図面 (/)

技術 EGR装置

出願人 株式会社SUBARU
発明者 遠藤圭悟浅井崇浦山朋之
出願日 2019年3月22日 (1年9ヶ月経過) 出願番号 2019-054777
公開日 2020年9月24日 (2ヶ月経過) 公開番号 2020-153343
状態 未査定
技術分野 排気還流装置 電動機の制御一般
主要キーワード 数値シミュレーション結果 差圧荷重 補正要否 連通箇所 エキゾーストシステム ルーフ状 インテークシステム 可動部質量
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2020年9月24日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (6)

課題

ステッピングモータ脱調を防止しつつEGRバルブの駆動を高速化したEGR装置を提供する。

解決手段

エンジン1の排気流路51から吸気流路46へ排気を搬送するEGR流路61に設けられたEGRバルブ63と、EGRバルブを開閉駆動するステッピングモータ640と、ステッピングモータに駆動用電力を与えるモータ駆動部100と、EGRバルブを閉弁方向に付勢するリターンスプリング636とを備えるEGR装置60を、エンジンの出力軸回転速度を検出する速度検出部11と、EGRバルブの開度推定する開度推定部とを備え、モータ駆動部は出力軸回転速度及び開度の変化に応じてステッピングモータの駆動周波数fdを変化させる構成とする。

概要

背景

自動車等に搭載されるエンジンにおいて、燃焼状態の制御やポンピングロスの抑制を図るため、排気吸気側還流させる排気再循環EGR)を行うことが知られている。
このようなEGRを行うEGR装置において、環流される排気流量EGR量)は、例えば、ステッピングモータ等のアクチュエータを用いて開度制御されるEGRバルブによって、実EGR率が所定の目標EGR率に近づくよう制御される。

ステッピングモータを用いたEGRバルブの駆動制御に関する従来技術として、例えば特許文献1には、EGRバルブの前側圧力と後側圧力との圧力差前後差圧として求め、前後差圧が所定の基準値より大きい場合は、全閉状態からの開弁初期において、ステッピングモータを通常の値より低い駆動周波数通電制御することが記載されている。
特許文献2には、EGRバルブの上流、下流間における差圧が小さいときほど、駆動制御の応答性を高めるためステッピングモータの駆動周波数を高くすることが記載されている。

概要

ステッピングモータの脱調を防止しつつEGRバルブの駆動を高速化したEGR装置を提供する。エンジン1の排気流路51から吸気流路46へ排気を搬送するEGR流路61に設けられたEGRバルブ63と、EGRバルブを開閉駆動するステッピングモータ640と、ステッピングモータに駆動用電力を与えるモータ駆動部100と、EGRバルブを閉弁方向に付勢するリターンスプリング636とを備えるEGR装置60を、エンジンの出力軸回転速度を検出する速度検出部11と、EGRバルブの開度推定する開度推定部とを備え、モータ駆動部は出力軸回転速度及び開度の変化に応じてステッピングモータの駆動周波数fdを変化させる構成とする。

目的

本発明の課題は、ステッピングモータの脱調を防止しつつEGRバルブの駆動を高速化したEGR装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

エンジン排気流路から吸気流路排気を搬送するEGR流路と、前記EGR流路に設けられたEGRバルブと、前記EGRバルブを開閉駆動するステッピングモータと、前記ステッピングモータに駆動用電力を与えるモータ駆動部と、前記EGRバルブを閉弁方向に付勢するリターンスプリングとを備えるEGR装置であって、前記エンジンの出力軸回転速度を検出する速度検出部と、前記EGRバルブの開度推定する開度推定部とを備え、前記モータ駆動部は、前記速度検出部が検出した前記出力軸回転速度、及び、前記開度推定部が推定した前記開度の変化に応じて前記ステッピングモータの駆動周波数を変化させることを特徴とするEGR装置。

請求項2

前記駆動周波数は、前記EGRバルブの可動部の振動周波数から所定量以上ずらした範囲内に設定されることを特徴とする請求項1に記載のEGR装置。

請求項3

前記EGRバルブへのスート堆積量を推定するスート堆積量推定部を備え、前記モータ駆動部は、前記スート堆積量推定部が推定した前記スート堆積量の増加に応じて、前記駆動周波数を低下方向補正することを特徴とする請求項1又は請求項2に記載のEGR装置。

請求項4

前記EGRバルブの上流側と下流側との差圧を検出する差圧検出部を備え、前記モータ駆動部は、前記差圧検出部が検出した差圧脈動周波数分布に応じて、前記駆動周波数を補正することを特徴とする請求項1から請求項3までのいずれか1項に記載のEGR装置。

技術分野

0001

本発明は、エンジン排気吸気側再循環させるEGR装置に関する。

背景技術

0002

自動車等に搭載されるエンジンにおいて、燃焼状態の制御やポンピングロスの抑制を図るため、排気を吸気側に還流させる排気再循環EGR)を行うことが知られている。
このようなEGRを行うEGR装置において、環流される排気流量EGR量)は、例えば、ステッピングモータ等のアクチュエータを用いて開度制御されるEGRバルブによって、実EGR率が所定の目標EGR率に近づくよう制御される。

0003

ステッピングモータを用いたEGRバルブの駆動制御に関する従来技術として、例えば特許文献1には、EGRバルブの前側圧力と後側圧力との圧力差前後差圧として求め、前後差圧が所定の基準値より大きい場合は、全閉状態からの開弁初期において、ステッピングモータを通常の値より低い駆動周波数通電制御することが記載されている。
特許文献2には、EGRバルブの上流、下流間における差圧が小さいときほど、駆動制御の応答性を高めるためステッピングモータの駆動周波数を高くすることが記載されている。

先行技術

0004

特開2014− 20247号公報
特開平 8−326608号公報

発明が解決しようとする課題

0005

ステッピングモータにより駆動されるEGRバルブにおいて、上述したように、EGRバルブの開弁初期や、前後差圧が大きくEGRバルブの駆動に大きなトルクを必要とする場合に、ステッピングモータの駆動周波数を低くしてトルクを確保するとともに、それ以外の場合には駆動周波数を高くしてEGRバルブの駆動速度を向上し、EGR制御の応答性を確保することが知られている。
しかし、EGRバルブに対して加振力として作用する排気脈動周波数や、EGRバルブの可動部分の振動周波数共振周波数)と、ステッピングモータの駆動周波数が一致または隣接すると、ステッピングモータにおいて入力パルスへの同期が損なわれ、ロータの実位置が駆動指示値から外れた状態で安定する脱調の原因となることを本発明の発明者は発見した。
上述した問題に鑑み、本発明の課題は、ステッピングモータの脱調を防止しつつEGRバルブの駆動を高速化したEGR装置を提供することである。

課題を解決するための手段

0006

本発明は、以下のような解決手段により、上述した課題を解決する。
請求項1に係る発明は、エンジンの排気流路から吸気流路へ排気を搬送するEGR流路と、前記EGR流路に設けられたEGRバルブと、前記EGRバルブを開閉駆動するステッピングモータと、前記ステッピングモータに駆動用電力を与えるモータ駆動部と、前記EGRバルブを閉弁方向に付勢するリターンスプリングとを備えるEGR装置であって、前記エンジンの出力軸回転速度を検出する速度検出部と、前記EGRバルブの開度推定する開度推定部とを備え、前記モータ駆動部は、前記速度検出部が検出した前記出力軸回転速度、及び、前記開度推定部が推定した前記開度の変化に応じて前記ステッピングモータの駆動周波数を変化させることを特徴とするEGR装置である。
EGRバルブに対して加振力として作用する排気の差圧脈動の周波数は、エンジンの出力軸回転速度(いわゆるエンジン回転数)に比例して増加する。
また、EGRバルブの振動周波数は、開度(弁体変位量)の変化に伴うリターンスプリングの反力や、弁体に作用する排気差圧の変化に応じて変化する。
本発明によれば、出力軸回転速度及び開度の変化に応じてステッピングモータの駆動周波数を変化させることにより、ステッピングモータの駆動周波数が排気の差圧脈動の周波数及びEGRバルブの振動周波数からずれるように設定し、ステッピングモータの脱調を防止することができる。
また、脱調が生じない駆動周波数の範囲内において、駆動周波数を高くすることが可能であり、EGRバルブの駆動を高速化することができる。
請求項2に係る発明は、前記駆動周波数は、前記EGRバルブの可動部の振動周波数から所定量以上ずらした範囲内に設定されることを特徴とする請求項1に記載のEGR装置である。
これによれば、EGRバルブの可動部の共振を確実に防止して、ステッピングモータの脱調をより確実に防止することができる。

0007

請求項3に係る発明は、前記EGRバルブへのスート堆積量を推定するスート堆積量推定部を備え、前記モータ駆動部は、前記スート堆積量推定部が推定した前記スート堆積量の増加に応じて、前記駆動周波数を低下方向補正することを特徴とする請求項1又は請求項2に記載のEGR装置である。
これによれば、エンジンの運転に伴う経時変化により、EGRバルブに排気中の粒子状物質であるスート堆積して重量が増加し、EGRバルブの振動周波数が低下した場合であっても、確実にステッピングモータの脱調を防止することができる。

0008

請求項4に係る発明は、前記EGRバルブの上流側と下流側との差圧を検出する差圧検出部を備え、前記モータ駆動部は、前記差圧検出部が検出した差圧脈動の周波数分布に応じて、前記駆動周波数を補正することを特徴とする請求項1から請求項3までのいずれか1項に記載のEGR装置である。
これによれば、例えば各気筒の排気流路長のばらつき等に起因して、差圧脈動の周波数分布が変化した場合であっても、差圧脈動による加振周波数と干渉しないよう駆動周波数を補正することによって、上述した効果を確実に得ることができる。

発明の効果

0009

以上説明したように、本発明によれば、ステッピングモータの脱調を防止しつつEGRバルブの駆動を高速化したEGR装置を提供することができる。

図面の簡単な説明

0010

本発明を適用したEGR装置の実施形態を有するエンジンの構成を模式的に示す図である。
実施形態のEGR装置のEGRバルブの構成を示す図である。
実施形態のEGR装置における駆動周波数マップの一例を示す模式図である。
実施形態のEGR装置における所定のエンジン回転数時のEGRバルブ開度と駆動周波数との関係を示す図である。
実施形態のEGR装置におけるEGRバルブ駆動時の動作を示すフローチャートである。

実施例

0011

以下、本発明を適用したEGR装置の実施形態について説明する。
実施形態のEGR装置は、例えば、乗用車等の自動車に走行用動力源として搭載される水平対向4気筒のガソリン直噴エンジンに設けられるものである。

0012

図1は、実施形態のEGR装置を有するエンジンの構成を模式的に示す図である。
エンジン1は、クランクシャフト10、シリンダブロック20(20R,20L)、シリンダヘッド30(30R,30L)、インテークシステム40、エキゾーストシステム50、EGR装置60、エンジン制御ユニット(ECU)100等を有して構成されている。

0013

クランクシャフト10は、エンジン1の出力軸となる回転軸である。
クランクシャフト10の一方の端部には、図示しない変速機等の動力伝達機構が接続されている。
クランクシャフト10には、回転軸から偏心して配置されたクランクピンが形成されている。
クランクピンには、図示しないコネクティングロッドを介してピストンが連結されている。
クランクシャフト10の端部には、クランクシャフトの角度位置を検出するクランク角センサ11が設けられている。
クランク角センサ11の出力は、エンジン制御ユニット100に伝達される。
エンジン制御ユニット100は、クランク角センサ11の出力に基づいて、エンジン回転数(クランクシャフト回転速度)を算出する。

0014

シリンダブロック20は、クランクシャフト10を、車体に縦置き搭載する場合における左右方向から挟みこむように、右側シリンダブロック20R、左側シリンダブロック20Lからなる二分割として構成されている。
シリンダブロック20の中央部には、クランクケース部が設けられている。
クランクケース部は、クランクシャフト10を収容する空間部である。
クランクケース部には、クランクシャフト10のジャーナル部を回転可能に支持するメインベアリングが設けられている。
クランクケース部を挟んで左右に配置される右側シリンダブロック20R、左側シリンダブロック20Lの内部には、ピストンが挿入され内部で往復するシリンダが例えば2気筒ずつ(4気筒の場合)形成されている。

0015

シリンダブロック20には、ノックセンサ21が設けられている。
ノックセンサ21は、シリンダブロック20の振動に応じた出力電圧を発生する圧電素子を有する。
エンジン制御ユニット100は、ノッキング発生時に特有のノックセンサ21の出力波形に基づいて、ノッキングの有無を検出可能となっている。

0016

シリンダヘッド30(右側シリンダヘッド30R、左側シリンダヘッド30L)は、シリンダブロック20のクランクシャフト10とは反対側の端部(左右端部)にそれぞれ設けられている。
シリンダヘッド30は、燃焼室31、点火プラグ32、吸気ポート33、排気ポート34、吸気バルブ35、排気バルブ36、吸気カムシャフト37、排気カムシャフト38、インジェクタ39等を備えて構成されている。
燃焼室31は、シリンダヘッド30のピストン冠面と対向する箇所を、例えばペントルーフ状に凹ませて形成されている。
点火プラグ32は、エンジン制御ユニット100からの点火信号に応じてスパークを発生し、混合気点火するものである。
点火プラグ32は、燃焼室31の中央に設けられている。

0017

吸気ポート33は、燃焼用空気(新気)を燃焼室31に導入する流路である。
排気ポート34は、燃焼室31から既燃ガス(排気)を排出する流路である。
吸気バルブ35、排気バルブ36は、吸気ポート33、排気ポート34を所定のバルブタイミング開閉するものである。
吸気バルブ35、排気バルブ36は、各気筒に例えば2本ずつ設けられる。
吸気バルブ35、排気バルブ36は、クランクシャフト10の1/2の回転数で同期して回転する吸気カムシャフト37、排気カムシャフト38によって開閉される。
吸気カムシャフト37、排気カムシャフト38のカムスプロケット部には、各カムシャフト位相進角・遅角させて各バルブ開弁時期閉弁時期を変化させる図示しないバルブタイミング可変機構が設けられている。
インジェクタ39は、エンジン制御ユニット100が発する開弁信号に応じて、燃焼室31内に燃料噴射して混合気を形成するものである。
インジェクタ39は、燃料を噴射するノズル部が、燃焼室31の内面における吸気ポート33側の領域からシリンダ内露出するよう設けられている。

0018

インテークシステム40は、空気を導入して吸気ポート33に導入するものである。
インテークシステム40は、インテークダクト41、チャンバ42、エアクリーナ43、エアフローメータ44、スロットルバルブ45、インテークマニホールド46、吸気圧センサ47等を備えて構成されている。

0019

インテークダクト41は、外気を導入して吸気ポート33に導入する流路である。
チャンバ42は、インテークダクト41の入口部近傍に連通して設けられた空間部である。
エアクリーナ43は、空気を濾過してダスト等を取り除くものである。
エアクリーナ43は、インテークダクト41におけるチャンバ42との連通箇所の下流側に設けられている。
エアフローメータ44は、インテークダクト41内を通過する空気流量を計測するものである。
エアフローメータ44は、エアクリーナ43の出口近傍に設けられている。
エアフローメータ44の出力は、エンジン制御ユニット100に伝達される。

0020

スロットルバルブ45は、空気の流量を調節してエンジン1の出力を制御するバタフライバルブである。
スロットルバルブ45は、インテークダクト41におけるインテークマニホールド46との接続部近傍に設けられている。
スロットルバルブ45は、エンジン制御ユニット100がドライバ要求トルク等に応じて設定する目標スロットル開度に応じて、図示しない電動式スロットルアクチュエータによって開閉駆動される。
また、スロットルバルブ45には、その開度を検出するスロットルセンサが設けられ、その出力はエンジン制御ユニット100に伝達される。
インテークマニホールド46は、空気を各気筒の吸気ポート33に分配する分岐管である。
インテークマニホールド46は、スロットルバルブ45の下流側に設けられている。
吸気圧センサ47は、インテークマニホールド46内の空気の圧力(吸気圧力)を検出するものである。
吸気圧センサ47の出力は、エンジン制御ユニット100に伝達される。

0021

エキゾーストシステム50は、排気ポート34から排出された排気を外部に排出するものである。
エキゾーストシステム50は、エキゾーストマニホールド51、エキゾーストパイプ52、フロント触媒53、リア触媒54、サイレンサ55、空燃比センサ56、リアO2センサ57等を有して構成されている。

0022

エキゾーストマニホールド51は、各気筒の排気ポート34から出た排気を集合させる集合管である。
エキゾーストパイプ52は、エキゾーストマニホールド51から出た排気を外部に排出する管路である。
フロント触媒53、リア触媒54は、エキゾーストパイプ52の中間部分に設けられ、排気中のHC、NOX、CO等を浄化する三元触媒をそれぞれ備えている。
フロント触媒53は、エキゾーストマニホールド51の出口に隣接して設けられ、リア触媒54は、フロント触媒の出口側に設けられている。
サイレンサ55は、排気の音響エネルギを低減するものである。
サイレンサ55は、エキゾーストパイプ52の出口近傍に設けられている。

0023

空燃比センサ56は、エキゾーストマニホールド51の出口と、フロント触媒53の入口との間に設けられている。
リアO2センサ57は、フロント触媒53の出口と、リア触媒54の入口との間に設けられている。
空燃比センサ56、リアO2センサ57は、ともに排気中の酸素濃度に応じた出力電圧を発生することによって、排気中の酸素量を検出するものである。
空燃比センサ56は、リアO2センサ57に対してより広範囲空燃比における酸素濃度を検出可能なリニア出力センサとなっている。
空燃比センサ56、リアO2センサ57の出力は、ともにエンジン制御ユニット100に伝達される。

0024

EGR装置60は、エキゾーストマニホールド51から、排気の一部をEGRガスとしてインテークマニホールド46内に導入する排気再循環(EGR)を行うものである。
EGR装置60は、EGR流路61、EGRクーラ62、EGRバルブ63等を備えている。

0025

EGR流路61は、エキゾーストマニホールド51から、インテークマニホールド46に排気(EGRガス)を搬送する管路である。
EGR流路61は、差圧センサ61aを有する。
差圧センサ61aは、EGR流路61におけるEGRバルブ63の上流側と下流側との圧力差(差圧)を検出するものである。
差圧センサ61aの出力は、エンジン制御ユニット100に伝達される。
EGRクーラ62は、EGR流路61を流れる排気を、エンジン1の冷却水との熱交換によって冷却するものである。
EGRクーラ62は、EGR流路61の途中に設けられている。
EGRバルブ63は、EGR流路61内を通過する排気の流量を調節する調量弁である。
EGRバルブ63は、EGR流路61におけるEGRクーラ62の下流側に設けられている。
EGRバルブ63は、エンジン制御ユニット100によって、所定の目標EGR率(EGRガス流量吸気流量)に基づいて設定された開度マップを用いて開度を制御される。
EGRバルブ63の構成については、後に詳しく説明する。

0026

エンジン制御ユニット(ECU)100は、エンジン1、及び、その補機類を、統括的に制御するものである。
エンジン制御ユニット100は、CPU等の情報処理手段、RAMやROM等の記憶手段、入出力インターフェイス、及び、これらを接続するバス等を備えて構成されている。
また、エンジン制御ユニット100には、ドライバによる図示しないアクセルペダル踏み込み量を検出するアクセルペダルセンサ101が設けられている。
エンジン制御ユニット100は、アクセルペダルセンサ101の出力等に基づいて、ドライバ要求トルクを設定する機能を備えている。
エンジン制御ユニット100は、エンジン1が実際に発生するトルクが、設定されたドライバ要求トルクに近づくよう、スロットルバルブ開度燃料噴射量、燃料噴射時期点火時期、バルブタイミング等を制御する。
また、エンジン制御ユニット100は、エンジン1の運転状態や目標EGR率に応じて、EGRバルブ63を駆動するステッピングモータ640に所定の駆動周波数の駆動電力を与える機能を有する。
ステッピングモータ640は、エンジン制御ユニット100からの指示に応じ、所定の駆動周波数のパルス状の電力を発生する図示しないドライバ回路を介して、駆動用電力を供給される。
エンジン制御ユニット100は、ドライバ回路と協働して、本発明にいうEGR装置のモータ駆動部としての機能を有する。

0027

図2は、実施形態のEGR装置のEGRバルブの構成を示す図である。
EGRバルブ63は、バルブボディ631、バルブシート632、弁体633、バルブステム634、スクリュ部635、リターンスプリング636、ステッピングモータ640等を有して構成されている。

0028

バルブボディ631は、EGRバルブ63の本体部を構成する部材である。
バルブボディ631の内部には、排気が通過する流路が形成されている。
バルブシート632は、バルブボディ631の流路内に設けられ、EGRバルブ63の閉弁時に弁体633の外周縁部と当接し、流路を閉塞する環状の部材である。

0029

弁体633は、円盤状(状)に形成された本体部を有するポペットバルブである。
弁体633は、バルブステム634とともに、外周縁部がバルブシート632と密着した閉弁位置と、バルブシート632から離間して排気を通過させる開弁位置との間で、所定のストロークにわたって移動可能となっている。
バルブステム634は、弁体633の中心部からステッピングモータ640側へ突出した軸状の部分である。
バルブステム634は、バルブボディ631により軸方向に相対変位可能に支持されている。
バルブステム634の弁体633側とは反対側の端部は、排気流路から外側へ突出して配置され、端部近傍にはスクリュ部635が形成されている。
スクリュ部635は、ステッピングモータ640のロータ643の内径側に形成されたナット部と協働して弁体633を開閉方向に駆動するリードスクリュ機構を構成する。
弁体633は、ステータ642に対するロータ643の回転に応じて、バルブステム634及びスクリュ部635の軸方向に沿ってバルブボディ631に対して並進方向に相対変位する。
リターンスプリング636は、弁体633を閉弁方向に付勢する圧縮コイルばねである。
リターンスプリング636は、ステッピングモータ640への通電途絶した場合に、EGRバルブ63を閉塞する機能を有する。

0030

ステッピングモータ640は、ハウジング641、ステータ642、ロータ643、コネクタ644等を有して構成されている。
ハウジング641は、ステータ642、ロータ643等を収容する筐体であって、バルブボディ631におけるスクリュ部635側の端部に取り付けられている。
ステータ642は、ハウジング641の内周面に沿って環状に配置された複数のコイルを有する。
ロータ643は、ステータ642の内径側に挿入される円筒状の部材であって、ベアリングによって、ハウジング641に対してスクリュ部635と同心の回転軸回りに回転可能に支持されている。
ロータ643は、外周面がコイルの内周面と間隔を隔てて対向し、周方向に沿って交互にN極、S極に着磁された磁性体を有する。
ステッピングモータ640は、ステータ642のコイルに所定の駆動周波数の電力を通電することにより、ロータ643が所定の指示ステップ数に相当する角度だけ回転するよう構成されている。
コネクタ644は、ハウジング641の一部から突出して設けられ、ステータ642のコイルに電力を供給する配線が接続される部分である。

0031

以下、実施形態のEGR装置の動作について説明する。
実施形態のEGR装置は、以下説明する駆動周波数マップを用いて、ステッピングモータ640の駆動周波数を可変させる機能を備えている。
図3は、実施形態のEGR装置における駆動周波数マップの一例を示す模式図である。
図4は、実施形態のEGR装置における所定のエンジン回転数時のEGRバルブ開度と駆動周波数との関係を示す図である。

0032

図3に示すように、駆動周波数マップは、現在のEGRバルブ63の開度(ストローク)、及び、エンジン回転数(出力軸回転速度)に応じて、適用すべき駆動周波数fdが読みだされるよう構成されている。
図4は、図3に示す駆動周波数マップから、ある特定のエンジン回転数におけるバルブ開度と駆動周波数との相関切り出したものである。
図4において、横軸はバルブ開度を示し、縦軸は駆動周波数を示している。

0033

実施形態において、駆動周波数マップは、駆動周波数fdがEGRバルブ63の可動部(ロータ643,弁体633等)の振動周波数(固有振動数)、及び、EGRバルブ63の前後差圧の圧力脈動基本波成分の周波数fgを避けるよう設定されている。
EGRバルブ63の振動周波数は、ステッピングモータ640のロータ643等の可動部質量、弁体633に作用する排気の差圧荷重、リターンスプリング636のばね反力に依存する。
弁体633に作用する差圧荷重は、例えばEGRバルブ63を全閉状態から開き始める場合に増大し、その後開度増加に伴って減少する傾向を有する。
このため、全閉近傍の領域においては、ステッピングモータ640のトルクを確保するため、駆動周波数fdは、他の領域に対して低い周波数f0に設定されている。
ここで駆動周波数を、このような低い値(例えば周波数f0)で一定とした場合、EGRバルブ63の駆動速度が遅くなり、EGR制御の応答性が悪化してしまう。
また、駆動周波数を全閉時のEGRバルブ63の振動周波数(例えば全閉時においてはf1)以上で一定とした場合には、駆動周波数と振動周波数とが一致した際にEGRバルブ63の可動部分の共振が発生し、ステッピングモータ640の脱調が生ずることが懸念される。
そこで、本実施形態において、駆動周波数fdは、EGRバルブ63の開度の増加に応じて、EGRバルブ63の振動周波数から所定量以上ずらした範囲内において増加するように設定されている。
例えば、この領域においては、駆動周波数fdは、EGRバルブ63の可動部の振動周波数から所定値だけ下方にオフセットした値とすることができる。

0034

また、弁体633に加振力として作用するEGRバルブ63の前後の差圧脈動の基本波周波数は、エンジン1の回転数Ne(クランクシャフト10の回転速度)と比例して増加する。
駆動周波数マップは、駆動周波数fdが差圧脈動の基本波周波数から所定量以上ずれるよう設定され、駆動周波数fdにはエンジン回転数に応じた上限値flが設定される。
上限値flは、例えば、エンジン1の回転数上昇と比例して増加する構成とすることができる。
以上説明した駆動周波数マップは、例えば、エンジン1の実機を用いた実験や、数値シミュレーション結果等を利用して生成することができる。

0035

図5は、実施形態のEGR装置におけるEGRバルブ駆動時の動作を示すフローチャートである。
以下、ステップ毎に順を追って説明する。
<ステップS01:EGRバルブ駆動要求判断>
エンジン制御ユニット100は、EGR制御においてEGRバルブ63の開度を変化させる駆動要求があるか否か判別する。
駆動要求がある場合はステップS02に進み、その他の場合は一連の処理を終了(リターン)する。

0036

<ステップS02:エンジン回転数取得>
エンジン制御ユニット100は、クランク角センサ11の出力に基づいて、エンジン回転数(クランクシャフト10の回転速度)に関する情報を取得する。
その後、ステップS03に進む。

0037

<ステップS03:EGRバルブ開度取得>
エンジン制御ユニット100は、現在のEGRバルブ63の開度(弁体633等の変位量)に関する情報を取得する。
EGRバルブ63の開度は、全閉状態においてステッピングモータ640のゼロ点学習を行った後、脱調が発生していない場合には、エンジン制御ユニット100から指令されたステップ数(EGR制御における目標開度に読み替えることも可能)に応じて推定することが可能である。
エンジン制御ユニット100は、本発明にいう開度推定部として機能する。
その後、ステップS04に進む。

0038

<ステップS04:排気差圧補正要否判断>
エンジン制御ユニット100は、差圧センサ61aの出力に基づいて、EGRバルブ63の前後差圧の脈動を検出する。
例えば、エンジン1の排気流路長等に気筒間個体差(ばらつき)がある場合には、ばらつきの増大に応じて、差圧脈動により弁体633に作用する加振力の周波数分布が広帯域化する。
エンジン制御ユニット100は、差圧センサ61aが検出した差圧脈動において、周波数分布の広帯域化が認められる場合には、ステップS05に進み、その他の場合はステップS06に進む。

0039

<ステップS05:排気差圧補正>
エンジン制御ユニット100は、ステップS04で検出された差圧脈動において、周波数分布の広帯域化が認められる場合には、EGRバルブ63の共振を防止するマージンを拡大するため、駆動周波数マップにおける上限値flを下方に補正する排気差圧補正を行う。
その後、ステップS06に進む。

0040

<ステップS06:スート堆積補正要否判断>
エンジン制御ユニット100は、過去のエンジン1の運転状態履歴等に基づいて、弁体633等へのスート()の堆積量を推定する。
エンジン制御ユニット100は、本発明にいうスート堆積量推定部としての機能を有する。
推定されたスート堆積量が所定の閾値以上である場合は、ステップS07に進み、その他の場合にはステップS08に進む。

0041

<ステップS07:スート堆積補正>
エンジン制御ユニット100は、ステップS06において求めたスート堆積量の増大に応じて、駆動周波数マップにおける駆動周波数fdを下方に補正するスート体積補正を行う。
その後、ステップS08に進む。

0042

<ステップS08:駆動周波数マップから駆動周波数設定>
エンジン制御ユニット100は、ステップS02で取得したエンジン回転数、及び、ステップS03で取得したEGRバルブ63の開度を用いて、図3等に示す駆動周波数マップ(排気差圧補正、スート堆積補正が行われた場合は補正後のマップ)から駆動周波数fdを設定する。
その後、ステップS09に進む。

0043

<ステップS09:EGRバルブ駆動>
エンジン制御ユニット100は、ステップS08において設定した駆動周波数fdを用いて、ドライバ回路を介してEGRバルブ63のステッピングモータ640に駆動電力を供給し、EGRバルブ63の開度が所定の目標開度となるようにステッピングモータ640を制御する。
その後、一連の処理を終了(リターン)する。

0044

以上説明したように、本実施形態によれば、以下の効果を得ることができる。
(1)エンジン回転数及びEGRバルブ開度の変化に応じて、ステッピングモータ640の駆動周波数fdを変化させることにより、ステッピングモータ640の駆動周波数fdが排気の差圧脈動の周波数fg及びEGRバルブ63の振動周波数と干渉することを防止し、共振を回避してステッピングモータ640の脱調を防止することができる。
また、脱調が生じない範囲内において駆動周波数fdを高くすることが可能であり、EGRバルブ63の駆動を高速化することができる。
(2)推定されたスート堆積量に応じて駆動周波数fdのマップ値を補正することにより、エンジン1の運転に伴う経時変化によってEGRバルブ63にスートが堆積して重量が増加し、EGRバルブ63の可動部の振動周波数が低下した場合であっても、確実にステッピングモータ640の脱調を防止することができる。
(3)差圧センサ61aで検出した差圧脈動の周波数分布に応じて、ステッピングモータ640の駆動周波数fdのマップ値を補正することにより、各気筒の排気流路長のばらつき等に起因して、差圧脈動の周波数分布が変化した場合であっても、加振周波数と一致しないよう駆動周波数fdを補正することによって、上述した効果を確実に得ることができる。

0045

(変形例)
本発明は、以上説明した実施形態に限定されることなく、種々の変形や変更が可能であって、それらも本発明の技術的範囲内である。
(1)実施形態におけるEGR装置及びエンジンの構成は一例であって、適宜変更することが可能である。
例えば、実施形態においてエンジンは直噴ガソリンエンジンであったが、本発明はこれに限らずポート噴射ガソリンエンジンや、ディーゼルエンジン等の他種の内燃機関のEGR装置にも適用することが可能である。
また、エンジンの気筒数やシリンダレイアウト動弁駆動方式過給機の有無なども特に限定されない。
(2)実施形態においては、ステッピングモータの駆動周波数を、EGRバルブの振動周波数及び排気の差圧脈動の周波数よりも低くなるように設定しているが、ステッピングモータの駆動トルク余裕がある場合には、これらの周波数よりも駆動周波数が高くなるように設定してもよい。
(3)実施形態においては、ステッピングモータの駆動周波数が連続的に変化するようになっているが、ステップ状に変化させる構成としてもよい。

0046

1エンジン
10クランクシャフト11クランク角センサ
20シリンダブロック
20R 右側シリンダブロック 20L 左側シリンダブロック
21ノックセンサ
30シリンダヘッド
30R右側シリンダヘッド30L 左側シリンダヘッド
31燃焼室
32点火プラグ33吸気ポート
34排気ポート35吸気バルブ
36排気バルブ37吸気カムシャフト
38排気カムシャフト39インジェクタ
40インテークシステム41インテークダクト
42チャンバ43エアクリーナ
44エアフローメータ45スロットルバルブ
46インテークマニホールド47吸気圧センサ
50エキゾーストシステム51エキゾーストマニホールド
52エキゾーストパイプ53フロント触媒
54リア触媒55サイレンサ
56空燃比センサ57リアO2センサ
60EGR装置61EGR流路
61a差圧センサ
62EGRクーラ63EGRバルブ
100エンジン制御ユニット(ECU)
101アクセルペダルセンサ
631バルブボディ632バルブシート
633弁体634バルブステム
635スクリュ部 636リターンスプリング
640ステッピングモータ641ハウジング
642ステータ643ロータ
644 コネクタ

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ