図面 (/)

この項目の情報は公開日時点(2020年9月24日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

レーダ装置における検知性能を向上できる。

解決手段

レーダ装置において、送信アレーアンテナは、第1の方向に直線状に配置された複数の送信アンテナを含み、複数の送信アンテナにおいて隣り合う送信アンテナ間の間隔のそれぞれは、第1の方向の一方の側から他方の側へ向かって広くなり、受信アレーアンテナは、第1の方向に直線状に配置された複数の受信アンテナを含み、複数の受信アンテナにおいて隣り合う送信アンテナ間の間隔のそれぞれは、一方の側から他方の側へ向かって狭くなる。

概要

背景

近年、高分解能が得られるマイクロ波又はミリ波を含む波長の短いレーダ送信信号を用いたレーダ装置の検討が進められている。また、屋外での安全性を向上させるために、車両以外にも、歩行者又は落下物等の小物体をより広角な範囲で検知するレーダ装置(広角レーダ装置)の開発が求められている。

広角な検知範囲を有するレーダ装置の構成として、複数のアンテナアンテナ素子)で構成されるアレーアンテナによって反射波を受信し、素子間隔アンテナ間隔)に対する受信位相差に基づく信号処理アルゴリズムによってターゲットからの反射波の到来角到来方向)を推定する手法(到来角推定手法。Direction of Arrival (DOA) estimation)を用いる構成である。例えば、到来角推定手法には、フーリエ法(Fourier法)、又は、高い分解能が得られる手法としてCapon法、MUSIC(Multiple Signal Classification)及びESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)が挙げられる。

また、レーダ装置として、例えば、受信側に加え、送信側にも複数のアンテナ(アレーアンテナ)を備え、送受信アレーアンテナを用いた信号処理によりビーム走査を行う構成(MIMO(Multiple Input Multiple Output)レーダと呼ぶこともある)が提案されている(例えば、非特許文献1を参照)。

概要

レーダ装置における検知性能を向上できる。レーダ装置において、送信アレーアンテナは、第1の方向に直線状に配置された複数の送信アンテナを含み、複数の送信アンテナにおいて隣り合う送信アンテナ間の間隔のそれぞれは、第1の方向の一方の側から他方の側へ向かって広くなり、受信アレーアンテナは、第1の方向に直線状に配置された複数の受信アンテナを含み、複数の受信アンテナにおいて隣り合う送信アンテナ間の間隔のそれぞれは、一方の側から他方の側へ向かって狭くなる。

目的

本開示の一態様は、物標の検知性能を向上するレーダ装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

送信アレーアンテナを用いて、レーダ信号を送信するレーダ送信回路と、受信アレーアンテナを用いて、前記レーダ信号がターゲットにおいて反射された反射波信号を受信するレーダ受信回路と、を具備し、前記送信アレーアンテナは、第1の方向に直線状に配置された複数の送信アンテナを含み、前記複数の送信アンテナにおいて隣り合う送信アンテナ間の間隔のそれぞれは、前記第1の方向の一方の側から他方の側へ向かって広くなり、前記受信アレーアンテナは、前記第1の方向に直線状に配置された複数の受信アンテナを含み、前記複数の受信アンテナにおいて隣り合う送信アンテナ間の間隔のそれぞれは、前記一方の側から前記他方の側へ向かって狭くなる、レーダ装置

請求項2

前記複数の送信アンテナにおける隣り合う送信アンテナ間の最大の間隔は、前記複数の受信アンテナにおける隣り合う受信アンテナ間の最小の間隔より大きく、かつ、前記受信アレーアンテナの開口長以下であり、前記複数の受信アンテナにおける隣り合う受信アンテナ間の最大の間隔は、前記複数の送信アンテナにおける隣り合う送信アンテナ間の最小の間隔より大きく、かつ、前記送信アレーアンテナの開口長以下である、請求項1に記載のレーダ装置。

請求項3

送信アレーアンテナを用いて、レーダ信号を送信するレーダ送信回路と、受信アレーアンテナを用いて、前記レーダ信号がターゲットにおいて反射された反射波信号を受信するレーダ受信回路と、を具備し、前記送信アレーアンテナに含まれる複数の送信アンテナにおける隣り合う送信アンテナ間の最大の間隔は、前記受信アレーアンテナに含まれる複数の受信アンテナにおける隣り合う受信アンテナ間の最小の間隔より大きく、かつ、前記受信アレーアンテナの開口長以下であり、前記複数の受信アンテナにおける隣り合う受信アンテナ間の最大の間隔は、前記複数の送信アンテナにおける隣り合う送信アンテナ間の最小の間隔より大きく、かつ、前記送信アレーアンテナの開口長以下である、レーダ装置。

請求項4

前記レーダ受信回路は、前記反射波信号に対する方向推定結果の空間スペクトルに基づいて、前記反射波信号のドップラ解析におけるドップラ周波数の折り返しの有無を判定する、請求項1又は3に記載のレーダ装置。

請求項5

前記レーダ受信回路は、前記折り返しが有る場合、前記反射波信号の受信位相補正し、位相補正後の前記反射波信号に基づいて方向推定を行う、請求項4に記載のレーダ装置。

請求項6

前記レーダ受信回路は、前記反射波信号のドップラ解析におけるドップラ周波数の折り返しに関する位相補正を行った前記反射波信号に基づいて前記ターゲットの方向を推定する第1の方向推定を行い、前記位相補正を行わない前記反射波信号に基づいて前記ターゲットの方向を推定する第2の方向推定を行い、前記第1の方向推定の結果と前記第2の方向推定の結果との比較に基づいて、前記反射波信号のドップラ解析における折り返しの有無を判定する、請求項1又は3に記載のレーダ装置。

請求項7

前記折り返しには、一次折り返し及び二次折り返しが含まれ、前記レーダ受信回路は、前記第1の方向推定において、前記一次折り返しに関する位相補正を行った前記反射波信号及び前記二次折り返しに関する位相補正を行った前記反射波信号に基づいて前記ターゲットの方向を推定する方向推定をそれぞれ行う、請求項6に記載のレーダ装置。

請求項8

送信アレーアンテナを用いて、レーダ信号を送信するレーダ送信回路と、受信アレーアンテナを用いて、前記レーダ信号がターゲットにおいて反射された反射波信号を受信するレーダ受信回路と、を具備し、前記レーダ受信回路は、前記反射波信号に対する方向推定結果の空間スペクトルに基づいて、前記反射波信号のドップラ解析におけるドップラ周波数の折り返しの有無を判定する、レーダ装置。

請求項9

送信アレーアンテナを用いて、レーダ信号を送信するレーダ送信回路と、受信アレーアンテナを用いて、前記レーダ信号がターゲットにおいて反射された反射波信号を受信するレーダ受信回路と、を具備し、前記レーダ受信回路は、前記反射波信号のドップラ解析におけるドップラ周波数の折り返しに関する位相補正を行った前記反射波信号に基づいて前記ターゲットの方向を推定する第1の方向推定を行い、前記位相補正を行わない前記反射波信号に基づいて前記ターゲットの方向を推定する第2の方向推定を行い、前記第1の方向推定の結果と前記第2の方向推定の結果との比較に基づいて、前記反射波信号のドップラ解析における折り返しの有無を判定する、レーダ装置。

技術分野

0001

本開示は、レーダ装置に関する。

背景技術

0002

近年、高分解能が得られるマイクロ波又はミリ波を含む波長の短いレーダ送信信号を用いたレーダ装置の検討が進められている。また、屋外での安全性を向上させるために、車両以外にも、歩行者又は落下物等の小物体をより広角な範囲で検知するレーダ装置(広角レーダ装置)の開発が求められている。

0003

広角な検知範囲を有するレーダ装置の構成として、複数のアンテナアンテナ素子)で構成されるアレーアンテナによって反射波を受信し、素子間隔アンテナ間隔)に対する受信位相差に基づく信号処理アルゴリズムによってターゲットからの反射波の到来角到来方向)を推定する手法(到来角推定手法。Direction of Arrival (DOA) estimation)を用いる構成である。例えば、到来角推定手法には、フーリエ法(Fourier法)、又は、高い分解能が得られる手法としてCapon法、MUSIC(Multiple Signal Classification)及びESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)が挙げられる。

0004

また、レーダ装置として、例えば、受信側に加え、送信側にも複数のアンテナ(アレーアンテナ)を備え、送受信アレーアンテナを用いた信号処理によりビーム走査を行う構成(MIMO(Multiple Input Multiple Output)レーダと呼ぶこともある)が提案されている(例えば、非特許文献1を参照)。

0005

特開2008−304417号公報
特表2011−526371号公報

先行技術

0006

J. Li, and P. Stoica, "MIMO Radar with Colocated Antennas," Signal Processing Magazine,IEEE Vol. 24, Issue: 5, pp. 106-114, 2007
Direction-of-arrival estimation using signal subspace modeling Cadzow, J.A.;Aerospace and Electronic Systems, IEEE Transactions on Volume: 28 , Issue: 1 Publication Year: 1992 , Page(s): 64 - 79

発明が解決しようとする課題

0007

しかしながら、レーダ装置において物標(又はターゲット)を検知する方法について十分に検討されていない。

0008

本開示の一態様は、物標の検知性能を向上するレーダ装置を提供する。

課題を解決するための手段

0009

本開示の一態様に係るレーダ装置は、送信アレーアンテナを用いて、レーダ信号を送信するレーダ送信回路と、受信アレーアンテナを用いて、前記レーダ信号がターゲットにおいて反射された反射波信号を受信するレーダ受信回路と、を具備し、前記送信アレーアンテナは、第1の方向に直線状に配置された複数の送信アンテナを含み、前記複数の送信アンテナにおいて隣り合う送信アンテナ間の間隔のそれぞれは、前記第1の方向の一方の側から他方の側へ向かって広くなり、前記受信アレーアンテナは、前記第1の方向に直線状に配置された複数の受信アンテナを含み、前記複数の受信アンテナにおいて隣り合う送信アンテナ間の間隔のそれぞれは、前記一方の側から前記他方の側へ向かって狭くなる。

0010

なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。

発明の効果

0011

本開示の一態様によれば、レーダ装置において物標の検知性能を向上できる。

0012

本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。

図面の簡単な説明

0013

一実施の形態に係るレーダ装置の構成例を示すブロック図
一実施の形態に係るレーダ送信信号の一例を示す図
一実施の形態に係る送信切替動作の一例を示す図
一実施の形態に係るレーダ送信信号生成部の他の構成例を示すブロック図
一実施の形態に係るレーダ送信信号の送信タイミング、及び、測定範囲の一例を示す図
送受信アンテナ及び仮想受信アレーの配置例を示す図
一実施の形態に係るドップラ周波数ドップラ解析部の出力との関係の一例を示す図
送信位相補正の一例を示す図
一実施の形態に係るTxCALベクトル空間スペクトル応答の一例を示す図
一実施の形態に係るTxCALベクトルの空間スペクトル応答の一例を示す図
一実施の形態に係る送受信アンテナ及び仮想受信アレーの配置例を示す図
一実施の形態に係る方向推定結果の一例を示す図
バリエーション1に係るレーダ装置の一部の構成例を示す図
バリエーション2に係るレーダ装置の一部の構成例を示す図
送信位相補正の一例を示す図
バリエーション2に係るTxCALベクトルの空間スペクトル応答の一例を示す図
バリエーション3に係るレーダ装置の一部の構成例を示す図
バリエーション4に係るレーダ装置の構成例を示す図
チャープパルスを用いた場合の送信信号と反射波信号の一例を示す図
バリエーション5に係る送受信アンテナ及び仮想受信アレーの配置例を示す図
バリエーション5に係る方向推定結果の一例を示す図
バリエーション5に係る送受信アンテナ及び仮想受信アレーの配置例を示す図
バリエーション5に係る方向推定結果の一例を示す図
バリエーション5に係る送受信アンテナ及び仮想受信アレーの配置例を示す図
バリエーション5に係る方向推定結果の一例を示す図
バリエーション5に係る送受信アンテナ及び仮想受信アレーの配置例を示す図
バリエーション5に係る方向推定結果の一例を示す図
バリエーション5に係る送受信アンテナ及び仮想受信アレーの配置例を示す図
バリエーション5に係る方向推定結果の一例を示す図

実施例

0014

MIMOレーダは、例えば、時分割周波数分割又は符号分割を用いて多重した信号(レーダ送信波)を複数の送信アンテナ(又は送信アレーアンテナと呼ぶ)から送信し、周辺物体において反射された信号(レーダ反射波)を複数の受信アンテナ(又は受信アレーアンテナと呼ぶ)を用いて受信し、それぞれの受信信号から、多重された送信信号を分離して受信する。このような処理により、MIMOレーダは、送信アンテナ数受信アンテナ数との積で示される複素伝搬路応答を取り出すことができ、これらの受信信号を仮想受信アレーとしてアレー信号処理を行う。

0015

また、MIMOレーダでは、送受信アレーアンテナにおける素子間隔を適切に配置することにより、仮想的にアンテナ開口を拡大し、角度分解能の向上を図ることができる。

0016

例えば、特許文献1には、MIMOレーダの多重送信方法として、送信アンテナ毎に送信時間をずらして信号を送信する時分割多重送信を用いたMIMOレーダ(以下、「時分割多重MIMOレーダ」と呼ぶ)が開示されている。時分割多重送信は、周波数多重送信又は符号多重送信と比較し、簡易な構成で実現できる。また、時分割多重送信は、送信時間の間隔を十分に広げることにより、送信信号間の直交性を良好に保つことができる。時分割多重MIMOレーダは、送信アンテナを所定の周期で逐次的に切り替えながら、送信信号の一例である送信パルスを出力する。時分割多重MIMOレーダは、送信パルスが物体において反射された信号を複数の受信アンテナで受信し、受信信号と送信パルスとの相関処理後に、例えば、空間的なFFT(Fast Fourier Transforma)処理(反射波の到来方向推定処理)を行う。

0017

時分割多重MIMOレーダは、送信信号(例えば送信パルス又はレーダ送信波)を送信する送信アンテナを、所定の周期で逐次的に切り替えていく。したがって、時分割多重送信は、周波数分割送信又は符号分割送信と比較し、全ての送信アンテナから送信信号を送信し終えるまでに要する時間が長くなり得る。このため、例えば、特許文献2のように、各送信アンテナから送信信号を送信し、それらの受信位相変化からドップラ周波数(換言すると、ターゲットの相対速度)の検出を行う場合、ドップラ周波数を検出するためにフーリエ周波数解析を適用するにあたり、受信位相変化の観測時間間隔(例えば、サンプリング間隔)が長くなる。よって、サンプリング定理を満たし、折り返し無しでドップラ周波数を検出できるドップラ周波数範囲(つまり、検出できるターゲットの相対速度範囲)が低減し得る。

0018

また、折り返し無しでドップラ周波数を検出できるドップラ周波数範囲を超えるターゲットからの反射波信号が想定される場合、レーダ装置は、反射波信号が折り返し成分か否かを特定できず、ドップラ周波数の曖昧性(不確定性、Ambiguity)が生じ得る。

0019

例えば、レーダ装置が、Nt個の送信アンテナを所定の周期Trで逐次的に切り替えながら送信信号(送信パルス)を送信する場合、全ての送信アンテナから送信信号を送信し終えるまでにTr×Ntの送信時間が必要となる。このような時分割多重送信をNc回繰り返して、ドップラ周波数の検出のためにフーリエ周波数解析を適用すると、折り返し無しでドップラ周波数を検出できるドップラ周波数範囲は、サンプリング定理より、±1/(2Tr×Nt)となる。したがって、折り返し無しでドップラ周波数を検出できるドップラ周波数範囲は、送信アンテナ数Ntが増大するほど低減し、より低速な相対速度でもドップラ周波数の曖昧性が生じやすくなる。

0020

折り返し無しでドップラ周波数を検出できるドップラ周波数範囲を超えるターゲットからの反射波信号が到来した場合、レーダ装置は、ターゲットのドップラ周波数を誤って検出することになる。

0021

また、時分割多重MIMOレーダは、時分割送信において生じる送信信号の送信時間差と、ターゲットのドップラ周波数に応じた位相回転とが加わるため、これらに起因した位相補正(以下、「送信位相補正」とも呼ぶ)後に方向推定処理を行う。このため、レーダ装置は、ターゲットのドップラ周波数を誤って検出すると、誤った送信位相補正をすることになり、ターゲットの方向推定に誤差が生じ得る。

0022

そこで、本開示に係る一態様では、折り返し無しでドップラ周波数を検出できるドップラ周波数範囲を超えたターゲットからの反射波信号が到来した場合でも、ターゲットのドップラ周波数(換言すると、相対速度)の検出、及び、方向推定(換言すると、測角)の精度を向上する方法について説明する。

0023

以下、本開示の一態様に係る実施の形態について、図面を参照して詳細に説明する。なお、実施の形態において、同一の構成要素には同一の符号を付し、その説明は重複するので省略する。

0024

以下では、レーダ装置において、送信ブランチにおいて、複数の送信アンテナから時分割多重された異なる送信信号を送出し受信ブランチにおいて、各送信信号を分離して受信処理を行う構成(換言すると、MIMOレーダ構成)について説明する。

0025

[レーダ装置の構成]
図1は、本実施の形態に係るレーダ装置10の構成を示すブロック図である。

0026

レーダ装置10は、レーダ送信部(送信ブランチ)100と、レーダ受信部(受信ブランチ)200と、基準信号生成部300と、を有する。

0027

レーダ送信部100は、基準信号生成部300から受け取るリファレンス信号に基づいて高周波無線周波数:Radio Frequency)のレーダ信号(レーダ送信信号)を生成する。そして、レーダ送信部100は、複数の送信アンテナ108−1〜108−Ntによって構成される送信アレーアンテナを用いて、レーダ送信信号を所定の送信周期にて送信する。

0028

レーダ受信部200は、物標(ターゲット。図示せず)において反射したレーダ送信信号である反射波信号を、複数の受信アンテナ202−1〜202−Naを含む受信アレーアンテナを用いて受信する。レーダ受信部200は、基準信号生成部300から受け取るリファレンス信号を用いて、下記の処理動作を行うことで、レーダ送信部100と同期した処理を行う。また、レーダ受信部200は、各受信アンテナ202において受信した反射波信号を信号処理し、例えば、物標の有無検出又は反射波信号の到来方向の推定を行う。

0029

なお、物標はレーダ装置10が検出する対象の物体であり、例えば、車両(4輪及び2輪を含む)、人、ブロック又は縁石などを含む。

0030

基準信号生成部300は、レーダ送信部100及びレーダ受信部200のそれぞれに接続されている。基準信号生成部300は、基準信号としてのリファレンス信号をレーダ送信部100及びレーダ受信部200に供給し、レーダ送信部100及びレーダ受信部200の処理を同期させる。

0031

[レーダ送信部100の構成]
レーダ送信部100は、レーダ送信信号生成部101と、切替制御部105と、送信切替部106と、送信無線部107−1〜107−Ntと、送信アンテナ108−1〜108−Ntと、を有する。すなわち、レーダ送信部100は、Nt個の送信アンテナ108を有し、各送信アンテナ108は、それぞれ個別の送信無線部107に接続されている。

0032

レーダ送信信号生成部101は、基準信号生成部300から受け取るリファレンス信号を所定数倍したタイミングクロックを生成し、生成したタイミングクロックに基づいてレーダ送信信号を生成する。そして、レーダ送信信号生成部101は、所定のレーダ送信周期(Tr)にてレーダ送信信号を繰り返し出力する。レーダ送信信号は、y(k, M)=I(k, M)+j Q(k, M)で表される。ここで、jは虚数単位を表し、kは離散時刻を表し、Mはレーダ送信周期の序数を表す。また、I(k, M)及びQ(k, M)は、第M番目のレーダ送信周期における離散時刻kにおけるレーダ送信信号(k M)の同相成分(In-Phase成分)、及び、直交成分(Quadrature成分)をそれぞれ表す。

0033

レーダ送信信号生成部101は、符号生成部102と、変調部103と、LPF(Low Pass Filter)104とを含む。以下、レーダ送信信号生成部101における各構成部について説明する。

0034

具体的には、符号生成部102は、レーダ送信周期Tr毎に、符号長Lの符号系列の符号an(M)(n=1,…,L)(パルス符号)を生成する。符号生成部102において生成される符号an(M)には、例えば、低レンジサイドローブ特性が得られる符号が用いられる。符号系列としては、例えば、Barker符号、M系列符号、又は、Gold符号などが挙げられる。

0035

変調部103は、符号生成部102から受け取るパルス符号系列(例えば、符号an(M))に対してパルス変調振幅変調ASK(Amplitude Shift Keying)、パルスシフトキーイング)又は位相変調(Phase Shift Keying)を行い、変調信号をLPF104へ出力する。

0036

LPF104は、変調部103から受け取る変調信号のうち、所定の制限帯域以下の信号成分を、ベースバンドのレーダ送信信号として送信切替部106へ出力する。

0037

図2は、レーダ送信信号生成部101によって生成されるレーダ送信信号の一例を示す。図2に示すように、レーダ送信周期Trのうち、符号送信区間Twの間に符号長Lのパルス符号系列が含まれる。各レーダ送信周期Trのうち、符号送信区間Twの間にパルス符号系列が送信され、残りの区間(Tr-Tw)は無信号区間となる。1つの符号には、L個のサブパルスが含まれる。また、1つのサブパルスあたり、No個のサンプルを用いたパルス変調が施されることにより、各符号送信区間Tw内には、Nr(=No×L)個のサンプルの信号が含まれる。また、レーダ送信周期Trにおける無信号区間(Tr-Tw)には、Nu個のサンプルが含まれる。

0038

切替制御部105は、レーダ送信部100における送信切替部106、及び、レーダ受信部200における出力切替部211を制御する。なお、切替制御部105における、レーダ受信部200の出力切替部211に対する制御動作についてはレーダ受信部200の動作の説明において後述する。以下では、切替制御部105における、レーダ送信部100の送信切替部106に対する制御動作について説明する。

0039

切替制御部105は、例えば、レーダ送信周期Tr毎に、送信アンテナ108(換言すると、送信無線部107)を切り替える制御信号(以下、「切替制御信号」と呼ぶ)を送信切替部106に出力する。

0040

送信切替部106は、レーダ送信信号生成部101から入力されるレーダ送信信号を、切替制御部105から入力される切替制御信号によって指示される送信無線部107へ出力する切替動作を行う。例えば、送信切替部106は、切替制御信号に基づいて、複数の送信無線部107−1〜107−Ntのうち一つを選択して切り替えて、選択した送信無線部107へレーダ送信信号を出力する。

0041

第z(z=1,…,Nt)番目の送信無線部107は、送信切替部106から出力されるベースバンドのレーダ送信信号に対して周波数変換を施してキャリア周波数(Radio Frequency:RF)帯のレーダ送信信号を生成し、送信増幅器により所定の送信電力P[dB]に増幅して第z番目の送信アンテナ108へ出力する。

0042

第z(z=1,…,Nt)番目の送信アンテナ108は、第z番目の送信無線部107から出力されるレーダ送信信号を空間に放射する。

0043

図3は、本実施の形態に係る送信アンテナ108の切替動作の一例を示す。なお、本実施の形態に係る送信アンテナ108の切替動作は、図3に示す例に限定されるものではない。

0044

図3では、切替制御部105は、レーダ送信周期Tr毎に、第1の送信アンテナ108(又は送信無線部107−1)から第Ntの送信アンテナ108(又は送信無線部107−Nt)までを順に切り替える指示を示す切替制御信号を、送信切替部106に出力する。よって、第1の送信アンテナ108から第Ntの送信アンテナ108の各々において、レーダ送信信号はNp(=Nt×Tr)周期の送信間隔で送信される。

0045

切替制御部105は、アンテナ切替周期Npでの送信無線部107の切替動作をNc回繰り返す制御を行う。

0046

また、レーダ送信部100は、レーダ送信信号生成部101の代わりに、図4に示すレーダ送信信号生成部101aを備えてもよい。レーダ送信信号生成部101aは、図1に示す符号生成部102、変調部103及びLPF104を有さず、代わりに符号記憶部111及びDA変換部112を備える。符号記憶部111は、符号生成部102(図1)において生成される符号系列を予め記憶し、記憶している符号系列を巡回的に順次読み出す。DA変換部112は、符号記憶部111から出力される符号系列(デジタル信号)をアナログ信号ベースバンド信号)に変換する。

0047

[レーダ受信部200の構成]
図1において、レーダ受信部200は、Na個の受信アンテナ202を備え、アレーアンテナを構成する。また、レーダ受信部200は、Na個のアンテナ系統処理部201−1〜201−Naと、CFAR(Constant False Alarm Rate)部213と、信号補正部214と、方向推定部215と、折り返し判定部216と、を有する。

0048

各受信アンテナ202は、レーダ送信信号が物標(ターゲット)において反射した反射波信号を受信し、受信した反射波信号を、対応するアンテナ系統処理部201へ受信信号として出力する。

0049

各アンテナ系統処理部201は、受信無線部203と、信号処理部207とを有する。

0050

受信無線部203は、増幅器204と、周波数変換器205と、直交検波器206と、を有する。受信無線部203は、基準信号生成部300から受け取るリファレンス信号を所定数倍したタイミングクロックを生成し、生成したタイミングクロックに基づいて動作する。具体的には、増幅器204は、受信アンテナ202から受け取る受信信号を所定レベルに増幅し、周波数変換器205は、高周波帯域の受信信号をベースバンド帯域に周波数変換し、直交検波器206は、直交検波により、ベースバンド帯域の受信信号を、I信号及びQ信号を含むベースバンド帯域の受信信号に変換する。

0051

各アンテナ系統処理部201−z(ただし、z=1〜Naの何れか)の信号処理部207は、AD変換部208、209と、相関演算部210と、出力切替部211と、ドップラ解析部212−1〜212−Ntと、を有する。

0052

AD変換部208には、直交検波器206からI信号が入力され、AD変換部209には、直交検波器206からQ信号が入力される。AD変換部208は、I信号を含むベースバンド信号に対して、離散時刻でのサンプリングを行うことにより、I信号をデジタルデータに変換する。AD変換部209は、Q信号を含むベースバンド信号に対して、離散時刻でのサンプリングを行うことにより、Q信号をデジタルデータに変換する。

0053

ここで、AD変換部208,209のサンプリングでは、例えば、レーダ送信信号における1つのサブパルスの時間Tp(=Tw/L)あたり、Ns個離散サンプルが行われる。すなわち、1サブパルスあたりのオーバーサンプル数はNsとなる。

0054

以下の説明では、I信号Iz(k, M)及びQ信号Qz(k, M)を用いて、AD変換部208,209の出力としての第M番目のレーダ送信周期Tr[M]の離散時刻kにおけるベースバンドの受信信号を複素数信号xz(k, M)=Iz(k, M)+j Qz(k, M)と表す(ただし、z=1〜Naの何れか)。また、以下では、離散時刻kは、レーダ送信周期(Tr)の開始するタイミングを基準(k=1)とし、信号処理部207は、レーダ送信周期Trが終了する前までのサンプル点であるk=(Nr+Nu)Ns/Noまで周期的に動作する。すなわち、k=1,…,(Nr+Nu)Ns/Noとなる。ここで、jは虚数単位である。

0055

第z(z=1,…,Na)番目の信号処理部207における相関演算部210は、レーダ送信周期Tr毎に、AD変換部208,209から受け取る離散サンプル値Iz(k, M)及びQz(k, M)を含む離散サンプル値xz(k, M)と、レーダ送信部100において送信される符号長Lのパルス符号an(M)(ただし、z=1,…,Na、n=1,…,L)との相関演算を行う。例えば、相関演算部210は、離散サンプル値xz(k, M)と、パルス符号an(M)とのスライディング相関演算を行う。例えば、第M番目のレーダ送信周期Tr[M]における離散時刻kのスライディング相関演算の相関演算値ACz(k, M)は、次式に基づき算出される。

0056

上式において、アスタリスク(*)は複素共役演算子を表す。

0057

相関演算部210は、例えば、式(1)に従って、k=1,…,(Nr+Nu)Ns/Noの期間に渡って相関演算を行う。

0058

なお、相関演算部210は、k=1,…,(Nr+Nu)Ns/Noに対して相関演算を行う場合に限定されず、レーダ装置10の測定対象となるターゲットの存在範囲に応じて、測定レンジ(すなわち、kの範囲)を限定してもよい。これにより、レーダ装置10では、相関演算部210の演算処理量の低減が可能となる。例えば、相関演算部210は、k=Ns(L+1),…,(Nr+Nu)Ns /No-NsLに測定レンジを限定してもよい。この場合、図5に示すように、レーダ装置10は、符号送信区間Twに相当する時間区間では測定を行わない。

0059

これにより、レーダ装置10は、レーダ送信信号がレーダ受信部200に直接的に回り込むような場合でも、レーダ送信信号が回り込む期間(少なくともτ1未満の期間)では相関演算部210による処理が行われないので、回り込みの影響を排除した測定が可能となる。また、測定レンジ(kの範囲)を限定する場合、以下で説明する出力切替部211、ドップラ解析部212、CFAR部213、信号補正部214、方向推定部215及び折り返し判定部216の処理に対しても、同様に測定レンジ(kの範囲)を限定した処理を適用すればよい。これにより、各構成部での処理量を削減でき、レーダ受信部200における消費電力を低減できる。

0060

出力切替部211は、切替制御部105から入力される切替制御信号に基づいて、レーダ送信周期Tr毎の相関演算部210の出力を、Nt個のドップラ解析部212のうちの一つに選択的に切り替えて出力する。以下、一例として、第M番目のレーダ送信周期Tr[M]における切替制御信号をNtビットの情報[bit1(M), bit2(M), … ,bitNt(M)]で表す。例えば、第M番目のレーダ送信周期Tr[M]の切替制御信号において、第NDビット(ただし、ND=1〜Ntの何れか)が‘1’である場合、出力切替部211は、第ND番目のドップラ解析部212を選択(換言するとON)する。一方、第M番目のレーダ送信周期Tr[M]の切替制御信号において、第NDビットが‘0’である場合、出力切替部211は、第ND番目のドップラ解析部212を非選択(換言するとOFF)とする。出力切替部211は、選択したドップラ解析部212に対して、相関演算部210から入力される相関演算値ACz(k, M)を出力する。

0061

例えば、図3に示す送信無線部107(又は送信アンテナ108)の切替動作に対応するNtビットの切替制御信号を以下に示す
[bit1(1), bit2(1), … ,bitNt(1)] = [1, 0, …, 0]
[bit1(2), bit2(2), … ,bitNt(2)] = [0, 1, …, 0]

[bit1(Nt), bit2(Nt), … ,bitNt(Nt)] = [0, 0, …, 1]

0062

上記のように、各ドップラ解析部212は、Np(=Nt×Tr)周期で順次選択される(換言すると、ONとなる)。例えば、切替制御信号は、上記内容をNc回繰り返す。

0063

第z(z=1,…,Na)番目の信号処理部207は、Nt個のドップラ解析部212を有する。

0064

ドップラ解析部212は、出力切替部211からの出力(例えば、相関演算値ACz(k, M))に対して、離散時刻k毎にドップラ解析を行う。例えば、Ncが2のべき乗値である場合、ドップラ解析において高速フーリエ変換(FFT)処理を適用できる。

0065

例えば、第z番目の信号処理部207の第ND番目のドップラ解析部212における第w番目の出力は、次式に示すように、離散時刻kにおけるドップラ周波数インデックスfsのドップラ周波数応答FT_CIz(ND)(k, fs, w)を示す。また、FFTサイズはNcであり、ドップラ周波数インデックスfsの範囲は、(-Nc/2)+1,…,0,…,Nc/2である。また、ND=1〜Ntであり、k=1,…, (Nr+Nu)Ns/Noであり、wは1以上の整数である。また、jは虚数単位であり、z=1〜Naである。

0066

なお、FFT処理の際、ドップラ解析部212は、例えば、Han窓又はHamming窓等の窓関数係数乗算してもよい。窓関数係数を用いることにより、周波数ピーク周辺に発生するサイドローブ抑圧できる。

0067

以上、信号処理部207の各構成部における処理について説明した。

0068

なお、以下の説明では、Na個のアンテナ系統処理部201の各々において同様の処理を施して得られた第w番目の出力を、次式のように仮想受信アレー相関ベクトルh(k, fs, w)として表記する。仮想受信アレー相関ベクトルh(k, fs, w)は、送信アンテナ数Ntと受信アンテナ数Naとの積であるNt×Na個の要素を含む。仮想受信アレー相関ベクトルh(k, fs, w)は、後述する、CFAR部213におけるピーク検出処理、信号補正部214における補正処理、又は、方向推定部215における方向推定処理等の説明に用いる。

0069

図1において、CFAR部213は、ドップラ解析部212からの出力を用いて、CFAR処理(換言すると、適応的な閾値判定)を行い、ピーク信号を与える離散時刻のインデックスk_cfar及びドップラ周波数のインデックスfs_cfarを抽出する。

0070

例えば、CFAR部213は、各アンテナ系統処理部201−1〜201−Naのドップラ解析部213の出力FT_CIz(ND) (k,fs, w)を用いて、CFAR処理を行う。例えば、CFAR部213は、第1〜第Na番目のアンテナ系統処理部201の信号処理部207におけるドップラ解析部212の出力FT_CI1(1)(k, fs, w)、FT_CI2(1)(k, fs, w)、…、FT_CINa(Nt)(k, fs, w)を電力加算し、電力加算値に基づいて、距離軸とドップラ周波数軸(相対速度に相当)とからなる2次元のCFAR処理、又は、1次元のCFAR処理を組み合わせたCFAR処理を行う。

0071

CFAR部213は、適応的に閾値を設定し、閾値よりも大きい受信電力となる距離インデックスfb_cfar、及び、ドップラ周波数インデックスfs_cfarを信号補正部214に出力する。

0072

なお、レーダ装置10は、CFAR処理を行わずに、方向推定部215において方向推定処理を行ってもよい。

0073

以上、CFAR部213の動作例について説明した。

0074

図1において、信号補正部214は、CFAR部213から出力される距離インデックスk_cfar及びドップラ周波数インデックスfs_cfarに基づいて、w番目の仮想受信アレーベクトルh(k_cfar、fs_cfar, w)に対するアレーアンテナ間偏差補正及び時分割送信に起因する送信位相補正を行う。例えば、信号補正部214は、次式のように、w番目の仮想受信アレーベクトルh(k_cfar、fs_cfar, w)に補正係数を乗算し、補正仮想受信アレーベクトルhaftercal(k_cfar、fs_cfar, w)を算出する。

0075

ここで、記号「°」はアダマール積(ベクトル要素毎の積)を表す。

0076

式(4)において、CVAはアレー補正ベクトルを示し、次式のようなNa×Nt個の要素からなる。

0077

式(5)において、h_cal[z][ND]は、ND番目の送信アンテナ間及びz番目の受信アンテナ間位相偏差及び振幅偏差を補正するアレー補正値を示す。ここで、上付き添え字のTはベクトル転置を表す。

0078

また、式(4)において、CTX(fs)は送信位相補正ベクトルを示し、次式のようなNa×Nt個の要素からなる。

0079

送信アンテナ108を時分割で切り替えることにより、ドップラ周波数インデックスfsに依存した位相回転が発生する。TxCAL(1)(fs),…,TxCAL(Nt)(fs)は、この位相回転を補正し、基準送信アンテナ位相に他の送信アンテナの位相を一致させる送信位相補正係数である。CTX(fs)は、例えば、各Txcal(ND)(fs)(ここで、ND=1〜Nt)を受信アンテナ数Na個分繰り返すベクトルを成す。なお、複数の送信アンテナ108から時分割で送信信号が送信されない場合、送信位相補正係数は不要となる。

0080

例えば、図3のように、Tx#1(例えば、第1の送信アンテナ108)から、送信周期Tr毎に順次、Tx#2(例えば、第2の送信アンテナ108),…,Tx#Nt(例えば、第Ntの送信アンテナ108)のように切り替わる場合に、Tx#1の送信タイミングを位相基準とした場合、TxCAL(1)(fs)は、次式となる。

0081

信号補正部214は、例えば、補正仮想受信アレーベクトルhaftercal(k_cfar、fs_cfar, w)、距離インデックスk_cfar、及び、ドップラ周波数インデックスfs_cfarを方向推定部215に出力する。

0082

以上、信号補正部214の動作例について説明した。

0083

図1において、方向推定部215は、信号補正部214からの出力に基づいて、以下のような方向推定処理を行う。

0084

例えば、方向推定部215は、方向推定評価関数値PH(θu, k_cfar, fs_cfar, w)における方位方向θuを所定の角度範囲内で可変として空間プロファイルを算出し、算出した空間プロファイルの極大ピークを大きい順に所定数抽出し、極大ピークの方位方向を到来方向推定値として出力する。

0085

なお、方向推定評価関数値PH(θu, kcfar, fs_cfar, w)は、到来方向推定アルゴリズムによって各種の方法がある。例えば、非特許文献2に開示されているアレーアンテナを用いた推定方法を用いてもよい。

0086

例えば、Nt×Na個の仮想受信アレーが等間隔dHで直線状に配置される場合、ビームフォーマ法は次式のように表すことができる。他にも、Capon, MUSICといった手法も同様に適用可能である。

0087

式(8)において、上付き添え字Hはエルミート転置演算子である。また、a(θu)は、方位方向θuの到来波に対する仮想受信アレーの方向ベクトル(例えば、Nt×Na個の要素を有する列ベクトル)を示す。

0088

仮想受信アレーの方向ベクトルa(θu)(例えば、式(8)を参照)は、送受信アレーアンテナの配置に依存して決定される。

0089

例えば、図6に示すように、送信アンテナ数Nt=3(例えば、Tx#1、Tx#2及びTx#3)、及び、受信アンテナ数Na=4(例えば、Rx#1、Rx#2、Rx#3及びRx#4)とし、Nt×Na(=12)個の仮想受信アレー(例えば,VA#1〜VA#12)が等間隔dHで直線状に配置される場合について説明する。図6の場合、仮想受信アレーの方向ベクトルa(θu)は、例えば、次式のように表される。

0090

また、方位方向θuは到来方向推定を行う方位範囲内を所定の方位間隔β1で変化させたベクトルである。例えば、θuは以下のように設定される。
θu=θmin + uβ1、u=0,…, NU
NU=floor[(θmax-θmin)/β1]+1
ここでfloor(x)は、実数xを超えない最大の整数値を返す関数である。

0091

なお、上述した時刻情報kは、距離情報に変換して出力されてもよい。時刻情報kを距離情報R(k)に変換するには次式を用いればよい。ここで、Twは符号送信区間を表し、Lはパルス符号長を表し、C0は光速度を表す。

0092

また、ドップラ周波数情報は相対速度成分に変換して出力されてもよい。ドップラ周波数インデックスfsを相対速度成分vd(fs)に変換するには、次式が用いられてよい。ここで、λは送信無線部107から出力されるRF信号のキャリア周波数の波長である。また、Δfは、ドップラ解析部212におけるFFT処理でのドップラ周波数間隔である。例えば、本実施の形態では、Δf=1/(NtNcTr)である。

0093

以上、方向推定部215の動作例について説明した。

0094

図1において、折り返し判定部216は、方向推定部215から入力される情報に基づいて、ドップラ周波数の折り返しの有無を判定する。折り返し判定部216は、例えば、到来時刻情報(換言すると、距離情報)、ドップラ周波数情報(換言すると、相対速度情報)に加え、及び、ドップラ周波数の折り返しの有無を示す情報を含む測位結果を出力する。なお、折り返し判定部216におけるドップラ周波数の折り返しの有無の判定方法の一例については後述する。

0095

[レーダ装置10の動作例]
上述したレーダ装置10の動作例について説明する。

0096

図7は、ドップラ解析部212に入力されるドップラ周波数成分の信号(横軸に相当)に対する、ドップラ解析部212から出力されるドップラ周波数インデックス(縦軸に相当)の関係の一例を示す。

0097

ドップラ解析部212において検出されたドップラ周波数がサンプリング定理を満たすドップラ周波数範囲(例えば、-1/(2Nt×Tr)〜1/(2Nt×Tr)の範囲)を超える場合、ドップラ解析部212では、図7に示すように、(-Nc/2)〜(Nc/2+1)の範囲内で折り返されたドップラ周波数インデックスfsが出力される。

0098

ここで、以下の範囲(例えば、「一次折り返し範囲」と呼ぶ)のドップラ周波数fdが折り返されて検出されたドップラ周波数インデックスを「fs_alias1」と呼ぶ。
-1/(Nt×Tr) < fd < -1/(2Nt×Tr)、又は、1/(2Nt×Tr) < fd < 1/(Nt×Tr)

0099

この場合、信号補正部214は、例えば、ドップラ周波数インデックスfs_alias1に基づいて、送信位相補正係数TxCAL(fs)をTxCAL(1)(fs_alias1),…, TxCAL(Nt)(fs_alias1)に設定する。

0100

しかし、この送信位相補正は、本来のドップラ周波数インデックス(以下、fs_trueと表す)ではなく、一次折り返し範囲内のドップラ周波数が折り返されたドップラ周波数インデックスfs_alias1に基づいているので、誤った位相補正である。

0101

例えば、図8は、ドップラ周波数の折り返しが無い場合の送信位相補正、及び、一次折り返し範囲におけるドップラ周波数の折り返しが有る場合の送信位相補正の一例を示す。

0102

図8は、一例として、折り返し有りの場合に、ドップラ解析部212で検出されるドップラ周波数fs_trueが、-Nc〜-Nc/2の範囲(換言すると、一次折り返し範囲)内に含まれる例を示す。換言すると、図8では、ドップラ周波数インデックスfs_alias1が0〜(Nc/2)-1の範囲内に折り返されて検出される。よって。図8に示すfs_alias1は正の値である。

0103

信号補正部214は、例えば、送信位相補正係数TxCAL(fs)に基づいて、送信アンテナ108の切り替え時間差によって生じる位相差が送信アンテナ108間でゼロとなるような位相回転量を設定する。

0104

例えば、図8の折り返し無しの場合、信号補正部214では、ドップラ周波数インデックスfs_trueに応じて、送信位相補正係数TxCAL(fs_true)は、折り返していないドップラ周波数の信号に対して位相回転量を設定し、基準送信アンテナの位相(例えば、ドップラ周波数インデックスfs=0に相当)に一致させることができる。

0105

一方、図8の折り返し有りの場合、本来のドップラ周波数インデックスfs_trueは、fs_alias1-Ncに相当する。しかし、信号補正部214では、折り返したドップラ周波数fs_alias1に応じて、送信位相補正係数TxCAL(fs_alias1)は、折り返したドップラ周波数の信号に対して位相回転量を設定する。よって、図8では、信号補正部214において、折り返し有りの場合、送信位相補正係数TxCAL(fs_alias1)は、一次折り返し範囲内の本来のドップラ周波数インデックスfs_trueを-Ncに一致させる位相回転量を設定する。

0106

よって、fs_alias1が正の場合、信号補正部214では、ドップラサンプリング周期において、位相を更に2πだけ進める補正(換言すると、図8に示すドップラ周波数インデックスにおいて+Nc分加える補正)が不足している。換言すると、fs_alias1が正の場合、信号補正部214では、ドップラサンプリング周期において、基準送信アンテナの位相から2π遅らせた誤った補正(換言すると、ドップラ周波数インデックスfsにおいて-Nc分誤った補正)が行われることになる。つまり、図8の折り返しが有る場合には、送信位相補正誤差として、−2πの位相誤差(又は-Nc分のドップラ周波数インデックスの誤差)が含まれる。

0107

このように、図8に示す送信位相補正では、信号補正部214は、ドップラ周波数の折り返しが有る場合、送信アンテナ108の切り替え時間差によって生じる位相差が-2πになるように誤って補正してしまう。換言すると、図8に示すように、fs_alias1が正の場合、信号補正部214は、送信位相補正係数TxCALによる補正(例えば、負の方向への補正)に加え、TxCALによる補正と逆方向(例えば、正の方向)のNc分の位相回転を付与した場合には、基準送信アンテナの位相に一致させることができる。

0108

また、fs_alias1が負の場合(図示せず)は、図8に示すfs_alias1が正の場合と逆に、ドップラサンプリング周期において2π位相を進めた誤った補正(換言すると、ドップラ周波数インデックスで+Nc分誤った補正)となる。

0109

したがって、信号補正部214において、本来のドップラ周波数に対して送信位相補正を行うには、送信位相補正係数TxCAL(1)(fs_alias1),…, TxCAL(Nt)(fs_alias1)に対して、次式のように時分割送信において生じた時間差を考慮した、折り返しドップラ周波数(例えば、fs_alias1)用の追加位相補正係数TxCAL_ALIAS(ND)(fs_alias1)が更に必要となる。ここでND=1,…, Ntである。

0110

式(12)において、sign(x)は実数xの正負の符号(−又は+)を返す関数である。

0111

ただし、折り返しドップラ周波数用の追加位相補正係数TxCAL_ALIAS(ND)(fs_alias1)を用いるには、レーダ装置10(例えば、折り返し判定部216)は、ドップラ解析部212において検出されたドップラ周波数が折り返されて検出されたドップラ周波数であるか否かを判定する必要がある。

0112

そこで、本開示の一実施例では、折り返し判定部216において、ドップラ解析部212で検出されたドップラ周波数が折り返されて検出されたドップラ周波数であるか否かを判定できるMIMOアレー配置例を示す。

0113

ここで、仮に、折り返しドップラ周波数用の追加位相補正係数TxCAL_ALIAS(ND)(fs_alias1)を用いない場合、方向推定部215は、次式のような送信位相補正誤差が含まれた状態で方向推定処理を行うことになる。

0114

一例として、送信アンテナ数Nt=3とし、受信アンテナ数Na=4とする場合、Tx#1、Tx#2、及び、Tx#3の順に送信アンテナ108を切り替える場合、方向推定部215は、次式のような送信位相補正誤差が含まれた状態で方向推定処理を行うことになる。
fs_alias1が正の場合:



fs_alias1が負の場合:

0115

また、例えば、Tx#1からTx#Ntの順に送信アンテナ108を切り替える場合、方向推定部215は、次式のような送信位相補正誤差が含まれた状態で方向推定処理を行うことになる。
fs_alias1が正の場合:



fs_alias1が負の場合:

0116

これらの送信位相補正誤差による方向推定誤差の影響は、例えば、仮想受信アレーの配置を一方の端(例えば、図6の右端)から他方の端(例えば、図6の左端)への方向に順に見た場合の、仮想アンテナ素子の受信信号を得るために使用される送信アンテナ108に対応する送信位相補正誤差(例えば、式(13)を参照)を並べて構成されるTxCALベクトル(例えば、TxCALVecと表す)を、空間フーリエ変換することにより調べることができる。

0117

一例として、図6に示す仮想受信アレー配置を、例えば、右端から左端の順に並べた場合の仮想アンテナ素子は、VA#1,VA#2,VA#3,VA#4,VA#5,VA#6,VA#7,VA#8,VA#9,VA#10,VA#11,VA#12となる。また、これらに対応した順番で、仮想受信アレーの受信信号を得るために使用された送信アンテナの送信アンテナ番号は、Tx#1,Tx#1,Tx#1,Tx#1,Tx#2,Tx#2,Tx#2,Tx#2,Tx#3,Tx#3,Tx#3,Tx#3となる。よって、図6の場合(例えば、式(14)又は式(15)の場合)、TxCALベクトルは、次式で示される。

0118

図9は、このようなTxCALベクトル(TxCALVec)に対して空間フーリエ変換して得られる空間スペクトル応答の一例を示す。図9に示すように、fs_alias1が正の場合、ピーク方向が0度方向よりも負の領域に現れ、fs_alias1が負の場合、ピーク方向が0度方向よりも正の領域に現れることが確認できる。

0119

また、図10は、折り返しが無いドップラ周波数インデックス、及び、折り返しが有る場合(例えば、fs_alias1の場合)のドップラ周波数インデックスに対して、方向推定部215においてフーリエ法を用いた場合の空間スペクトル応答の一例を示す。図10に示すように、折り返しが無いドップラ周波数インデックスの場合、正面方向(例えば、0度方向)に存在するターゲットに対してピークが現れる。一方、折り返しが有る場合(fs_alias1が正の場合)、TxCALベクトルの空間スペクトル応答(例えば、図9を参照)を反映して、ピーク方向が0度から-9度程度ずれていることが確認できる。

0120

このように、ドップラ周波数の折り返しが有る場合にはTxCALベクトルTxCALVecの空間スペクトル応答(換言すると、空間フーリエ応答、又は、空間周波数スペクトル応答と呼ぶ)に応じて、方向推定結果におけるピークレベルが変動する。ただし、図10では、折り返しが無い場合の方向推定における空間スペクトルのピークレベルに対して、折り返しが有る場合の方向推定における空間スペクトルのピークレベルは、同程度である。

0121

そこで、本開示の一実施例では、例えば、TxCALベクトルTxCALVecの空間スペクトル応答において、ドップラ周波数の折り返しが無い場合と比較して、ドップラ周波数の折り返しが有る場合のピークレベルが大きく落ち込むようなアレーアンテナ配置を用いる。これにより、折り返し判定部216は、ターゲットのドップラ周波数が折り返した信号か否かを判定できる。

0122

[MIMOアレー配置条件
以下、MIMOアレー配置の条件の一例について説明する。

0123

TxCALベクトルTxCALVecの空間スペクトルにおいて、折り返しが無い場合と比較して、折り返しが有る場合のピークレベルが大きく落ち込むようなアレーアンテナ配置(例えば、MIMOアレー配置)は、例えば、TxCALVecの各要素にそれぞれ対応する送信アンテナ108に対する送信位相補正誤差の変動(換言すると、位相変化)が、式(18)のように一定周期にならないようにする配置である。換言すると、本開示の一実施例に係る送受信アレーアンテナ配置は、送信位相補正誤差の変動がランダム性を有するような配置である。

0124

例えば、仮想受信アレー配置の並び(例えば、一方の端から他方の端への方向への並び)において、時分割切り替えによって、送信信号の送信に使用される送信アンテナ108が一定になる部分(換言すると、空間周波数スペクトルの低周波成分)と、送信信号の送信に使用される送信アンテナ108が順次切り替わる部分(換言すると、空間周波数スペクトルの高周波成分)とが混在するようなMIMOアレー配置とする。このようなMIMOアレー配置は、例えば、以下の(条件1)を満たす。

0125

(条件1)
例えば、直線状に配置されたNt個の送信アンテナ108を含む送信アレーアンテナにおいて、隣り合う送信アンテナ108間のアンテナ間隔(換言すると、素子間隔)をDTx(1,2), DTx(2,3),…, DTx(Nt-1,Nt)とする。ここで、例えば、DTx(1,2)は、Tx#1とTx#2との間のアンテナ間隔を表す。以下、同様である。

0126

また、例えば、直線状に配置されたNa個の受信アンテナ202を含む受信アレーアンテナにおいて、隣り合う受信アンテナ202間のアンテナ間隔(換言すると、素子間隔)をDRx(1,2), DRx(2,3),…, DRx(Na-1,Na)とする。ここで、例えば、DRx(1,2)は、Rx#1とRx#2との間のアンテナ間隔を表す。以下、同様である。

0127

例えば、送信アレーアンテナにおけるアンテナ間隔は、一方の端点(換言すると、アレー端点)から他方のアレー端点まで徐々に拡がるように設定される。一方、受信アレーアンテナにおけるアンテナ間隔は、一方のアレー端点から他方のアレー端点まで徐々に狭めるように設定される。すなわち、送信アレーアンテナ及び受信アレーアンテナの各々におけるアンテナ間隔は、以下の関係を有する。
DTx(1,2) ≧ DTx(2,3) ≧ … ≧ DTx(Nt-1,Nt)
DRx(1,2) ≦ DRx(2,3) ≦ … ≦ DRx(Na-1,Na)

0128

または、送信アレーアンテナにおけるアンテナ間隔は、一方のアレー端点から他方のアレー端点まで徐々に狭めるように設定される。一方、受信アレーアンテナにおけるアンテナ間隔は、一方のアレー端点から他方のアレー端点まで徐々に拡がるように設定される。すなわち、送信アレーアンテナ及び受信アレーアンテナの各々におけるアンテナ間隔は、以下の関係を有する。
DTx(1,2) ≦ DTx(2,3) ≦ … ≦ DTx(Nt-1,Nt)
DRx(1,2) ≧ DRx(2,3) ≧ … ≧ DRx(Na-1,Na)

0129

このように、送信アレーアンテナに含まれる複数の送信アンテナ108において隣り合う送信アンテナ間のアンテナ間隔のそれぞれは、送信アレーアンテナが配置される方向(例えば、水平方向等)の一方の側から他方の側へ向かって広くなる。また、受信アレーアンテナに含まれる複数の受信アンテナ202において隣り合う送信アンテナ間のアンテナ間隔のそれぞれは、上記一方の側から他方の側へ向かって狭くなる。

0130

なお、同一(換言すると、等号関係)のアンテナ間隔が連続すると、空間周波数スペクトル成分に周期性が現れやすくなる。このため、等号関係となるアンテナ間隔は、例えば、連続して2回以内と設定してもよい。なお、等号関係となるアンテナ間隔が連続する回数は2回以内に限定されない。

0131

図11は、(条件1)を満たすMIMOアレー配置、及び、仮想受信アレー配置の一例を示す。図11では、送信アンテナ数Nt=3であり、受信アンテナ数Na=3である。なお、送信アンテナ数Nt及び受信アンテナ数Naは、図11に示す例に限定されない。

0132

仮想受信アレー配置は、送信アレーアンテナを構成する送信アンテナ108の位置(例えば、給電点の位置)、及び、受信アレーアンテナを構成する受信アンテナ202の位置(例えば、給電点の位置)から、次式のように表すことができる。

0133

式(19)において、送信アレーアンテナを構成する送信アンテナ108の位置座標を(XT_#n,YT_#n)(n=1,…, Nt)とし、受信アレーアンテナを構成する受信アンテナ202の位置座標を(XR_#m,YR_#m)(m=1,…, Na)とする。また、仮想受信アレーアンテナを構成する仮想アンテナ素子の位置座標を(XV_#k,YV_#k)(k=1,..,, Nt×Na)とする。

0134

なお、式(19)では、VA#1を仮想受信アレーの位置基準(0,0)として表している。

0135

図11に示す送信アレーアンテナを構成する送信アンテナ108(Tx#1、Tx#2及びTx#3)の位置座標は、Tx#1の位置座標(XT_#1,YT_#1)を基準として、Tx#2の位置座標(XT_#2,YT_#2)=(XT_#1+DH,YT_#1)、Tx#3の位置座標(XT_#3,YT_#3)=(XT_#1+5DH,YT_#1)と表される。

0136

また、図11に示す受信アレーアンテナを構成する受信アンテナ202(例えば、Rx#1、Rx#2及びRx#3)の位置座標は、Rx#1の位置座標(XR_#1,YR_#1)を基準として、Rx#2の位置座標(XR_#2,YR_#2)=(XR_#1+2DH,YR_#1)、Rx#3の位置座標(XR_#3,YR_#3)=(XR_#1+3DH,YR_#1)と表される。

0137

ここで、図11では、Tx#1とTx#2とのアンテナ間隔DTx(1,2)はDHであり、Tx#2とTx#3とのアンテナ間隔DTx(2,3)は4DHである。また、図11では、Rx#1とRx#2とのアンテナ間隔DRx(1,2)は2DHであり、Rx#2とRx#3とのアンテナ間隔DRx(2,3)はDHである。

0138

よって、図11に示す送受信アンテナ配置では、DTx(1,2) ≦ DTx(2,3)、かつ、DRx(1,2)≧ DRx(2,3)であるので、上述した(条件1)を満たす。

0139

このような送受信アレーアンテナの配置により、仮想受信アレーVA#1〜VA#9の位置座標(XV_#1,YV_#1)〜(XV_#9,YV_#9)は、それぞれ以下のようになる。
(0,0), (DH, 0), (5DH, 0), (2DH, 0), (3DH, 0), (7DH, 0), (3DH, 0), (4DH,0), (8DH, 0)

0140

なお、x番目の仮想受信アレーの受信信号を得るために使用された送信アンテナの送信アンテナ番号は、例えば、mod(x-1, Nt)+1で算出できる。mod(x, y)は剰余演算子であり、xをyで割った場合の余りを出力する。

0141

図11の場合、仮想受信アレーの各仮想アンテナ素子VA#1〜VA#9の受信信号を得るために使用された送信アンテナの送信アンテナ番号は、それぞれ、Tx#1, Tx#2, Tx#3, Tx#1, Tx#2, Tx#3, Tx#1, Tx#2, Tx#3となる。

0142

また、図11に示す仮想受信アレー配置を、例えば、左端から右端への方向に順に並べた場合の仮想アンテナ素子は、VA#1,VA#2,VA#4,VA#5(VA#7も重複),VA#8,VA#3,VA#6,VA#9となる。また、この順番の仮想アンテナ素子の受信信号を得るために使用された送信アンテナ108の送信アンテナ番号は、Tx#1, Tx#2, Tx#1, Tx#1(Tx#2も重複), Tx#2, Tx#3, Tx#3, Tx#3となる。

0143

例えば、図11に示す仮想受信アレー配置を一方の端(例えば、左端)から他方の端(例えば、右端)への方向に順に見た場合、各仮想アンテナ素子の受信信号を得るために使用される送信アンテナ108の送信アンテナ番号は、Tx#3が3回連続する部分(換言すると、空間周波数スペクトルの低周波成分)と、Tx#1,Tx#2が順次切り替わる部分(換言すると、空間周波数スペクトルの高周波成分)とが混在した並びとなる。

0144

例えば、TxCALベクトル(TxCALVec)は、上述した仮想受信アレーの受信信号を得るために使用される送信アンテナ108に対応する順番で並べられた送信位相補正誤差(例えば、式(13)を参照)から成る。これにより、ドップラ周波数の折り返しが発生した場合、TxCALベクトル(TxCALVec)に基づく方向推定誤差が発生することになる。

0145

図12は、図11に示す送受信アンテナ配置において、方向推定部215の到来方向推定アルゴリズムとしてビームフォーマ法を用いた場合の方向推定結果の一例を示す。図12では、ターゲット真値を水平0度とした場合の水平方向±90度範囲での到来方向推定評価関数値の出力をプロットしている。また、図12では、MIMOアレー配置においてDH =0.5λとする。

0146

図12に示すように、ドップラ周波数の折り返し無しの場合(換言すると、送信位相補正誤差が無い場合)と比較して、ドップラ周波数の折り返し有りの場合(換言すると、送信位相補正誤差が有る場合)は、フーリエ法による方向推定における空間スペクトルのピークレベルは4.5dB程度低減していることが確認できる。

0147

例えば、折り返し判定部216は、次式のような、空間スペクトルのピークレベル(例えば、PH(θu, k_cfar, fs_cfar, w)の最大値)を仮想受信アレーベクトルの電力値(例えば、PowerFT(k_cfar, fs_cfar, w))で正規化して得られる正規化ピーク電力値指標に用いてよい。例えば、折り返し判定部216は、正規化ピーク電力値と所定値Lev_Aliasとを比較し、ドップラ周波数の折り返しの有無の判定を行う。なお、正規化ピーク電力値は、0から1の範囲で出力されるので、所定値Lev_Aliasは1以下の正数に設定されてよい。

0148

なお、仮想受信アレーベクトルの電力値であるPowerFT(k_cfar, fs_cfar, w)は、例えば、次式のようにw番目の補正仮想受信アレーベクトルhaftercal(k、fs, w)を用いて算出される。

0149

式(20)に示すように、折り返し判定部216は、正規化ピーク電力値が所定値Lev_Aliasよりも小さい場合、ドップラ周波数の折り返し有りと判定する。一方、折り返し判定部216は、正規化ピーク電力値が所定値Lev_Alias以上の場合、ドップラ周波数の折り返し無しと判定する。

0150

例えば、図11に示すMIMOアレー配置例の場合、ドップラ周波数の折り返しが有る場合には、正規化電力ピーク値は、0.4以下となる。よって、例えば、Lev_Aliasを0.5(又は、0.5前後)に設定することにより、折り返し判定部216は、ドップラ周波数の折り返しの有無の判定精度を向上できる。

0151

また、折り返し判定部216は、例えば、測位結果として、到来時刻情報及びドップラ周波数情報に加え、ドップラ周波数の折り返しの有無を示す情報を出力してよい。

0152

また、ドップラ周波数情報に関して、例えば、ドップラ周波数の折り返し無しと判定された場合、ドップラ周波数インデックスfsがそのまま出力されてよい。一方、ドップラ周波数の折り返し有りと判定された場合、ドップラ周波数インデックスfs>0の場合にはfs-Ncに変換されたドップラ周波数インデックスが出力され、ドップラ周波数インデックスfs<0の場合、fs+Ncに変換されたドップラ周波数インデックスが出力される。これにより、レーダ装置10は、ドップラ周波数(相対速度)を正しく検出できる。

0153

以上のように、レーダ装置10において、送信アレーアンテナは、所定の方向に直線状に配置された複数の送信アンテナ108を含み、複数の送信アンテナ108において隣り合う送信アンテナ間の間隔のそれぞれは、送信アンテナが直線状に配置される方向の一方の側から他方の側へ向かって広くなるように設計される。また、レーダ装置10において、受信アレーアンテナは、所定の方向に直線状に配置された複数の受信アンテナ202を含み、複数の受信アンテナ202において隣り合う送信アンテナ間の間隔のそれぞれは、受信アンテナが直線状に配置される方向の一方の側から他方の側へ向かって狭くなるように設計される。

0154

このような送受信アンテナの配置により、仮想受信アレー配置の並び(例えば、一方の端から他方の端への方向への並び)において、時分割切り替えによって、送信信号の送信に使用される送信アンテナ108が一定になる部分(換言すると、空間周波数スペクトルの低周波成分)と、送信信号の送信に使用される送信アンテナ108が順次切り替わる部分(換言すると、空間周波数スペクトルの高周波成分)とが混在するようなMIMOアレー配置が得られる。これにより、例えば、TxCALVecの各要素にそれぞれ対応する送信アンテナ108に対する送信位相補正誤差は、一定になる部分と順次変動する部分が混在することになり、ランダム性が高められる。よって、レーダ装置10の送受信アレーアンテナの配置に対応する送信位相誤差ベクトル(例えば、TxCALVec)の空間周波数スペクトルにおけるピークレベルを低減できる。換言すると、上記送受信アレーアンテナ配置によって、送信位相補正誤差の変動が一定周期にならず、ランダム性を高められる。

0155

この送受信アレーアンテナ配置により、ドップラ周波数の折り返しが有る場合(換言すると、送信位相補正誤差が有る場合)と、ドップラ周波数の折り返しが無い場合(換言すると、送信位相補正誤差が無い場合)との間において、方向推定結果の空間スペクトル応答におけるピークレベルに差が生じる。よって、レーダ装置10(例えば、レーダ受信部200の折り返し判定部216)は、反射波信号の空間スペクトルに基づいて、反射波信号のドップラ解析212におけるドップラ周波数の折り返しの有無を判定できる。

0156

よって、レーダ装置10は、例えば、折り返し無しでドップラ周波数を検出できるドップラ周波数範囲を超えるターゲットからの反射波信号が到来した場合でも、ターゲットのドップラ周波数(換言すると、相対速度)の検出誤差を低減できる。このため、レーダ装置は、正しいドップラ周波数に基づいて送信位相補正できるので、ターゲットの方向推定の検出誤差を低減できる。

0157

よって、本実施の形態によれば、レーダ装置10は、ターゲットの検知性能を向上できる。

0158

なお、仮想受信アレー配置は、送信アレーアンテナと受信アレーアンテナとの間の位置関係とは依存関係がない。このため、送信アレーアンテナと受信アレーアンテナとの間のの位置関係は、図11に示す配置に限定されず、任意に設定してよい。また、このことは、以下で説明する他の送受信アンテナ配置においても同様である。

0159

また、図11に示す送信アレーアンテナ及び受信アレーアンテナの配置における水平方向(図11では横方向)の配置を、垂直方向図11では縦方向)の配置(換言すると、90度回転させた配置)としてもよく、図11の配置と同様の効果が得られる。また、このことは、以下で説明する他の送受信アンテナ配置においても同様である。

0160

また、図11に示す送信アレーアンテナの配置と受信アレーアンテナの配置とを入れ替えてもよい。換言すると、図11に示す受信アレーアンテナの配置を送信アレーアンテナの配置とし、図11に示す送信アレーアンテナの配置を、受信アレーアンテナの配置としてもよい。送受信アレーアンテナの配置をを入れ替えても、得られる仮想受信アレー配置は同一配置となるため、同様の効果が得られる。このことは、他の送受信アンテナ配置においても同様である。

0161

(一実施の形態のバリエーション1)
図1に示すレーダ装置10の方向推定部215及び折り返し判定部216の構成の代わりに、図13に示す構成例を用いてもよい。図13は、図1に示すレーダ装置10の構成例のうち、信号補正部214に後続する構成の他の例を示す。

0162

図13では、レーダ装置10は、方向推定部215及び折り返し判定部216に加え、スイッチ217、折り返し位相補正部218、折り返し信号方向推定部219、及び、スイッチ220を備える。

0163

スイッチ217及びスイッチ220は、折り返し判定部216から折り返し無しの判定結果が入力される場合、経路a及びa'にそれぞれ切り替え、折り返し判定部216から折り返し有りの判定結果が入力される場合、経路b及びb'にそれぞれ切り替える。

0164

例えば、図13に示す折り返し判定部216において、ドップラ周波数の折り返し無しと判定された場合、レーダ装置10は、方向推定部215において推定された方向推定値(例えば、空間スペクトル応答のピーク方向及びピーク電力値)を、折り返し位相補正部218及び折り返し信号方向推定部219を介さずに測位結果として出力する。

0165

一方、図13に示す折り返し判定部216において、ドップラ周波数の折り返し有りと判定された場合、折り返し位相補正部218及び折り返し信号方向推定部219は、ドップラ周波数の折り返しにより信号補正部214で発生した送信位相補正誤差を補正した方向推定値(フーリエ空間スペクトルのピーク方向およびピーク電力値)を算出する。

0166

例えば、折り返し位相補正部218は、次式に示すように、信号補正部214から出力される補正仮想受信アレーベクトルhaftercal(k_cfar、fs_cfar, w)の各要素に対して、折り返されて検出されたドップラ周波数用の追加位相補正ベクトルCTxAlias(fs_cfar)の各要素を乗算し、折り返しドップラ用仮想受信アレーベクトルhTxAlias(k_cfar, fs_cfar, w)を算出する。ここで、ND=1,..,, Ntである。

0167

式(22)において、CTxAlias(fs_cfar)は折り返し用追加位相補正ベクトルであり、次式のように、Na×Nt個の要素から成る。

0168

式(23)において、各TxCAL_ALIAS(ND)(fs_cfar)は、受信アンテナ数Na個分繰り返すベクトルを成す。また、TxCAL_ALIAS(ND)(fs_cfar)は式(12)に示す値である。

0169

折り返し信号方向推定部219は、折り返し位相補正部218から入力される、ドップラ折り返し用仮想受信アレーベクトルhTxAlias(k_cfar、fs_cfar, w)に基づいて、方向推定処理部215と同様な方向推定処理を行う。折り返し信号方向推定部219は、方向推定値結果(例えば、フーリエ空間スペクトルのピーク方向及びピーク電力値)を算出し、測位結果として出力する。

0170

以上のように、レーダ装置10は、ドップラ周波数の折り返しが有る場合、反射波信号の受信位相を補正し、補正後の反射波信号を用いて方向推定を行う。これにより、レーダ装置10は、信号補正部214で発生したドップラ周波数の折り返しによる位相補正誤差に基づいて、方向推定値の推定精度を向上できる。

0171

(一実施の形態のバリエーション2)
レーダ装置10において、折り返し判定部216が正規化ピーク電力値に基づいて折り返し判定を行う動作について説明したが、折り返し判定部216の動作はこれに限定されない。

0172

例えば、図1に示すレーダ装置10の折り返し判定部216の構成の代わりに、図14に示す構成例を用いてもよい。図14は、図1に示すレーダ装置10の構成例のうち、信号補正部214に後続する構成の他の例を示す。

0173

図14では、レーダ装置10は、図1の方向推定部215に加え、折り返し判定部216a、折り返し位相補正部218a、及び、折り返し信号方向推定部219aを備える。

0174

折り返し位相補正部218aは、例えば、式(22)に示すように、信号補正部214からの出力である補正仮想受信アレーベクトルhaftercal(k_cfar、fs_cfar, w)の各要素に対して、折り返されて検出されたドップラ周波数用の追加位相補正ベクトルCTxAlias(fs_cfar)の各要素を乗算し、折り返しドップラ用仮想受信アレーベクトルhTxAlias(k_cfar、fs_cfar, w)を算出する。

0175

折り返し信号方向推定部219aは、折り返し位相補正部218aから入力される、折り返しドップラ用仮想受信アレーベクトルhTxAlias(k_cfar , fs_cfar, w)に基づいて、方向推定処理部215と同様の方向推定処理を行い、算出した方向推定値を折り返し判定部216aに出力する。

0176

折り返し判定部216aは、例えば、方向推定部215で算出された方向推定評価関数値PH(θ, k_cfar, fs_cfar, w)のピーク電力レベルと、折り返し信号方向推定部219で算出された方向推定評価関数値PH_Alias(θ, k_cfar, fs_cfar, w)のピーク電力レベルとを比較する。例えば、折り返し判定部216aは、次式のように、双方のピーク電力レベル間のレベルが所定より大きい場合、ドップラ周波数の折り返し有りと判定する。一方、折り返し判定部216aは、双方のピーク電力レベル間のレベルが所定以下の場合、ドップラ周波数の折り返し無しと判定する。ここで、Lev_PHは所定係数値であり、正数値を設定する。

0177

折り返し判定部216aは、測位結果として、例えば、到来時刻情報、ドップラ周波数情報、及び、方向推定情報に加え、ドップラ周波数の折り返しの有無の情報を出力してよい。

0178

ここで、ドップラ周波数情報に関して、ドップラ周波数の折り返し無しと判定された場合、fsがそのまま出力され、ドップラ周波数の折り返し有りと判定された場合、ドップラ周波数インデックスfs>0の場合にはfs-Ncに変換されたドップラ周波数インデックスが出力され、ドップラ周波数インデックスfs<0の場合、fs+Ncに変換されたドップラ周波数インデックスが出力されてよい。これにより、レーダ装置10は、ドップラ周波数(相対速度)の検出精度を向上できる。

0179

また、方向推定情報に関して、ドップラ周波数の折り返し無しと判定された場合、方向推定部215において算出された方向推定値が出力され、ドップラ周波数の折り返し有りと判定された場合、折り返し信号方向推定部219aにおいて算出された方向推定値が出力されてよい。

0180

以上のように、レーダ装置10は、反射波信号のドップラ解析におけるドップラ周波数の折り返しに関する位相補正を行った反射波信号に基づいて物標の方向を推定する方向推定(例えば、折り返し信号方向推定部219aによる処理)を行い、上記位相補正を行わない反射波信号に基づいて物標の方向を推定する方向推定(例えば、方向推定部215による処理)を行う。そして、レーダ装置10は、双方の方向推定の結果の比較に基づいて、反射波信号のドップラ解析における折り返しの有無を判定する。

0181

この動作により、レーダ装置10では、ドップラ解析部212において折り返し無しで検出できるドップラ周波数範囲を超えたドップラ周波数を有するレーダ反射波を受信した場合でも、ドップラ周波数(相対速度)及び方向推定の検出誤差を低減できる。

0182

ここで、正規化ピーク電力値は、例えば、受信品質(例えば、SNR:Signal to Noise Ratio)に依存して変動する。例えば、受信SNRが低いほど、正規化ピーク電力値が小さくなる傾向がある。そのため、図1に示す折り返し判定部216において正規化ピーク電力値に基づいて折り返し判定を行う場合には、受信SNRに応じて所定値Lev_Aliasが適切に設定される必要がある。これに対して、図14に示す折り返し判定部216aは、方向推定部215における方向推定評価関数値と、折り返し信号方向推定部219aにおける方向推定評価関数値との比較結果に基づいて折り返し判定を行う。このため、折り返し判定部216aは、受信SNRに依らず(例えば、受信SNRが低い場合でも)、折り返し判定の精度を向上できる。

0183

また、折り返し判定部216aは、方向推定部215における方向推定評価関数値と折り返し信号方向推定部219aにおける方向推定評価関数値との比較結果に基づいて折り返し判定を行うため、例えば、フーリエ法以外のCAPON法、MUSIC法、又は、ESPRIT法等の方向推定アルゴリズムを適用できる。

0184

(一実施の形態のバリエーション3)
上述した一実施の形態では、ドップラ解析部212において折り返して検出されるドップラ周波数の範囲が「一次折り返し範囲」の場合について説明した。しかし、レーダ装置10は、レーダ反射波のドップラ周波数fdが、一次折り返し範囲を超えたドップラ周波数範囲(以下、「二次折り返し範囲」と呼ぶ)を含む場合にも適用できる。

0185

ここで、以下の二次折り返し範囲のドップラ周波数fdが折り返されて検出されたドップラ周波数インデックスを「fs_alias2」と呼ぶ。
-3/(2Nt×Tr) < fd <-1/(Nt×Tr)、又は、1/(Nt×Tr) < fd < 3/(2Nt×Tr)

0186

この場合、信号補正部214は、例えば、ドップラ周波数インデックスfs_alias2に基づいて、送信位相補正係数TxCAL(fs)を、TxCAL(1)(fds_alias2),…, TxCAL(Nt)(fs_alias2)に設定する。

0187

しかし、この送信位相補正は、本来のドップラ周波数インデックス(以下、fs_trueと表す)ではなく、二次折り返し範囲内のドップラ周波数が折り返されたドップラ周波数インデックスfs_alias2に基づいているので、誤った位相補正である。

0188

例えば、図15は、ドップラ周波数の折り返しが無い場合の送信位相補正、及び、二次折り返し範囲におけるドップラ周波数の折り返しが有る場合の送信位相補正の一例を示す。

0189

図15は、一例として、折り返し有りの場合に、ドップラ解析部212で検出されるドップラ周波数fs_trueが、Nc-1〜(3Nc/2)-1の範囲(換言すると、二次折り返し範囲)内に含まれる例を示す。換言すると、図15では、ドップラ周波数インデックスfs_alias2が0〜(Nc/2)-1の範囲内に折り返されて検出される。よって、図15に示すfs_alias2は正の値である。

0190

信号補正部214は、例えば、送信位相補正係数TxCAL(fs)によって、送信アンテナ108の切り替え時間差によって生じる位相差が送信アンテナ108間でゼロとなるような位相回転量を設定する。

0191

例えば、図15の折り返し無しの場合、信号補正部214では、ドップラ周波数インデックスfs_trueに応じて、送信位相補正係数TxCAL(fs_true)は、折り返していないドップラ周波数の信号に対して位相回転量を設定し、基準送信アンテナの位相(例えば、ドップラ周波数インデックスfs=0に相当)に一致させることができる。

0192

一方、図15の折り返し有りの場合、本来のドップラ周波数インデックスfs_trueは、fs_alias2+Ncに相当する。しかし、信号補正部214では、折り返したドップラ周波数fs_alias2に応じて、送信位相補正係数TxCAL(fs_alias2)は、折り返したドップラ周波数の信号に対して位相回転量を設定する。よって、図15では、信号補正部214において、折り返し有りの場合、送信位相補正係数TxCAL(fs_alias1)は、一次折り返し範囲内の本来のドップラ周波数インデックスfs_trueをNcに一致させる位相回転量を設定する。

0193

よって、fs_alias2が正の場合、信号補正部214では、ドップラサンプリング周期において、位相を更に2πだけ遅らせる補正(換言すると、図15に示すドップラ周波数インデックスにおいて-Nc分加える補正)が不足している。換言すると、fs_alias2が正の場合、信号補正部214では、ドップラサンプリング周期において、基準送信アンテナの位相から位相を2π進めた誤った補正(換言すると、ドップラ周波数インデックスfsにおいて+Nc分誤った補正)が行われることになる。つまり、図15の折り返しが有る場合には、送信位相補正誤差として、+2πの位相誤差(又は+Nc分のドップラ周波数インデックスの誤差)が含まれる。

0194

このように、図15に示す送信移動補正では、信号補正部214は、ドップラ周波数の折り返しが有る場合、送信アンテナ108の切り替え時間差によって生じる位相差が+2πとなるように誤って補正してしまう。換言すると、図15に示すように、fs_alias2が正の場合、信号補正部214は、送信位相補正係数TxCALによる補正(例えば、負の方向への補正)に加え、TxCALによる補正と同じ方向(例えば、負の方向)のNc分の位相回転を付与した場合には、基準送信アンテナの位相に一致させることができる。

0195

また、fs_alias2が負の場合(図示せず)は、ドップラサンプリング周期において位相を更に2πだけ進める補正(換言すると、ドップラ周波数インデックスにおいて+Nc分加える補正)が不足している。換言すると、fs_alias2が負の場合は、図15に示すfs_alias2が正の場合と逆に、ドップラサンプリング周期において2π位相を遅らせた誤った補正(換言すると、ドップラ周波数インデックスで-Nc分誤った補正)となる。

0196

したがって、信号補正部214において、本来のドップラ周波数に対して送信位相補正を行うには、送信位相補正係数TxCAL(1)(fs_alias2),…, TxCAL(Nt)(fs_alias2)に対して、次式のように時分割送信において生じた時間差を考慮した、折り返しドップラ周波数(例えば、fs_alias2)用の追加位相補正係数TxCAL_2ndALIAS(ND)(fs_alias2)が更に必要となる。ここでND=1,…, Ntである。

0197

式(25)において、sign(x)は実数xの正負の符号(−又は+)を返す関数である。

0198

ただし、折り返しドップラ周波数用の追加位相補正係数TxCAL_2ndALIAS(ND)(fs_alias2)を用いるには、レーダ装置10(例えば、折り返し判定部216)は、ドップラ解析部212において検出されたドップラ周波数が二次折り返されて検出されたドップラ周波数であるか否かを判定する必要ある。

0199

そこで、本開示の一実施例では、折り返し判定部216において、ドップラ解析部212で検出されたドップラ周波数が折り返されて検出されたドップラ周波数(例えば、一次折り返し及び二次折り返しの何れか一方)であるか否かを判定できるMIMOアレー配置例を示す。

0200

ここで、仮に、折り返しドップラ周波数用の追加位相補正係数TxCAL_2ndALIAS(ND)(fs_alias2)を用いない場合、方向推定部215は、次式のような送信位相補正誤差が含まれた状態で方向推定処理を行うことになる。

0201

一次折り返し範囲でドップラ周波数が折り返す場合(例えば、式(13)を参照)と比較すると、式(26)に示す送信位相補正誤差は、正負の符号が異なるのみである。

0202

したがって、例えば、本開示の一実施例では、一次折り返し範囲におけるTxCALベクトルTxCALVecの空間スペクトル応答において、ドップラ周波数の折り返しが無い場合と比較して、ドップラ周波数の折り返しが有る場合のピークレベルが大きく落ち込むようなアレーアンテナ配置を用いる。これにより、レーダ装置10は、一次折り返し範囲及び二次折り返し範囲の双方においてターゲットのドップラ周波数が折り返した信号か否かを判定できる。

0203

一例として、送信アンテナ数Nt=3とし、受信アンテナ数Na=4とする場合、Tx#1、Tx#2及びTx#3の順に送信アンテナ108を切り替える場合、方向推定部215は、次式のような送信位相補正誤差が含まれた状態で方向推定処理を行うことになる。
fs_alias2が正の場合:



fs_alias2が負の場合:

0204

また、例えば、Tx#1からTx#Ntの順に送信アンテナ108を切り替える場合、方向推定部215は、次式のような送信位相補正誤差が含まれた状態で方向推定処理を行うことになる。
fs_alias2が正の場合:



fs_alias2が負の場合:

0205

これらの送信位相補正誤差による方向推定誤差の影響は、仮想受信アレーの配置を一方の端から他方の端への方向に順に見た場合の、仮想アンテナ素子の受信信号を得るために使用される送信アンテナ108に対応する送信位相補正誤差(例えば、式(26)を参照)を並べて構成されるTxCALベクトル(TxCALVec)を、空間フーリエ変換することにより調べることができる。

0206

一例として、図6に示す仮想受信アレー配置を、例えば、右端から左端の方向へ順に並べた場合の仮想アンテナ素子は、VA#1,VA#2,VA#3,VA#4,VA#5,VA#6,VA#7,VA#8,VA#9,VA#10,VA#11,VA#12となる。また、これらに対応した順番で、仮想受信アレーの受信信号を得るために使用された送信アンテナの送信アンテナ番号は、Tx#1,Tx#1,Tx#1,Tx#1,Tx#2,Tx#2,Tx#2,Tx#2,Tx#3,Tx#3,Tx#3,Tx#3となる。よって、図6の場合(例えば、式(27)又は式(28)の場合)、TxCALベクトルは、次式で示される。

0207

図16は、このようなTxCALベクトル(TxCALVec)に対して空間フーリエ変換して得られる空間スペクトル応答の一例を示す。図16に示すように、fs_alias2が正の場合、ピーク方向が0度方向よりも正の領域に現れ、fs_alias2が負の場合、ピーク方向が0度方向よりも負の領域に現れることが確認できる。例えば、図16(二次折り返し範囲に関する例)と、図9(一次折り返し範囲に関する例)とを比較すると、fs_alias2が正の場合(又は負の場合)の空間スペクトル応答は、fs_alias1が負の場合(又は正の場合)の空間スペクトル応答と一致する。

0208

次に、一次折り返し範囲に加え、二次折り返し範囲を含めた折り返し判定を可能とするレーダ装置10の構成例について説明する。

0209

図17は、図1に示すレーダ装置10の構成例のうち、信号補正部214に後続する構成の他の例を示す。

0210

図17では、レーダ装置10は、図1の方向推定部215に加え、一次折り返し位相補正部221、二次折り返し位相補正部222、一次折り返し信号方向推定部223、二次折り返し信号方向推定部224、及び、折り返し判定部216bを備える。

0211

一次折り返し位相補正部221は、例えば、式(22)で示すように、信号補正部214から出力される補正仮想受信アレーベクトルhaftercal(k_cfar, fs_cfar, w)の各要素に対して、一次折り返されて検出されたドップラ周波数用の追加位相補正ベクトルCTxAlias(fs_cfar)の各要素(例えば、式(23)を参照)を乗算し、一次折り返しドップラ用仮想受信アレーベクトルhTxAlias(k_cfar、fs_cfar, w)を算出する。

0212

二次折り返し位相補正部222は、信号補正部214から出力される補正仮想受信アレーベクトルhaftercal(k_cfar, fs_cfar, w)の各要素に対して、二次折り返されて検出されたドップラ周波数用の追加位相補正ベクトルCTx_2ndAlias(fs_cfar)の各要素を乗算し、式(32)に示す二次折り返しドップラ用仮想受信アレーベクトルhTx_2ndAlias(k_cfar, fs_cfar, w)を算出する。ここで、ND=1,…, Ntである。

0213

式(32)において、CTx_2ndAlias(fs_cfar)は折り返し用追加位相補正ベクトルであり、次式のようなNa×Nt個の要素から成る。

0214

式(33)において、各TxCAL_2ndALIAS(ND)(fs_cfar)は、受信アンテナ数Na個分繰り返すベクトルを成す。また、TxCAL_2ndALIAS(ND)(fs_cfar)は式(25)に示す値である。

0215

一次折り返し信号方向推定部223は、一次折り返し位相補正部221から入力される、折り返しドップラ用仮想受信アレーベクトルhTxAlias(k_cfar, fs_cfar, w)に基づいて、方向推定処理部215と同様な方向推定処理を行う。一次折り返し信号方向推定部223は、方向推定結果を折り返し判定部216bに出力する。

0216

二次折り返し信号方向推定部224は、二次折り返し位相補正部222から入力される、折り返しドップラ用仮想受信アレーベクトルhTx_2ndAlias(k_cfar, fs_cfar, w)に基づいて、方向推定処理部215と同様な方向推定処理を行う。二次折り返し位相補正部222は、方向推定結果を折り返し判定部216bに出力する。

0217

折り返し判定部216bは、例えば、方向推定部215で算出された方向推定評価関数値PH(θu, k_cfar, fs_cfar, w)のピーク電力レベルと、一次折り返し信号方向推定部223で算出された方向推定評価関数値PH_Alias(θu, k_cfar, fs_cfar, w)のピーク電力レベルと、二次折り返し信号方向推定部224で算出された方向推定評価関数値PH_2ndAlias(θu, k_cfar, fs_cfar, w)のピーク電力レベルとを比較する。そして、折り返し判定部216bは、比較結果に基づいて、ドップラ周波数の折り返しの有無(又は、一次折り返し及び二次折り返し)を判定する。

0218

例えば、折り返し判定部216bは、次式のように、一次折り返し信号方向推定部223で算出された方向推定評価関数値PH_Alias(θu, k_cfar, fs_cfar, w)のピーク電力レベルと、他のピーク電力レベルとの間のレベルが所定より大きい場合、一次折り返し有りと判定する。ここで、所定係数値Lev_PHは正数値を設定する。

0219

また、例えば、折り返し判定部216bは、次式のように、二次折り返し信号方向推定部224で算出された方向推定評価関数値PH_2ndAlias(θu, k_cfar, fs_cfar, w)のピーク電力レベルと、他のピーク電力レベルとの間のレベルが所定より大きい場合、二次折り返し有りと判定する。ここで、所定係数値Lev_PHは正数値を設定する。

0220

また、折り返し判定部216bは、上記の式(34)〜式(37)で示した一次折り返し有りの判定条件、二次折り返し有りの判定条件を何れも満たさない場合、ドップラ周波数の折り返し無しと判定する。

0221

折り返し判定部216bは、測位結果として、例えば、到来時刻情報、ドップラ周波数情報、及び、方向推定情報に加え、一次折り返し及び二次折り返しの少なくとも一つの有無の情報を出力してよい。

0222

ここで、ドップラ周波数情報に関して、例えば、ドップラ周波数の折り返し無しと判定された場合、ドップラ周波数インデックスfsがそのまま出力されてよい。また、一次折り返し有りと判定された場合、ドップラ周波数インデックスfs>0の場合にはfs-Ncに変換されたドップラ周波数インデックスが出力され、ドップラ周波数インデックスfs<0の場合、fs+Ncに変換されたドップラ周波数インデックスが出力されてよい。また、二次折り返し有りと判定された場合、ドップラ周波数インデックスfs>0の場合にはfs+Ncに変換されたドップラ周波数インデックスが出力され、ドップラ周波数インデックスfs<0の場合、fs-Ncに変換されたドップラ周波数インデックスが出力されてよい。これにより、レーダ装置10は、ドップラ周波数(相対速度)を正しく検出できる。

0223

また、方向推定情報に関して、ドップラ周波数の折り返し無しと判定された場合、方向推定部215において算出された方向推定値が出力されてよい。また、一次折り返し有りと判定された場合、一次折り返し信号方向推定部223において算出された方向推定値が出力され、二次折り返し有りと判定された場合、二次折り返し信号方向推定部224において算出された方向推定値が出力されてよい。

0224

以上のように、レーダ装置10は、折り返しが有るドップラ周波数の信号に対する方向推定において、一次折り返しに関する位相補正を行った反射波信号、及び、二次折り返しに関する位相補正を行った反射波信号に基づいて物標の方向を推定する方向推定をそれぞれ行う。

0225

これにより、レーダ装置10では、ドップラ解析部212において折り返し無しで検出できるドップラ周波数範囲を超えたドップラ周波数を有するレーダ反射波を受信した場合において、一次折り返し範囲に加え、二次折り返し範囲までドップラ範囲を拡大して、ドップラ周波数(相対速度)又は方向推定の検出誤差を低減できる。

0226

(一実施の形態のバリエーション4)
上記実施の形態では、レーダ送信部100において、パルス列を位相変調又は振幅変調して送信するパルス圧縮レーダを用いる場合について説明したが、変調方式はこれに限定されない。例えば、本開示は、チャープ(chirp)パルスのような周波数変調したパルス波を用いたレーダ方式についても適用可能である。

0227

図18は、チャープパルス(例えば、fast chirp modulation)を用いたレーダ方式を適用した場合のレーダ装置10aの構成図の一例を示す。なお、図18において、図1と同様の構成には同一の符号を付し、その説明を省略する。

0228

まず、レーダ送信部100aにおける送信処理について説明する。

0229

レーダ送信部100aにおいて、レーダ送信信号生成部401は、変調信号発生部402及びVCO(Voltage Controlled Oscillator)403を有する。

0230

変調信号発生部402は、例えば、図19に示すように、のこぎり歯形状の変調信号を周期的に発生させる。ここで、レーダ送信周期をTrとする。

0231

VCO403は、変調信号発生部402から出力されるレーダ送信信号に基づいて、周波数変調信号(換言すると、周波数チャープ信号)を送信無線部107へ出力する。周波数変調信号は、送信無線部107において増幅され、送信切替部106において切り替えられた送信アンテナ108から空間に放射される。例えば、第1の送信アンテナ108から第Ntの送信アンテナ108の各々において、レーダ送信信号はNp(=Nt×Tr)周期の送信間隔で送信される。

0232

方向性結合部404は、周波数変調信号の一部の信号を取り出して、レーダ受信部200bの各受信無線部501(ミキサ部502)に出力する。

0233

次に、レーダ受信部200aにおける受信処理について説明する。

0234

レーダ受信部200aの受信無線部501は、ミキサ部502において、受信した反射波信号に対して、送信信号である周波数変調信号(方向性結合部404から入力される信号)をミキシングし、LPF503を通過させる。これにより、反射波信号の遅延時間に応じた周波数となるビート信号が取り出される。例えば、図19に示すように、送信信号(送信周波数変調波)の周波数と、受信信号(受信周波数変調波)の周波数との差分周波数ビート周波数として得られる。

0235

LPF503から出力された信号は、信号処理部207aにおいて、A/D変換部208aによって離散サンプルデータに変換される。

0236

R−FFT部504は、送信周期Tr毎に、所定の時間範囲レンジゲート)において得られたNdata個の離散サンプルデータをFFT処理する。これにより、信号処理部207aでは、反射波信号(レーダ反射波)の遅延時間に応じたビート周波数にピークが現れる周波数スペクトラムが出力される。なお、FFT処理の際、R−FFT部504は、例えば、Han窓又はHamming窓等の窓関数係数を乗算してもよい。窓関数係数を用いることにより、ビート周波数ピーク周辺に発生するサイドローブを抑圧できる。

0237

ここで、第M番目のチャープパルス送信によって得られる第z番目の信号処理部207bにおけるR−FFT部504から出力されるビート周波数スペクトラム応答をAC_RFTz(fb, M)で表す。ここで、fbはFFTのインデックス番号ビン番号)であり、fb=0,…,Ndata/2である。周波数インデックスfbが小さいほど、反射波信号の遅延時間が小さい(換言すると、物標との距離が近い)ビート周波数を示す。

0238

第z番目の信号処理部207aにおける出力切替部211は、上記実施の形態と同様、切替制御部105から入力される切替制御信号に基づいて、レーダ送信周期Tr毎のR−FFT部504の出力を、Nt個のドップラ解析部212のうちの一つに選択的に切り替えて出力する。

0239

以下、一例として、第M番目のレーダ送信周期Tr[M]における切替制御信号をNtビットの情報[bit1(M), bit2(M), … ,bitNt(M)]で表す。例えば、第M番目のレーダ送信周期Tr[M]の切替制御信号において、第ND番目のビットbitND(M)(ただし、ND=1〜Ntの何れか)が‘1’である場合、出力切替部211は、第ND番目のドップラ解析部212を選択(換言するとON)する。一方、第M番目のレーダ送信周期Tr[M]の切替制御信号において、第ND番目のビットbitND(M)が‘0’である場合、出力切替部211は、第ND番目のドップラ解析部212を非選択(換言するとOFF)とする。出力切替部211は、選択したドップラ解析部212に対して、R−FFT部504から入力される信号を出力する。

0240

上記のように、各ドップラ解析部212の選択は、Np(=Nt×Tr)周期で順次ONとなる。切替制御信号は、上記内容をNc回繰り返す。

0241

第z(z=1,…,Na)番目の信号処理部207aは、Nt個のドップラ解析部212を有する。

0242

ドップラ解析部212は、出力切替部211からの出力に対して、ビート周波数インデックスfb毎にドップラ解析を行う。

0243

例えば、Ncが2のべき乗値である場合、ドップラ解析において高速フーリエ変換(FFT)処理を適用できる。

0244

例えば、第z番目の信号処理部207aの第ND番目のドップラ解析部212における第w番目の出力は、次式に示すように、ビート周波数インデックスfbにおけるドップラ周波数インデックスfsのドップラ周波数応答FT_CIzND(fb, fs, w)を示す。また、FFTサイズはNcであり、ドップラ周波数インデックスfsの範囲は、(-Nc/2)+1,…,0,…,Nc/2である。なお、ND=1〜Ntであり、wは1以上の整数である。また、jは虚数単位であり、z=1〜Naである。

0245

信号処理部207a以降のCFAR部213、信号補正部214、方向推定部215及び折り返し判定部216の処理は、上記実施の形態で説明した離散時刻kをビート周波数インデックスfbで置き換えた動作となるので、詳細な説明を省略する。

0246

以上の構成及び動作により、本バリエーションでも、上記実施の形態と同様の効果を得ることができる。なお、後述する一実施の形態のバリエーションにおいても、同様に、レーダ送信信号として周波数チャープ信号を適用でき、符号化パルス信号を用いた場合と同様の効果が得られる。

0247

また、上述したビート周波数インデックスfbは、距離情報に変換して出力されてもよい。ビート周波数インデックスfbを距離情報R(fb)に変換するには次式を用いればよい。ここで、Bwは周波数変調して生成される周波数チャープ信号の周波数変調帯域幅を表し、C0は光速度を表す。

0248

(一実施の形態のバリエーション5)
本開示の一実施例に係る送受信アンテナ配置(又は仮想受信アレー配置)は、図11に示す配置に限らない。

0249

例えば、上述した(条件1)を満たす他の送受信アンテナ配置であればよい。

0250

または、(条件1)に加え、以下の(条件2)を満たす送受信アンテナ配置でもよい。

0251

(条件2)
例えば、送信アレーアンテナの最大のアンテナ間隔は、受信アレーアンテナの最小のアンテナ間隔より大きく、かつ、受信アレーアンテナの開口長以下に設定される。

0252

また、例えば、受信アレーアンテナの最大のアンテナ間隔は、送信アレーアンテナの最小のアンテナ間隔より大きく、かつ、送信アレーアンテナの開口長以下に設定される。

0253

ここで、送信アレーアンテナの開口長は送信アレーアンテナにおけるアンテナ間隔の総和であり、受信アレーアンテナの開口長は受信アレーアンテナにおけるアンテナ間隔の総和である。

0254

以下、(条件1)及び(条件2)の少なくとも一つを満たすMIMOアレー配置例、及び、仮想受信アレー配置例を示す。

0255

<配置例1>
図20は、配置例1に係るMIMOアレー配置及び仮想受信アレー配置の一例を示す。図20では、送信アンテナ数Nt=3であり、受信アンテナ数Na=4である。なお、送信アンテナ数Nt及び受信アンテナ数Naは、図20に示す例に限定されない。

0256

図20では、Tx#1とTx#2とのアンテナ間隔DTx(1,2)はDHであり、Tx#2とTx#3とのアンテナ間隔DTx(2,3)は3DHである。また、図20では、Rx#1とRx#2とのアンテナ間隔DRx(1,2)は3DHであり、Rx#2とRx#3とのアンテナ間隔DRx(2,3)は2DHであり、Rx#3とRx#4とのアンテナ間隔DRx(3,4)はDHである。また、図20では、送信アレーアンテナの開口長は4DHであり、受信アレーアンテナの開口長は6DHである。

0257

よって、図20に示す送受信アンテナ配置では、DTx(1,2) ≦ DTx(2,3)、かつ、DRx(1,2)≧ DRx(2,3) ≧ DRx(3,4)であるので、上述した(条件1)を満たす。

0258

また、図20に示す送受信アンテナ配置では、送信アレーアンテナの最大のアンテナ間隔(DTx(2,3)=3DH)は、受信アレーアンテナの最小のアンテナ間隔(DRx(3,4)=DH)より大きく、かつ、受信アレーアンテナの開口長6DH以下に設定される。また、例えば、受信アレーアンテナの最大のアンテナ間隔(DRx(1,2)=3DH)は、送信アレーアンテナの最小のアンテナ間隔(DTx(1,2)=DH)より大きく、かつ、送信アレーアンテナの開口長4DH以下に設定される。よって、図20に示す送受信アンテナ配置では、上述した(条件2)を満たす。

0259

このような送信アレーアンテナの配置、および受信アレーアンテナの配置により、仮想受信アレーアンテナVA#1〜VA#12が得られる。

0260

図20に示す仮想受信アレー配置を、例えば、左端から右端への方向に順に並べた場合の仮想アンテナ素子は、VA#1,VA#2,VA#4,VA#3(VA#5も重複),VA#7,VA#8(VA#10も重複),VA#6(VA#11も重複),VA#9,VA#12となる。また、この順番の仮想アンテナ素子の受信信号を得るために使用される送信アンテナ108の送信アンテナ番号は、Tx#1, Tx#2, Tx#1, Tx#2(Tx#3も重複), Tx#1, Tx#1(Tx#2も重複), Tx#2(Tx#3も重複), Tx#3, Tx#3となる。

0261

例えば、図20に示す仮想受信アレー配置を一方の端(例えば、左端)から他方の端(例えば、右端)への方向に順に見た場合、各仮想アンテナ素子の受信信号を得るために使用される送信アンテナ108の送信アンテナ番号は、Tx#3が3回連続する部分(換言すると、空間周波数スペクトルの低周波成分)と、Tx#1, Tx#2が順次切り替わる部分(換言すると、空間周波数スペクトルの高周波成分)とが混在した並びとなる。

0262

例えば、TxCALベクトル(TxCALVec)は、上述した仮想アンテナ素子の受信信号を得るために使用される送信アンテナ108に対応する順番で並べられた送信位相補正誤差(例えば、式(13)又は式(25)等)から成る。これにより、ドップラ周波数の折り返しが発生した場合、TxCALベクトル(TxCALVec)に基づく方向推定誤差が発生する。

0263

図21は、図20に示す送受信アンテナ配置において、方向推定部215の到来方向推定アルゴリズムとしてビームフォーマ法を用いた場合の方向推定結果の一例を示す。図21では、ターゲット真値を水平0度とした場合の水平方向±90度範囲での到来方向推定評価関数値の出力をプロットしている。また、図21では、MIMOアレー配置においてDH =0.5λとする。

0264

図21に示すように、ドップラ周波数の折り返し無しの場合(換言すると、送信位相補正誤差が無い場合)と比較して、ドップラ周波数の折り返し有りの場合(換言すると、送信位相補正誤差が有る場合)は、フーリエ法による方向推定における空間スペクトルのピークレベルは5.1dB程度低減していることが確認できる。

0265

<配置例2>
図22は、配置例2に係るMIMOアレー配置及び仮想受信アレー配置の一例を示す。図22では、送信アンテナ数Nt=3であり、受信アンテナ数Na=4である。なお、送信アンテナ数Nt及び受信アンテナ数Naは、図22に示す例に限定されない。

0266

図22では、Tx#1とTx#2とのアンテナ間隔DTx(1,2)は3DHであり、Tx#2とTx#3とのアンテナ間隔DTx(2,3)は2DHである。また、図22では、Rx#1とRx#2とのアンテナ間隔DRx(1,2)はDHであり、Rx#2とRx#3とのアンテナ間隔DRx(2,3)はDHであり、Rx#3とRx#4とのアンテナ間隔DRx(3,4)は4DHである。また、図22では、送信アレーアンテナの開口長は5DHであり、受信アレーアンテナの開口長は6DHである。

0267

よって、図22に示す送受信アンテナ配置では、DTx(1,2) ≧ DTx(2,3)、かつ、DRx(1,2)≦ DRx(2,3) ≦ DRx(3,4)であるので、上述した(条件1)を満たす。

0268

また、図22に示す送受信アンテナ配置では、送信アレーアンテナの最大のアンテナ間隔(DTx(1,2)=3DH)は、受信アレーアンテナの最小のアンテナ間隔(DRx(1,2)=DRx(2,3)=DH)より大きく、かつ、受信アレーアンテナの開口長6DH以下に設定される。また、例えば、受信アレーアンテナの最大のアンテナ間隔(DRx(3,4)=4DH)は、送信アレーアンテナの最小のアンテナ間隔(DTx(2,3)=2DH)より大きく、かつ、送信アレーアンテナの開口長5DH以下に設定される。よって、図22に示す送受信アンテナ配置では、上述した(条件2)を満たす。

0269

このような送信アレーアンテナの配置、および受信アレーアンテナの配置により、仮想受信アレーアンテナVA#1〜VA#12が得られる。

0270

図22に示す仮想受信アレー配置を、例えば、左端から右端への方向に順に並べた場合の仮想アンテナ素子は、VA#1,VA#4,VA#7,VA#2,VA#5,VA#3(VA#8も重複),VA#6(VA#10も重複),VA#9,VA#11,VA#12となる。また、この順番の仮想アンテナ素子の受信信号を得るために使用される送信アンテナ108の送信アンテナ番号は、Tx#1, Tx#1, Tx#1, Tx#2, Tx#2, Tx#2(Tx#3も重複), Tx#1(Tx#3も重複), Tx#3, Tx#2, Tx#3となる。

0271

例えば、図22に示す仮想受信アレー配置を一方の端(例えば、左端)から他方の端(例えば、右端)への方向に順に見た場合、各仮想アンテナ素子の受信信号を得るために使用される送信アンテナ108の送信アンテナ番号は、Tx#1,Tx#2が3回連続する部分(換言すると、空間周波数スペクトルの低周波成分)と、Tx#1〜Tx#3が切り替わる部分(空間周波数スペクトル高周波成分)とが混在した配置となる。

0272

例えば、TxCALベクトル(TxCALVec)は、上述した仮想アンテナ素子の受信信号を得るために使用される送信アンテナ108に対応する順番で並べられた送信位相補正誤差(例えば、式(13)又は式(25)等)から成る。これにより、ドップラ周波数の折り返しが発生した場合、TxCALベクトル(TxCALVec)に基づく方向推定誤差が発生する。

0273

図23は、図22に示す送受信アンテナ配置において、方向推定部215の到来方向推定アルゴリズムとしてビームフォーマ法を用いた場合の方向推定結果の一例を示す。図23では、ターゲット真値を水平0度とした場合の水平方向±90度範囲での到来方向推定評価関数値の出力をプロットしている。また、図23では、MIMOアレー配置においてDH =0.5λとする。

0274

図23に示すように、ドップラ周波数の折り返し無しの場合(換言すると、送信位相補正誤差が無い場合)と比較して、ドップラ周波数の折り返し有りの場合(換言すると、送信位相補正誤差が有る場合)は、フーリエ法による方向推定における空間スペクトルのピークレベルは4.6dB程度低減していることが確認できる。

0275

<配置例3>
図24は、配置例3に係るMIMOアレー配置及び仮想受信アレー配置の一例を示す。図24では、送信アンテナ数Nt=4であり、受信アンテナ数Na=4である。なお、送信アンテナ数Nt及び受信アンテナ数Naは、図24に示す例に限定されない。

0276

図24では、Tx#1とTx#2とのアンテナ間隔DTx(1,2)はDHであり、Tx#2とTx#3とのアンテナ間隔DTx(2,3)は2DHであり、Tx#3とTx#4とのアンテナ間隔DTx(3,4)は3DHである。また、図24では、Rx#1とRx#2とのアンテナ間隔DRx(1,2)は4DHであり、Rx#2とRx#3とのアンテナ間隔DRx(2,3)は3DHであり、Rx#3とRx#4とのアンテナ間隔DRx(3,4)はDHである。また、図24では、送信アレーアンテナの開口長は6DHであり、受信アレーアンテナの開口長は8DHである。

0277

よって、図24に示す送受信アンテナ配置では、DTx(1,2) ≦ DTx(2,3) ≦ DTx(3,4)、かつ、DRx(1,2) ≧ DRx(2,3) ≧ DRx(3,4)であるので、上述した(条件1)を満たす。

0278

また、図24に示す送受信アンテナ配置では、送信アレーアンテナの最大のアンテナ間隔(DTx(3,4)=3DH)は、受信アレーアンテナの最小のアンテナ間隔(DRx(3,4)=DH)より大きく、かつ、受信アレーアンテナの開口長8DH以下に設定される。また、例えば、受信アレーアンテナの最大のアンテナ間隔(DRx(1,2)=4DH)は、送信アレーアンテナの最小のアンテナ間隔(DTx(1,2)=DH)より大きく、かつ、送信アレーアンテナの開口長6DH以下に設定される。よって、図24に示す送受信アンテナ配置では、上述した(条件2)を満たす。

0279

このような送信アレーアンテナの配置、および受信アレーアンテナの配置により、仮想受信アレーアンテナVA#1〜VA#16が得られる。

0280

図24に示す仮想受信アレー配置を、例えば、左端から右端への方向に順に並べた場合の仮想アンテナ素子は、VA#1,VA#2,VA#3,VA#5,VA#6,VA#4,VA#9(VA#7も重複),VA#10(VA#13も重複),VA#14,VA#8(VA#11も重複),VA#15,VA#12,VA#16となる。また、この順番の仮想アンテナ素子の受信信号を得るために使用される送信アンテナ108の送信アンテナ番号は、Tx#1, Tx#2, Tx#3, Tx#1, Tx#2, Tx#4, Tx#1(Tx#3も重複), Tx#1(Tx#2も重複), Tx#2, Tx#3(Tx#4も重複), Tx#3, Tx#4, Tx#4となる。

0281

例えば、図24に示す仮想受信アレー配置を一方の端(例えば、左端)から他方の端(例えば、右端)への方向に順に並べた場合、各仮想アンテナ素子の受信信号を得るために使用される送信アンテナ108の送信アンテナ番号は、Tx#3, Tx#4がそれぞれ2回連続する部分(換言すると、空間周波数スペクトルの低周波成分)と、Tx#1〜#4が切り替わる部分(空間周波数スペクトル高周波成分)とが混在した並びとなる。

0282

例えば、TxCALベクトル(TxCALVec)は、上述した仮想アンテナ素子の受信信号を得るために使用される送信アンテナ108に対応する順番で並べられた送信位相補正誤差(例えば、式(13)又は式(25)等)から成る。これにより、ドップラ周波数の折り返しが発生した場合、TxCALベクトル(TxCALVec)に基づく方向推定誤差が発生する。

0283

図25は、図24に示す送受信アンテナ配置において、方向推定部215の到来方向推定アルゴリズムとしてビームフォーマ法を用いた場合の方向推定結果の一例を示す。図25では、ターゲット真値を水平0度とした場合の水平方向±90度範囲での到来方向推定評価関数値の出力をプロットしている。また、図25では、MIMOアレー配置においてDH =0.5λとする。

0284

図25に示すように、ドップラ周波数の折り返し無しの場合(換言すると、送信位相補正誤差が無い場合)と比較して、ドップラ周波数の折り返し有りの場合(換言すると、送信位相補正誤差が有る場合)は、フーリエ法による方向推定における空間スペクトルのピークレベルは7.5dB程度低減していることが確認できる。

0285

<配置例4>
図26は、配置例4に係るMIMOアレー配置及び仮想受信アレー配置の一例を示す。図26では、送信アンテナ数Nt=4であり、受信アンテナ数Na=6である。なお、送信アンテナ数Nt及び受信アンテナ数Naは、図26に示す例に限定されない。

0286

図26では、Tx#1とTx#2とのアンテナ間隔DTx(1,2)は5DHであり、Tx#2とTx#3とのアンテナ間隔DTx(2,3)は5DHであり、Tx#3とTx#4とのアンテナ間隔DTx(3,4)は4DHである。また、図26では、Rx#1とRx#2とのアンテナ間隔DRx(1,2)はDHであり、Rx#2とRx#3とのアンテナ間隔DRx(2,3)はDHであり、Rx#3とRx#4とのアンテナ間隔DRx(3,4)は2DHであり、Rx#4とRx#5とのアンテナ間隔DRx(4,5)は2DHであり、Rx#5とRx#6とのアンテナ間隔DRx(5,6)は3DHである。また、図26では、送信アレーアンテナの開口長は14DHであり、受信アレーアンテナの開口長は9DHである。

0287

よって、図26に示す送受信アンテナ配置では、DTx(1,2) ≧ DTx(2,3) ≧ DTx(3,4)、かつ、DRx(1,2) ≦ DRx(2,3) ≦ DRx(3,4) ≦ DRx(4,5)≦ DRx(5,6)であるので、上述した(条件1)を満たす。

0288

また、図26に示す送受信アンテナ配置では、送信アレーアンテナの最大のアンテナ間隔(DTx(1,2)=DTx(2,3)=5DH)は、受信アレーアンテナの最小のアンテナ間隔(DRx(1,2)=DRx(2,3)=DH)より大きく、かつ、受信アレーアンテナの開口長9DH以下に設定される。一方、例えば、受信アレーアンテナの最大のアンテナ間隔(DRx(5,6)=3DH)は、送信アレーアンテナの最小のアンテナ間隔(DTx(3,4)=4DH)より小さいため、上述した(条件2)は満たさない。

0289

このような送信アレーアンテナの配置、および受信アレーアンテナの配置により、仮想受信アレーアンテナVA#1〜VA#24が得られる。

0290

図26に示す仮想受信アレー配置を、例えば、左端から右端への方向に順に並べた場合の仮想アンテナ素子は、VA#1,VA#5,VA#9,VA#13,VA#2,VA#6(VA#17も重複),VA#10,VA#14(VA#21も重複),VA#3,VA#7(VA#18も重複),VA#11,VA#4(VA#15,VA#22も重複),VA#8,VA#12(VA#19も重複),VA#16,VA#23,VA#20,VA#24となる。また、この順番の仮想アンテナ素子の受信信号を得るために使用される送信アンテナ108の送信アンテナ番号は、Tx#1, Tx#1, Tx#1, Tx#1, Tx#2, Tx#1(Tx#2も重複), Tx#2, Tx#1(Tx#2も重複), Tx#3, Tx#2(Tx#3も重複), Tx#3,Tx#2(Tx#3,Tx#4も重複),Tx#4, Tx#3(Tx#4も重複), Tx#4, Tx#3, Tx#4, Tx#4となる。

0291

例えば、図26に示す仮想受信アレー配置を一方の端(例えば、左端)から他方の端(例えば、右端)への方向に順に並べた場合、各仮想アンテナ素子の受信信号を得るために使用される送信アンテナ108の送信アンテナ番号は、Tx#1が4回連続する部分(換言すると、空間周波数スペクトルの低周波成分)と、Tx#2〜#4が切り替わる部分(換言すると、空間周波数スペクトルの高周波成分)とが混在した並びとなる。

0292

例えば、TxCALベクトル(TxCALVec)は、上述した仮想アンテナ素子の受信信号を得るために使用される送信アンテナ108に対応する順番で並べられた送信位相補正誤差(例えば、式(13)又は式(25)等)から成る。これにより、ドップラ周波数の折り返しが発生した場合、TxCALベクトル(TxCALVec)に基づく方向推定誤差が発生する。

0293

図27は、図26に示す送受信アンテナ配置において、方向推定部215の到来方向推定アルゴリズムとしてビームフォーマ法を用いた場合の方向推定結果の一例を示す。図27では、ターゲット真値を水平0度とした場合の水平方向±90度範囲での到来方向推定評価関数値の出力をプロットしている。また、図27では、MIMOアレー配置においてDH =0.5λとする。

0294

図27に示すように、ドップラ周波数の折り返し無しの場合(換言すると、送信位相補正誤差が無い場合)と比較して、ドップラ周波数の折り返し有りの場合(換言すると、送信位相補正誤差が有る場合)は、フーリエ法による方向推定における空間スペクトルのピークレベルは3.6dB程度低減していることが確認できる。

0295

<配置例5>
図28は、配置例5に係るMIMOアレー配置及び仮想受信アレー配置の一例を示す。図28では、送信アンテナ数Nt=4であり、受信アンテナ数Na=4である。なお、送信アンテナ数Nt及び受信アンテナ数Naは、図28に示す例に限定されない。

0296

図28では、Tx#1とTx#2とのアンテナ間隔DTx(1,2)は2DHであり、Tx#2とTx#3とのアンテナ間隔DTx(2,3)はDHであり、Tx#3とTx#4とのアンテナ間隔DTx(3,4)は2DHである。また、図28では、Rx#1とRx#2とのアンテナ間隔DRx(1,2)はDHであり、Rx#2とRx#3とのアンテナ間隔DRx(2,3)は3DHであり、Rx#3とRx#4とのアンテナ間隔DRx(3,4)は4DHである。また、図28では、送信アレーアンテナの開口長は5DHであり、受信アレーアンテナの開口長は8DHである。

0297

よって、図28に示す送受信アンテナ配置では、DRx(1,2) ≦ DRx(2,3) ≦ DRx(3,4)ではあるが、DTx(1,2) ≧ DTx(2,3) 、DTx(2,3)≦ DTx(3,4)であるため、上述した(条件1)は満たさない。

0298

一方、図28に示す送受信アンテナ配置では、送信アレーアンテナの最大のアンテナ間隔(DTx(1,2)=DTx(3,4)=2DH)は、受信アレーアンテナの最小のアンテナ間隔(DRx(1,2)=DH)より大きく、かつ、受信アレーアンテナの開口長8DH以下に設定される。また、例えば、受信アレーアンテナの最大のアンテナ間隔(DRx(3,4)=4DH)は、送信アレーアンテナの最小のアンテナ間隔(DTx(2,3)=DH)より大きく、かつ、送信アレーアンテナの開口長5DH以下に設定される。よって、図28に示す送受信アンテナ配置では、上述した(条件2)を満たす。

0299

このような送信アレーアンテナの配置、および受信アレーアンテナの配置により、仮想受信アレーアンテナVA#1〜VA#16が得られる。

0300

図28に示す仮想受信アレー配置を、例えば、左端から右端への方向に順に並べた場合の仮想アンテナ素子は、VA#1,VA#5,VA#2,VA#3(VA#6も重複),VA#7(VA#9も重複),VA#4,VA#8(VA#10も重複),VA#11,VA#13,VA#12,VA#14,VA#15,VA#16となる。また、この順番の仮想アンテナ素子の受信信号を得るために使用される送信アンテナ108の送信アンテナ番号は、Tx#1, Tx#1, Tx#2, Tx#2(Tx#3も重複), Tx#1(Tx#3も重複), Tx#4, Tx#2(Tx#4も重複), Tx#3, Tx#1, Tx#4, Tx#2, Tx#3, Tx#4となる。

0301

例えば、図28に示す仮想受信アレー配置を一方の端(例えば、左端)から他方の端(例えば、右端)への方向に順に並べた場合、各仮想アンテナ素子の受信信号を得るために使用される送信アンテナ108の送信アンテナ番号は、Tx#1, Tx#2がそれぞれ2回連続する部分(換言すると、空間周波数スペクトルの低周波成分)と、Tx#1〜#4が切り替わる部分(空間周波数スペクトル高周波成分)とが混在した並びとなる。

0302

例えば、TxCALベクトル(TxCALVec)は、上述した仮想アンテナ素子の受信信号を得るために使用される送信アンテナ108に対応する順番で並べられた送信位相補正誤差(例えば、式(13)又は式(25)等)から成る。これにより、ドップラ周波数の折り返しが発生した場合、TxCALベクトル(TxCALVec)に基づく方向推定誤差が発生する。

0303

図29は、図28に示す送受信アンテナ配置において、方向推定部215の到来方向推定アルゴリズムとしてビームフォーマ法を用いた場合の方向推定結果の一例を示す。図29では、ターゲット真値を水平0度とした場合の水平方向±90度範囲での到来方向推定評価関数値の出力をプロットしている。また、図29では、MIMOアレー配置においてDH =0.5λとする。

0304

図29に示すように、ドップラ周波数の折り返し無しの場合(換言すると、送信位相補正誤差が無い場合)と比較して、ドップラ周波数の折り返し有りの場合(換言すると、送信位相補正誤差が有る場合)は、フーリエ法による方向推定における空間スペクトルのピークレベルは7dB程度低減していることが確認できる。

0305

このように配置例5に係るMIMOアレー配置は、上述した(条件1)は満たさなくとも、上述した(条件2)を満たすことにより、仮想受信アレー配置の並び(例えば、一方の端から他方の端への方向への並び)において、時分割切り替えによって、送信信号の送信に使用される送信アンテナ108が一定になる部分(換言すると、空間周波数スペクトルの低周波成分)と、送信信号の送信に使用される送信アンテナ108が順次切り替わる部分(換言すると、空間周波数スペクトルの高周波成分)とが混在するようなMIMOアレー配置が得られる。これにより、例えば、TxCALVecの各要素にそれぞれ対応する送信アンテナ108に対する送信位相補正誤差は、一定になる部分と順次変動する部分が混在することになり、ランダム性が高められる。よって、レーダ装置10の送受信アレーアンテナの配置に対応する送信位相誤差ベクトル(例えば、TxCALVec)の空間周波数スペクトルにおけるピークレベルを低減できる。換言すると、上記送受信アレーアンテナ配置によって、送信位相補正誤差の変動が一定周期にならず、ランダム性を高められる。

0306

以上、上述した(条件1)及び(条件2)の少なくとも1つを満たす送受信アンテナ配置として、配置例1〜配置例5について説明した。

0307

バリエーション5により、例えば、仮想受信アレー配置を一方の端から他方の端の方向に順に並べた仮想アンテナ素子の順番において、受信信号を得るために使用される送信アンテナ108(例えば、送信アンテナ番号)が切り替わりやすく、TxCALVecの各要素にそれぞれ対応する送信アンテナ108に対する送信位相補正誤差の変動が一定周期にならず、ランダム性を高める。よって、レーダ装置10の送受信アレーアンテナの配置に対応する送信位相誤差ベクトル(例えば、TxCALVec)の空間周波数スペクトルにおけるピークレベルを低減できる。

0308

以上、本開示に係る一実施の形態について説明した。

0309

[他の実施の形態]
図1に示すレーダ装置10において、レーダ送信部100及びレーダ受信部200は、物理的に離れた場所に個別に配置されてもよい。

0310

送信アンテナ数Nt及び受信アンテナ数Naは上述した例に限定されず、他の値でもよい。また、間隔DV及びDHは、0.5λに限定されず、例えば、0.5λ以上、かつ、1λ以下の値でもよい。

0311

また、送受信アンテナ配置は、上述した例に限定されない。例えば、(条件1)又は(条件2)を満たす送受信アンテナ配置であれば他の配置でもよい。換言すると、例えば、TxCALVecの各要素にそれぞれ対応する送信アンテナ108に対する送信位相補正誤差の変動がランダムになる送受信アンテナ配置であれば、他の配置でもよい。

0312

レーダ装置10は、図示しないが、例えば、CPU(Central Processing Unit)、制御プログラムを格納したROM(Read Only Memory)等の記録媒体、およびRAM(Random Access Memory)等の作業用メモリを有する。この場合、上記した各部の機能は、CPUが制御プログラムを実行することにより実現される。但し、レーダ装置10のハードウェア構成は、かかる例に限定されない。例えば、レーダ装置10の各機能部は、集積回路であるIC(IntegratedCircuit)として実現されてもよい。各機能部は、個別に1チップ化されてもよいし、その一部または全部を含むように1チップ化されてもよい。

0313

上述の実施の形態においては、各構成要素に用いる「・・・部」という表記は、「・・・回路(circuitry)」、「・・・デバイス」、「・・・ユニット」、又は、「・・・モジュ−ル」といった他の表記に置換されてもよい。

0314

以上、図面を参照しながら各種の実施形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。また、開示の趣旨を逸脱しない範囲において、上記実施形態における各構成要素を任意に組み合わせてもよい。

0315

本開示はソフトウェア、ハ−ドウェア、又は、ハ−ドウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、ス−パ−LSI、ウルトラLSIと呼称されることもある。集積回路化の手法はLSIに限るものではなく、専用回路汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブルプロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集化を行ってもよい。バイオ技術の適用等が可能性としてありえる。

0316

本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置の、非限定的な例としては、電話機携帯電話スマトフォン等)、タブレット、パ−ソナルコンピュ−タ−(PC)(ラップトップデスクトップ、ノ−トブック等)、カメラ(デジタル・スチルビデオ・カメラ等)、デジタル・プレ−ヤ−(デジタル・オ−ディオ/ビデオ・プレ−ヤ−等)、着用可能なデバイス(ウェアラブル・カメラ、スマ−トウオッチ、トラッキングデバイス等)、ゲ−ム・コンソ−ル、デジタル・ブック・リ−ダ−、テレヘルステレメディシン遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関自動車飛行機等)、及び上述の各種装置の組み合わせがあげられる。

0317

通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマ−ト・ホ−ム・デバイス(家電機器照明機器、スマ−トメ−タ−又は計測機器コントロ−ル・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワ−ク上に存在し得るあらゆる「モノ(Things)」をも含む。

0318

通信には、セルラ−システム、無線LANシステム通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントロ−ラやセンサ等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントロ−ラやセンサが含まれる。

0319

また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。

0320

<本開示のまとめ>
本開示の一実施例に係るレーダ装置は、送信アレーアンテナを用いて、レーダ信号を送信するレーダ送信回路と、受信アレーアンテナを用いて、前記レーダ信号がターゲットにおいて反射された反射波信号を受信するレーダ受信回路と、を具備し、前記送信アレーアンテナは、第1の方向に直線状に配置された複数の送信アンテナを含み、前記複数の送信アンテナにおいて隣り合う送信アンテナ間の間隔のそれぞれは、前記第1の方向の一方の側から他方の側へ向かって広くなり、前記受信アレーアンテナは、前記第1の方向に直線状に配置された複数の受信アンテナを含み、前記複数の受信アンテナにおいて隣り合う送信アンテナ間の間隔のそれぞれは、前記一方の側から前記他方の側へ向かって狭くなる。

0321

本開示の一実施例において、前記複数の送信アンテナにおける隣り合う送信アンテナ間の最大の間隔は、前記複数の受信アンテナにおける隣り合う受信アンテナ間の最小の間隔より大きく、かつ、前記受信アレーアンテナの開口長以下であり、前記複数の受信アンテナにおける隣り合う受信アンテナ間の最大の間隔は、前記複数の送信アンテナにおける隣り合う送信アンテナ間の最小の間隔より大きく、かつ、前記送信アレーアンテナの開口長以下である。

0322

本開示の一実施例に係るレーダ装置は、送信アレーアンテナを用いて、レーダ信号を送信するレーダ送信回路と、受信アレーアンテナを用いて、前記レーダ信号がターゲットにおいて反射された反射波信号を受信するレーダ受信回路と、を具備し、前記送信アレーアンテナに含まれる複数の送信アンテナにおける隣り合う送信アンテナ間の最大の間隔は、前記受信アレーアンテナに含まれる複数の受信アンテナにおける隣り合う受信アンテナ間の最小の間隔より大きく、かつ、前記受信アレーアンテナの開口長以下であり、前記複数の受信アンテナにおける隣り合う受信アンテナ間の最大の間隔は、前記複数の送信アンテナにおける隣り合う送信アンテナ間の最小の間隔より大きく、かつ、前記送信アレーアンテナの開口長以下である。

0323

本開示の一実施例において、前記レーダ受信回路は、前記反射波信号に対する方向推定結果の空間スペクトルに基づいて、前記反射波信号のドップラ解析におけるドップラ周波数の折り返しの有無を判定する。

0324

本開示の一実施例において、前記レーダ受信回路は、前記折り返しが有る場合、前記反射波信号の受信位相を補正し、位相補正後の前記反射波信号に基づいて方向推定を行う。

0325

本開示の一実施例において、前記レーダ受信回路は、前記反射波信号のドップラ解析におけるドップラ周波数の折り返しに関する位相補正を行った前記反射波信号に基づいて前記ターゲットの方向を推定する第1の方向推定を行い、前記位相補正を行わない前記反射波信号に基づいて前記ターゲットの方向を推定する第2の方向推定を行い、前記第1の方向推定の結果と前記第2の方向推定の結果との比較に基づいて、前記反射波信号のドップラ解析における折り返しの有無を判定する。

0326

本開示の一実施例において、前記折り返しには、一次折り返し及び二次折り返しが含まれ、前記レーダ受信回路は、前記第1の方向推定において、前記一次折り返しに関する位相補正を行った前記反射波信号及び前記二次折り返しに関する位相補正を行った前記反射波信号に基づいて前記ターゲットの方向を推定する方向推定をそれぞれ行う。

0327

本開示の一実施例に係るレーダ装置は、送信アレーアンテナを用いて、レーダ信号を送信するレーダ送信回路と、受信アレーアンテナを用いて、前記レーダ信号がターゲットにおいて反射された反射波信号を受信するレーダ受信回路と、を具備し、前記レーダ受信回路は、前記反射波信号に対する方向推定結果の空間スペクトルに基づいて、前記反射波信号のドップラ解析におけるドップラ周波数の折り返しの有無を判定する。

0328

本開示の一実施例に係るレーダ装置は、送信アレーアンテナを用いて、レーダ信号を送信するレーダ送信回路と、受信アレーアンテナを用いて、前記レーダ信号がターゲットにおいて反射された反射波信号を受信するレーダ受信回路と、を具備し、前記レーダ受信回路は、前記反射波信号のドップラ解析におけるドップラ周波数の折り返しに関する位相補正を行った前記反射波信号に基づいて前記ターゲットの方向を推定する第1の方向推定を行い、前記位相補正を行わない前記反射波信号に基づいて前記ターゲットの方向を推定する第2の方向推定を行い、前記第1の方向推定の結果と前記第2の方向推定の結果との比較に基づいて、前記反射波信号のドップラ解析における折り返しの有無を判定する。

0329

本開示は、目標を検知するレーダ装置として好適である。

0330

10,10aレーダ装置
100,100aレーダ送信部
101,401レーダ送信信号生成部
102符号生成部
103変調部
104,503LPF
105切替制御部
106,106a 送信切替部
107,107a 送信無線部
108送信アンテナ
111 符号記憶部
112DA変換部
200,200aレーダ受信部
201アンテナ系統処理部
202受信アンテナ
203,501 受信無線部
204増幅器
205周波数変換器
206直交検波器
207,207a信号処理部
208,208a,209AD変換部
210相関演算部
211出力切替部
212ドップラ解析部
213CFAR部
214信号補正部
215方向推定部
216,216a,216b折り返し判定部
217,220 スイッチ
218,218a 折り返し位相補正部
219,219a折り返し信号方向推定部
221 一次折り返し位相補正部
222 二次折り返し位相補正部
223 一次折り返し信号方向推定部
224 二次折り返し信号方向推定部
300基準信号生成部
402変調信号発生部
403VCO
404方向性結合部
502ミキサ部
504 R−FFT部

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 三菱電機株式会社の「 障害物検知装置及び運転支援装置」が 公開されました。( 2020/12/17)

    【課題・解決手段】障害物検知装置(100)は、車両(1)に設けられている測距センサ(2)が障害物による複数の反射波を受信した場合における複数の反射波に係る特徴量を抽出する特徴量抽出部(12)と、特徴量... 詳細

  • 三菱電機株式会社の「 障害物検知装置又は運転支援装置」が 公開されました。( 2020/12/17)

    【課題・解決手段】障害物検知装置(100)は、車両(1)に設けられた伝搬距離が異なる複数の測距センサ(2)から取得した受信信号に基づいて反射点の位置を抽出する反射点抽出部(12)と、反射点抽出部(12... 詳細

  • ヴィオニアスウェーデンエービーの「 車両レーダシステムを用いた駐車列の検出」が 公開されました。( 2020/12/17)

    【課題・解決手段】本開示は、自車に搭載されるように配置され、少なくとも1つの検出器配置と少なくとも1つの制御ユニット配置とを含む車両レーダ検出システムに関する。検出器配置は、K個のレーダ検出を最初に含... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ