図面 (/)

技術 不織布を利用した孔拡散膜分離モジュール

出願人 旭化成株式会社
発明者 小野博文齋藤大和真鍋征一
出願日 2019年3月22日 (1年9ヶ月経過) 出願番号 2019-055520
公開日 2020年9月24日 (3ヶ月経過) 公開番号 2020-151689
状態 未査定
技術分野 紙(4) 半透膜を用いた分離
主要キーワード 支持体板 材質硬度 衝突角度α 分離目 寸法効果 板状支持体 大モジュール 粘性流れ
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2020年9月24日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (3)

課題

孔拡散膜分離技術で予測されている性能を具現化する孔拡散膜モジュールにおいて該モジュール装填される多孔性平膜として、不織布を利用する際に該不織布が具備すべき構造特性を示す。

解決手段

孔拡散膜モジュールの一次側流路の壁部を構成する多孔性膜負荷される動圧となるように一次側流路が設計(層流準備域から孔拡散領域へ液体流動する流路内に弁の役割を示す布状物を加えるなど)され該流路の下部より層流準備域と孔拡散領域とが直列的に連結しているモジュール内に多孔性平膜としてセルロースナノファイバーで構成された不織布を採用することを特徴とする孔拡散モジュール。

概要

背景

膜を利用した物質の分離精製技術の現状は、膜間差圧駆動力として膜を介した物質輸送の際に膜内部の孔を利用したふるい機構により物質をその大きさに対応した分離、すなわち膜濾過が大部分であり、そのために膜濾過モジュール装填される膜の孔特性が特に重要視されている。膜濾過では熱や化学薬品に対して不安定で変性しやすい物質を分離精製する固液分離に適する。一方、成分物質の3種以上を連続的に分画分取する技術には膜濾過法は適さない。なぜならば、分画分取には成分物質のうちの一部のみを膜の孔中に捕捉するような機構ではこの物質を連続的に分取することは不可能である。膜濾過法では除去対象物質を孔中に捕捉する機構を基本とする。そのため膜濾過法は連続的に分画分取するのに適さない。膜濾過法以外にタンパク質糖タンパク質などの生理活性物質を分離精製する方法として、遠心分離法、各種クロマトグラフィ吸着法、透析法沈殿溶解法、非対称フィールドフローフラクショネーション法が存在する。解析目的では少量の試料採取で良いのでこれらの技術で目的は達成される。しかし大量の分画・分取処理が必要な場合には沈殿・溶解法以外には対処できない。本発明の膜分離モジュールでは膜の持つふるい機構を利用することなく、それを広い概念包括される空間的な寸法効果(Steric factor)を利用する。非特許文献1でこの効果が理論的予測されている。理論では粒子球状粒子を、孔は円筒状の孔が仮定されている。空間的な寸法効果は粒子を飛翔体とみなし、この飛翔体に乗って膜の孔や膜表面との衝突による粒子の運動によって説明される。この空間的な寸法効果とふるい効果との違いの主な内容を非特許文献1の理論に従ってまとめると以下の2点になる。
1. 膜の孔内に侵入できる粒子の径はふるい効果では孔径と一致するのに対して寸法効果
では孔径の1/5〜1/10である。
2. 膜による粒子除去性能はふるい効果ではピンホールの影響は非常に大きいが寸法効果ではほとんど認められない。
上記2点が確認できれば問題とする膜モジュールおよび膜分離装置が本発明の孔拡散であるかあるいは膜濾過であるかの判定が可能である。

膜濾過法が抱える問題点として、孔の目詰まり現象がある。この現象は膜による分離機構としてふるい機構を利用する限り必然的に起る。目詰まりを防止する膜分離法として従来から透析法が採用されていた。該透析法では透過物質の膜への溶解とそれに引き続く膜の実体部での拡散(この拡散を溶解・拡散機構略称)のみが利用される。溶解・拡散機構では膜内部での拡散係数極端に小さいため連続化した大量処理には利用されない。孔拡散膜分離は膜の内部の孔内の溶媒水溶液では通常は水)中での拡散機構を利用した膜透過が行われる。そのため孔拡散膜分離法では低分子物質膜透過速度は溶解・拡散機構の場合の約1万倍となる(非特許文献2および特許文献1)。本発明は膜濾過法および透析法の上述の欠点を無くする膜分離技術として開発された(特許文献1では流動分別効果が起らない条件下でしかも膜間差圧をにした場合の孔拡散法で現在では定常孔拡散法と呼称されている)。

特許文献1および非特許文献2に紹介されている孔拡散法は定常孔拡散法である。この方法では溶液媒体(通常は水)と溶質とのいずれもが孔中で拡散機構により移動する特徴を持ち、大きさに基づいた溶質分子に原因する孔の目詰まりの問題は完全に解消される。拡散係数の差に基づく物質間の分離速度は溶解・拡散機構の場合の約1万倍となるので分離速度の小さい問題も解消されている。しかし、定常孔拡散法では成分分子濃縮はできない。定常孔拡散では膜間差圧は実質的に零であり、そのために定常孔拡散モジュールでは一次側の流体を流動させるための液送ポンプはモジュールの一次側流体の入口部と出口部との流速をそろえることによって膜濾過が起らない条件を強制的に与える。定常孔拡散では平膜および中空糸膜のいずれもが利用できる。利用される膜が中空糸膜の場合には一次側の液体中空糸の内部に流動させるために常に入口側の圧力は出口側の圧力以上となり定常孔拡散を30cm以上の長さを有する中空糸膜で実施するのは難しい。例えば中空糸膜ではその内径が0.5mmの場合では中空糸長として7cm以下でないと一次側の液体を流すための圧力による濾過での輸送粘性流れによる輸送)が全成分の輸送量の10%を越えると目詰まりが進行し、かつ粒子除去性が極端に低下する。

流動分別を利用した孔拡散平膜分離モジュールで特に重要なのは一次側流路の設計である。下記に流路に関連した言語の定義を示す。
一次側;平膜の表面に接する側、二次側;平膜の裏面に接する側。
一次側液体;一次側の流路を満たす液体、
一次側流路;被処理液体が平膜の表面を流路の壁面として持つ回路(一次側回路)に沿って流れるモジュール内の道筋
一次側回路;一次側液体の流れを定める空間の連続体で、膜分離装置を構成する各種操作部を連結する液体の流れの中でモジュールの一次側流路と直接連結する回路である。
二次側液体、二次側流路、二次側回路;それぞれ一次側で定義された内容を平膜の裏面に接する側で定義される。

定常孔拡散膜分離技術の問題点を解消し、被処理液体中の微粒子の除去あるいは微粒子の濃縮を目的とした孔拡散法として流動分別型の孔拡散法が検討され始めた(特許文献2参照)。この技術では一次側の液体を膜表面に沿って平行に流しつつ、わずかに膜間差圧(静水圧差としての差圧)を負荷し、この膜間差圧に原因して膜を介して膜の裏面側に液溶媒を流出させる。この流出する該液溶媒(液体中に分散した粒子成分は存在せず実質的には溶液中の溶媒のみで構成される。回収された二次側液体と定義される。)を粒子除去液体として利用し、処理後の一次側液体を粒子濃縮液体として利用する。この技術の特徴は一次側および二次側の液体の流れ速度を制御することにより、間接的に膜間差圧を0.1気圧以下になるように制御している点にある。この制御方式の有効性は理論的には、非特許文献1において孔内に流入可能な一次側液体の膜表面からの距離yと粒子の膜表面への衝突角αとが、一次側液体の流れ速度(膜透過速度に等しい)と、二次側の液体の膜透過速度の比によって決定されることより明らかにされていた。この技術の優れている点として、膜間差圧を一次側液体の流速ポンプのポンプ圧で制御するのではなく、二次側液体の流れ速度を制御することにより間接的に膜間差圧を制御している。二次側流体の流れ速度をコック等で簡単に制御できるので、この方式での制御は被処理対象液の液量が多い場合に適する。一方、二次側流路が密閉系を形成(二次側流路内の体積が一定)していることがこの方式が機能するのに必要条件である。そのためコック等での操作と膜間差圧の応答との間に時間的な遅れが生じる。流動分別型孔拡散法のモジュールには膜間差圧以外にも共通した必要条件が与えられている。すなわち、一次側液体を層流にすることと二次側液体の流れ速度の確保である。層流化のためには一次側流路の層流化用の独自の設計と二次側液体の流れ速度の確保のために平膜の裏面において独自の連続する空間部を確保しなくてはならない。

概要

孔拡散膜分離技術で予測されている性能を具現化する孔拡散膜モジュールにおいて該モジュールに装填される多孔性平膜として、不織布を利用する際に該不織布が具備すべき構造特性を示す。孔拡散膜モジュールの一次側流路の壁部を構成する多孔性膜に負荷される動圧が零となるように一次側流路が設計(層流準備域から孔拡散領域へ液体が流動する流路内に弁の役割を示す布状物を加えるなど)され該流路の下部より層流準備域と孔拡散領域とが直列的に連結しているモジュール内に多孔性平膜としてセルロースナノファイバーで構成された不織布を採用することを特徴とする孔拡散モジュール。

目的

定常孔拡散膜分離技術の問題点を解消し、被処理液体中の微粒子の除去あるいは微粒子の濃縮を目的とした

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

孔拡散膜分離技術を具現化した膜モジュールにおいて膜に負荷される圧力の動圧が実質的にであるモジュールであり、該モジュールに充填される平膜として、下記特徴を有するセルロース繊維を含む不織布を用いることを特徴とする孔拡散膜モジュール。(ア)不織布が二層構造を示し、第一の層は平滑度値が10μm以下である平滑性の高い膜面である平膜の表面を持ち、第二の層は平膜の表面よりも平滑性の低い膜面である平膜の裏面を持ち、平膜の表面の平滑度値が平膜の裏面の平滑度値の1/10以下である。(イ)セルロース繊維は、天然セルロースあるいは再生セルロース結晶構造のみを有し、セルロース誘導体としての化学構造あるいは結晶構造を有しない。

請求項2

該平膜の表面を持つ該第一の層は、セルロース微細繊維を含むセルロース繊維で構成され、該セルロース微細繊維の数平均繊維径が0.01μm以上2μm未満であり、該セルロース繊維は平均長さが0.001mm以上2mm未満である短繊維であり、かつ第二の層は、平膜の裏面を構成する繊維が数平均繊維径が2μm以上50μm未満であり平均長さが1mm以上の繊維である支持体である、請求項1に記載の孔拡散モジュール。

請求項3

不織布の平面内の方向では光学的に等方性であり、断面内の方向では最大屈折率の方向が膜面に平行で最小屈折率の方向が膜面に垂直である異方性を持つことを特徴とする、請求項1または2に記載の孔拡散モジュール。

技術分野

0001

本発明のモジュールおよび同モジュールを適用した本発明の膜分離装置は、流動分別効果最大限に生かし、水溶液中に溶解あるいは分散している高分子物質および微生物を含めた微粒子成分を分離・分画・除去・濃縮する膜モジュールに関する。さらに詳しくは該膜モジュールに装填される平膜に関する。

0002

流動分別とは、平滑な膜表面に沿って水溶液を層流状態で流す場合に、水溶液中に存在する粒子成分がその大きさに依存して流れの中心部に向って分布し、その結果、粒子径の大きな粒子ほど流れの中心部に局在化することを意味する。この現象は(a)膜面との衝突による膜からの抗力非特許文献1参照,そこでは膜壁との衝突による立体因子表現されている)と(b)粒子の流体中の回転に伴う揚力の作用の結果生じる層流内部での粒子の流れの中心部に向かう軸集中効果と、粒子の拡散に伴う粒子密度分布の均一化の効果(非特許文献1ではこれらの効果をまとめて流動分別因子と表現されている)で説明される。

0003

孔拡散平膜分離モジュールとは孔拡散膜分離を起こさせるための下記の必要条件満足している流体の流れ回路を有する膜分離モジュールであり、装填される平膜としては中空糸膜チューブラ状の膜ではない平面形状を持つ多孔性の平膜を意味する。多孔性の平膜とは平均孔径が10nm以上、空孔率30%以上でエタノール中でのバブルポイントが0.1気圧以上で、透過型電子顕微鏡により孔の存在が確認できる膜を意味する。平均孔径は水の濾過速度法での評価値を意味する。モジュールが孔拡散を実現するため一次側の流路の形状の必要条件とは以下の内容である。モジュール内の一次側流路の形状として一次側流路内の液体(これを以降一次側液体と略称)の流れが層状となるように流路を形成する壁面が平滑で、壁面の一部をなす平膜の膜表面の凹凸が10μm以下である。流路が描く流線は滑らかな直線あるいは緩やかな曲線である。一次側流路は液体の入口、次いで層流準備域と孔拡散領域と連なる。層流準備域と孔拡散領域との長さ(L)は50mm以上で1500mm以下で該流路の厚さ(D)は4mm以下1mm以上である。

0004

孔拡散平膜分離モジュールに装填できる平膜については以下の必要条件を満足していなくてはならないことが明らかにされている。すなわち該平膜の膜表面(一次側流路を形成する膜面を膜表面と定義する)の平滑度値は10μm以下で、モジュール内の平膜には10μm以上の径のピンホールは存在しないことである。膜表面の平滑性の要求は膜表面を流れる一次側液体の膜表面での流れが層流であることを確実にするためである。ピンホールの存在の否定は、膜表面に衝突する粒子成分の衝突角乱れを防止するためである。またエタノール中でのバブルポイントの要求は孔拡散膜分離処理時に負荷される膜間差圧最大値0.1気圧においても平膜の孔構造破壊されないことを確実にする。本明細書で、平滑度値とは以下のように定義される。すなわち、平面を拡大すると平面を構成する物質の特性を反映して微細な凹凸が観察される。この凹凸の振幅の大きさの1平方センチメートル当たり平均値を平滑度値と定議する。上記振幅は、Dektak触針表面形状測定器で1平方センチメートル中の任意の3箇所について、測長距離1cmとして測定した際の凹凸の振幅の最大値と定義する。

0005

孔拡散平膜モジュールを適用した膜分離装置では下記の運転条件が可能なモジュールの環境であることが必要である。すなわちモジュール内の平膜の全域にわたって膜間差圧は運転時には常に0.2気圧以内である。この条件は運転開始時あるいは停止時にも満足させなくてはならない。通常の運転では膜間差圧は0.1気圧以下であり、膜表面での一次側液体のひずみ速度が10/秒以上となり、同時に層流となる。さらにこれらの運転条件が同時に必要条件を満足しているのを確認するには該平膜を通過する一次側液体の速度と該一次側液体の流れ速度との比が0.2以下であることも必要である。すなわち、該モジュール内に装填される平膜についてもこれらのモジュール環境に対応することが必要である。

0006

膜分離モジュールおよび膜分離装置では、通常の0.1気圧以下の低い静水圧位置水頭差)としての膜間差圧が膜の全面にほぼ均等に負荷され、かつ膜処理対象液(一次側液体を構成)が層流で該膜表面上に流れる。この流れによって生じる粒子の回転運動の働く揚力はその原因である回転運動と粘度とが粒子径依存性を持つ。そのため流れの中心に向かった粒子径に依存する揚力の反映である流動分別効果と粒子の持つブラウン運動に基づく拡散とのバランスにより粒子をその大きさに対応する膜表面からの距離に局在化させる。この局在化に注目して膜を利用して局在化した粒子を順次回収することができれば、膜による粒子分画が可能となる。

背景技術

0007

膜を利用した物質の分離精製技術の現状は、膜間差圧を駆動力として膜を介した物質輸送の際に膜内部の孔を利用したふるい機構により物質をその大きさに対応した分離、すなわち膜濾過が大部分であり、そのために膜濾過モジュールに装填される膜の孔特性が特に重要視されている。膜濾過では熱や化学薬品に対して不安定で変性しやすい物質を分離精製する固液分離に適する。一方、成分物質の3種以上を連続的に分画分取する技術には膜濾過法は適さない。なぜならば、分画分取には成分物質のうちの一部のみを膜の孔中に捕捉するような機構ではこの物質を連続的に分取することは不可能である。膜濾過法では除去対象物質を孔中に捕捉する機構を基本とする。そのため膜濾過法は連続的に分画分取するのに適さない。膜濾過法以外にタンパク質糖タンパク質などの生理活性物質を分離精製する方法として、遠心分離法、各種クロマトグラフィ吸着法、透析法沈殿溶解法、非対称フィールドフローフラクショネーション法が存在する。解析目的では少量の試料採取で良いのでこれらの技術で目的は達成される。しかし大量の分画・分取処理が必要な場合には沈殿・溶解法以外には対処できない。本発明の膜分離モジュールでは膜の持つふるい機構を利用することなく、それを広い概念包括される空間的な寸法効果(Steric factor)を利用する。非特許文献1でこの効果が理論的予測されている。理論では粒子は球状粒子を、孔は円筒状の孔が仮定されている。空間的な寸法効果は粒子を飛翔体とみなし、この飛翔体に乗って膜の孔や膜表面との衝突による粒子の運動によって説明される。この空間的な寸法効果とふるい効果との違いの主な内容を非特許文献1の理論に従ってまとめると以下の2点になる。
1. 膜の孔内に侵入できる粒子の径はふるい効果では孔径と一致するのに対して寸法効果
では孔径の1/5〜1/10である。
2. 膜による粒子除去性能はふるい効果ではピンホールの影響は非常に大きいが寸法効果ではほとんど認められない。
上記2点が確認できれば問題とする膜モジュールおよび膜分離装置が本発明の孔拡散であるかあるいは膜濾過であるかの判定が可能である。

0008

膜濾過法が抱える問題点として、孔の目詰まり現象がある。この現象は膜による分離機構としてふるい機構を利用する限り必然的に起る。目詰まりを防止する膜分離法として従来から透析法が採用されていた。該透析法では透過物質の膜への溶解とそれに引き続く膜の実体部での拡散(この拡散を溶解・拡散機構と略称)のみが利用される。溶解・拡散機構では膜内部での拡散係数極端に小さいため連続化した大量処理には利用されない。孔拡散膜分離は膜の内部の孔内の溶媒(水溶液では通常は水)中での拡散機構を利用した膜透過が行われる。そのため孔拡散膜分離法では低分子物質膜透過速度は溶解・拡散機構の場合の約1万倍となる(非特許文献2および特許文献1)。本発明は膜濾過法および透析法の上述の欠点を無くする膜分離技術として開発された(特許文献1では流動分別効果が起らない条件下でしかも膜間差圧をにした場合の孔拡散法で現在では定常孔拡散法と呼称されている)。

0009

特許文献1および非特許文献2に紹介されている孔拡散法は定常孔拡散法である。この方法では溶液媒体(通常は水)と溶質とのいずれもが孔中で拡散機構により移動する特徴を持ち、大きさに基づいた溶質分子に原因する孔の目詰まりの問題は完全に解消される。拡散係数の差に基づく物質間の分離速度は溶解・拡散機構の場合の約1万倍となるので分離速度の小さい問題も解消されている。しかし、定常孔拡散法では成分分子の濃縮はできない。定常孔拡散では膜間差圧は実質的に零であり、そのために定常孔拡散モジュールでは一次側の流体を流動させるための液送ポンプはモジュールの一次側流体の入口部と出口部との流速をそろえることによって膜濾過が起らない条件を強制的に与える。定常孔拡散では平膜および中空糸膜のいずれもが利用できる。利用される膜が中空糸膜の場合には一次側の液体を中空糸の内部に流動させるために常に入口側の圧力は出口側の圧力以上となり定常孔拡散を30cm以上の長さを有する中空糸膜で実施するのは難しい。例えば中空糸膜ではその内径が0.5mmの場合では中空糸長として7cm以下でないと一次側の液体を流すための圧力による濾過での輸送粘性流れによる輸送)が全成分の輸送量の10%を越えると目詰まりが進行し、かつ粒子除去性が極端に低下する。

0010

流動分別を利用した孔拡散平膜分離モジュールで特に重要なのは一次側流路の設計である。下記に流路に関連した言語の定義を示す。
一次側;平膜の表面に接する側、二次側;平膜の裏面に接する側。
一次側液体;一次側の流路を満たす液体、
一次側流路;被処理液体が平膜の表面を流路の壁面として持つ回路(一次側回路)に沿って流れるモジュール内の道筋
一次側回路;一次側液体の流れを定める空間の連続体で、膜分離装置を構成する各種操作部を連結する液体の流れの中でモジュールの一次側流路と直接連結する回路である。
二次側液体、二次側流路、二次側回路;それぞれ一次側で定義された内容を平膜の裏面に接する側で定義される。

0011

定常孔拡散膜分離技術の問題点を解消し、被処理液体中の微粒子の除去あるいは微粒子の濃縮を目的とした孔拡散法として流動分別型の孔拡散法が検討され始めた(特許文献2参照)。この技術では一次側の液体を膜表面に沿って平行に流しつつ、わずかに膜間差圧(静水圧差としての差圧)を負荷し、この膜間差圧に原因して膜を介して膜の裏面側に液溶媒を流出させる。この流出する該液溶媒(液体中に分散した粒子成分は存在せず実質的には溶液中の溶媒のみで構成される。回収された二次側液体と定義される。)を粒子除去液体として利用し、処理後の一次側液体を粒子濃縮液体として利用する。この技術の特徴は一次側および二次側の液体の流れ速度を制御することにより、間接的に膜間差圧を0.1気圧以下になるように制御している点にある。この制御方式の有効性は理論的には、非特許文献1において孔内に流入可能な一次側液体の膜表面からの距離yと粒子の膜表面への衝突角αとが、一次側液体の流れ速度(膜透過速度に等しい)と、二次側の液体の膜透過速度の比によって決定されることより明らかにされていた。この技術の優れている点として、膜間差圧を一次側液体の流速ポンプのポンプ圧で制御するのではなく、二次側液体の流れ速度を制御することにより間接的に膜間差圧を制御している。二次側流体の流れ速度をコック等で簡単に制御できるので、この方式での制御は被処理対象液の液量が多い場合に適する。一方、二次側流路が密閉系を形成(二次側流路内の体積が一定)していることがこの方式が機能するのに必要条件である。そのためコック等での操作と膜間差圧の応答との間に時間的な遅れが生じる。流動分別型孔拡散法のモジュールには膜間差圧以外にも共通した必要条件が与えられている。すなわち、一次側液体を層流にすることと二次側液体の流れ速度の確保である。層流化のためには一次側流路の層流化用の独自の設計と二次側液体の流れ速度の確保のために平膜の裏面において独自の連続する空間部を確保しなくてはならない。

0012

特開2006−055780号公報
特開2017−922号公報

先行技術

0013

K.Kamide, S.Manabe, “Mechanism of Permselectivity of Porous Polymeric Membranes in Ultrafiltration Process, Polymer J., 13(No.5), pp459-479(1981)
岡留美子、吉田雅子、吉知珠、山村知子、真征一、福岡子大学人間環境学部紀要、29巻、13頁〜20頁、1998年。

発明が解決しようとする課題

0014

流動分別効果が十分に生かされた孔拡散膜分離モジュールでは以下の項が理論的に予測されている(非特許文献1で開示されている)。
(1)平膜の平均孔径の1/5(ひずみ速度10/秒の場合)〜1/10(ひずみ速度100/秒の場合)以上の径を持つ粒子は流動分別効果のために膜の孔を通過できない。粒子対除去係数RVの表示では膜表面における一次側液体のひずみ速度が10/秒の場合にはLRVは2〜3、ひずみ速度が100/秒の場合にはLRVは3〜4となる。
(2) 粒子の膜表面での衝突角度αは一次側液体の平均の流れ速度と膜を介した一次側から二次側への平均の流れ速度(いわゆる膜透過速度)の比と膜の空孔率とによってほぼ一義的に決定される平均値(孔径分布の形に依存しない平均値)の性格を持つ。αを大きくすると(例えば70度以上)粒子径が孔径の1/2以上でも粒子は孔を通過できない。

0015

有効膜面積0.2平方メートルおよび0.0057平方メートルの孔拡散膜モジュールに再生セルロース多孔膜の2種(平均孔径が500nmおよび80nmの二種)のいずれかを装填し、膜間差圧を0.05気圧で膜表面における一次側液体のひずみ速度を10/秒とした場合に以下に示す実験結果が得られた。処理対象液レトロウイルスを含む培養液であった。
(a) 細菌に対する除去性能対数除去性能LRVで表示)は平均孔径500nmの膜では膜面積0.2平方メートルのモジュール(大モジュールと略称)では常にLRV≧6であったが、0.0057平方メートルのモジュール(小モジュール)ではLRV<5のモジュールも存在した。すなわち細菌の除去性能については上述の理論的予測に近い。
(b)ウイルスに対する除去性能(ウイルス種としてはレトロウイルスで径は70〜80nm)、LRVは平均孔径500nmの平膜を装填した場合には2.0(大モジュール)〜0.5(小モジュール)、平均孔径80nmの平膜では4以上(大モジュール)〜2.5(小モジュール)であった。
(a)と(b)との実験結果は理論的予測の(1)と(2)と定性的には一致した結果で
あった。しかし定量的には理論からの乖離は大きく孔拡散膜分離技術の実用化(実用化のためには、この技術の再現性および粒子の分離機構の妥当性について、理論的および経験的に確認できていることが前提となる)には以下の具体的課題を残す。

0016

本発明で解決すべき平膜の課題としては円筒状多孔膜に関して、上述の検討より以下のように整理できる。すなわち、(イ)前記(a)および(b)に示したように、実測値からの乖離の原因を明らかにし、その解消法を示す。(ロ)孔拡散膜モジュールとして予測される機能を実現させる一次側流路の設計の基本を明確にすること、(ハ)平膜の裏面側の構造についての適正な設計を行うこと、(ニ)二次側流路の構造の必要条件の基本を示すこと、(ホ)平膜の孔構造が円筒状孔と著しく乖離している場合には、さらに下記の(ヘ)〜(オ)の課題が加わる。

0017

平膜として不織布を利用出来れば多孔膜の製法とは全く異なる方法で孔拡散用の膜が入手され、また膜の構造においても独特構造体を利用できる。ただし、以下の課題を解決しなくてはならない。すなわち、
(ヘ)繊維より構成される不織布では不織布表面(すなわち膜表面)では微細な繊維状物集合体で構成される。このようなフィルターは従来の分類ではデプス型フィルターに分類される。デプス型フィルターでは寸法効果が期待できるかは定かではない。円筒状孔で理論的に予測される除去性能が不織布を膜として利用した場合にも表れるか不明である。
(ト)滑らかな表面であれば流動分別効果が現われるのか。
(チ)モジュール内の一次流路としての閉鎖回路が可能か。
(リ)乾燥状態の平膜をモジュールに装着後、水溶液に該膜が接触しても膜の平面性が保持できるか。
(ヌ)膜の力学的な変形で膜表面の孔径は変化しないか。
(ル)膜の裏面側での二次側流路用として連続した空間部が確保できるか(膜を透過した液体が回収側に流出できるか)。
(ヲ)膜モジュールとしての完全性試験が用意できるか。

課題を解決するための手段

0018

本発明では従来の膜濾過技術では想像できない作用効果である流動分別効果を強調した膜分離技術である孔拡散膜分離技術の実用化例となる膜分離モジュールを提供するのに適する平膜を提供する。

0019

本発明の膜モジュールの最大の特徴は、孔拡散膜分離技術を具現化したモジュールを採用している点にある。該技術を具現化しているとは、該モジュールの一次側流路の設計において、濾過による膜透過現象の寄与を極小化していることを意味する。同一の孔特性を持つ平膜を有効膜面積を異にする二種の膜モジュールに装填し粒子の除去性能を検討した。その結果、大きな膜面積を持つモジュールの方が、小さなモジュールに比べて粒子除去性能が大きくなるといる膜濾過モジュールの除去性能とは逆の現象が起きる。この逆の現象が起る理由が平膜に負荷される圧力の内の動圧力に原因することが明らかとなった。すなわち平膜に負荷される圧力として、静水圧と動圧力との二種類があり、動圧力の寄与が大きくなるほど粒子の除去性能が小さくなる現象を見い出し、本発明に到った。一次側流路の約半分を構成する該平膜のすべての箇所で動圧を実質的に零にするように(すなわち計算上であれば零となるような設計で)一次側流路が設計されていることが本発明の最大の特徴である。一態様において、膜表面で動圧が発生している箇所の膜面積は孔拡散膜分離が行われている膜表面の膜面積の一万分の一以下である。

0020

一態様において、平膜表面に負荷される動圧を零にするには、一次側液体の流線が平膜表面に沿って平行でなくてはならない。特にモジュールへの液体の流入口の方向が膜平面に可能な限り平行に設定される必要がある。一次側液体の流れが層流であるのが前提であり、その層流の流線の方向が膜表面に平行であれば動圧は必然的に零となる。動圧が平膜表面のすべての点で零となると、微粒子の除去性能(LRVで表示)は粒子径が該微粒子の十倍の径の粒子での膜濾過の場合のLRVに近くなる。動圧が膜表面のいずれの箇所でも実質的に零にする具体策の一つとして流体を膜状物に垂直に衝突させてその運動エネルギーを低下させる方法がある。例えば一次側液体の流線の方向が膜表面で変化する場所があれば、その箇所には空孔率がほぼ零であるフィルムのように柔軟な膜状物との衝突で流れ方向の速度を零にする(第1図にはフィルムに近い不織布(図中9)が例示されている)。

0021

本発明の第2の特徴は、セルロース繊維を含む不織布を平膜として用いる点にある。該不織布が二層構造を示し、その一層(第一の層)は平滑性の高い膜表面で(その凹凸で平滑性を表現した平滑度値にて10μm以下)、他の一層(第二の層)は膜裏面を構成する層で平滑度値は該膜表面の10倍以上である。より好ましくは、その一層(第一の層)は平滑性の高い膜表面で、その凹凸で平滑性を表現した平滑度値が5μm以下、さらに好ましくは平滑度値が1μm以下であることが好ましい。平滑度値が10μm以下であれば液体を流した際に、膜表面でも液体の層流状態を維持し、孔拡散の機能が発現される。平滑度値が5μm以下では液体の層流状態をより維持し、平滑度値が1μm以下ではさらに液体の層流状態を維持することができるため、孔拡散機能を発現するためには好ましい。一態様においては、膜表面が一次側流路に接する。膜モジュール内の一次側の流路は、流路に沿って層流準備域、続いて孔拡散領域とが直列的に直接連結している。一次側の流路の一部は不織布平膜の表面で構成されている。該平膜表面は孔拡散領域にのみ存在し層流準備域では物質の膜透過は起らない。膜モジュール内に流入した一次側液体を孔拡散領域へと層流状態で導くのみ層流準備域は重要な役割を持つ。すなわち層流準備域の入口部では液体の流れの断面形状は通常は円形状あるいは楕円形状であるが該準備域の出口部である本発明のモジュールの孔拡散領域では、断面形状は帯状である。層流準備域では該断面形状の変化を行う役割を持つ。層流準備域が該モジュールの入口部と同一の液面レベルあるいはそれ以下の液面レベルを持つように該モジュールを設置すれば、一次側液体の流れの断面形状の変化を重力の影響で同一液面レベルで行うことが可能となる。また該層流準備域の体積は該モジュールの分離と無関係な空間を与えることになるので小さいほど望ましい。

0022

セルロース繊維の化学構造天然セルロースあるいは再生セルロースであり、セルロース誘導体としての混在は10重量%以下である。この化学構造の特質は水溶液からのタンパク分子吸着性の低下と結晶化度の増加をもたらす。両者のいずれもが本発明中の不織布による物質分離特性としてタンパク質の水溶液への適性を示す。

0023

本発明の第3の特徴は、特定の態様において、二層構造の不織布シートである平膜の表面を構成するセルロース繊維がセルロース微細繊維を含んでおり、該セルロース微細繊維の数平均繊維径が0.01μm以上2μm未満であり、好ましくは0.02μm以上1μm以下、より好ましくは0.02μm以上0.6μm以下であることである。セルロース繊維は、平均長さが0.001mm以上2mm未満である短繊維である。平膜の裏面を構成する繊維は数平均繊維径が2μm以上50μm未満であり平均長さが1mm以上の繊維である。

0024

本発明で利用される二層構造の不織布シートにおいて該不織布の膜表面の平面内の方向では光学的に等方性であり、膜表面における不織布の断面内の方向では異方性を持つ。すなわち、最大の屈折率の方向が膜表面に平行方向にあり、最小屈折率の方向が膜表面に垂直方向にある。この異方性のため、該不織布が水分を吸収する際に膜厚方向膨潤し、膜平面方向での寸法変化は小さい。最大屈折率及び最小屈折率は、偏光顕微鏡を用いた透過型直交ニコルによる観察にて判別できる。サンプルの膜表面および膜断面に対して、偏光板を0°、45°、90°と回転させながら観察すると、膜表面では視野内の変化は見られない。一方、膜断面においては偏光板の回転により視野内に変化が現れる。さらに、視野内に光が確認できた際、偏光顕微鏡のステージ下げると屈折率の高い方へ、ステージを上げると屈折率の低い方へ移動する性質から推定することが可能である。

発明の効果

0025

本発明のモジュールおよび装置を用いると水溶液中のウイルスや細菌等の感染性微生物を除去して生理活性を維持した状態で高分子物質を回収することが可能となる。除去対象の微生物としてウイルス、マイコプラズマ、細菌等がある。また細胞や複数の細胞の会合体の除去も可能である。モジュールに装填する不織布の平均孔径を除去対象に応じて決定することにより特定の感染性微生物のみを除去することが可能となる。一態様において、除去の際の平均孔径は対象の微生物の大きさの約5倍に設定される。この微生物の除去は膜濾過法の場合と異なり、膜の孔により微生物を捕捉する機構(この機構は膜濾過法の場合に当てはまる)ではない。孔拡散法では除去対象粒子は膜の孔を目詰まりさせることなく除去される。すなわち、膜の目詰まりをすることなく粒子を除去する分離技術である。除去対象粒子は濃縮対象粒子でもある。本発明法は膜濾過法とは異なる文字通りの膜分離法を与え、孔拡散法の原理上の特徴を具現化している。膜の孔の目詰まりがないので処理容量は膜濾過法と比較して一態様では2倍以上となる。

0026

本発明の膜分離モジュールを用いることで水溶液中の感染性微生物の除去のみに限らず該溶液中の各種成分の分離・濃縮および分画も可能である。分離対象溶液として生理活性物質を多種類含む生物原料(例えば、血液やリンパ液などの体液細胞内液細胞外液プラセンタ等)より感染性微生物のみを除去した生の状態で医薬品原料化粧品原料食品原料等が作製できる。

0027

再生医療製品の製造における安全対策の基本技術として本モジュールは感染性微生物除去用として将来適用されるであろう。細胞の分離/精製用さらにエクソソームの精製/濃縮/除去用に利用可能であり、分離対象は広い範囲の粒子径にわたる。分離に要する圧力が0.1気圧以下であり省エネルギー下での分離である。そのため従来の抽出分離吸着分離、クロマトグラフィ等の親和力に基づく分離技術に代替可能な技術ともいえる。例えば親和力に基づく分離を取り入れた例として膜素材と粒子との親和力を利用した孔拡散分離あるいは分離目標物質と親和力の大きな物質を添加することにより該目標物質大粒子化することで孔拡散膜分離法の分離対象粒子にすることが可能である。例えば、水溶液に溶解しているヒ素化合物水酸化第二鉄コロイド粒子を添加することでヒ素化合物を大粒子化できる。この粒子は孔拡散膜分離法で除去可能である。

図面の簡単な説明

0028

2枚の不織布を装填した孔拡散膜モジュールの下部の断面図:層流準備域および孔拡散域の存在する部分を示す。
孔拡散膜モジュールの特徴を生かす装置の例:A;一次側液体の平膜表面でのひずみ速度を送液ポンプで制御する方式の装置、B;ひずみ速度を静水圧差で制御する方式の装置。

0029

以下、本発明を実施するための不織布の形態(以下「本実施形態」という)について詳細に説明する。尚、本発明は、以下の実施形態や実施例に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
本発明のモジュールに装填される平膜は二層構造の不織布シートであり、一態様では、膜表面にセルロース微細繊維を含む層(本開示で、「セルロース微細繊維層」ともいう。)と、その下部の多孔質支持体層(本開示で、「支持体」ともいう。)との二層からなるシートである。

0030

一態様において、セルロース繊維は、セルロース微細繊維を含んでいる。所望により、セルロース微細繊維層は、セルロース以外の有機ポリマーからなる微細繊維成分を含んでよい。最良の形態としては膜表面はセルロースの微細繊維で構成される。セルロースの化学構造は天然セルロースあるいは再生セルロースであり、セルロース誘導体の混在は10重量%以下である。セルロース誘導体の混在率は、セルロース微細繊維層のIR測定由来のO−H、C−O伸縮振動ピーク比で確認される。この化学構造の特質は水溶液からのタンパク分子の吸着性の低下と結晶化度の増加をもたらす。両者のいずれもが本発明中の不織布による物質分離特性としてタンパク質の水溶液への適性を示す。

0031

天然セルロースとしては、グラファイトで単色化したx線、CuKα線波長λ=0.15418nm)を用いた広角X線回折パターンにおいて、回折角2θの範囲を0°〜30°とするX線回折パターンが、10°≦2θ<19°付近と19°≦2θ≦26°付近の2箇所の位置にピークを有し、広葉樹又は針葉樹から得られる木材パルプ、精製リンターあるいは各種植物種系繊維、バガスケナフ、リンター等)からの精製パルプ等、針葉樹パルプ広葉樹パルプ等のいわゆる木材パルプと非木材パルプなども使用できる。非木材パルプとしては、コットンリンターパルプを含むコットン由来パルプ、麻由来パルプ、バガス由来パルプ、ケナフ由来パルプ、竹由来パルプ、ワラ由来パルプなども使用できる。コットン由来パルプ、麻由来パルプ、バガス由来パルプ、ケナフ由来パルプ、竹由来パルプ、ワラ由来パルプは各々、コットンリントコットンリンター、麻系のアバカ(例えば、エクアドル産又はフィリピン産のものが多い)、ザイサルや、バガス、ケナフ、竹、ワラ等の原料を蒸解処理による脱リグニン等の精製工程や漂白工程を経て得られる精製パルプを意味する。この他、海藻由来のセルロースやホヤセルロース精製物も使用できる。さらに、セルロース生産菌バクテリア)の作るバクテリアセルロース(BC)のような微細繊維の集合体が挙げられる。

0032

また、再生セルロースとは、天然セルロースを溶解又は結晶膨潤(マーセル化)処理し再生して得られる物質であって、グラファイトで単色化したx線CuKα線(λ=0.15418nm)を用いた広角X線回折パターンにおいて、2θの範囲を0°〜30°とするX線回折パターンが、10°≦2θ<19°に1つのピークと、19°≦2θ≦30°に2つのピークとを有する。例えばレーヨンキュプラテンセル等の再生セルロース繊維のことを意味する。これらの中でも微細化のし易さの観点から、繊維軸方向への分子配向性の高いキュプラ又はテンセルを原料として微細化した繊維を用いることが好ましい。さらに、再生セルロース繊維のカット糸やセルロース誘導体繊維のカット糸も使用できる。

0033

一態様において、二層構造の不織布シートのうち、平膜の表面を構成する繊維はセルロース微細繊維を含んでおり、該セルロース微細繊維の数平均繊維径が0.01μm以上2μm未満であり、好ましくは0.02μm以上1μm以下、より好ましくは0.02μmm以上0.6μm以下である。一態様において、セルロース繊維は、平均長さが0.001mm以上2mm未満である短繊維である。一態様において、平膜の裏面を構成する繊維は数平均繊維径が2μm以上50μm未満であり繊維の平均長さが1mm以上の繊維からなり、シートを形成している。

0034

ここで、数平均繊維径について説明する。数平均繊維径は、多孔質シート表面に関して、無作為に3箇所、走査型電子顕微鏡(SEM)による観察を10,000倍相当の倍率で行うことで測定される値である。具体的には、得られたSEM画像に対し、縦方向とこれに直交する横方向とにラインを1本ずつ引き、ラインに交差した繊維の繊維径個数を実測する。そして、一つの画像につき縦横系列測定結果を用いて数平均繊維径を算出する。さらに抽出した他の2つのSEM画像についても同様に数平均繊維径を算出し、合計3画像分の結果を平均化し、対象とするシートの数平均繊維径とする。但し、得られた数平均繊維径が100nm未満の場合、50,000倍の倍率で無作為に3箇所観察を行い、前記と同様の手法を用いてより正確な数平均繊維径を算出し、この値を採用する。

0035

セルロース微細繊維の数平均繊維径が0.01μm以上2μm未満であることが好ましい理由としては、セルロース微細繊維が形成する厚み方向の平均貫通孔径表面凹凸性均質となる他、セルロース微細繊維層の比表面積が増大することで膜中を媒体が透過するための経路が増え、膜としての孔径制御の精度が上がり、かつ媒体の通過量向上が見込める。
また、セルロース微細繊維層中には、平膜の膜表面の凹凸が10μm以下であれば繊維径が1.5μmより大きく15μm以下のセルロース繊維が意図的に混抄されてもよく、また、セルロース原料機械的エネルギーを与えることで微細化したセルロース微細繊維中に、最大繊維径として1.5μmより大きく15μm以下のセルロース繊維が残存していてもよい。繊維径が1.5μmより大きく15μm以下のセルロース繊維の含有率は、0%以上40%以下であることが好ましく、20%以下がより好ましい。
繊維径が1.5μmより大きく15μm以下のセルロース繊維を含有することで、セルロース繊維と数平均繊維径が0.01μm以上2.0μm未満のセルロース微細繊維同士が絡み合うため、支持体上にセルロース微細繊維単独でセルロース微細繊維層を形成させた時よりも歩留まりを高めることができ、さらにはセルロース微細繊維層としての引張強度を高めることができるため好ましい。
最大繊維径を小さくする方法に制限はないが、後述するフィブリル化処理又は微細化処理の処理時間や回数を増やす手段を取ることができる。

0036

尚、次の(1)〜(5)の手順により算出される面積比率をもって、セルロース微細繊維中に存在する、繊維径が1.5μmより大きく15μm以下のセルロース繊維の含有率とする。
(1)目付10g/m2、20cmの繊維シートを、3t/30cm、速度2m/分でカレンダー処理型式:H2TEM300、由利ロール株式会社社製)を行う。
(2)光学顕微鏡観察:繊維シート中の任意の9点について、100倍での光学顕微鏡観察を行う。
(3)太い繊維量評価:9点の100倍光学顕微鏡観察で得られた画像それぞれに、実寸法で2mm角枠線を描く。
(4)枠線内に確認される繊維径1.5μmより大きく15μm以下のセルロース繊維の面積を、画像解析ソフト(imageJ)を使用し算出する。
(5)当該面積/4mm2を計算する。

0037

セルロース微細繊維層中のセルロース微細繊維の含有量は、特に限定されないが、50重量%以上であり、好ましくは60重量%、より好ましくは70重量%以上である。セルロース微細繊維を50重量%以上含むことで、セルロース微細繊維同士の交絡点数が多くなり、厚み方向の貫通平均孔径の制御精度やセルロース微細繊維層としての引張強度が高まり好ましい。また、セルロース微細繊維には、その高い比表面積上に無数水酸基があるため、他の有機樹脂材料と比して化学修飾反応による表面改質機能化が容易である。

0038

一態様において、二層構造の不織布は、セルロース微細繊維を支持体上にシート状に加工して得ることができる。セルロース微細繊維層の目付は、好ましくは1.0g/m2以上20g/m2以下であり、より好ましくは4g/m2以上15g/m2以下である。ここで、目付の算出法について説明する。薄膜セルロース微細繊維積層シートから10.0cm×10.0cmの正方形片を切り取り、23℃、50%RHの環境下で24時間静置し、その重量W(g)を測定する。次に面接触型膜厚計、例えばMitutoyo製の膜厚計(Model ID−C112XB)等を用い、種々な位置について9点測定し、その測定値の平均値を膜厚T(μm)とする。これを基に以下の式:
W0=100×W
を用いて膜の目付W0(g/m2)を算出することができる。

0039

セルロース微細繊維層には、セルロース微細繊維成分の他に、セルロース以外の有機ポリマーからなる微細繊維成分が含まれてもよい。セルロース以外の有機ポリマーが含まれることで、セルロース微細繊維スラリーを用いて抄紙法、又は塗工法によりシート形成をする際、乾燥時に繊維シートの収縮を抑制し、繊維シート中の空孔や孔径を保持することが可能となる。

0040

セルロース微細繊維層中に含まれるセルロース以外の有機ポリマーからなる微細繊維成分の含有量は、好ましくは50重量%未満、より好ましくは40重量%未満、さらに好ましくは30重量%未満である。有機ポリマーとしては微細繊維を製造し得る有機ポリマーであればよく、例えば、芳香族系又は脂肪族系のポリエステルナイロンポリアクリロニトリルセルロースアセテートポリウレタンポリエチレンポリプロピレンポリケトン芳香族系ポリアミドポリイミド羊毛等のセルロース以外の天然有機ポリマーを挙げることができる。有機ポリマーからなる微細繊維は、有機繊維叩解高圧ホモジナイザー等による微細化処理により高度にフィブリル化又は微細化させた微細繊維、各種ポリマーを原料としてエレクトロスピニング法によって得られる微細繊維、各種ポリマーを原料としてメルトブロウン法によって得られる微細繊維等を挙げることができるが、これらに限定されない。これらの中でも、特にポリアクリロニトリル微細繊維や全芳香族ポリアミドであるアラミド繊維を高圧ホモジナイザーにより微細化したアラミド微細繊維は、微細化しやすいうえ、高耐熱性、高い化学的安定性を有するため好ましい。これら有機ポリマーの最大繊維径は、15μm以下であることが好ましい。最大繊維径が15μm以下であるとセルロース微細繊維層の厚みを薄くすることができ、孔径等の均一性が確保し易くなるため好ましい。

0041

二層構造の不織布のフラジール通気度は、好ましくは10cc/cm2・s以下である。フラジール通気度が10cc/cm2・sより大きくなると、支持体上のセルロース微細繊維の量が不足し、セルロース微細繊維層を形成できていないこと、又は欠点やピンホールが無数に発生してしまっている状態を示唆するものとなるため好ましくない。

0042

二層構造の不織布の透気抵抗度は、ガーレー式透気抵抗度計で、0.3s/100ml以上であることが好ましい。透気抵抗度がガーレー式透気抵抗度計で0.3s/100ml以上であることは、後述する空孔率の高い支持体上にセルロース微細繊維積層が形成されていること、さらにはセルロース微細繊維層に欠点やピンホールがないことを意味するため、好ましい。透気抵抗度がガーレー式透気抵抗度計で0.3s/100ml未満となると、支持体上のセルロース微細繊維の量が不足し、セルロース微細繊維層を形成できていないこと、又は欠点やピンホールが無数に発生してしまっている状態を示唆するものとなるため好ましくない。

0043

二層構造の不織布のセルロース微細繊維層厚みは、1μm以上100μm以下であることが好ましく、より好ましくは3μm以上70μm以下、更に好ましくは3μm以上50μm以下である。セルロース微細繊維層の厚さを100μm以下にすることにより裏面側に独自の流路(すなわち二次側流路)が確保される。二次側流路用の空間部は該平膜の裏面が凹凸を持つ構造であればこの凹凸によって与えられる。平膜裏面側の静水圧が膜間差圧を変動させるので、通常は大気圧とすることにより二次側流路の設計は簡単となる。平膜裏面での静水圧を大気圧とすることにより、一次側流路の圧力の制御のみで孔拡散が実施される。一次側の流路の圧力を一次側の静水圧発生のみとして動圧力の発生を防止し、1次側の静水圧のみの制御で実施する。

0044

二層構造の不織布を形成する支持体は、セルロース微細繊維層の構造保持を主に目的として使用され、例えば、有機高分子繊維からなる織物編物網状物長繊維不織布、短繊維不織布、紙、機能紙等が挙げられる。セルロース微細繊維層を形成させるためには、支持体表面は平滑であることが好ましいため、多孔質の紙や機能紙であることがより好ましい。

0045

また、支持体は、抄紙性の向上、及びセルロース微細繊維層との接着性改善のために親水性であることが好ましく、親水化するためにコロナ放電処理プラズマ処理等のシート表面の表面改質がされていてもよい。

0046

二層構造の不織布を形成する支持体は、それを構成する素材としては特に限定されるものではない。但し、例えば、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体ポリ塩化ビニルポリ塩化ビニリデンポリ酢酸ビニルエチレン酢酸ビニル共重合体ポリビニルアルコールポリアセタールポリフッ化ビニリデン等のフッ素樹脂ポリエチレンテレフタレートポリブチレンテレフタレートポリエチレンナフタレートポリスチレン、ポリアクリロニトリル、スチレンアクリロニトリル共重合体ABS樹脂ポリフェニレンエーテル(PPE)樹脂、ポリイミド、ポリアミドイミドポリメタクリル酸ポリアクリル酸類ポリカーボネートポリフェニレンスルフィドポリスルホンポリエーテルスルホンポリエーテルニトリルポリエーテルケトン、ポリケトン、液晶ポリマーシリコーン樹脂アイオノマー、セルロース(木材パルプや綿等の天然セルロース繊維ビスコースレーヨン銅アンモニアレーヨン及びテンセル等の再生セルロース)、セルロース誘導体、酢酸セルロースニトロセルロース、スチレン−ブタジエン又はスチレン−イソプレンブロック共重合体スチレン系熱可塑性エラストマーオレフィン系熱可塑性エラストマー塩化ビニル熱可塑性エラストマーポリエステル系熱可塑性エラストマーポリウレタン系熱可塑性エラストマーポリアミド系熱可塑性エラストマーエポキシ樹脂ポリイミド樹脂フェノール樹脂不飽和ポリエステル樹脂ジアリルフタレート樹脂、シリコーン樹脂、ポリウレタン樹脂ポリイミドシリコーン樹脂熱硬化型ポリフェニレンエーテル樹脂変性PPE樹脂天然ゴムブタジエンゴムイソプレンゴム、スチレン−ブタジエン共重合ゴムニトリルゴムクロロプレンゴムエチレン−プロピレンゴム塩素化ポリエチレンクロロスルホン化ポリエチレンブチルゴム及びハロゲン化ブチルゴムフッ素ゴムウレタンゴム、及びシリコーンゴム等が挙げられ、これらは単独又は二種以上の組合せで用いることができる。

0047

また、上記の有機高分子からなる1種以上の繊維同士はバインダーで固定されていてもよい。バインダーは抄紙性の向上およびセルロース微細繊維層との接着性改善のために親水性であることが好ましく、親水化するためにコロナ放電処理やプラズマ処理等のシート表面の表面改質がされていてもよい。

0048

二層構造の不織布を形成する支持体は、多孔質であることが好ましく、その空孔率は30%以上95%以下であり好ましくは50%以上90%以下である。空孔率が30%以上95%以下の範囲にあることで、抄紙法によりセルロース微細繊維を濾過して製造することができる。

0049

二層構造の不織布を形成する支持体の目付は、8.0g/m2以上である。支持体の目付が8.0g/m2以上の範囲にあることで、シートとしての強度を保持する他、水等の溶媒へ含浸・乾燥させた後の乾燥収縮によるカール発生を抑制できるため、好ましい。

0050

一態様において、二層構造の不織布には、セルロース微細繊維層の強度の補強ウェット環境での構造保持、さらにはセルロース微細繊維層と支持体との密着性の向上のため、架橋剤を添加し、セルロース微細繊維間、セルロース微細繊維層と支持体間を化学的に架橋する。

0051

薄膜セルロース微細繊維積層シート中に含まれる(反応性)架橋剤は、セルロース微細繊維間を化学的に架橋するものであれば限定されないが、イソシアネート基を2つ以上有したポリイソシアネート活性水素含有化合物付加反応し生成した樹脂を使用することが好ましい。イソシアネート基を2つ以上有したポリイソシアネートとしては、芳香族ポリイソシアネート脂環族ポリイソシアネート脂肪族ポリイソシアネート等が挙げられる。活性水素含有化合物としては、ポリエステルポリオールポリエーテルポリオールを含む1〜6価の水酸基含有化合物アミノ基含有化合物チオール基含有化合物カルボキシル基含有化合物等が挙げられる。また、空気中あるいは反応場に存在する水や二酸化炭素等も含まれる。

0052

二層構造の不織布に含まれる架橋剤の添加量は、セルロース微細繊維重量に対し100重量%以下、より好ましくは10重量%以下である。セルロース微細繊維重量に対し、100重量%以下の範囲に制御をすることで、セルロース微細繊維層の強度の補強やウェット環境での構造保持、さらにはセルロース微細繊維層と支持体との密着性の向上をしつつ、セルロース微細繊維層が有する微多孔構造を架橋剤が埋めることなくシートを形成することができるため好ましい。

0053

二層構造の不織布におけるセルロース微細繊維層と支持体との接着性としては、セルロース微細繊維層と支持体とのテープ剥離強度が2.0gf/18mm以上であってよい。テープ剥離強度は各多層構造体から18mm幅試験片を採取し、セルロース微細繊維層と支持体層それぞれにメンディングテープ(3M社製、MP−24)を貼り付けてサンプル末端部分の微細繊維層と支持体層を剥離後、それぞれの層をORINTEC社製引張試験機の上下のチャックに固定後、チャック間距離180mmから変位100mm分引張試験を行う。この引張試験の実測値を装置由来の荷重補正した後の、変位20〜60mmの間の引張強度の平均をテープ剥離強度(gf/18mm)とする。テープ剥離強度が2.0gf/18mm以上の範囲にあることで、セルロース微細繊維層内のセルロース微細繊維同士が化学的に結合され、例えば水のような溶媒中に浸漬したとしてもその構造を保持することができるため好ましい。また、薄膜セルロース微細繊維積層シートの折り曲げや製造工程におけるロール状態での取り扱い時にも、セルロース微細繊維層と支持体が剥がれず、接着した状態で扱うことができるため好ましい。

0054

二層構造の不織布は、セルロース微細繊維層が有する表面水酸基への化学修飾や多孔質空間中に添加剤や樹脂を導入することで、新たに機能付与をすることが可能である。

0055

以下、本実施形態の二層構造の不織布の製造方法の一例について説明する。
本実施形態の二層構造の不織布の製造方法は、抄紙法又は塗布法で製造することができる。抄紙法の場合には、
(1)セルロース繊維の微細化によるセルロース微細繊維製造工程
(2)該セルロース微細繊維の抄紙スラリーの調製工程
(3)該抄紙スラリーを多孔質支持体上でのろ過により湿紙を形成する抄紙工程
(4)該湿紙を乾燥し乾燥シートを得る乾燥工程
からなる。
また、該乾燥シートに対して
(A)シートの均質化厚み低減をするために、該乾燥シートを熱プレスする平滑化工程
(B)熱処理により繊維シート架橋剤による化学的な結合形成等を促進させる熱処理工程
のどちらか一つまたは両方を実施してもよい。

0056

また、塗布法の場合には、上記(1)および(2)と同様の工程により調製した塗布用スラリーを支持体上に塗布、乾燥させて成膜する。さらに、(A)平滑化工程および(B)熱処理工程を経てもよい。塗布法の場合の塗布方法スプレー塗工グラビア塗工ディップ塗工等種々な塗布方法を選定することができる。

0057

二層構造の不織布は、上述のセルロース繊維を用いて、前処理工程叩解処理工程、及び微細化工程を経ることが好ましい。天然セルロース繊維の前処理工程においては、100〜150℃の温度での水中含浸下でのオートクレーブ処理酵素処理等、又はこれらの組み合わせによって、原料パルプが以降の工程で微細化し易い状態にしておくことは有効である。該前処理工程の際に、1重量%以下の濃度の無機酸(塩酸硫酸リン酸ホウ酸など)や有機酸酢酸クエン酸など)を添加してオートクレーブ処理を行うことも場合によっては有効である。これらの前処理は、微細化処理の負荷を軽減するだけでなく、セルロース繊維を構成するミクロフィブリルの表面や間隙に存在するリグニンヘミセルロース等の不純物成分水相へ排出し、その結果、微細化された繊維のα−セルロース純度を高める効果もあるため、セルロース微細繊維不織布の耐熱性の向上に大変有効であることもある。また、再生セルロース繊維の場合には油剤を除去するために界面活性剤を使用する水洗を前処理工程で実施できる。

0058

叩解処理工程においては原料パルプを0.5重量%以上4重量%以下、好ましくは0.8重量%以上3重量%以下、より好ましくは1.0重量%以上2.5重量%以下の固形分濃度となるように水に分散させ、ビーターディスクリファイナーダブルディスクリファイナー)のような叩解装置でフィブリル化を徹底的に促進させる。ディスクリファイナーを用いる場合には、ディスク間クリアランスを極力狭く(例えば、0.1mm以下)設定して処理を行うと、極めて高度な叩解(フィブリル化)が進行する。したがって、後述する高圧ホモジナイザー等による微細化処理の条件を緩和でき、有効な場合がある。
叩解処理の程度は以下のように定められる。本願発明者らによる検討において、叩解処理を行うにつれCSF値(セルロースの叩解の程度を示す。JIS P 8121で定義されるパルプのカナダ標準ろ水度試験方法で評価)が経時的に減少していき、一旦、ゼロ近くとなった後、さらに叩解処理を続けると再び増大していく傾向が確認された。本発明におけるセルロース微細繊維の製造において、該叩解処理でのCSF値は少なくともゼロが好ましく、より好ましくはCSF30ml以上である。このような叩解度のスラリーは均一性が増大し、その後の高圧ホモジナイザー等による微細化処理での詰まりを軽減できる製造効率上の利点がある。

0059

二層構造の不織布は、上述した叩解工程に引き続き、高圧ホモジナイザー、超高圧ホモジナイザーグラインダー等による微細化処理を施すことが好ましい。この時、スラリー中の固形分濃度は、上述した叩解処理に準じ、0.5重量%以上4重量%以下、好ましくは0.8重量%以上3重量%以下、より好ましくは1.0重量%以上2.5重量%以下である。この範囲の固形分濃度の場合、詰まりが発生せず、しかも効率的な微細化処理が達成できる。

0060

使用する高圧ホモジナイザーとしては、例えば、ニロ・ソアビ社(伊)のNS型高圧ホモジナイザー、(株)エスエムテーのラニエタイプ(Rモデル圧力式ホモジナイザー、三和機械(株)の高圧ホモゲナイザー等を挙げることができ、これらの装置とほぼ同様の機構で微細化を実施する装置であれば、これら以外の装置であっても構わない。超高圧ホモジナイザーとしては、みづほ工業(株)のマイクロフルイダイザー、吉田機械興業(株)ナノマイザー、(株)スギマシーンアルティマイザー等の高圧衝突型の微細化処理機を挙げることができ、これらの装置とほぼ同様の機構で微細化を実施する装置であれば、これら以外の装置であっても構わない。グラインダー型微細化装置としては、(株)田機械製作所のピュアファインミル、増幸産業(株)のスーパーマスコロイダーに代表される石臼摩砕型を挙げることができるが、これらの装置とほぼ同様の機構で微細化を実施する装置であれば、これら以外の装置であっても構わない。

0061

セルロース微細繊維の繊維径は、高圧ホモジナイザー等による微細化処理の条件(装置の選定や操作圧力及びパス回数)又は該微細化処理前の前処理の条件(例えば、オートクレーブ処理、酵素処理、叩解処理等)によって制御することができる。

0062

さらに、天然セルロース微細繊維として、表面の化学処理を加えたセルロース系の微細繊維、及びTEMPO酸化触媒によって6位の水酸基が酸化され、カルボキシル基酸型塩型を含む)となったセルロース系の微細繊維を使用することもできる。前者の場合は、目的に応じて種々の表面化学処理を施すことにより、例えば、セルロース微細繊維の表面に存在する一部又は大部分の水酸基が酢酸エステル硝酸エステル硫酸エステルを含むエステル化されたもの、メチルエーテルを代表とするアルキルエーテルカルボキシメチルエーテルを代表とするカルボキシエーテル、シアノエチルエーテルを含むエーテル化されたものを、適宜調製して使用することができる。特に疎水的置換基で化学修飾したセルロースをシート原料として用いると高空隙率に制御し易くなるため好ましい場合がある。

0063

また、後者、すなわち、TEMPO酸化触媒によって6位の水酸基が酸化されたセルロース微細繊維の調製においては、必ずしも高圧ホモジナイザーのような高エネルギーを要する微細化装置を使用することは必要なく、セルロース微細繊維の分散体を得ることができる。例えば、文献(A.Isogai et al.,Biomacromolecules,7,1687−1691(2006))に記載されるように、天然セルロースの水分散体に2,2,6,6−テトラメチルピペリジノオキシラジカルのようなTEMPOと呼ばれる触媒ハロゲン化アルキル共存させ、これに次亜塩素酸のような酸化剤を添加し、一定時間反応を進行させることにより、水洗等の精製処理後に、通常のミキサー処理を施すことにより極めて容易にセルロース微細繊維の分散体を得ることができる。

0064

アラミド繊維の微細化もセルロース微細繊維と同様の前処理工程、叩解処理工程及び微細化工程を経ることが好ましい。前処理工程では油剤を除去するために界面活性剤を使用した水洗を実施する。叩解処理工程においては、水洗後繊維を0.5重量%以上4重量%以下、好ましくは0.8重量%以上3重量%以下、より好ましくは1.0重量%以上2.5重量%以下の固形分濃度となるように水に分散させ、ビーターやディスクリファイナー(ダブルディスクリファイナー)のような叩解装置でフィブリル化を徹底的に促進させる。ディスクリファイナーを用いる場合には、ディスク間のクリアランスを極力狭く(例えば、0.1mm以下)設定して、処理を行うと、極めて高度な叩解(フィブリル化)が進行するので、高圧ホモジナイザー等による微細化処理の条件を緩和でき、有効な場合がある。叩解処理の程度は前記セルロース微細繊維製造で用いたCSF値を利用できる。

0065

アラミド微細繊維の製造には、上述した叩解工程に引き続き、高圧ホモジナイザー、超高圧ホモジナイザー、グラインダー等による微細化処理を施すことが好ましい。この際の水分散体中の固形分濃度は、上述した叩解処理に準じ、0.5重量%以上4重量%以下、好ましくは0.8重量%以上3重量%以下、より好ましくは1.0重量%以上2.5重量%以下である。この範囲の固形分濃度の場合、詰まりが発生せず、しかも効率的な微細化処理が達成できる。使用する高圧ホモジナイザーは、セルロース微細繊維製造で記載した装置は少なくとも使用可能であるが、それらに限定さるものではない。
アラミド微細繊維の繊維径は、高圧ホモジナイザー等による微細化処理の条件(装置の選定や操作圧力及びパス回数)又は該微細化処理前の前処理の条件(例えば、叩解処理等)によって制御することができる。

0066

本実施形態では、上記の原料の異なるセルロース微細繊維やフィブリル化度の異なるセルロース微細繊維、表面を化学処理されたセルロース微細繊維、あるいは、アラミド微細繊維などの有機ポリマー微細繊維などを2種類以上、任意の割合で混合したスラリーを用いて後述する抄紙・乾燥処理を行い、2種類以上のセルロース微細繊維、あるいはセルロース微細繊維およびアラミド微細繊維で構成されるシートを製造することもできる。

0067

2種類以上の微細繊維で構成される薄膜セルロース微細繊維積層シートは、それぞれの微細繊維が凝集しておらずシート中で均一に分散していることが好ましい。スラリー中でそれぞれの微細繊維が偏在するような分散状態では、得られる薄膜セルロース微細繊維積層シートの膜質均一性は良好とならない。したがって、スラリー中で適度に均一な分散が達成されている必要がある。2成分以上の微細繊維が含まれるスラリーの分散方法として、ディスパータイプの羽根を装着した高速分散機(例えばプライミクス(株)のT.K.ホモミキサー)やディスクリファイナー(ダブルディスクリファイナーを含む)、高圧ホモジナイザーや超高圧ホモジナイザー、グラインダー等を挙げることができる。
尚、セルロース微細繊維の製造工程において、アラミド微細繊維の原料を混合することで、セルロースおよびアラミドを同時に微細化できるとともに高分散性が同時に達成できるため、有効である場合もある。

0068

前記したセルロース微細繊維のスラリーに各種添加剤(油性化合物水分散性ブロックイソシアネート機能化剤等)をさらに添加し、抄紙スラリーを調製してもよい。抄紙スラリーはセルロース微細繊維濃度が0.01重量%以上0.5重量%以下であることが好ましい。より好ましくは0.03重量%以上0.35重量%以下であると好適に安定な抄紙を実施することができる。該スラリー中のセルロース微細繊維濃度が0.01重量%よりも低いと濾水時間が非常に長くなり生産性が著しく低くなると同時に、膜質均一性も著しく悪くなるため好ましくない。また、セルロース微細繊維濃度が0.5重量%よりも高いと、分散液の粘度が上がり過ぎてしまうため、均一に製膜することが困難になり好ましくない。

0069

多孔質の二層構造の不織布を製造する上で、上記抄紙スラリー中には特開2012−46843号公報に記載のエマルジョン化した油性化合物が含まれていてもよい。
具体的には、大気圧下での沸点範囲が50℃以上200℃以下である油性化合物が、エマルジョンの形態で抄紙スラリー中に0.15重量%以上10重量%以下の濃度で分散していることが好ましい。油性化合物の抄紙スラリー中の濃度は0.15重量%以上10重量%以下であることが好ましく、より好ましくは0.3重量%以上5重量%以下、さらに好ましくは0.5重量%以上3重量%以下である。油性化合物の濃度が10重量%を超えても本発明のセルロース微細繊維多孔質シートを得ることはできるが、製造プロセスとして使用する油性化合物の量が多くなり、それに伴う、安全上の対策の必要性やコスト上の制約が発生するため好ましくない。また、油性化合物の濃度が0.15重量%よりも小さくなると所定の透気抵抗度範囲よりも高い透気抵抗度のシートしか得られなくなるため、やはり好ましくない。

0070

乾燥時に上記油性化合物が除去されることが望ましい。したがって、抄紙スラリー中にエマルジョンとして含まれる油性化合物は、一定の沸点範囲にあることが好ましい。具体的には、大気圧下での沸点が50℃以上200℃以下であることが好ましく、より好ましくは60℃以上190℃以下であれば、工業的生産プロセスとして抄紙スラリーを操作し易く、また、比較的効率的に加熱除去することが可能となる。油性化合物の大気圧下での沸点が50℃未満であると、抄紙スラリーを安定に扱うために低温制御下で扱うことが必要となり、効率上好ましくない。さらに、油性化合物の大気圧下での沸点が200℃を超えると、乾燥工程で油性化合物を加熱除去するのに多大なエネルギーが必要となるため、やはり好ましくない。

0071

さらに、上記油性化合物の25℃での水への溶解度は、油性化合物の必要な構造の形成への効率的な寄与という観点から、5重量%以下が好ましく、より好ましくは2重量%以下、さらに好ましくは1重量%以下である。

0072

油性化合物として、例えば、炭素数6〜炭素数14の範囲の炭化水素鎖状飽和炭化水素類、環状炭化水素類、鎖状又は環状の不飽和炭化水素類芳香族炭化水素類、炭素数5〜炭素数9の範囲での一価かつ一級アルコールが挙げられる。特に、1−ペンタノール1−ヘキサノール1−ヘプタノールの中から選ばれる少なくとも一つの化合物を用いると特に好適に本実施形態のセルロース微細繊維多孔質シートを製造することができる。これは、エマルジョンの油滴サイズが極めて微小(通常の乳化条件で、1μm以下)となるため、高空隙率かつ微細な多孔質構造を有する不織布の製造に適していると考えられる。
これらの油性化合物は単体として配合してもよいし、複数の混合物を配合してもよい。さらには、エマルジョン特性を適当な状態に制御するために、抄紙スラリー中に水溶性化合物を溶解させてもよい。

0073

水溶性化合物として、具体的には、糖、水溶性多糖水溶性多糖誘導体多価アルコールアルコール誘導体、及び水溶性高分子からなる群から選択される1種以上の水溶性化合物を含有していてもよい。ここで、水溶性多糖は、水溶性多糖を意味し、天然物としても多種の化合物が存在する。例えば、でんぷん可溶化でんぷん、アミロース等である。また、水溶性多糖誘導体は、上述した水溶性多糖の誘導体、例えば、アルキル化物ヒドロキシアルキル化物、アセチル化物であって水溶性のものが含まれる。あるいは、誘導体化する前の多糖がセルロース、スターチ等の様に水に不溶性であっても、誘導体化、例えば、ヒドロキシアルキル化やアルキル化カルボキシアルキル化等によって、水溶性化されたものも該水溶性多糖誘導体に含まれる。2種類以上の官能基で誘導体化された水溶性多糖誘導体も含まれる。但し、使用できる水溶性化合物は上記に記載された化合物に限定されるものではない。

0074

上記の水溶性化合物の混合量は、油性化合物に対し25重量%以下であることが好ましい。これ以上の添加量とすると油性化合物のエマルジョンの形成能が低下するため、好ましくない。また、抄紙スラリー中において、水溶性化合物が水相中に溶解していることが好ましい。水溶性化合物の濃度は、0.003重量%以上0.3重量%以下、より好ましくは0.005重量%以上0.08重量%以下、さらに好ましくは0.006重量%以上0.07重量%以下の量であり、この範囲であると、多孔質な薄膜セルロース微細繊維積層シートが得られ易いと同時に、抄紙スラリーの状態が安定化することが多い。

0076

この他、抄紙スラリー中には、目的に応じて種々の添加物が添加されていても構わない。例えば、水分散性ブロックポリイソシアネート水溶性ポリマー熱可塑性樹脂熱硬化性樹脂光硬化性樹脂シリカ粒子アルミナ粒子酸化チタン粒子炭酸カルシウム粒子のような無機系粒子状化合物、樹脂微粒子、各種塩類、抄紙スラリーの安定性を阻害しない程度の有機溶剤消泡剤等、シート構造体の製造に悪影響を及ぼさない範囲(種類の選択や組成の選択)で添加することができる。

0077

水分散性ブロックポリイソシアネートとは加熱により上記二層構造の不織布の架橋剤になることが可能な化合物であり、具体的には、(1)ポリイソシアネート及びポリイソシアネート誘導体等のポリイソシアネート化合物基本骨格とする、(2)ブロック剤によってイソシアネート基がブロックされている、(3)常温では活性水素を有する官能基とは反応しない、(4)ブロック基解離温度以上の熱処理により、ブロック基が脱離し活性なイソシアネート基が再生され、活性水素を有する官能基と反応し結合を形成する、(5)エマルジョンの形態で水中に分散していることを特徴とするものである。

0078

上記の水分散性ブロックポリイソシアネートは二層構造の不織布製造において以下のような挙動を示すと考えられる。
(1)抄紙スラリー中でセルロース微細繊維に吸着
(2)該水分散性ブロックポリイソシアネートを含む湿紙が形成
(3)湿紙の乾燥に伴い、該水分散性ブロックポリイソシアネートの乾燥とセルロース微細繊維上でのブロックポリイソシアネートの塗膜形成
(4)熱キュアによるブロック基の解離および架橋反応の進行
上記水分散性ブロックポリイソシアネートは、親水性化合物をブロックポリイソシアネートに直接結合させ乳化させた化合物(自己乳化型)、界面活性剤等で強制乳化させた化合物(強制乳化型)のどちらでも構わない。

0079

水分散体の平均粒子径は1〜1000nmであればよく、好ましくは10〜500nm、より好ましくは10〜200nmである。1000nm以上であると、セルロース微細繊維径に対し大きすぎるため、均一な吸着が困難となる。そのため、架橋剤による架橋がなされないセルロース微細繊維が増えるためシート強度増強の観点で好ましくない。

0080

これらのエマルジョン表面にはアニオン性ノニオン性カチオン性のいずれかの親水基露出しているが、カチオン性の親水基がより好ましい。その理由は、抄紙スラリーを製造する段階で、希薄なセルロース微細繊維スラリー(0.01〜0.5重量%)中で水分散性ブロックポリイソシアネート(0.0001〜0.5重量%)を効果的にセルロース微細繊維に吸着させる上で、静電相互作用を利用することが有効であるためである。一般的なセルロース繊維表面はアニオン性(蒸留水ゼータ電位−30〜−20mV)であることが知られている(非特許文献1 J.Brandrup(editor) and E.H.Immergut(editor)“Polymer Handbook 3rd edition”V-153〜V-155)。したがって、水分散体表面がカチオン性であることにより、容易に微細セルロース繊維状に吸着させられる。但し、ノニオン性であってもエマルジョンの親水基のポリマー鎖長や剛直性等によっては十分にセルロース微細繊維に吸着させることは可能である。さらに、アニオン性のような静電反発により吸着がより困難な場合であっても、一般的に周知なカチオン性吸着助剤カチオン性ポリマーを用いることで、セルロース微細繊維上に吸着させることができる。

0081

上記の水分散性ブロックポリイソシアネートは少なくとも2個以上のイソシアネート基を含有するポリイソシアネート、ポリイソシアネート誘導体であれば特に制限されない。ポリイソシアネートとしては芳香族ポリイソシアネート、脂環族ポリイソシアネート、脂肪族ポリイソシアネート等が挙げられる。

0082

ポリイソシアネート誘導体としては、例えば、上記のポリイソシアネートの多量体(例えば、2量体、3量体、5量体、7量体等)の他に、活性水素含有化合物と1種類又は2種類以上反応させて得られた化合物が挙げられる。その化合物はアロファネート変性体(例えば、ポリイソシアネートと、アルコール類との反応より生成するアロファネート変性体等)、ポリオール変性体(例えば、ポリイソシアネートとアルコール類との反応より生成するポリオール変性体(アルコール付加体)等)、ビウレット変性体(例えば、ポリイソシアネートと、水やアミン類との反応により生成するビウレット変性体等)、ウレア変性体(例えば、ポリイソシアネートとジアミンとの反応により生成するウレア変性体等)、オキサジアジントリオン変性体(例えば、ポリイソシアネートと炭酸ガスとの反応により生成するオキサジアジントリオン等)、カルボジイミド変性体(ポリイソシアネートの脱炭酸縮合反応により生成するカルボジイミド変性体等)、ウレトジオン変性体、ウレトンイミン変性体等が挙げられる。

0083

活性水素含有化合物として、例えば、ポリエステルポリオール、ポリエーテルポリオールを含む1〜6価の水酸基含有化合物、アミノ基含有化合物、チオール基含有化合物、カルボキシル基含有化合物等が挙げられる。また、空気中又は反応場に存在する水や二酸化炭素等も含まれる。

0084

ブロック剤は、ポリイソシアネート化合物のイソシアネート基に付加してブロックするものである。このブロック基は室温では安定であるが、熱処理温度(通常約100℃〜約200℃)に加熱した際、ブロック剤が脱離し遊離イソシアネート基再生しうるものである。

0085

このような要件を満たすブロック剤としては、アルコール系化合物アルキルフェノール系化合物フェノール系化合物活性メチレン系化合物メルカプタン系化合物、酸アミド系化合物、酸イミド系化合物イミダゾール系化合物尿素系化合物オキシム系化合物アミン系化合物が挙げられ、これらのブロック剤はそれぞれ単独で又は2種以上組み合わせて使用できる。

0086

自己乳化型ブロックポリイソシアネートはブロックポリイソシアネート骨格にアニオン性又はノニオン性又はカチオン性基を有する活性水素基含有化合物を結合したものである。

0087

アニオン性基を有する活性水素基含有化合物としては、特に制限されるものではないが、例えば、1つのアニオン性基を有し、かつ、2つ以上の活性水素基を有する化合物が挙げられる。アニオン性基としては、カルボキシル基、スルホン酸基リン酸基等が挙げられる。

0088

ノニオン性基を有する活性水素基含有化合物としては、特に制限されるものではないが、例えば、ノニオン性基として通常のアルコキシ基を含有しているポリアルキレンエーテルポリオール等が使用される。

0089

カチオン性基を有する活性水素基含有化合物としては、特に制限されるものではないが、ヒドロキシル基又は1級アミノ基のような活性水素含有基と3級アミノ基を有する脂肪族化合物、なかでも、3級アミノ基を有し、かつイソシアネート基と反応性のある活性水素を2個以上含有するポリヒドロキシ化合物が好ましい。

0090

カチオン性基はアニオン性基を有する化合物で中和されることで、塩の形で水中に分散せやすくすることもできる。アニオン性基とは、例えば、カルボキシル基、スルホン酸基、燐酸基等が挙げられる。また、導入された三級アミノ基は、硫酸ジメチル硫酸ジエチル等で四級化することもできる。

0091

強制乳化型ブロックポリイソシアネートは、ブロックポリイソシアネートが周知一般のアニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤、高分子系界面活性剤反応性界面活性剤等により乳化分散された化合物である。

0092

尚、水分散性ブロックポリイソシアネートは、自己乳化型及び強制乳化型ともに水以外の溶剤を20重量%含んでいてもよい。溶剤は特に限定されないが、例えば、エチレングリコールモノメチルエーテルジエチレングリコールモノメチルエーテルエチレングリコールジエチレングリコールトリエチレングリコール等を挙げることができる。これら溶剤は、1種を単独で用いても2種以上を併用してもよい。

0093

水溶性ポリマーは、カチオン性、アニオン性、両性又はノニオン性のいずれであってよい。

0094

カチオン性ポリマーとしては、第1級アミノ基、第2級アミノ基、第3級アミノ基、第4級アンモニウム塩基ピリジニウムイミダゾリウム、四級化ピロリドンを有するポリマーであり、例えば、カチオン化澱粉カチオン性ポリアクリルアミドポリビニルアミンポリジアリルジメチルアンモニウムクロリドポリアミドアミンエピクロロヒドリンポリエチレンイミンキトサン等の水溶性のカチオン性ポリマー等が挙げられる。

0095

アニオン性ポリマーとしては、カルボキシル基、スルホン基、リン酸基等のアニオン性基を有するポリマーであり、例えば、カルボキシメチルセルロースポリアクリル酸アニオン性ポリアクリルアミド尿素リン酸化デンプンコハク酸変性デンプンポリスチレンスルホン酸ナトリウム等が挙げられる。

0096

両性ポリマーとしては、アニオン性のモノマー単位とカチオン性のモノマー単位が両方、分子鎖骨格中に含まれる両性水溶性高分子を挙げることができる。例えば、ジアリルアミン塩酸塩マレイン酸共重合体両性ポリアクリルアミド等が挙げられる。

0097

ノニオン性ポリマーとしては、例えば、ポリエチレングリコールヒドロキシプロピルメチルセルロース、ポリビニルアルコール等が挙げられる。

0098

スラリー中に添加可能な熱可塑性樹脂としては、例えば、スチレン系樹脂アクリル系樹脂芳香族ポリカーボネート系樹脂脂肪族ポリカーボネート樹脂芳香族ポリエステル系樹脂脂肪族ポリエステル系樹脂脂肪族ポリオレフィン系樹脂環状オレフィン系樹脂ポリアミド系樹脂ポリフェニレンエーテル系樹脂熱可塑性ポリイミド系樹脂ポリアセタール系樹脂ポリスルホン系樹脂、非晶性フッ素系樹脂等が挙げられる。これらの熱可塑性樹脂の数平均分子量は一般に1000以上が好ましく、より好ましくは5000以上500万以下、さらに好ましくは1万以上100万以下である。これらの熱可塑性樹脂は、単独で又は2種以上を含有してもよい。2種以上の熱可塑性樹脂含有する場合、その含有比によって樹脂の屈折率を調整することが可能であるので好ましい。例えば、ポリメタクリル酸メチル(屈折率約1.49)とアクリロニトリルスチレン(アクリロニトリル含量約21%、屈折率約1.57)を50:50で含有すると、屈折率約1.53の樹脂が得られる。

0099

スラリー中に添加可能な熱硬化性樹脂としては、例えば、特に制限されるものではないが、具体例を示すと、エポキシ樹脂、熱硬化型変性ポリフェニレンエーテル樹脂熱硬化型ポリイミド樹脂ユリア樹脂アクリル樹脂ケイ素樹脂ベンゾオキサジン樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビスマレイミドトリアジン樹脂アルキド樹脂フラン樹脂メラミン樹脂、ポリウレタン樹脂、アニリン樹脂等、その他工業的に供されている樹脂及びこれら樹脂2以上を混合して得られる樹脂が挙げられる。なかでも、エポキシ樹脂、アクリル樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、熱硬化型ポリイミド樹脂等は透明性を有するため、光学材料として使用する場合に好適である。

0100

スラリー中に添加可能な光硬化性樹脂としては、例えば、潜在性光カチオン重合開始剤を含むエポキシ樹脂等が挙げられる。これらの熱硬化性樹脂又は光硬化性樹脂は、単独で含有してもよく、2種以上を含有してもよい。

0101

尚、熱硬化性樹脂、光硬化性樹脂とは、常温では液状、半固形状又は固形状等であって常温下又は加熱下で流動性を示す比較的低分子量の物質を意味する。これらは硬化剤、触媒、熱又は光の作用によって硬化反応や架橋反応を起こして分子量を増大させながら網目状の三次元構造を形成してなる不溶不融性の樹脂となり得る。また、樹脂硬化物とは、上記熱硬化性樹脂又は光硬化性樹脂が硬化してなる樹脂を意味する。

0102

スラリー中に添加可能な硬化剤、硬化触媒は、熱硬化性樹脂や光硬化性樹脂の硬化に用いられるものであれば特に限定されない。硬化剤の具体例としては、多官能アミンポリアミド酸無水物、フェノール樹脂が挙げられ、硬化触媒の具体例としてはイミダゾール等が挙げられ、これらは単独で又は2種以上の混合物として含有されていてもよい。

0103

以上のスラリー中に添加可能な熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂は、疎水性である場合が多く、抄紙スラリーに添加してもスラリー中に均一に分散させることが困難である。したがって、エマルジョンの形態が好ましい。エマルジョンとは、粒子径が0.001〜10μm程度の微細な高分子粒子である疎水性化合物乳化剤を水中で撹拌することで得られる。また、熱硬化性樹脂、光硬化性樹脂についてはエマルジョン内に硬化剤、硬化触媒を含むことにより、該エマルジョンを含む薄膜セルロース微細繊維積層シートに対し熱および光照射により薄膜セルロース微細繊維積層シート内で硬化することができる。

0104

スラリー中に添加可能な熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂のエマルジョンに用いられる乳化剤としては、周知一般のアニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤、高分子系界面活性剤、反応性界面活性剤等で構わない。

0105

スラリー中に添加可能な熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂のエマルジョンは歩留り脱水性を考慮すると、粒子径は大きいほうがよく、また、大きすぎるとシートの均一性、又は光学物性が低下するおそれがあるため、目的に合った適度な大きさである0.001〜10μmが好ましい。エマルジョンの表面電荷はカチオン性、ノニオン性、アニオン性のいずれの状態でも構わないが、セルロース微細繊維スラリーと樹脂化合物のエマルジョンとを混合することを考慮すると、カチオン性であることが分散安定性、又は歩留りなどにおいて有利である。但し、ノニオン性であってもエマルジョンの親水基のポリマー鎖長や剛直性等によっては十分にセルロース微細繊維に吸着させることは可能である。さらに、アニオン性のような静電反発により吸着がより困難な場合であっても、一般的に周知なカチオン性吸着助剤やカチオン性ポリマーを用いることで、セルロース微細繊維上に吸着させることができる。

0106

抄紙又は塗布用スラリーの調製方法として、例えば、(1)セルロース微細繊維スラリーに予め調製した添加物を含む化合物を混合し、分散させて抄紙スラリーとする、(2)セルロース微細繊維スラリーを撹拌させながら、各種添加物を個別に一つずつ添加する等の方法がある。尚、複数種の添加物を添加する場合であって、添加物同士が凝集するような系において(例えば、カチオン性ポリマーとアニオン性ポリマーがイオンコンプレックスを形成する系)、添加する順番により、抄紙スラリーの分散状態やゼータ電位が変わる可能性がある。しかしながら、その添加する順番や量は特に限定するものではなく、所望の抄紙スラリーの分散状態やシート物性が得られる方法で添加することが好ましい。

0107

以上の添加剤を均一に混合分散するための撹拌装置として、アジテーター、ホモミキサー、パイプラインミキサーブレンダーのようなカッティング機能をもつ羽根を高速回転させるタイプの分散機や高圧ホモジナイザー等が挙げられるが、これらに限定されるものではない。撹拌において、スラリーの分散平均径が1μm以上300μm以下になるのが好ましい。但し、過度な撹拌を行うことで、例えば、水分散性ブロックポリイソシアネート等のエマルジョン系添加剤では過剰な剪断応力がかかり、そのエマルジョン構造が壊れる恐れがある。したがって、スラリー組成によっては高圧ホモジナイザーやグラインダー型微細化装置、石臼式摩砕型装置等の使用は好ましくない場合がある。

0108

次に、抄紙スラリーの多孔質基材上でのろ過により湿紙を形成する抄紙工程について説明する。

0109

この抄紙工程は、基本的に、抄紙スラリーから水を脱水し、セルロース微細繊維が留まるようなフィルターや濾布(製紙の技術領域ではワイヤーとも呼ばれる)を使用する操作であればどのような装置を用いて行ってもよい。

0110

抄紙機としては、傾斜ワイヤー式抄紙機、長網式抄紙機円網式抄紙機のような装置を用いると好適に欠陥の少ないシート状の繊維シートを得ることができる。抄紙機は連続式であってもバッチ式であっても目的に応じて使い分ければよい。膜質均一性を高めるために、一機又は二機以上(例えば、下地層抄紙は傾斜ワイヤー型抄紙機、上地層抄紙では丸網式抄紙機を用いる等)の抄紙機を用いて多段式の抄紙を施すのも場合によっては有効である。多段式の抄紙とは、例えば、1段目で1g/m2の目付で抄紙を行い、そこで得られた湿紙上で2段目の2g/m2の抄紙を行って、合計目付3g/m2のセルロース微細繊維層を有する二層構造の不織布を得るという技術である。多段抄紙の場合は、上層下層を同じ分散体から製膜する場合には単層の不織布となるが、下層として第1段で、例えば、フィブリル化繊維を用いて目の細かな湿紙の層を形成させ、その上から第2段で前述した分散体による抄紙を行い、下層である湿紙を後述するフィルターとして機能させることもできる。

0111

抄紙工程では抄紙スラリー中に分散しているセルロース微細繊維等の軟凝集体を濾過するため、ワイヤー又は濾布の目のサイズが重要となる。本実施形態においては、抄紙スラリー中に含まれるセルロース微細繊維等を含む水不溶性成分の歩留まり割合が70重量%以上、好ましくは95重量%以上、さらに好ましくは99重量%以上で抄紙することのできるようなワイヤー又は濾布であればいかなるものでも使用できる。

0112

但し、歩留まり割合が70重量%以上であっても、濾水性が高くないと抄紙に時間がかかることで著しく生産効率が悪くなる。したがって、大気圧下25℃でのワイヤー又は濾布の水透過量が、好ましくは0.005ml/(cm2・sec)以上、より好ましくは0.01ml/(cm2・sec)以上であることが生産性の観点から好適である。他方、歩留まり割合が70重量%よりも低くなると、生産性が著しく低減するばかりか、用いるワイヤーや濾布内にセルロース微細繊維等の水不溶性成分が目詰まりするため、製膜後の二層構造の不織布の剥離性が著しく悪くなる。

0113

大気圧下でのワイヤー又は濾布の水透過量は次のように評価する。
バッチ式抄紙機(例えば、熊谷理機工業社製の自動角型シートマシーン)において、80〜120メッシュ金属メッシュ(濾水抵抗がほとんど無いもの)の上にワイヤー又は濾布を設置する。次いで、抄紙面積がx(cm2)の抄紙機内に十分な量(y(ml)とする)の水を注入し、大気圧下で濾水時間を測定する。濾水時間がz(sec)であった場合の水透過量を、y/(x・z)(ml/(cm2・s))と定義する。

0114

本実施形態に使用できるワイヤー又は濾布の例として、SEFAR社(スイス)製のTETEXMONODLW07−8435−SK010(PET製)、敷島カンバス社製NT20(PET/ナイロン混紡)、日本フィルコン社製のプラスチックワイヤーLTT−9FE、さらには特開2011−42903に記載の多層化ワイヤー等を挙げることができるが、これらに限定されるものではない。

0115

抄紙工程による脱水では、高固形分化が進行した湿紙が得られる。この湿紙に対して、さらにプレス処理することにより水等の分散媒体をより高効率に除去でき、得られる湿膜中の固形分率を高めることができる。湿紙の固形分率は抄紙のサクション圧(ウェットサクションやドライサクション)やプレス条件によって制御でき、好ましくは固形分濃度が6重量%以上30重量%以下、より好ましくは固形分濃度が8重量%以上25重量%以下の範囲に調整する。湿紙の固形分率が6重量%よりも低いと湿紙の強度が低いため自立性がなく、工程上問題が生じ易くなる。また、湿紙の固形分率が30重量%を超える濃度まで脱水するとシートの厚み等の均一性が失われる。

0116

二層構造の不織布は、前記支持体をワイヤー又は濾布の上にセットし抄紙することで多層化シートを製造できる。3層以上の多層化シートを製造するには、2層以上の多層構造を有する支持体を使用すればよい。また、支持体上で2層以上の二層構造の不織布の多段抄紙を行って3層以上の多層シートとしてもよい。この時、抄紙機のワイヤー又は濾布は支持体との組み合わせで、歩留まり割合や水透過量に係わる要件を満足できる素材を選択すれば足りる。尚、支持体は、抄紙性時のぬれ性の向上およびセルロース微細繊維積層との接着性改善のために、抄紙前にコロナ放電処理やプラズマ処理等のシート表面を親水化してもよい。

0117

二層構造の不織布の多孔質化を目的として、濾布上で抄紙を行い、得られた湿紙中の水を有機溶媒への置換工程において有機溶媒に置換させ、乾燥させるという方法を用いてもよい。この方法の詳細については、国際公開第2006/004012号明細書に従うことができる。具体的には、有機溶媒等で置換後乾燥する際に、水にある程度の溶解性を有する有機溶媒を用いると1段階の置換で高空隙率の不織布を得ることができる。このような溶媒としては、メチルエチルケトンイソプロピルアルコール、tert−ブチルアルコールイソブチルアルコールを挙げることができるが、これらに特に限定されない。疎水性の高い溶媒を使用するほど、より高い空隙率の不織布を作製し易くなる。シクロヘキサントルエンなどの水に溶解しない有機溶媒で置換する場合には、例えば、アセトン、メチルエチルケトン、イソプロピルアルコール、イソブチルアルコールのような水に溶解する有機溶媒でまず置換を行い、次にシクロヘキサンやトルエンのような水不溶性の溶媒に置換する、という2段置換法も有効である。この際に使用する溶媒は、水との混合溶媒、又は有機溶媒どうしの混合溶媒であっても構わない。有機溶媒置換後のシートを後述する乾燥工程を経ることで、空隙率が60%〜90%のシートが得られる。

0118

続いて乾燥工程について説明する。上述した抄紙工程で得た湿紙は、加熱による乾燥工程で水の一部を蒸発させることによって二層構造の不織布となる。均一な加熱処理と加熱によるシートの収縮の抑制の観点から、ドラムドライヤーピンテンターのような定長乾燥型乾燥機が好ましい。乾燥温度は、条件に応じて適宜選択すればよいが、好ましくは45℃以上180℃以下、より好ましくは60℃以上150℃以下の範囲とすれば、均一な繊維シートを製造することができる。乾燥温度が45℃未満では、多くの場合に水の蒸発速度が遅いため、生産性が確保できないため好ましくない。一方、180℃より高い乾燥温度ではシート内での乾燥速度にムラが生じ、シートにシワが発生するほか、エネルギー効率も悪いため好ましくない。なお、100℃以下の低温乾燥とそれに続く100℃以上の高温乾燥という多段乾燥は均一性の高い二層構造の不織布を得るうえで有効である。

0119

以上の製膜プロセスにおいて、使用する抄紙用の濾布又はプラスチックワイヤーは、エンドレス仕様のものを用いて全工程を一つのワイヤーで行うか、あるいは途中で次工程のエンドレスフィルター又はエンドレスのフェルト布ピックアップして渡すか又は転写させて渡すか、あるいは連続製膜の全工程又は一部の工程を、濾布を使用するロールtoロールの工程にするかのいずれであってもよい。もっとも、本実施形態の二層構造の不織布の製法はこれに限定されない。

0120

続いて平滑化工程について説明する。上述した乾燥工程で得られた二層構造の不織布はカレンダー装置によって平滑化処理を施す平滑化工程を設けてもよい。平滑化工程を経ることにより、二層構造の不織布の表面平滑化、薄膜化が可能となる。また、それに伴い通気度や強度の調整も可能となる。例えば、3g/m2の目付の設定下で20μm以下(下限は1μm程度)の膜厚の二層構造の不織布を容易に製造できる。カレンダー装置としては単一プレスロールによる通常のカレンダー装置の他に、これらが多段式に設置された構造をもつスーパーカレンダー装置を用いてもよい。これらの装置、及びカレンダー処理時におけるロール両側それぞれの材質材質硬度)や線圧を目的に応じて選定することで、多種の物性バランスをもつ二層構造の不織布を得ることができる。

0121

続いて熱キュア工程について説明する。
上述した乾燥工程あるいは平滑化工程で得られたシートを加熱処理することにより、シート内に含まれるブロックポリイソシアネートとセルロース微細繊維との化学的な結合が形成する。また、それと同時に積層構造体における有機高分子シートとセルロース微細繊維との架橋化やその他添加剤の二層構造の不織布への固定化も進行する。
熱キュア工程は、均一な加熱処理と加熱によるシートの収縮の抑制の観点からドラムドライヤーやピンテンターのような幅を定長した状態で加熱するタイプの定長乾燥型の熱処理機が好ましい。

0122

上述したように、ブロックポリイソシアネートは常温において安定であるが、ブロック剤の解離温度以上に熱処理することでブロック基が解離してイソシアネート基が再生し、活性水素を有する官能基との化学的な結合が形成できる。加熱温度は用いられるブロック剤により異なるが、好ましくは80℃以上220℃以下、より好ましくは100℃以上180℃以下の範囲で、ブロック基の解離温度以上に加熱する。ブロック基の解離温度以下の場合は、イソシアネート基が再生しないため架橋化が起きない。他方、220℃以上で加熱を行うとセルロース微細繊維や架橋剤の熱劣化がおき、着色する場合があり好ましくない。

0123

加熱時間は、好ましくは15秒以上10分以下であり、より好ましくは30秒以上2分以下である。加熱温度がブロック基の解離温度より十分に高い場合は、加熱時間をより短くすることができる。また、加熱温度が130℃以上の場合、2分以上の加熱を行うとシート内の水分が極端に減少するため、加熱直後のシートは脆くなり、取扱い性が難しくなるケースがあることから好ましくない。
尚、熱キュア工程は前述した平滑化処理と同時に行ってもよい。

0124

本発明の孔拡散膜モジュールは以下の構成となることが好ましい。まずセルロース繊維を含む不織布が二層構造を示す。その一層は膜として表面層を形成し平滑性の高い(すなわち平滑度値の小さい)膜表面を形成するセルロース微細繊維である。該セルロース微細繊維の平均繊維径は0.6μm以下である。該セルロース繊維の平均の長さは2mm未満である。該不織布の他の一層である膜裏面側の平滑度値は膜表面の1/40以下であり、該裏面を構成するセルロース繊維の平均繊維径は約30μmである。該セルロース繊維の平均長さは約40mmである。不織布の表面と裏面との間の密着性は、架橋基としてイソシアネート基を有する架橋剤によって強められている。該不織布を図1中の平膜1に示されるように膜モジュールの支持体に平行に装着する。不織布の表面(図1中の膜状物の実線で示されている)は1次側流体の流れ方向4の回路に接触するように装着される。

0125

図1では3枚の板状の支持体と2枚の不織布シートで構成される孔拡散モジュールを例示している。二層構造の不織布シートは、第1図中の平膜1で示されるように2枚の板状の支持体(図中の支持板2(支持板2aと2b)と支持板7)間に0リング状のパッキング材(図中のパッキング11)で該支持体に密着する。二種の支持体板(それぞれの支持体の面内には0リング用の溝2本と一次側流路用溝あるいは二次側流路用の溝と層流準備域の流路あるいは二次側流路から回収槽への回路へ連なる出口を持つ)二種の支持体板と該平膜1の空間部が液体の流路(二次側流路3および一次側流路6)となる。該流路内を一次側液体が流れ方向4で、二次側液体が流れ方向5で流れる。一次側液体の流れ方向4の流れを層流で流すために空間部(一次側流路6)の壁面はいずれも平滑である。一次側流体の流れの方向は実線の矢印で示され、2次側流体の流れの方向は破線の矢印で示されている。平膜1の膜表面は一次側液体と接する面であると定義される。

0126

第1図にはポリプロピレン製の板状の支持体として二種類(支持板2aおよび2b)の端部と中間部の支持板7とが例示されている。その一種は図中の支持板7に示されるように、層流準備域8となる円形断面を持つ一次側流路を持ち、層流準備域8より弁の役割を持つ布状物9を押し上げて一次側液体を一次側流路6に導く。該流路(層流準備域8)はモジュールの一次側流路の入口に連結している。該支持体の素材として、ポリプロピレン製、ポリカーボネート製、アクリル樹脂製が良い。支持体にはいずれも一次側流路あるいは二次側流路となるように支持体の表面が滑らかな平面となるように深さ1〜2mmの溝が彫られている。この支持板2a及び2bが与える流路は二次側流路3である。弁の役割を行う布状物9が支持体に融着している。該布状物としてはナイロンやポリエステル等の不織布が適する。これらの不織布を支持体上の流体の流出入口の場所に融着させる。二種類の支持体はプラスチック板状体より切削加工によって作製するか、あるいは金型を利用した射出成型法で作製される。

0127

第2図に本発明の孔拡散膜モジュールの機能を発揮させるための装置の例を示す。一次側液体の平膜表面でのひずみ速度を送液ポンプで制御する方式(A図)とひずみ速度を静水圧差で制御する方式(B図)の二方式が採用される。膜表面に負荷される膜間差圧において図1のモジュールを用いると動圧力は零となる。静水圧差としては0.05気圧以下で運転する。該ひずみ速度は10〜100/秒の一定条件下で運転する。A図においては大気開放されているのが受槽部(開放のためのフィルターF3と連結)と孔拡散膜モジュールMの二次側流路(F2)と液面レベルL(F1フィルターを介して開放)である。この方式では液体輸送部での安定な運転が重要である。一方、B図の方式では液面レベルLの設定によって安定的に膜間差圧とひずみ速度が制御できる。

0128

以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれら実施例などにより何ら限定されるものではない。

0129

<測定及び評価方法
以下の測定方法又は評価方法を用いて実施例等で得た二層構造の不織布シートを評価した。尚、測定前に各種サイズのサンプルを切り出し、23℃、50%RH下に管理された恒温恒湿室にて24時間かけて調湿した後、測定を実施した。

0130

(1)目付
二層構造の不織布シートから10.0cm×10.0cmの正方形片を切り取り、その重量W(g)を測定した。これを基に以下の式:
W0=100×W
を用いて膜の目付W0(g/m2)を算出した。

0131

(2)セルロース微細繊維の数平均/最大繊維径
薄膜セルロース微細繊維積層シートのセルロース微細繊維面に対して、無作為に3箇所、走査型電子顕微鏡(SEM)による観察を微細繊維の繊維径に応じて10,000〜100,000倍相当の倍率で行った。得られたSEM画像に対し、画面に対し水平方向と垂直方向にラインを引き、ラインに交差する繊維の繊維径を拡大画像から実測し、交差する繊維の個数と各繊維の繊維径を数えた。こうして一つの画像につき縦横2系列の測定結果を用いて数平均繊維径を算出した。さらに抽出した他の2つのSEM画像についても同じように数平均繊維径を算出し、合計3画像分の結果を平均化し、対象とする試料の平均繊維径とした。この手法で得られた繊維径のうち、最大のものを最大繊維径とした。

0132

(3)二層構造の不織布シート厚み
目付の測定に用いた薄膜セルロース微細繊維積層シートからの10.0cm×10.0cmの正方形片の重量W(g)測定後に、面接触型の膜厚計であるMitutoyo製の膜厚計(Model ID−C112XB)にて、9等分にエリア分けしたシートの各中央9点について面内の厚みを測定し、その平均値を薄膜セルロース微細繊維積層シートの平均厚み(μm)とした。

0133

(4)ガーレー式透気抵抗度
20cm角の多層構造体を5等分にエリア分けし、各中央5点についてガーレー式デンソメーター((株)東洋精機製作所製、型式G−B2C)を用いて、透気抵抗度を測定し、5点の平均値をとることにより試料の透気抵抗度(sec/100ml)とした。

0134

(5)セルロース微細繊維層の空孔率
セルロース微細繊維の密度を1.5g/cm3と仮定し、下記式より算出した。
空孔率(%)=100−([目付(g/m2)/{微細繊維層厚み(μm)×1.5(g/cm3)}]×100)

0135

<スラリーの製造例>
[スラリー製造例1]
双日(株)より入手した再生セルロース繊維であるテンセルカット糸(3mm長)を洗浄用ネットに入れて界面活性剤を加え、洗濯機で何度も水洗することにより、繊維表面の油剤を除去した。得られた膨潤パルプを固形分1.5重量%となるように水中に分散させて(400L)、ディスクレファイナー装置として相川鉄工(株)製SDR14型ラボリファイナー加圧型DISK式)を用い、ディスク間のクリアランスを1mmで400Lの該水分散体を20分間叩解処理した。それに引き続き、クリアランスをほとんどゼロに近いレベルにまで低減させた条件下で叩解処理を続けた。経時的にサンプリングを行い、サンプリングスラリーに対して、JIS P 8121で定義されるパルプのカナダ標準ろ水度試験方法(以下、CSF法)のCSF値を評価したところ、CSF値は経時的に減少していき、一旦、ゼロ近くとなった後、さらに叩解処理を続けると、増大していく傾向が確認された。クリアランスをゼロ近くとしてから10分間、上記条件で叩解処理を続け、CSF値で100ml以上の叩解水分散体を得た。得られた叩解水分散体を、そのまま高圧ホモジナイザー(ニロ・ソアビ社(伊)製NS015H)を用いて操作圧力100MPa下で5回の微細化処理を実施し、セルロース微細繊維のスラリー(固形分濃度:1.5重量%)を得た。CSF値は650ml以上であった。

0136

<シートの製造例>
シート製造例1]スラリー製造例1のスラリーを固形分濃度0.05重量%まで希釈し、家庭用ミキサーで4分撹拌することで400gの抄紙スラリーを作製した。抄紙スラリー375gをスリーワンモーターで撹拌させながら、ノニオン性ブロックポリイソシアネート(商品名「メイカネートCX」、明成化学工業株式会社製、固形分濃度1.0重量%まで希釈)を0.59g滴下した後3分間撹拌を行い、抄紙スラリー(合計375.6g)を得た。添加したノニオン性ブロックポリイソシアネート重量比率はセルロース微細繊維固形分重量に対して、3重量%であった。PET/ナイロン混紡製の平織物{敷島カンバス社製NT20、大気下25℃での水透過量:0.03ml/(cm2・s)、セルロース微細繊維を大気圧下25℃における濾過で99%以上濾別する能力あり}とセルロース/PET/アクリル混抄の機能紙{カルボキシメチルセルロース処理、日本製紙パピリア社製、目付11g/m2}を支持体としてセットしたバッチ式抄紙機(熊谷理機工業社製、自動角型シートマシーン25cm×25cm、80メッシュ)に目付10g/m2のセルロースシート目安に、上記調整した抄紙スラリーを投入し、その後、大気圧に対する減圧度を50KPaとして抄紙(脱水)を実施した。

0137

得られた濾布上に乗った湿潤状態濃縮組成物からなる湿紙を、ワイヤー上から剥がし、1kg/cm2の圧力で1分間プレスした。湿紙面をドラム面に接触させるようにして、支持体/湿紙/濾布の3層の状態で表面温度が130℃に設定されたドラムドライヤーに湿紙がドラム面に接触するようにして約120秒間乾燥させた。得られた乾燥した3層体のうち、セルロースのシート状多層構造物から濾布を剥離して、180℃に加熱したオーブンにて5分間熱処理を行い、白色の二層構造の不織布シートS1(25cm×25cm、セルロース微細繊維層の目付10.3g/m2)を得た。

0138

二層構造の不織布シートS1の評価の結果、シート目付21.4g/m2、平均繊維径0.39μm、シート厚み70μm、ガーレー式透気抵抗度9sec/100ml、セルロース微細繊維層の空孔率85%であった。

実施例

0139

[実施例1]
シート製造例1で得られた平均孔径360nmのセルロースナノファイバー層を有する平膜(S1)を装填した孔拡散膜モジュールを組み立てた。有効膜面積は140cm2で第1図と同様に3枚の板状支持体の間に2枚の不織布を挟むように膜モジュールを作製した。一次側流路に該不織布の膜表面が装着され流路の断面形状は厚さ3mm帯状である。二次側流路には該不織布の膜裏面が装着された。該モジュールを用いて第2図のB図の装置を組み立てた。発泡ポリスチレンの市販品を20℃の水中下、ミキサーで粉砕して薄片状(厚さ約10μm)の種々の面積を持つ分散物水溶液を作製した。この水溶液に粒子径50nmの水酸化第二鉄コロイド粒子が分散した水溶液(pH=2.7、粒子濃度1000ppm)を混合してpH=4の水溶液を調製した。この水溶液をウイルス/細菌/細胞の混合物を分散する水溶液のモデル試験液とした。この試験液を下記の条件でB図の装置で孔拡散処理を行った。
平均の膜間差圧;0.05気圧、膜表面でのひずみ速度;50/秒処理速度は2.0LMHリットル/平方メートル/時間)で回収液中にはポリスチレン細片および水酸化第二鉄コロイド粒子の濃度はいずれも検出限界以下(すなわち1ppm以下)であった。処理速度は経時的にわずかに減少したが24時間近似的には一定であった。

0140

加熱することなく分子や粒子を分離、除去、濃縮、分画する技術として広い分野での適用が可能である。典型的にはバイオ医薬品の製造の際の安全対策用(例えばウイルス除去不活化のプロセスバリデーション用)や再生医療等製品の製造の際の安全対策用等、感染性粒子除去対策に利用できる。安全対策用としてその他健康食品製造化粧品の製造に利用される。安全対策分野で今後適用が検討される分野として環境産業(例、リサイクル産業の例として水のリサイクルなど)がある。

0141

孔拡散膜分離技術の特徴は膜を利用して成分を分離する点にある。膜内部に粒子等の大きなサイズの成分を捕捉する効果を利用する膜濾過法との原理上の差がある。そのため本発明の技術は従来の膜濾過技術では適用不可能な分野にも利用可能となる。例えば血漿分画工程あるいは体液の成分の分画回収工程など生物資源より生理活性を持つ成分の分画回収工程での適用が考えられる。農業における新鮮な成分などの濃縮・回収用あるいは液体肥料中の成分濃縮や長期保存用などの分野でも適用される。醗酵業での加熱滅菌に代替する微生物除去に適用し、新しい生製品の製造(例、生プラセンタの製造)に利用できる。

0142

1 不織布で構成される平膜
2モジュールの骨格を構成する支持板
3 モジュール内の二次側流路
4 一次側流路を層流状態で流れる被処理液体の流れ方向
5 二次側流路を流れる膜透過液の流れ方向
6 モジュール内の一次側流路
7層流準備域を内蔵している支持板
8 支持板の内部に存在する層流準備域
9動圧を零にするための弁の役割を持つ布状物
10 膜透過液のモジュールの出口に向かう液体の流入口
11 不織布と支持体とを密着させるためのOリング状のパッキング
M 本発明の孔拡散膜モジュール
T受槽部
L液面レベル制御部
R回収槽
液体輸送ポンプ
圧力計
F1,F2,F3大気へ開放するための空気の出入口、出入口に設置された除菌あるいは除ウイルスフィルタ

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 厦門磊莎茶具有限公司の「 遠心コップ」が 公開されました。( 2020/10/29)

    【課題】本発明は遠心コップを開示した。【解決手段】本体と前記本体の中に設置される液体保存チャンバと伝動チャンバとを含み、前記液体保存チャンバの頂壁の中には浄水チャンバが設置され、前記浄水チャンバと前記... 詳細

  • ▲寧▼波索思机械▲設▼▲計▼有限公司の「 水蒸気の滴下防止を制御する製紙用乾燥機」が 公開されました。( 2020/10/29)

    【課題】本発明は乾燥箱を備える水蒸気の滴下防止を制御する製紙用乾燥機を提供。【解決手段】乾燥箱1の内底壁に複数の支持棒2が溶接され、支持棒の表面に支持板3が溶接され、乾燥箱の表面にガスパイプライン4が... 詳細

  • 特種東海製紙株式会社の「 多層紙及びその製造方法」が 公開されました。( 2020/10/29)

    【課題・解決手段】本発明は、第1紙層及び第2紙層を備える多層紙であって、第1紙層及び第2紙層の間にパール顔料層が存在しており、第2紙層が開口部を有しており、開口部を介してパール顔料層が露出している、多... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ