパク質を含有する細胞調製物に対してウエスタンブロッティングで試験することもできる。融合タンパク質に特異的な抗体の産生、スクリーニング、及び使用は、当業者に公知であり、記載されている。例えば、米国特許出願公開第20050214301号(Wetzel et al., September 29, 2005) を参照されたい。

0130

本発明の方法で有用な融合ポリペプチドに特異的な抗体は、他の融合タンパク質の同様な融合エピトープと又は融合接合部を形成する野生型EML−4、野生型TFG、及び野生型ALKのエピトープといくらかの限られた交差反応性を示す可能性がある。殆んどの抗体がある程度の交差反応性を示し、抗ペプチド抗体が免疫ペプチドと高い相同性又は同一性を有しているエピトープとしばしば交差反応するであろうことから、このことは予想外というわけではない。例えば、Czernic, supra を参照されたい。他の融合タンパク質との交差反応性は、分子量が知られているマーカーと並行して行うウェスタンブロッティングによって容易に明らかにすることができる。交差反応するタンパク質のアミノ酸配列を、抗体が結合するEML4−ALK又はTFG−ALK融合ポリペプチド配列と高い相同性又は同一性を有する部位を同定するために試験することができる。望ましくない交差反応性を、ペプチドカラム上での抗体精製を用いる陰性選択(例えば、野生型EML−4及び/又は野生型ALKの何れかと結合する抗体を選び出すこと)によって除くことができる。

0131

本明細書に開示される方法を実施するために有用である本発明のEML4−ALK融合ポリペプチドに特異的な抗体(及びTFG−ALK融合ポリペプチドに特異的な抗体)は、理想的にはヒト融合ポリペプチドに特異的であるが、ヒトの種自体にだけに結合するようには限定されない。本発明は、他の哺乳類の種(例えばマウス、ラット、サル)にある保存されそして高い相同性又は同一性を有するエピトープにも結合する抗体の産生及び使用を包含する。他の種にある高い相同性又は同一性を有する配列は、本明細書で開示されるヒトEML4−ALK融合ポリペプチド配列(配列番号1及び18)又は本明細書で開示されるヒトTFG−ALK融合ポリペプチド配列(配列番号20)との、BLASTを用いるような、標準的な配列比較によって容易に同定できる。

0132

本発明の方法で用いられる抗体は更に、特定のアッセイ形式、例えばフローサイトメリー(FC)、免疫組織化学(IHC)、及び/又は免疫細胞化学(ICC)での使用、により特徴付けられて及び、これらに対して有効化することができる。そのような方法でのALK融合ポリペプチドに特異的な抗体の使用は、以下のF欄に更に記載されている。更にF欄に記載されるような、他のシグナル変換(ホスホ−AKT、ホスホ−Erk 1/2)及び/又は細胞マーカーサイトケラチン)抗体と一緒に行う多重パラメータ解析で用いるために、蛍光染料(例えば、Alexa488、PE)、又は量子ドットのような標識と有利に結合させることもできる。

0133

本発明方法の実施において、所定の生体試料中での野生型EML−4、野生型TFG、及び/又は野生型ALKの発現及び/又は活性も、これらの野生型タンパク質に対する抗体(リン酸特異的又は全てに特異的の何れか)を用いて有利に試験することができる。例えば、ALK全て及びリン酸化部位に特異的な抗体は市販されている(CELLSIGNALING TECHNOLOGY, INC., Beverly MA. 2005/06 Catalogue, #s 3341, 3342 を参照されたい)。そのような抗体も上記のような、標準的な方法によって産生できる。ヒトEML−4、TFG、及びALKのアミノ酸配列は、他の種由来のこれらタンパク質の配列と同様に、公表されている(図3A及び4A−4C、及びSwissProt Accession Nos. を参照されたい)

0134

生体試料(例えば、腫瘍の試料)における、EML4−ALK及び/又はTFG−ALK融合ポリペプチドの発現と共に、野生型EML−4、TFG、及び野生型ALKの発現及び/又は活性を検出することは、融合タンパク質のみが腫瘍を促進するのか否か、又は野生型ALKも腫瘍を活性化して促進するのか否かについての情報を提供する。そのような情報は、融合タンパク質又は野生型タンパク質、又は両方を標的にするか否かを評価するのに臨床的に有用であり、又は腫瘍の進展の阻害に、そして適切な治療法又はその組合わせを選択するのに最も有益である。本明細書に開示される切断された活性ALKキナーゼに存在していない、野生型ALKキナーゼ細胞外ドメインに特異的な抗体は、突然変異ALKキナーゼの存在/非存在を判定するために特に有用である。

0135

1つ以上の抗体を上記の方法の実施に用いることができるということは理解されるであろう。例えば、一つ又はそれ以上のEML4−ALK融合ポリペプチドに特異的な抗体を、別のキナーゼ、受容体、又はEML4−ALK融合ポリペプチドを発現する癌の中で活性化されることが疑われているか、潜在的に活性化される、キナーゼ基質に特異的な1つ又はそれ以上の抗体と同時に用いて、そのような癌由来の細胞を含有している生体試料中のそのような他のシグナル伝達分子の活性を検出することができる。

0136

本発明のEML4−ALK融合ポリペプチド及び上記の融合接合部エピトープを含むそれらの断片を、キメラポリペプチドをもたらすように、免疫グロブリン(IgG)の構築ドメインの部分と組み合わせることができることを当業者は理解されるであろう。これらの融合タンパク質は精製を促進してインビボでの増大した半減期を示す。このことは、例えばヒトCD4−ポリペプチドの最初の2つのドメイン及び哺乳類の免疫グルブリンの重鎖又は軽鎖構築領域の多数のドメインを含有しているキメラタンパク質に関して、示されている(EPA 394,827;Traunecker et al., Nature 331:84-86 (1988))。IgG部分によるジスルフィド結合二量体構造を有している融合タンパク質は、他の分子との結合及び中和を、単量体のEML4−ALK融合ポリペプチド単独よりも、より有効にすることができる(Fountoulakis et al., J. Biochem 270:3958-3964 (1995))。

0137

重同位体標識化ペプチド(AQUAペプチド)。
開示される方法の実施に有用なEML4−ALK又はTFG−ALK融合ポリペプチドに特異的な試薬は、生体試料中の発現されたALK融合ポリペプチド又は切断されたALKキナーゼポリペプチドの絶対的定量化に適している重同位体標識化ペプチドを含有していてもよい。複合混合物中のタンパク質(AQUA)の絶対的定量化用のAQUAペプチド産生及び使用は記述されている。国際公開WO第03/016861号公報、"Absolute Quantification of Proteins and Modified Forms Thereof by Multistage Mass Spectrometry",Gygi et al. 及び Gerber et al. Proc. Natl. Acad. Sci. U.S.A. 100:6940-5 (2003) も参照されたい;これらの教示はその全てを参照して本明細書に組み入れる)。

0138

AQUA手順は、少なくとも1つの重同位体標識化ペプチド標準品の既知量(これはLC−SRMクロマトグラフィーで検出可能な固有の符号を有している)を検出するために消化した生体試料への導入、及びペプチド標準品と比較することによる、生体試料中の同じ配列及びタンパク質改変を持つペプチドの絶対的定量化を利用する。すなわち、AQUA手順は2つの段階:ペプチド内部標準品の選択及び検証及び方法の作成;及び検証されたペプチド内部標準品を用いて試料中の標的タンパク質を検出及び定量化するための実施:を有している。この方法は、細胞溶解物のような、複合生体合物中の所定のペプチド/タンパク質を検出及び定量化するための強力な手法であって、例えば、薬物治療の結果としてのタンパク質リン酸化の変化を定量化するため、又は異なった生物学的状態におけるタンパク質濃度の違いを定量化するために、利用することができる。

0139

一般に、適切な内部標準品を作成するために、標的のタンパク質配列中の特定のペプチド(又は改変ペプチド)を、そのアミノ酸配列及び消化に用いられる特定のプロテアーゼに基づいて選択する。次いで1つの残基を安定な同位体(13C、15N)を含有している同じ残基で置き換えるように、固相ペプチド合成によってペプチドを生成する。得られたものは、タンパク質分解によって形成されるその天然の対応物と化学的に同定されるが、7−Da質量シフトを通してMSにより容易に区別できるペプチドである。次いで、新たに合成されたAQUA内部標準ペプチドをLC−MS/MSで評価する。この過程は、逆相クロマトグラフィーによるペプチドの保持率イオン化効率、及び衝突誘起解離による断片化についての定量的情報をもたらす。天然及び内部標準ペプチドのセットについての有益且つ豊富断片イオンを選択し、次いでペプチド標準品の固有なプロファイルに基づいて、選択された反応モニタリング(LC−SRM)方法を形成するクロマトグラフ保持の機能として連続的に測定される。

0140

AQUA手法の第2段階は、複合混合物からのタンパク質又は改変タンパク質の量を測定するためのその実施である。全細胞溶解物は典型的にSDS−PAGEゲル電気泳動分画されて、タンパク質移動と一致するゲルの領域を取り出す。この工程に続いて、AQUAペプチドの存在下でインゲルタンパク質分解及びLC−SRM分析を行う。(Gerber et al. supra を参照されたい)。AQUAペプチドを、全細胞分解物をタンパク分解酵素で消化して得られた複合ペプチド混合物に入れて、上記のような免疫親和性の精製を行う。消化(例えば、トリプシン処理)によって形成される天然ペプチドの保持時間及び断片化パターンは、先に測定したAQUA内部標準ペプチドのそれと一致しているので、SRM実験を用いるLC−MS/MS分析は、内部標準品及び非常に複雑なペプチド混合物に直接由来する検体の両方について高い特異性及び感度を有する測定をもたらす。

0141

AQUAペプチドの絶対量を添加するので(例えば、250fモル)、曲線下の面積比を、タンパク質又は元の細胞分解物中のタンパク質のリン酸化形態の正確な発現レベルを判定するのに用いることができる。また、ゲル切片からのペプチド抽出効率、試料の処理(真空遠心分離を含む)中の絶対損失、及びLC−MSシステムへの導入中のばらつきが、天然及びAQUAペプチドの存在量の比に影響を与えないように、天然のペプチドを形成するようにインゲル消化の間に内部標準を存在させる。

0142

AQUAペプチド標準品を、IAP−LC−MS/MSによって先に同定されている標的タンパク質中の既知配列に対して作成する。その部位が改変されている場合は、その部位内の特定残基の改変形態を包含する1つのAQUAペプチドを作成してもよく、改変されていない形態の残基を含有している第2のAQUAペプチドを作成する。このようにして、2つの標準品を、生体試料中の部位が改変されている形態及び改変されていない形態の両方を検出及び定量化するために用いることができる。

0143

ペプチド内部標準品は、タンパク質の第一次アミノ酸配列を試験して、プロテアーゼで切断して生成したペプチドの境界を判定することによっても生成することができる。あるいは、タンパク質を実際にプロテアーゼで消化することができ、次いで産生された特定のペプチド断片を配列決定することができる。適切なプロテアーゼは、これに限定されないが、セリンプロテアーゼ(例えば、トリプシンヘプシン)、メタロプロテアーゼ(例えば、PUMP1)、キモトリプシンカテプシンペプシンサーモリシンカルボキシペプチダーゼなどを包含する。

0144

標的タンパク質内のペプチド配列は、内部標準品としてのペプチドの使用を最適化する1つ又はそれ以上の基準に従って選択される。ペプチド配列が標的ではない他のタンパク質の何処かで複写されるであろう機会を最小にするようにペプチドの大きさを選択することが好ましい。従って少なくとも約6のアミノ酸であるペプチドが好ましい。ペプチドの大きさは、電離周波数を最大にするようにも最適化される。従って、約20のアミノ酸より長いペプチドは好ましくない。好ましい範囲は約7〜15のアミノ酸である。ペプチド配列は質量分析中に化学反応性が高くならないようにも選択されるので、システイン、トリプトファン、又はメチオニンを含有する配列は避けられる。

0145

タンパク質の全ての形態を定量化するために、ペプチド内部標準品を用いることができるように、標的領域の改変領域を含んでいないペプチド配列を選択することができる。もしくは、改変アミノ酸を包含しているペプチド内部標準品は、標的タンパク質の改変形態のみを検出及び定量化するために望ましいであろう。改変及び非改変領域の両方のためののペプチド標準品を、特定の試料中の改変の範囲を検出する(すなわち、タンパク質の総量のどの程度が改変形態によって表されているかを判定する)ために、一緒に用いることができる。例えば、特定部位でリン酸化されることが知られているタンパク質のリン酸化及び非リン酸化形態の両方のためのペプチド標準品は試料中のリン酸化形態の量を定量化するために用いることができる。

0146

1つ又はそれ以上の標識化アミノ酸を用いてペプチドを標識化する(すなわち、標識はペプチドの実際の部分である)か、又はあまり好ましくはないが、標準的な方法に従って合成した後に標識を付加することもできる。好ましくは、標識は以下の検討に基づいて選ばれた質量を変える標識である:質量はMS分析で産生される、低バックグランドを有するスペクトル領域へシフトする断片質量に特有でなければならない;イオン質量の特徴的成分は、MS分析において好ましくは特有なイオン質量の特徴を示す、標識部位の部分である;標識の構成原子の総質量は、全ての可能なアミノ酸の断片と一意的に異なることが好ましい。結果として、標識化アミノ酸及びペプチドは、得られる質量分析のイオン/質量パターンによって、標識化されていないものと容易に識別される。イオン質量の特徴的成分が、20の天然アミノ酸の何れかについての残留質量に相当しないタンパク質断片に質量を与えることが好ましい。

0147

標識は、MSの断片化条件下に耐えることができて、好ましくない断片化を受けてはならない。標識化の化学反応は、条件、特に変性条件の範囲内で効率的であって、標識タグはMSでの選ばれた緩衝液系に好ましくは可溶性を保持していなければならない。標識が、タンパク質のイオン化効果を抑制せず化学的に反応性でないことが好ましい。それぞれの標識化された断片位置で特有な質量分析パターンを生じるように、標識が2つ又はそれ以上の同位体的に識別できる種の混合物を含むことができる。2H、13C、15N、17O、18O、又は34Sのような安定な同位体が、とりわけ好ましい標識である。異なった同位体標識を取り込んでいるペプチド内部標準品の対も作成できる。重同位元素標識を組み入れられる好ましいアミノ酸残基は、ロイシン、プロリン、バリン及びフェニルアラニンを包含する。

0148

ペプチド内部標準品は、その質量対電荷比(m/z)によって、及び好ましくは、クロマトグラフィーカラム(例えばHPLCカラム)上の保持時間によって特徴付けられる。相同性を有する配列の非標識化ペプチドと一緒に溶出する内部標準品が、最適な内部標準品として選択される。次いで内部標準品を、何れかの適切な方法、例えばアルゴン又はヘリウム衝突ガスとして用いる、例えば衝突誘起解離(CID)によって、ペプチドを断片化して分析する。次いで断片を、例えば、フラグメントイオンスペクトルを得るための多段階質量分析(MSn)によって、分析してペプチド断片化の特徴を得る。ペプチド断片が、それぞれの断片に対応するピークを良好に分離できるように有意に異なっているm/z比を有していて、標的タンパク質に特有の特徴を得ることが好ましい。第1段階で適切な断片の特徴が得られない場合は、特有の特徴が得られるまでMSの追加段階を実施する。

0149

MS/MS及びMS3スペクトルにおける断片イオンは、目的のペプチドに対して一般に非常に特異的であって、LC方法を併用すると、数千又は幾万ものタンパク質を含有している、細胞溶解物のような、複雑なタンパク質混合物中の標的ペプチド/タンパク質を検出及び定量化する高い選択性のある方法を可能にする。標的タンパク質/ペプチドを潜在的に含有している生体試料の何れもアッセイすることができる。粗製の又は部分的に精製した細胞抽出物を用いることが好ましい。一般に、試料は少なくとも0.01mgの、典型的には0.1〜10mg/mLの濃度のタンパク質を有していて、所望の緩衝剤濃度及びpHに調節することができる。

0150

次いで、検出/定量化される標的タンパク質に対応する、標識化ペプチド内部標準品の既知量、好ましくは約10フェムトモルを、細胞溶解物のような、生体試料に添加する。次いで、添加した試料が消化されるまでの適切な時間、1つ又はそれ以上のプロテアーゼで消化する。次いで、試料中の他のペプチドから標識化内部標準品及び対応する標的ペプチドを単離するために分離を行う(例えば、HPLC、逆相HPLC、キャピラリー電気泳動、イオン交換クロマトグラフィーなどで)。マイクロキャピラリーLCが好ましい方法である。

0151

次いで、それぞれの単離したペプチドをMSにおける選択反応のモニタリングで試験する。これは、ペプチド内部標準品の特徴付けによって得られた予備知識を用いること、及び次いで目的のペプチド及び内部標準品の両方についてのMS/MS又はMSnスペクトル中の特異イオンを連続的に観察するためのMSの必要性を包含している。溶出後に、ペプチド標準品及び標的ペプチドの両方のピークの曲線下の面積(AUC)を計算する。2つの面積の比が、分析で用いられた細胞の数及びタンパク質の分子量を標準化できる絶対的定量化を提供して、細胞当たりのタンパク質の複写の正確な数をもたらす。AQUA手法の更なる詳細は、Gygi et al., 及び Gerber et al. supra に記載されている。

0152

AQUQ内部ペプチド標準品(重同位元素標識ペプチド)を、本発明の突然変異ALKポリペプチド内の何れかの特有の部位(例えば、開示されるEML4−ALK融合ポリペプチド内の融合接合部)を検出及び定量化するために、上記のように、望ましく産生することができる。例えば、EML4−ALK融合ポリペプチドの融合接合部配列図1A−B(最下図)を参照されたい)に対応するか又はEML4、TFG、又はALKの何れかの切断位置に対応するAQUAホスホペプチドを作成することができる。EML4−ALK又はTFG−ALK融合接合部のためにペプチド標準品を産生することができ、そしてそのような標準品を生体試料中の融合接合部(すなわち、EML4−ALK融合ポリペプチドの存在)の検出及び定量化のためにAQUA方法で利用することができる。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ