図面 (/)

技術 メタクリル系樹脂の製造方法

出願人 旭化成株式会社
発明者 吉田淳一
出願日 2019年2月13日 (1年9ヶ月経過) 出願番号 2019-023326
公開日 2020年8月31日 (2ヶ月経過) 公開番号 2020-132664
状態 未査定
技術分野 付加系(共)重合体、後処理、化学変成
主要キーワード 光学レンズ部品 部分曲線 耐熱性保 管状熱交換器 傾斜翼 質量減量 光学カバー 凹凸間
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2020年8月31日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (0)

図面はありません

課題

本発明は、耐熱性が高く、高度に複屈折率が制御され、色調及び透明性に優れるメタクリル系樹脂を提供することを目的としている。

解決手段

メタクリル系樹脂を水素化する水素化工程を含む、ガラス転移温度が120℃超160℃以下であり、光弾性係数が−3×10−12〜+3×10−12Pa−1である、主鎖に環構造を有するメタクリル系樹脂の製造方法。

概要

背景

近年、メタクリル系樹脂は、その透明性、表面硬度等が優れていることに加え、光学特性である複屈折が小さいことから、例えば、各種光製品、例えば、液晶ディスプレイプラズマディスプレイ有機ELディスプレイ等のフラットパネルディスプレイや、小型赤外線センサー微細光導波路、超小型レンズ短波長の光を扱うDVD/BlueRayDisk用ピックアップレンズ等、光学ディスク光学フィルム導光板拡散板レンズプラスチック基板等の光学材料向け光学樹脂として注目され、その市場が大きく拡大しつつある。

特に、主鎖に環構造を有するメタクリル系樹脂及び該メタクリル系樹脂を含む組成物は、耐熱性と光学特性との両方に優れた性能を有していることが知られており(例えば、特許文献1参照)、年々、その需要が急速に拡大してきている。しかしながら、上記のように耐熱性と光学特性とを改良した主鎖に環構造を有するメタクリル系樹脂は、時に環構造等に起因する可視光域吸光によって着色したり、透過度が減少したりといった問題が生じている。そこで、着色が少なく透明度の高い、主鎖に環構造を有するメタクリル系樹脂を得るために、メタクリル系樹脂中に残存する未反応の環状モノマーを低減する方法が開示されている。

例えば、特許文献2には、N−置換マレイミド(a)及びメタクリル酸エステル(b)を含む単量体成分を用い、該単量体成分の一部を供給して重合を開始した後、重合途中に単量体成分の残部を供給する製造方法において、単量体成分の供給終了時に反応系中に存在する未反応の単量体成分中におけるN−置換マレイミド(a)の割合が、単量体成分の全供給量中におけるN−置換マレイミド(a)の割合よりも少なくなるように制御することで残存N−置換マレイミド単量体量を低減し、透明性に優れ、着色の少ない耐熱性メタクリル系樹脂を得る方法が提案されている。

また、特許文献3には、特定の重合開始剤の存在下で重合を行うことにより、他の重合開始剤を併用することなしに、得られる共重合体に未反応のN−置換マレイミドの含量が少なく、耐熱性に優れ、着色の少ないN−置換マレイミド含有メタクリル系樹脂が得られる方法が提案されている。

さらに、特許文献4には、メルカプタン等の硫黄系連鎖移動剤を用いたメタクリル酸エステル系単量体マレイミド類単量体重合系において、酸性物質を反応系中に存在させることで、残存マレイミド類単量体及び成形加工時等の加熱により発生するマレイミド類単量体を低減し、着色を抑制する方法が提案されている。

着色が少ない、主鎖に環構造を有するメタクリル系樹脂を得る他の方法として、原料中に存在する不純物や、重合時に生成する不純物を抑制する方法が開示されている。
例えば、特許文献5には、N−置換マレイミドを含む単量体成分を、非ラジカル重合性酸無水物及び/又は非ラジカル重合性カルボン酸の存在下で重合することで、N−置換マレイミド中の不純物であるアミン成分と反応してアミドに変換させて、酸化着色しにくくする方法が提案されている。

また、特許文献6には、マレイミドモノマーの共重合された耐熱性アクリル樹脂の製造方法において、重合時に特定のアルコールを添加する事により、共重合の際に生成される
着色性の不純物を抑制する方法が提案されている。

さらに特許文献7には、主鎖にN−置換マレイミド単量体由来構造単位を含有するメタクリル系樹脂において、重合終盤重合系内残留するN−置換マレイミド単量体量とメタクリル酸エステル単量体量をメタノール可溶分中における波長400nmに吸光を持制御することにより、メタクリル系樹脂中に残留する着色性オリゴマー量を低減し、樹脂の色調を改良する方法が提案されている。

概要

本発明は、耐熱性が高く、高度に複屈折率が制御され、色調及び透明性に優れるメタクリル系樹脂を提供することを目的としている。メタクリル系樹脂を水素化する水素化工程を含む、ガラス転移温度が120℃超160℃以下であり、光弾性係数が−3×10−12〜+3×10−12Pa−1である、主鎖に環構造を有するメタクリル系樹脂の製造方法。なし

目的

本発明は、耐熱性が高く、高度に複屈折率が制御され、色調及び透明性に優れるメタクリル系樹脂を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

メタクリル系樹脂水素化する水素化工程を含む、ガラス転移温度が120℃超160℃以下であり、光弾性係数が−3×10−12〜+3×10−12Pa−1である、主鎖に環構造を有するメタクリル系樹脂の製造方法。

請求項2

前記水素化工程による前記メタクリル系樹脂の光弾性係数の変化量が0.30×10−12Pa−1以下である、請求項1に記載のメタクリル系樹脂の製造方法。

請求項3

前記水素化工程において用いる水素化触媒不均一系触媒である、請求項1又は2に記載のメタクリル系樹脂の製造方法。

請求項4

前記不均一系触媒がパラジウム触媒である、請求項3に記載のメタクリル系樹脂の製造方法。

請求項5

前記水素化工程において、水素圧を0.2〜5MPaとして20〜100℃で0.1〜4時間反応させる、請求項1〜4のいずれか1項に記載のメタクリル系樹脂の製造方法。

技術分野

0001

本発明は、耐熱性が高く、高度に複屈折率が制御され、色調及び透明性に優れるメタクリル系樹脂及びその製造方法に関する。

背景技術

0002

近年、メタクリル系樹脂は、その透明性、表面硬度等が優れていることに加え、光学特性である複屈折が小さいことから、例えば、各種光製品、例えば、液晶ディスプレイプラズマディスプレイ有機ELディスプレイ等のフラットパネルディスプレイや、小型赤外線センサー微細光導波路、超小型レンズ短波長の光を扱うDVD/BlueRayDisk用ピックアップレンズ等、光学ディスク光学フィルム導光板拡散板レンズプラスチック基板等の光学材料向け光学樹脂として注目され、その市場が大きく拡大しつつある。

0003

特に、主鎖に環構造を有するメタクリル系樹脂及び該メタクリル系樹脂を含む組成物は、耐熱性と光学特性との両方に優れた性能を有していることが知られており(例えば、特許文献1参照)、年々、その需要が急速に拡大してきている。しかしながら、上記のように耐熱性と光学特性とを改良した主鎖に環構造を有するメタクリル系樹脂は、時に環構造等に起因する可視光域吸光によって着色したり、透過度が減少したりといった問題が生じている。そこで、着色が少なく透明度の高い、主鎖に環構造を有するメタクリル系樹脂を得るために、メタクリル系樹脂中に残存する未反応の環状モノマーを低減する方法が開示されている。

0004

例えば、特許文献2には、N−置換マレイミド(a)及びメタクリル酸エステル(b)を含む単量体成分を用い、該単量体成分の一部を供給して重合を開始した後、重合途中に単量体成分の残部を供給する製造方法において、単量体成分の供給終了時に反応系中に存在する未反応の単量体成分中におけるN−置換マレイミド(a)の割合が、単量体成分の全供給量中におけるN−置換マレイミド(a)の割合よりも少なくなるように制御することで残存N−置換マレイミド単量体量を低減し、透明性に優れ、着色の少ない耐熱性メタクリル系樹脂を得る方法が提案されている。

0005

また、特許文献3には、特定の重合開始剤の存在下で重合を行うことにより、他の重合開始剤を併用することなしに、得られる共重合体に未反応のN−置換マレイミドの含量が少なく、耐熱性に優れ、着色の少ないN−置換マレイミド含有メタクリル系樹脂が得られる方法が提案されている。

0006

さらに、特許文献4には、メルカプタン等の硫黄系連鎖移動剤を用いたメタクリル酸エステル系単量体マレイミド類単量体重合系において、酸性物質を反応系中に存在させることで、残存マレイミド類単量体及び成形加工時等の加熱により発生するマレイミド類単量体を低減し、着色を抑制する方法が提案されている。

0007

着色が少ない、主鎖に環構造を有するメタクリル系樹脂を得る他の方法として、原料中に存在する不純物や、重合時に生成する不純物を抑制する方法が開示されている。
例えば、特許文献5には、N−置換マレイミドを含む単量体成分を、非ラジカル重合性酸無水物及び/又は非ラジカル重合性カルボン酸の存在下で重合することで、N−置換マレイミド中の不純物であるアミン成分と反応してアミドに変換させて、酸化着色しにくくする方法が提案されている。

0008

また、特許文献6には、マレイミドモノマーの共重合された耐熱性アクリル樹脂の製造方法において、重合時に特定のアルコールを添加する事により、共重合の際に生成される
着色性の不純物を抑制する方法が提案されている。

0009

さらに特許文献7には、主鎖にN−置換マレイミド単量体由来構造単位を含有するメタクリル系樹脂において、重合終盤重合系内残留するN−置換マレイミド単量体量とメタクリル酸エステル単量体量をメタノール可溶分中における波長400nmに吸光を持制御することにより、メタクリル系樹脂中に残留する着色性オリゴマー量を低減し、樹脂の色調を改良する方法が提案されている。

先行技術

0010

国際公開第2011/149088号
特開平9−324016号公報
特開平9−12640号公報
特開2001−233919号公報
特開平10−45852号公報
特開平5−310853号公報
特開2018−9141号公報

発明が解決しようとする課題

0011

しかしながら、近年、その用途が光学フィルム用途から、レンズや成型板といった厚物成形体用途にも拡大する中、例えば、長い光路長を有する成形体用途であっても、より着色の少ない、かつ高い透明性を発現できる樹脂の提供が切望されてきた。

0012

特許文献2、3及び4では、着色を低減する方法として、単量体自体として強い着色性のあるN−置換マレイミドに注目し、メタクリル系樹脂中に残存するN−置換マレイミド量の低減や成形加工等の熱履歴によるN−置換マレイミド量に注目し、それを低減することにより解決を図る方法が提案されている。
しかしながら、上述のように、例えば、長い光路長を有する成形体用途への拡大に対応するためのメタクリル系樹脂としては、その着色度及び透明性の改良としては不十分であることが分かった。

0013

また、特許文献5及び6では、共重合中の際に特定の化合物を添加することで、着色性の不純物の生成を抑制する方法が提案されている。しかしながら、添加する化合物やそれと反応して生成する物質の影響で、長い光路長を有する成形体用途においては光の透過率が低下する場合がある。

0014

特許文献7では、着色性オリゴマーの低減により着色度の改善が見られるものの、長光路の成形体用途に用いられる場合、さらなる改善が求められる場合がある。

0015

そのため、メタクリル系樹脂の着色性や透明性をさらに改良することが強く望まれている。
本発明は、耐熱性が高く、高度に複屈折率が制御され、色調及び透明性に優れるメタクリル系樹脂を提供することを目的としている。

課題を解決するための手段

0016

本発明者らは、上述した従来技術の問題を解決するために鋭意検討した結果、メタクリル系樹脂に水素添加反応を施すことによって、例えば、光路長の長い成形体であっても、より着色が少なく、高い透明性を発現できることを知見し、本発明をするに至った。

0017

すなわち本発明は以下の通りである。
[1]
メタクリル系樹脂を水素化する水素化工程を含む、
ガラス転移温度が120℃超160℃以下であり、光弾性係数が−3×10−12〜+3×10−12Pa−1である、主鎖に環構造を有するメタクリル系樹脂の製造方法。
[2]
前記水素化工程による前記メタクリル系樹脂の光弾性係数の変化量が0.30×10−12Pa−1以下である、[1]に記載のメタクリル系樹脂の製造方法。
[3]
前記水素化工程において用いる水素化触媒不均一系触媒である、[1]又は[2]に記載のメタクリル系樹脂の製造方法。
[4]
前記不均一系触媒がパラジウム触媒である、[3]に記載のメタクリル系樹脂の製造方法。
[5]
前記水素化工程において、水素圧を0.2〜5MPaとして20〜100℃で0.1〜4時間反応させる、[1]〜[4]のいずれかに記載のメタクリル系樹脂の製造方法。

発明の効果

0018

本発明によれば、耐熱性が高く、高度に複屈折率が制御され、色調及び透明性に優れるメタクリル系樹脂の製造方法を提供することができる。

0019

以下、本発明を実施するための形態(以下、「本実施形態」と言う。)について、詳細に説明するが、本発明は以下の記載に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。

0020

(メタクリル系樹脂)
本実施形態のメタクリル系樹脂は、メタクリル酸エステル単量体単位(A)を含み、主鎖に環構造を有する構造単位(B)を含むメタクリル系樹脂である。主鎖に環構造を有する構造単位(B)は、N−置換マレイミド単量体由来の構造単位(B−1)、グルタルイミド構造単位(B−2)、及びラクトン環構造単位(B−3)等から選択される。また、任意選択的に、メタクリル酸エステル単量体と共重合可能なその他のビニル系単量体単位(C)も含む。

0021

以下、各単量体構造単位について説明する。

0022

−メタクリル酸エステル単量体由来の構造単位(A)−
まず、メタクリル酸エステル単量体由来の構造単位(A)について説明する。
メタクリル酸エステル単量体由来の構造単位(A)は、例えば、以下に示すメタクリル酸エステル類から選ばれる単量体から形成される。
メタクリル酸エステルとしては、例えば、メタクリル酸メチルメタクリル酸エチルメタクリル酸n−プロピル、メタクリル酸イソプロピルメタクリル酸n−ブチルメタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸シクロペンチルメタクリル酸シクロヘキシル、メタクリル酸シクロオクチル、メタクリル酸トリシクロデシル、メタクリル酸ジシクロオクチル、メタクリル酸トリシクロドデシルメタクリル酸イソボルニル、メタクリル酸フェニルメタクリル酸ベンジル、メタクリル酸1−フェニルエチル、メタクリル酸2−フェノキシエチル、メタクリル酸3−フェニルプロピル、メタクリル酸2,4,6−トリブロモフェニル等が挙げられる。
これらの単量体は、単独で用いる場合も2種以上を併用する場合もある。
上記メタクリル酸エステルのうち、得られるメタクリル系樹脂の透明性や耐候性が優れる点で、メタクリル酸メチル及びメタクリル酸ベンジルが好ましい。
メタクリル酸エステル単量体由来の構造単位(A)は、一種のみ含有していても、二種以上含有していてもよい。

0023

メタクリル酸エステル単量体由来の構造単位(A)の含有量としては、後述する環構造を主鎖に有する構造単位(B)によりメタクリル系樹脂に対して耐熱性を十分に付与する観点から、メタクリル系樹脂を100質量%として、好ましくは50〜97質量%、より好ましくは55〜97質量%、さらにより好ましくは55〜95質量%、さらにより好ましくは60〜93質量%、特に好ましくは60〜90質量%である。
なお、メタクリル酸エステル単量体由来の構造単位(A)の含有量は、1H−NMR測定及び13C−NMR測定により求めることができる。1H−NMR測定及び13C−NMR測定は、例えば、測定溶媒としてCDCl3又はDMSO−d6を用い、測定温度40℃で行うことができる。

0024

以下、主鎖に環構造を有する構造単位(B)について説明する。
−主鎖に環構造を有する構造単位(B)−
−−N−置換マレイミド単量体由来の構造単位(B−1)−−
次に、N−置換マレイミド単量体由来の構造単位(B−1)について説明する。
N−置換マレイミド単量体由来の構造単位(B−1)は、下記式(1)で表される単量体及び/又は下記式(2)で表される単量体から選ばれた少なくとも一つとしてよく、好ましくは、下記式(1)及び下記式(2)で表される単量体の両方から形成される。

0025

式(1)中、R1は、炭素数7〜14のアリールアルキル基、炭素数6〜14のアリール基のいずれかを示し、R2及びR3は、それぞれ独立に、水素原子、炭素数1〜12のアルキル基、炭素数6〜14のアリール基のいずれかを示す。
また、R2がアリール基の場合には、R2は、置換基としてハロゲンを含んでいてもよい。
また、R1は、ハロゲン原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基ニトロ基ベンジル基等の置換基で置換されていてもよい。

0026

式(2)中、R4は、水素原子、炭素数3〜12のシクロアルキル基、炭素数1〜12のアルキル基のいずれかを示し、R5及びR6は、それぞれ独立に、水素原子、炭素数1〜18のアルキル基、炭素数6〜14のアリール基のいずれかを示す。

0027

以下、具体的な例を示す。
式(1)で表される単量体としては、例えば、N−フェニルマレイミド、N−ベンジルマレイミド、N−(2−クロロフェニルマレイミド、N−(4−クロロフェニル)マレイミド、N−(4−ブロモフェニル)マレイミド、N−(2−メチルフェニル)マレイミド、N−(2−エチルフェニル)マレイミド、N−(2−メトキシフェニル)マレイミド、N−(2−ニトロフェニル)マレイミド、N−(2、4、6−トリメチルフェニル)マレイミド、N−(4−ベンジルフェニル)マレイミド、N−(2、4、6−トリブロモフェニル)マレイミド、N−ナフチルマレイミド、N−アントラニルマレイミド、3−メチル−1−フェニル−1H−ピロール−2,5−ジオン、3,4−ジメチル−1−フェニル−1H−ピロール−2,5−ジオン、1,3−ジフェニル−1H−ピロール−2,5−ジオン、1,3,4−トリフェニル−1H−ピロール−2,5−ジオン等が挙げられる。
これらの単量体のうち、得られるメタクリル系樹脂の耐熱性、及び複屈折等の光学的特性が優れる点から、N−フェニルマレイミド及びN−ベンジルマレイミドが好ましい。
これらの単量体は、単独で用いる場合も2種以上を併用して用いる場合もある。

0028

式(2)で表される単量体としては、例えば、N−メチルマレイミド、N−エチルマレイミド、N−n−プロピルマレイミド、N−イソプロピルマレイミド、N−n−ブチルマレイミド、N−イソブチルマレイミド、N−s−ブチルマレイミド、N−t−ブチルマレイミド、N−n−ペンチルマレイミド、N−n−ヘキシルマレイミド、N−n−ヘプチルマレイミド、N−n−オクチルマレイミド、N−ラウリルマレイミド、N−ステアリルマレイミド、N−シクロペンチルマレイミド、N−シクロヘキシルマレイミド、1−シクロヘキシル−3−メチル−1−フェニル−1H−ピロール−2,5−ジオン、1−シクロヘキシル−3,4−ジメチル−1−フェニル−1H−ピロール−2,5−ジオン、1−シクロヘキシル−3−フェニル−1H−ピロール−2,5−ジオン、1−シクロヘキシル−3,4−ジフェニル−1H−ピロール−2,5−ジオン等が挙げられる。
これらの単量体のうち、メタクリル系樹脂の耐候性が優れる点から、N−メチルマレイミド、N−エチルマレイミド、N−イソプロピルマレイミド、N−シクロヘキシルマレイミドが好ましく、近年光学材料に求められている低吸湿性に優れることから、N−シクロヘキシルマレイミドが特に好ましい。
これらの単量体は、単独で用いる場合も2種以上を併用して用いることもできる。

0029

本実施形態のメタクリル系樹脂において、式(1)で表される単量体と式(2)で表される単量体とを併用して用いることが、高度に制御された複屈折特性を発現させ得る上で特に好ましい。
式(1)で表される単量体由来の構造単位の含有量(B1)の、式(2)で表される単量体由来の構造単位の含有量(B2)に対するモル割合(B1/B2)は、好ましくは0超15以下、より好ましくは0超10以下である。
モル割合B1/B2がこの範囲にあるとき、本実施形態のメタクリル系樹脂成形体は透明性を維持し、黄変を伴わず、また耐環境性を損なうことなく、良好な耐熱性と良好な光弾性特性を発現する。

0030

N−置換マレイミド単量体由来の構造単位(B−1)の含有量としては、得られる組成物が本実施形態のガラス転移温度の範囲を満たすものであれば特に限定されないが、メタクリル系樹脂を100質量%として、好ましくは5〜40質量%の範囲、より好ましくは5〜35質量%の範囲である。
この範囲内にあるとき、メタクリル系樹脂成形体はより十分な耐熱性改良効果が得られ、また、耐候性、低吸水性、光学特性についてより好ましい改良効果が得られる。なお、N−置換マレイミド単量体由来の構造単位の含有量を40質量%以下とすることが、重合反応時に単量体成分の反応性が低下し未反応で残存する単量体量が多くなることによるメタクリル系樹脂成形体の物性低下を防ぐのに有効である。

0031

−−グルタルイミド系構造単位(B−2)−−
主鎖にグルタルイミド系構造単位を有するメタクリル系樹脂は、例えば、特開2006−249202号公報、特開2007−009182号公報、特開2007−009191号公報、特開2011−186482号公報、再公表特許2012/114718号公報等に記載されている、グルタルイミド系構造単位を有するメタクリル系樹脂であり、当該公報に記載されている方法により形成することができる。

0032

本実施形態のメタクリル系樹脂を構成するグルタルイミド系構造単位は、樹脂重合後に形成されてよい。
具体的には、グルタルイミド系構造単位は、下記一般式(3)で表されるものとしてよい。

0033

上記一般式(3)において、好ましくはR7及びR8は、それぞれ独立して、水素又はメチル基であり、R9は、水素、メチル基、ブチル基、シクロヘキシル基のいずれかであり、より好ましくは、R7は、メチル基であり、R8は、水素であり、R9は、メチル基である。
グルタルイミド系構造単位は、単一の種類のみを含んでいてもよいし、複数の種類を含んでいてもよい。
グルタルイミド系構造単位を有するメタクリル系樹脂において、グルタルイミド系構造単位の含有量については、本実施形態の組成物として好ましいガラス転移温度の範囲を満たすものであれば特に制限はないが、メタクリル系樹脂を100質量%として、好ましくは5〜70質量%の範囲、より好ましくは5〜60質量%の範囲である。
グルタルイミド系構造単位の含有量が上記範囲にあると、成形加工性、耐熱性、及び光学特性の良好な樹脂が得られることから好ましい。
グルタルイミド系構造単位を有するメタクリル系樹脂は、必要に応じて、芳香族ビニル単量体単位をさらに含んでいてもよい。
芳香族ビニル単量体としては特に限定されないが、スチレンα−メチルスチレンが挙げられ、スチレンが好ましい。
グルタルイミド系構造単位を有するメタクリル系樹脂における芳香族ビニル単位の含有量としては、特に限定されないが、グルタルイミド系構造単位を有するメタクリル系樹脂を100質量%として、0〜20質量%が好ましい。
芳香族ビニル単位の含有量が上記範囲にあると、耐熱性と優れた光弾性特性との両立が可能となり好ましい。

0034

−−ラクトン環構造単位(B−3)−−
主鎖にラクトン環構造単位を有するメタクリル系樹脂は、例えば、特開2001−151814号公報、特開2004−168882号公報、特開2005−146084号公報、特開2006−96960号公報、特開2006−171464号公報、特開2007−63541号公報、特開2007−297620号公報、特開2010−180305号公報等に記載されている方法により形成することができる。
本実施形態のメタクリル系樹脂を構成するラクトン環構造単位は、樹脂重合後に形成されてよい。
本実施形態におけるラクトン環構造単位としては、環構造の安定性に優れることから6員環であることが好ましい。
6員環であるラクトン環構造単位としては、例えば、下記一般式(4)に示される構造が特に好ましい。

0035

上記一般式(4)において、R10、R11及びR12は、互いに独立して、水素原子、又は炭素数1〜20の有機残基である。
有機残基としては、例えば、メチル基、エチル基プロピル基等の炭素数1〜20の飽和脂肪族炭化水素基(アルキル基等);エテニル基プロペニル基等の炭素数2〜20の不飽和脂肪族炭化水素基アルケニル基等);フェニル基ナフチル基等の炭素数6〜20の芳香族炭化水素基(アリール基等);これら飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、芳香族炭化水素基における水素原子の一つ以上が、ヒドロキシ基カルボキシル基エーテル基エステル基からなる群から選ばれる少なくとも1種の基により置換された基;等が挙げられる。
ラクトン環構造は、例えば、ヒドロキシ基を有するアクリル酸系単量体と、メタクリル酸メチル等のメタクリル酸エステル単量体とを共重合して、分子鎖にヒドロキシ基とエステル基又はカルボキシル基とを導入した後、これらヒドロキシ基とエステル基又はカルボキシル基との間で、脱アルコールエステル化)又は脱水縮合(以下、「環化縮合反応」ともいう)を生じさせることにより形成することができる。
重合に用いるヒドロキシ基を有するアクリル酸系単量体としては、例えば、2−(ヒドロキシメチルアクリル酸、2−(ヒドロキシエチル)アクリル酸、2−(ヒドロキシメチル)アクリル酸アルキル(例えば、2−(ヒドロキシメチル)アクリル酸メチル、2−(ヒドロキシメチル)アクリル酸エチル、2−(ヒドロキシメチル)アクリル酸イソプロピル、2−(ヒドロキシメチル)アクリル酸n−ブチル、2−(ヒドロキシメチル)アクリル酸t−ブチル)、2−(ヒドロキシエチル)アクリル酸アルキル等が挙げられ、好ましくは、ヒドロキシアリル部位を有する単量体である2−(ヒドロキシメチル)アクリル酸や2−(ヒドロキシメチル)アクリル酸アルキルであり、特に好ましくは2−(ヒドロキシメチル)アクリル酸メチル、2−(ヒドロキシメチル)アクリル酸エチルである。

0036

主鎖にラクトン環構造単位を有するメタクリル系樹脂におけるラクトン環構造単位の含有量は、本実施形態のメタクリル系樹脂のガラス転移温度の範囲を満たすものであれば特に制限はないが、メタクリル系樹脂100質量%に対して、5〜40質量%であることが好ましく、より好ましくは5〜35質量%である。
ラクトン環構造単位の含有量がこの範囲にあると、成形加工性を維持しつつ、耐溶剤性向上や表面硬度向上等の環構造導入効果が発現できる。
なお、メタクリル系樹脂におけるラクトン環構造の含有率は、前述の特許文献記載の方法を用いて決定できる。

0037

主鎖に環構造を有する構造単位(B)の含有量は、本実施形態のメタクリル系樹脂の耐熱性や熱安定性、強度及び流動性の観点から、メタクリル系樹脂を100質量%として、3〜40質量%であることが好ましく、下限は、より好ましくは5質量%以上であり、さらに好ましくは7質量%以上、さらにより好ましくは8質量%以上であり、また、上限は、より好ましくは30質量%以下、さらに好ましくは28質量%以下、さらにより好ましくは25質量%以下、特に好ましくは20質量%以下、特にさらに好ましくは18質量%以下、最も好ましくは15質量%未満である。

0038

−メタクリル酸エステル単量体と共重合可能なその他のビニル系単量体単位(C)−
本実施形態のメタクリル系樹脂を構成し得る、メタクリル酸エステル単量体と共重合可能なその他のビニル系単量体単位(C)(以下、(C)単量体単位と記載する場合がある。)としては、芳香族ビニル系単量体単位(C−1)、アクリル酸エステル単量体単位(C−2)、シアン化ビニル系単量体単位(C−3)、これら以外の単量体単位(C−4)が挙げられる。
メタクリル酸エステル単量体と共重合可能なその他のビニル系単量体単位(C)は、1種のみを単独で用いてもよく、2種以上を組み合わせてもよい。
前記(C)単量体単位は、メタクリル系樹脂に求められる特性に応じて、適宜材料を選択することができるが、熱安定性、流動性、機械特性耐薬品性等の特性が特に必要な場合は、芳香族ビニル系単量体単位(C−1)、アクリル酸エステル単量体単位(C−2)、シアン化ビニル系単量体単位(C−3)からなる群より選ばれる少なくとも一種が好適である。

0039

[芳香族ビニル系単量体単位(C−1)]
本実施形態のメタクリル系樹脂を構成する芳香族ビニル系単量体単位(C−1)をなす単量体としては、特に限定されるものではないが、下記一般式(5)で表される芳香族ビニル系単量体が好ましい。

0040

前記一般式(4)中、R13は、水素原子、又は炭素数が1〜6のアルキル基を表し、当該アルキル基は、例えば、水酸基で置換されていてもよい。
R14は、水素原子、炭素数が1〜12のアルキル基、炭素数が1〜12のアルコキシ基、炭素数が6〜8のアリール基、炭素数が6〜8のアリーロキシ基からなる群より選択されるいずれかであり、R2は、全て同じ基であっても、異なる基であってもよい。また、R14同士で環構造を形成してもよい。
nは、0〜5の整数を表す。

0041

上記一般式(5)で表される単量体の具体例としては、特に限定されるものではないが、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、2,4−ジメチルスチレン、2,5−ジメチルスチレン、3,4−ジメチルスチレン、3,5−ジメチルスチレン、p−エチルスチレン、m−エチルスチレン、о−エチルスチレン、p−tert−ブチルスチレン、1−ビニルナフタレン、2−ビニルナフタレン、1,1−ジフェニルエチレンイソプロペニルベンセン(α−メチルスチレン)、イソプロペニルトルエン、イソプロペニルエチルベンゼン、イソプロペニルプロピルベンゼン、イソプロペニルブチルベンゼン、イソプロペニルペンチルベンゼン、イソプロペニルヘキシルベンゼン、イソプロペニルオクチルベンゼン、α−ヒドロキシメチルスチレン、α−ヒドロキシエチルスチレン等が挙げられる。
上記の中でも、スチレン、イソプロペニルベンゼンが好ましく、流動性付与や、重合転化率の向上による未反応モノマー類の低減等の観点から、スチレンがより好ましい。
これらは、本実施形態のメタクリル系樹脂において、要求される特性に応じて適宜選択してよい。

0042

芳香族ビニル系単量体単位(C−1)を使用する場合の含有量は、耐熱性、残存モノマー種の低減、流動性のバランスを考慮すると、(A)単量体単位と(B)構造単位との合計量を100質量%とした場合に、23質量%以下であることが好ましく、より好ましくは20質量%以下、さらに好ましくは18質量%以下、さらにより好ましくは15質量%以下、よりさらに好ましくは10質量%以下である。

0043

芳香族ビニル系単量体単位(C−1)を、上述したマレイミド系構造単位(B−1)と併用する場合、(B−1)構造単位の含有量に対する(C−1)単量体単位の含有量の割合(質量比)(すなわち、(C−1)含有量/(B−1)含有量)としては、加工流動性や、残存モノマー低減によるシルバーストリークス低減効果等の観点から、0.3〜5であることが好ましい。
ここで、良好な色調や耐熱性を保持する観点から、上限値は、5以下であることが好ましく、より好ましくは3以下、さらに好ましくは1以下である。また、残存モノマー低減の観点から、下限値は、0.3以上であることが好ましく、より好ましくは0.4以上である。
上述した芳香族ビニル系単量体(C−1)は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。

0044

[アクリル酸エステル単量体単位(C−2)]
本実施形態のメタクリル系樹脂を構成するアクリル酸エステル単量体単位(C−2)をなす単量体としては、特に限定されるものではないが、下記一般式(6)で表されるアクリル酸エステル単量体が好ましい。

0045

前記一般式(6)中、R15は、水素原子、又は炭素数が1〜12のアルコキシ基を表し、R16は、炭素数が1〜18のアルキル基、炭素数が3〜12のシクロアルキル基、炭素数が6〜14のアリール基のいずれかを表す。

0046

前記アクリル酸エステル単量体単位(C−2)を形成するための単量体としては、本実施形態のフィルム用のメタクリル系樹脂において、耐候性、耐熱性、流動性、熱安定性を高める観点から、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸sec−ブチル、アクリル酸2−エチルヘキシルアクリル酸シクロヘキシルアクリル酸フェニル等が好ましく、より好ましくは、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチルであり、入手しやすさの観点から、アクリル酸メチル、アクリル酸エチルがさらに好ましい。
上記アクリル酸エステル単量体単位(C−2)は、1種のみを単独で用いてもよく、2種以上を併用してもよい。

0047

アクリル酸エステル単量体単位(C−2)を使用する場合の含有量は、耐熱性及び熱安定性の観点から、(A)単量体単位と(B)構造単位との合計量を100質量%とした場合に、5質量%以下であることが好ましく、より好ましくは3質量%以下である。

0048

[シアン化ビニル系単量体単位(C−3)]
本実施形態のメタクリル系樹脂を構成するシアン化ビニル系単量体単位(C−3)をなす単量体としては、特に限定されるものではないが、例えば、アクリロニトリルメタクリロニトリルエタクリニトリルシアン化ビニリデン等が挙げられ、中でも、入手のしやすさ、耐薬品性付与の観点から、アクリロニトリルが好ましい。
上記シアン化ビニル系単量体単位(C−3)は、1種のみを単独で用いてもよく、2種以上を併用してもよい。

0049

シアン化ビニル系単量体単位(C−3)を使用する場合の含有量は、耐溶剤性、耐熱性保持の観点から、(A)単量体単位と(B)構造単位との合計量を100質量%とした場合に、15質量%以下であることが好ましく、より好ましくは12質量%以下、さらに好ましくは10質量%以下である。

0050

[(C−1)〜(C−3)以外の単量体単位(C−4)]
本実施形態のメタクリル系樹脂を構成する(C−1)〜(C−3)以外の単量体単位(C−4)をなす単量体としては、特に限定されるものではないが、例えば、アクリルアミドメタクリルアミド等のアミド類グリシジルメタアクリレートアリルグリシジルエーテル等のグリシジル化合物;アクリル酸、メタクリル酸、イタコン酸マレイン酸フマル酸等の不飽和カルボン酸類、及びこれらの半エステル化物又は無水物;メタリルアルコールアリルアルコール等の不飽和アルコール類エチレンプロピレン、4−メチル−1−ペンテン等のオレフィン類酢酸ビニル、2−ヒドロキシメチル−1−ブテンメチルビニルケトン、N−ビニルピロリドンN−ビニルカルバゾール等の上述以外のビニル化合物又はビニリデン化合物等が挙げられる。
さらに、反応性二重結合を複数有する架橋性の化合物として、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート等のエチレングリコール又はそのオリゴマーの両末端水酸基をアクリル酸又はメタクリル酸でエステル化したもの;ネオペンチルグリコールジ(メタ)アクリレート、ジ(メタ)アクリレート等の2個のアルコールの水酸基をアクリル酸又はメタクリル酸でエステル化したもの;トリメチロールプロパンペンタエリスリトール等の多価アルコール誘導体をアクリル酸又はメタクリル酸でエステル化したもの;ジビニルベンゼン等の多官能モノマー等が挙げられる。

0051

上述した(C)単量体単位を構成する単量体の中でも、アクリル酸メチル、アクリル酸エチル、スチレン、アクリロニトリルからなる群より選ばれる少なくとも一種が、入手のしやすさの観点から、好ましい。

0052

メタクリル酸エステル単量体と共重合可能なその他のビニル系単量体単位(C)の含有量は、(B)構造単位による耐熱性付与の効果を高める観点から、メタクリル系樹脂を100質量%として、0〜20質量%であり、0〜18質量%であることが好ましく、0〜15質量%であることがより好ましい。
特に、(C)単量体単位として反応性二重結合を複数有する架橋性の多官能(メタ)アクリレートを使用する場合は、(C)単量体単位の含有量は、重合体の流動性の観点から、0.5質量%以下であることが好ましく、より好ましくは0.3%質量以下、更に好ましくは0.2質量%以下である。

0053

特に、本実施形態では、メタクリル系樹脂成形体の耐熱性、光学特性の観点から、(B)構造単位と(C)単量体単位との合計量を100質量%とした時に、(B)構造単位の含有量が、45〜100質量%である。このとき、(C)構造単位の含有量が0〜55質量%である。そして、(B)構造単位の含有量は、好ましくは50〜100質量%であり、より好ましくは50〜90質量%であり、さらに好ましくは50〜80質量%である。

0054

以下、本実施形態のメタクリル系樹脂の特性について記載する。

0055

本実施形態におけるメタクリル系樹脂のガラス転移温度(Tg)は、120℃超160℃以下である。
メタクリル系樹脂のガラス転移温度が120℃を超えていれば、近年のレンズ成形体液晶ディスプレイ用フィルム成形体光学フィルムとして必要十分な耐熱性をより容易に得ることができる。ガラス転移温度(Tg)は、使用環境温度下での寸法安定性の観点から、より好ましくは125℃以上、さらに好ましくは130℃以上である。
一方、メタクリル樹脂のガラス転移温度(Tg)が160℃以下である場合には、極端高温での溶融加工を避け、樹脂等の熱分解を抑制し、良好な製品を得ることができる。ガラス転移温度(Tg)は、上述の理由から、好ましくは150℃以下である。
なお、ガラス転移温度(Tg)は、JIS−K7121に準拠して測定することにより決定できる。具体的には、後述する実施例に記載する方法を用いて測定することができる。

0056

本実施形態におけるメタクリル系樹脂のメタノール可溶分中における波長400nmに吸光を持つ成分の含有量は、好ましくは0.6質量%以下であり、より好ましくは0.5質量%以下であり、さらに好ましくは0.4質量%以下であり、さらにより好ましくは0.3質量%以下であり、特に好ましくは0.1質量%以下ある。
波長400nmに吸光を持つ成分の割合を0.5質量%以下とすることで、色調が良好で光学用途として好適な成形品を得ることができる。
なお、メタノール可溶分中における波長400nmに吸光を持つ成分の含有量は、波長400nmのUV検出器を用いたGPC測定により、メタノール可溶分の全ピーク面積を求めつつ、N−フェニルマレイミド単量体を基準とした検量線を作成し、常法による解析により、メタノール可溶分中における波長400nmに吸光を持つ成分の含有量を、N−フェニルマレイミド換算の質量%として、算出することができる。
具体的には、後述の実施例にて詳述する。
なお、メタノール可溶分及びメタノール不溶分は、メタクリル系樹脂をクロロホルム溶液とした後に溶液をメタノール中に滴下することによって再沈殿を行い、濾液及び濾物分別し、その後に各々を乾燥させることによって得られたものをいい、具体的には、後述の実施例に記載の方法にて得ることができる。

0057

本実施形態におけるメタクリル系樹脂のメタノール可溶分中における分子量2000以下の成分の含有量は、40質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。
メタノール可溶分中における分子量2000以下の成分の含有量を40質量%以下とすることで、良好な色調の成形品を得ることができるとともに、フィルム成形時のキャストロール汚れや、射出成形時のシルバーストリークス発生等の成形時のトラブルを抑制することができる。
なお、メタノール可溶分中における分子量2000以下の成分の含有量は、RI検出器を用いてGPCでメタノール可溶分の測定を行い、全ピーク面積に対する分子量2000以下の溶出面積の割合によって算出される。具体的には、後述の実施例記載の方法にて得ることができる。

0058

本実施形態におけるメタクリル系樹脂のメタノール可溶分の量の、メタノール可溶分の量とメタノール不溶分の量の合計量100質量%に対する割合は、好ましくは5質量%以下であり、より好ましくは4質量%以下であり、さらに好ましくは3.5質量%以下であり、よりさらに好ましくは3質量%以下である。
可溶分の量の割合を5質量%以下とすることで、フィルム成形時のキャストロール汚れや、射出成形時のシルバーストリークス発生等の成形時のトラブルを抑制することができる。
なお、メタノール可溶分及びメタノール不溶分の詳細については、上述のとおりである。

0059

本実施形態におけるメタクリル系樹脂では、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリメチルメタクリレート換算の重量平均分子量(Mw)が、好ましくは65,000〜300,000の範囲であり、より好ましくは100,000〜220,000の範囲であり、さらに好ましくは120,000〜180,000の範囲である。
重量平均分子量(Mw)が上記範囲にあると、機械的強度、及び流動性のバランスにも優れる。
また、分子量分布を表すパラメータとしての、重量平均分子量(Mw)、数平均分子量(Mn)の間における比に関しては、本実施形態におけるメタクリル系樹脂では、流動性と機械強度とのバランスを考慮すると、Mw/Mnは、1.5〜3.0であることが好ましく、1.6〜2.5であることがより好ましく、1.6〜2.3であることがさらに好ましい。
なお、メタクリル系樹脂の重量平均分子量、数平均分子量については、後述の実施例記載の方法にて測定することができる。

0060

本実施形態のメタクリル系樹脂の光弾性係数CRの絶対値は、3.0×10−12Pa−1以下であり、2.0×10−12Pa−1以下であることが好ましく、1.0×10−12Pa−1以下であることがより好ましい。
光弾性係数に関しては種々の文献に記載があり(例えば、化学総説,No.39,1998(学会出版センター発行)参照)、下記式(i−a)及び(i−b)により定義されるものである。光弾性係数CRの値がゼロに近いほど、外力による複屈折変化が小さいことがわかる。
CR=Δn/σR・・・(i−a)
Δn=nx−ny・・・(i−b)
(式中、CRは、光弾性係数、σRは、伸張応力、Δnは、複屈折、nxは、伸張方向屈折率、nyは、面内で伸張方向と垂直な方向の屈折率、をそれぞれ示す。)
本実施形態のメタクリル系樹脂の光弾性係数CRの絶対値が3.0×10−12Pa−1以下であれば、レンズ等の成形体にした場合に、成形時の残留応力による複屈折の発生を抑制することができる。
メタクリル系樹脂の光弾性係数CRは、具体的には、後述の実施例記載の方法にて求めることができる。

0061

本実施形態におけるメタクリル系樹脂は、光路長3mmにおけるYIが、0〜1.2であることが好ましく、より好ましくは0〜1.1、さらに好ましくは0〜1.1である。
また、上記のYIの測定における条件と同じ条件で測定した光路長3mmにおける全光線透過率が、90〜93%であることが好ましく、より好ましくは91〜93%、さらに好ましくは92〜93%である。
光路長3mmにおけるYIや全光線透過率がこの範囲にあることにより、シート等の比較的薄い成形体において実用十分な色調や透過度を得ることができる。
なお、光路長3mmにおけるYI及び全光線透過率は、後述の実施例記載の方法にて測定することができる。

0062

本実施形態におけるメタクリル系樹脂は、光路長80mmにおけるYIが、0〜15であることが好ましく、より好ましくは0〜12、さらに好ましくは0〜10である。
光路長80mmにおけるYIがこの範囲にあることにより、導光板等の長光路の成形体用途にも好適な色調や透明性を得ることができる。
なお、光路長80mmにおけるYIは、後述の実施例記載の方法にて測定することができる。

0063

(メタクリル系樹脂の製造方法)
以下、本実施形態のメタクリル系樹脂の製造方法について記載する。
主鎖にN−置換マレイミド単量体由来の構造単位を有するメタクリル系樹脂の製造方法としては、塊状重合法溶液重合法懸濁重合法、沈殿重合法、乳化重合法のいずれかの重合方法が挙げられ、好ましくは懸濁重合法、塊状重合法、溶液重合法であり、さらに好ましくは溶液重合法である。
本実施形態における製造方法では、重合形式として、例えば、バッチ重合法、セミバッチ重合法、連続重合法のいずれも用いることができる。
本実施形態における製造方法では、ラジカル重合により単量体を重合することが好ましい。

0064

以下、N−置換マレイミド単量体由来の構造単位を有するメタクリル系樹脂(以下、「マレイミド共重合体」と記す場合がある)の製造方法の一例として、溶液重合法を用いてラジカル重合で製造する場合について、具体的に説明する。

0065

本実施形態においては、単量体の一部を重合開始前反応器内に仕込み、重合開始剤を添加することによって重合を開始した後に、単量体の残部を供給する方法、いわゆるセミバッチ重合法(半回分法とも称される)を好ましく用いることができる。この方法を採用することにより、得られる重合物の分子量分布や組成分布を制御しやすくなる傾向にある。また、特開2018−9141号公報に記載するようなセミバッチ重合法を採用することにより、水素添加前の着色性オリゴマー量を一層低減することができる。

0066

マレイミド共重合体の製造において、初期仕込みにおいて用いられる(重合開始時における)単量体の量と重合開始後に添加する単量体の量との比(重合開始時の単量体の量:重合開始後に添加する単量体の量)は、質量比で、好ましくは1:9〜8:2の範囲であり、より好ましくは2:8〜7.5:2.5の範囲であり、さらに好ましくは3:7〜5:5の範囲である。
単量体の量比を上記範囲とすれば、共重合時に利用する各単量体の共重合反応性を考慮し、初期仕込みにおける単量体の混合組成を適宜選択することが可能となり、得られる重合物の組成分布をより制御しやすくなる傾向にある。

0067

用いる重合溶媒としては、重合により得られるマレイミド共重合体の溶解度を高め、ゲル化防止等の目的から反応液の粘度を適切に保てるものであれば、特に制限はない。
具体的な重合溶媒としては、例えば、トルエンキシレン、エチルベンゼン、イソプロピルベンゼン等の芳香族炭化水素メチルイソブチルケトンブチルセロソルブメチルエチルケトンシクロヘキサノン等のケトンジメチルホルムアミド、2−メチルピロリドン等の極性溶媒を用いることができる。
また、重合時における重合生成物の溶解を阻害しない範囲で、メタノール、エタノールイソプロパノール等のアルコールを重合溶媒として併用してもよい。
これらは、1種単独で用いても2種以上を併用して用いてもよい。

0068

重合時の溶媒量としては、重合が進行し、生産時に共重合体や使用モノマー析出等が起こらず、容易に除去できる量であれば、特に制限はないが、例えば、配合する単量体の総量を100質量部とした場合に、10〜200質量部とすることが好ましい。より好ましくは25〜200質量部、さらに好ましくは50〜200質量部、さらにより好ましくは50〜150質量部である。

0069

重合温度としては、重合が進行する温度であれば特に制限はないが、生産性の観点から50〜200℃であることが好ましく、より好ましくは80〜200℃である。さらに好ましくは90〜150℃、 さらにより好ましくは100〜140℃、よりさらに好ましくは100〜130℃である。

0070

また、重合時間については、必要な転化率にて、必要な重合度を得ることができる時間であれば特に限定はないが、生産性等の観点から、0.5〜10時間であることが好ましく、より好ましくは1〜8時間である。

0071

重合反応時には、必要に応じて、重合開始剤や連鎖移動剤を添加して重合してもよい。

0072

重合開始剤としては、一般にラジカル重合において用いられる任意の開始剤を使用することができ、例えば、クメンハイドロパーオキサイドジイソプロピルベンゼンハイドロパーオキサイド、ジ−t−ブチルパーオキサイドラウロイルパーオキサイドベンゾイルパーオキサイド、t−ブチルパーオキシイソプロピルカーボネート、t−アミルパーオキシ−2−エチルヘキサノエート、t−アミルパーオキシイソノナノエート、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン等の有機過酸化物;2,2’−アゾビス(イソブチロニトリル)、1,1’−アゾビス(シクロヘキサンカルボニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル−2,2’−アゾビスイソブチレート等のアゾ化合物;等を挙げることができる。
これらは、単独で用いても2種以上を併用して用いてもよい。
重合開始剤の添加量としては、重合に用いる単量体の総量を100質量部とした場合に、0.01〜1質量部としてよく、好ましくは0.05〜0.5質量部の範囲である。
これらの重合開始剤は、重合反応が進行中であれば、いずれの段階に添加してもよい。

0073

本実施形態では、反応系内に残存する未反応モノマー総量に対する重合開始剤より発生するラジカル総量の割合が、常時一定値以下となるように、開始剤の種類、開始剤量、及び重合温度等を適宜選択することが好ましい。

0074

特に、本実施形態では、特に重合開始剤の添加開始から添加終了までの時間(重合開始剤添加時間)の前半に、少なくとも一度、重合開始剤の単位時間当たりの添加量を、添加開始時の単位時間当たりの添加量よりも小さくすることが好ましい。
この方法を採用することにより、重合後期におけるオリゴマーや低分子量体生成量を抑制したり、重合時の過熱を抑制して重合の安定性を図ったりすることできる。

0075

連鎖移動剤としては、一般的なラジカル重合において用いる連鎖移動剤が使用でき、例えば、n−ブチルメルカプタン、n−オクチルメルカプタンn−デシルメルカプタン、n−ドデシルメルカプタンチオグリコール酸2−エチルヘキシル等のメルカプタン化合物四塩化炭素塩化メチレンブロモホルム等のハロゲン化合物;α−メチルスチレンダイマー、α−テルピネンジペンテンターピノーレン等の不飽和炭化水素化合物;等が挙げられる。
これらは、単独で用いても2種以上を併用して用いてもよい。
これらの連鎖移動剤は、重合反応が進行中であれば、いずれの段階に添加してもよく、特に限定されるものではない。
連鎖移動剤の添加量としては、重合に用いる単量体の総量を100質量部とした場合に、0.01〜1質量部としてよく、好ましくは0.05〜0.5質量部である。

0076

溶液重合においては、重合溶液中の溶存酸素濃度を出来る限り低減させておくことが重要であり、例えば、溶存酸素濃度は、10ppm以下の濃度であることが好ましい。溶存酸素濃度は、例えば、溶存酸素計DOメーターB−505(飯島電子工業株式会社製)を用いて測定することができる。溶存酸素濃度を低下する方法としては、重合溶液中に不活性ガスバブリングする方法、重合前に重合溶液を含む容器中を不活性ガスで0.2MPa程度まで加圧した後に放圧する操作を繰り返す方法、重合溶液を含む容器中に不活性ガスを通ずる方法等の方法を適宜選択することができる。

0077

溶液重合により得られる重合液から重合物を回収する方法としては、特に制限はないが、例えば、重合により得られた重合生成物が溶解しないような炭化水素系溶媒アルコール系溶媒等の貧溶媒が過剰量存在する中に重合液を添加した後、ホモジナイザーによる処理(乳化分散)を行い、未反応単量体について、液−液抽出、固−液抽出する等の前処理を施すことで、重合液から分離する方法;あるいは、脱揮工程と呼ばれる工程を経由して重合溶媒や未反応の単量体を分離し、重合生成物を回収する方法;等が挙げられる。
ここで、脱揮工程とは、重合溶媒、残存単量体反応副生成物等の揮発分を、加熱・減圧条件下で、除去する工程をいう。

0078

脱揮工程に用いる装置としては、例えば、管状熱交換器と脱揮槽とからなる脱揮装置;神鋼環境ソリューション社製ワイブレン、及びエクセバ、日立製作所製コントラ及び傾斜翼コントラ等の薄膜蒸発機;脱揮性能を発揮するに十分な滞留時間表面積とを有するベント付き押出機;等を挙げることができる。
これらの中からいずれか2つ以上の装置を組み合わせた脱揮装置を用いた脱揮工程等も利用することができる。

0079

脱揮装置での処理温度は、好ましくは150〜350℃、より好ましくは170〜300℃、さらに好ましくは200〜280℃である。この温度が150℃以上であると、残存揮発分が多くなることを防ぐのに有効である。逆に、この温度が350℃以下であると、得られるメタクリル系樹脂の着色や分解が起こる恐れが少ない。

0080

脱揮装置内における真空度としては、10〜500Torrの範囲としてよく、中でも、10〜300Torrの範囲が好ましい。この真空度が500Torr以下であると、揮発分が残存しにくい傾向にあり、真空度が10Torr以上であると、工業的な実施がより容易である。

0081

処理時間としては、残存揮発分の量により適宜選択されるが、得られるメタクリル系樹脂の着色や分解を抑えるためには、短いほど好ましい。

0082

脱揮工程を経て回収された重合物は、造粒工程と呼ばれる工程にて、ペレット状に加工
してもよい。
造粒工程では、溶融状態の樹脂を多孔ダイよりストランド状に押出し、コールドカット
方式、空中ホットカット方式、水中ストランドカット方式、及びアンダーウォーターカッ
ト方式にて、ペレット状に加工してもよい。

0083

なお、脱揮装置としてベント付押出機を採用した場合には、脱揮工程と造粒工程とを兼
ねてもよい。

0084

次に、グルタルイミド系構造単位を有するメタクリル系樹脂の製造方法の一例を説明する。

0085

主鎖にグルタルイミド系構造単位を有するメタクリル系樹脂は、例えば、特開2006−249202号公報、特開2007−009182号公報、特開2007−009191号公報、特開2011−186482号公報、国際公開第2012/114718号等に記載されている、グルタルイミド系構造単位を有するメタクリル系樹脂であり、当該公報に記載されている方法により形成することができる。
以下、グルタルイミド系構造単位を有するメタクリル系樹脂の製造方法の一例として、溶液重合法を用いてラジカル重合で製造する場合について、具体的に説明する。

0086

まず、メタクリル酸メチル等の(メタ)アクリル酸エステルを重合することにより、(メタ)アクリル酸エステル重合体を製造する。グルタルイミド系構造単位を有するメタクリル系樹脂に芳香族ビニル単位を含める場合には、(メタ)アクリル酸エステルと芳香族ビニル(例えば、スチレン)とを共重合させ、(メタ)アクリル酸エステル−芳香族ビニル共重合体を製造する。

0087

次に、上記(メタ)アクリル酸エステル重合体又は上記メタクリル酸エステル−芳香族ビニル共重合体にイミド化剤を反応させることで、イミド化反応を行う(イミド化工程)。これにより、グルタルイミド系構造単位を有するメタクリル系樹脂を製造することができる。

0088

上記イミド化剤としては、特に限定されず、上記一般式(3)で表されるグルタルイミド系構造単位を生成できるものであればよい。
イミド化剤としては、具体的には、アンモニア又は一級アミンを用いることができる。上記一級アミンとしては、例えば、メチルアミンエチルアミンn−プロピルアミン、i−プロピルアミンn−ブチルアミン、i−ブチルアミン、tert−ブチルアミン、n−ヘキシルアミン等の脂肪族炭化水素基含有一級アミン;シクロヘキシルアミン等の脂環式炭化水素基含有一級アミン;等が挙げられる。
上記イミド化剤のうち、コスト、物性の面から、アンモニア、メチルアミン、シクロヘキシルアミンを用いることが好ましく、メチルアミンを用いることが特に好ましい。
このイミド化工程では、上記イミド化剤の添加割合を調整することにより、得られるグルタルイミド系構造単位を有するメタクリル系樹脂におけるグルタルイミド系構造単位の含有量を調整することができる。

0089

上記イミド化反応を実施するための方法は、特に限定されないが、従来公知の方法を用いることができ、例えば、押出機又はバッチ式反応槽を用いることでイミド化反応を進行させることができる。
上記押出機としては、特に限定されないが、例えば、単軸押出機二軸押出機多軸押出機等を用いることができる。

0090

中でも、二軸押出機を用いることが好ましい。二軸押出機によれば、原料ポリマーとイミド化剤との混合を促進することができる。
二軸押出機としては、例えば、非噛合い型同方向回転式、噛合い型同方向回転式、非噛合い型異方向回転式、噛合い型異方向回転式等が挙げられる。

0091

上記例示した押出機は、単独で用いてもよいし、複数を直列に連結して用いてもよい。
また、使用する押出機には、大気圧以下に減圧可能なベン卜口を装着することが、反応のイミド化剤、メタノール等の副生物、又は、モノマー類を除去することができるため、特に好ましい。

0092

グルタルイミド系構造単位を有するメタクリル系樹脂を製造するにあたっては、上記イミド化の工程に加えて、ジメチルカーボネート等のエステル化剤で樹脂のカルボキシル基を処理するエステル化工程を含むことができる。その際、トリメチルアミントリエチルアミントリブチルアミン等の触媒を併用し処理することもできる。
エステル化工程は、上記イミド化工程と同様に、例えば、押出機又はバッチ式反応槽を用いることで進行させることができる。また、過剰なエステル化剤、メタノール等の副生物、又はモノマー類を除去する目的で、使用する装置には、大気圧以下に減圧可能なベン卜口を装着することが好ましい。

0093

イミド化工程、及び必要に応じてエステル化工程を経たメタクリル系樹脂は、多孔ダイを附帯した押出機から、ストランド状に溶融し押出し、コールドカット方式、空中ホットカット方式、アンダーウォーターカット方式等にて、ペレット状に加工される。
また、樹脂の異物数を低減するために、メタクリル系樹脂を、トルエン、メチルエチルケトン、塩化メチレン等の有機溶媒に溶解し、得られたメタクリル系樹脂溶液を濾過し、その後、有機溶媒を脱揮する方法を用いることも好ましい。

0094

以下、主鎖に環構造を有する構造単位(B)として、ラクトン環構造単位(B−2)を含むメタクリル系樹脂の製造方法について詳述する。
主鎖にラクトン環構造単位を有するメタクリル系樹脂は、例えば、特開2001−151814号公報、特開2004−168882号公報、特開2005−146084号公報、特開2006−96960号公報、特開2006−171464号公報、特開2007−63541号公報、特開2007−297620号公報、特開2010−180305号公報等に記載されている方法により形成することができる。

0095

以下、ラクトン環構造単位を有するメタクリル系樹脂の製造方法の一例として、溶液重合法を用いてラジカル重合で製造する場合について、具体的に説明する。

0096

本実施形態における主鎖にラクトン環構造単位(B−2)を有するメタクリル系樹脂の製造方法としては、環化反応を促進させる上で、溶媒を使用する溶液重合が好ましい。ここで、ラクトン環構造は、重合後に環化反応により形成させる方法が用いられてよい。
本実施形態におけるラクトン環構造単位を有するメタクリル系樹脂は、重合反応終了後、環化反応を行うことにより得ることができる。そのため、重合反応液から重合溶媒を除去することなく、溶媒を含んだ状態で、ラクトン環化反応に供することが好ましい。
重合により得られた共重合体は、加熱処理されることにより、共重合体の分子鎖中に存在するヒドロキシル基(水酸基)とエステル基との間での環化縮合反応を起こし、ラクトン環構造を形成する。
ラクトン環構造形成の加熱処理の際、環化縮合によって副生し得るアルコールを除去するための真空装置あるいは脱揮装置を備えた反応装置、脱揮装置を備えた押出機等を用いることもできる。

0097

ラクトン環構造形成の際、必要に応じて、環化縮合反応を促進するために、環化縮合触媒を用いて加熱処理してもよい。
環化縮合触媒の具体的な例としては、例えば、亜リン酸メチル、亜リン酸エチル、亜リン酸フェニル亜リン酸ジメチル亜リン酸ジエチル亜リン酸ジフェニル亜リン酸トリメチル、亜リン酸トリエチル等の亜リン酸モノアルキルエステルジアルキルエステル又はトリエステルリン酸メチル、リン酸エチル、リン酸2−エチルヘキシル、リン酸オクチル、リン酸イソデシル、リン酸ラウリル、リン酸ステアリル、リン酸イソステアリル、リン酸ジメチル、リン酸ジエチル、リン酸ジ−2−エチルヘキシル、リン酸ジイソデシル、リン酸ジラウリル、リン酸ジステアリル、リン酸ジイソステアリル、リン酸トリメチルリン酸トリエチルリン酸トリイソデシル、リン酸トリラウリル、リン酸トリステアリル、リン酸トリイソステアリル等のリン酸モノアルキルエステル、ジアルキルエステル又はトリアルキルエステル;等が挙げられる。
これらは、単独で用いても2種以上を併用してもよい。

0098

環化縮合触媒の使用量としては、特に限定されるものではないが、例えば、メタクリル系樹脂100質量部に対して、好ましくは0.01〜3質量部であり、より好ましくは0.05〜1質量部である。
使用量が0.01質量部未満であると、環化縮合反応の反応率が充分に向上しないおそれがある。逆に、触媒の使用量が3質量部を超えると、得られた重合体が着色することや、重合体が架橋して、溶融成形が困難になるおそれがある。

0099

環化縮合触媒の添加時期としては、特に限定されるものではなく、例えば、環化縮合反応初期に添加してもよいし、反応途中に添加してもよいし、その両方で添加してもよい。
溶媒の存在下に環化縮合反応を行う際に、同時に脱揮を行うことも好ましく用いられる。
環化縮合反応と脱揮工程とを同時に行う場合に用いる装置については、特に限定されるものではないが、熱交換器と脱揮槽からなる脱揮装置やベント付き押出機、また、脱揮装置と押出機を直列に配置したものが好ましく、ベント付き二軸押出機がより好ましい。
用いるベント付き二軸押出機としては、複数のベント口を有するベント付き押出機が好ましい。

0100

ベント付き押出機を用いる場合の反応処理温度は、好ましくは150〜350℃、より好ましくは200〜300℃である。反応処理温度が150℃未満であると、環化縮合反応が不充分となって残存揮発分が多くなることがある。逆に、反応処理温度が350℃を超えると、得られた重合体の着色や分解が起こることがある。
ベント付き押出機を用いる場合の真空度としては、好ましくは10〜500Torr、より好ましくは10〜300Torrである。真空度が500Torrを超えると、揮発分が残存しやすいことがある。逆に、真空度が10Torr未満であると、工業的な実施が困難になることがある。

0101

上記の環化縮合反応を行う際に、残存する環化縮合触媒を失活させる目的で、造粒時に有機酸アルカリ土類金属及び/又は両性金属塩を添加することも好ましい。
有機酸のアルカリ土類金属及び/又は両性金属塩としては、例えば、カルシウムアセチルアセテートステアリン酸カルシウム酢酸亜鉛オクチル酸亜鉛、2−エチルヘキシル酸亜鉛等を用いることができる。

0102

環化縮合反応工程を経た後、メタクリル系樹脂は、多孔ダイを附帯した押出機からストランド状に溶融し押出し、コールドカット方式、空中ホットカット方式、及びアンダーウォーターカット方式にてペレット状に加工する。
なお、前述のラクトン環構造単位を形成するためのラクトン化は、樹脂の製造後樹脂組成物の製造(後述)前に行ってもよく、樹脂組成物の製造中に、樹脂と樹脂以外の成分との溶融混練と併せて、行ってもよい。

0103

本実施形態におけるメタクリル系樹脂は、N−置換マレイミド単量体由来の構造単位、グルタルイミド構造単位、ラクトン環構造単位からなる群より選ばれる少なくとも一種の環構造単位を有することが好ましく、その中でも、特に、他の熱可塑性樹脂ブレンドすること無く、光弾性係数等の光学特性を高度に制御しやすい点から、N−置換マレイミド単量体由来の構造単位を有することが特に好ましい。

0104

≪水素化工程≫
本実施形態におけるメタクリル系樹脂の製造方法は、樹脂において良好な色調を得るため、メタクリル系樹脂を水素化する水素化工程を含む。

0105

主鎖に環構造を有するメタクリル系樹脂の製造においては、重合工程や環化工程等における副反応により、共役二重結合を含む低分子量体、オリゴマー成分酸化劣化物等が発生し、その一部がメタクリル系樹脂中において着色の原因となると考えられる。これらの着色原因物質を水素添加反応によって無色化することにより、良好な色調の重合体を得ることができる。

0106

本実施形態の水素化工程では、重合工程後や重合後に主鎖に環構造を形成させるための環化反応を施す場合には当該環化反応後の重合液をそのまま供する、あるいは重合液を希釈後又濃縮後に供することができ、脱揮工程後や造粒工程後に得られる樹脂を有機溶媒に再溶解した後に供することもできる。
脱揮・造粒工程での熱履歴を低減する観点からは、重合工程後の重合液をそのまま、あるいは希釈後又は濃縮後に、水素化工程に供することが好ましい。また、メタクリル系樹脂の主鎖に環構造を導入する際に着色成分が形成され得ると考えられるため、水素化工程は、環構造の導入に関わる重合工程後あるいは環化反応工程後に、実施することが好ましい。

0107

水素化反応は、通常の方法、メタクリル系樹脂の溶液に水素添加触媒を添加し、それに、常圧〜30MPa、好ましくは0.2〜15MPaの水素ガスを、0〜180℃、好ましくは20〜150℃で、0.1〜24時間、好ましくは0.2〜12時間、作用させることによって行われる。

0108

水素添加触媒としては、通常のオレフィン性化合物の水素添加反応に用いられるものを使用することができる。この水素添加触媒としては、不均一系触媒及び均一系触媒が公知である。

0109

不均一系触媒としては、パラジウム白金ニッケルロジウムルテニウム等の触媒物質カーボンシリカアルミナチタニア等の担体担持させた固体触媒等を挙げることができる。

0110

また、均一系触媒としては、ナフテン酸ニッケル−トリエチルアルミニウムニッケルアセチルアセトナート−トリエチルアルミニウム、オクテン酸コバルト−n−ブチルリチウムチタノセンジクロリドジエチルアルミニウムモノクロリド、酢酸コバルト−トリエチルアルミニウム、酢酸ロジウム、クロロトリストリフェニルホスフィン)ロジウム等を挙げることができる。

0111

不均一系触媒として、粒径0.2μm以上のもの、即ち、粒径が0.2μm未満のものを実質的に含まないものを用いると、濾過による不均一系触媒の除去が容易であるので好ましい。

0112

これらの水素添加触媒や水素化条件から、メタクリル系樹脂中のカルボニル基やフェニル基を実質的に水素化しない触媒と反応条件が選択されてよい。
ここで、メタクリル系樹脂中のカルボニル基やフェニル基を実質的に水素化しないとは、反応前後でのカルボニル基やフェニル基の水素添加率が5%以下であり、好ましくは1%以下であることをいう。
また、これらの官能基が実質的に水素化されない場合には、水素添加反応による光弾性係数の変化量が十分に小さくなる。
水素添加反応の有り無しによる光弾性係数の差、言い換えると、水素添加工程によるメタクリル系樹脂の光弾性係数の変化量は、好ましくは0.3×10−12Pa−1以下であり、より好ましくは0.2×10−12Pa−1以下であり、さらに好ましくは0.1×10−12Pa−1以下である。

0113

本実施形態では、メタクリル系樹脂中のカルボニル基やフェニル基を水素化させないため、不均一系触媒のパラジウム触媒を用い、水素圧を0.2〜5MPaとして20〜100℃で0.1〜4時間反応させることが好ましい。
水素圧の下限としては、0.3MPa以上、0.4MPa以上としても好ましく、上限としては、2MPa以下、1MPa以下としても好ましい。
反応温度の下限としては、50℃以上、60℃以上としても好ましく、90℃以下、80℃以下としても好ましい。
反応時間の下限としては、0.2時間以上、0.5時間以上としても好ましく、3時間以下、2時間以下としても好ましい。

0114

水素添加反応溶媒としては、メタクリル系樹脂の溶解度が高く、粘度を適切に保てるもので水素添加反応を阻害するものでなければ、特に制限はない。
具体的な反応溶媒としては、例えば、トルエン、キシレン、エチルベンゼン、イソプロピルベンゼン等の芳香族炭化水素;n−ペンタンヘキサン等の脂肪族炭化水素;シクロヘキサン、デカリン等の脂環族炭化水素;メチルイソブチルケトン、ブチルセロソルブ、メチルエチルケトン、シクロヘキサノン等のケトン;メチレンジクロリド、ジクロロエタン等のハロゲン化炭化水素等を用いることができる。
これらは、1種単独で用いても2種以上を併用して用いてもよい。

0115

水素添加反応の溶液濃度は、水素添加反応時に適切な粘度になるような濃度であれば特に制限はないが、水素添加反応液を100質量%として5〜70質量%が好ましく、15〜60質量%がより好ましい。

0116

このような水素化反応工程を経ることで、メタクリル系樹脂のメタノール可溶分中における波長400nmに吸光を持つ成分の含有量を0.5質量%以下にしやすくすることができる。

0117

水素添加反応終了後の触媒の除去は、遠心分離や濾過等の常法に従って行ってよい。遠心分離や濾過の方法は、用いた触媒が除去できる条件であれば、特に限定されない。中でも、濾過による除去が、簡便かつ効率的であるので好ましい。
濾過する場合、加圧濾過しても吸引濾過してもよく、また、効率の点から、ケイソウ土パーライト等の濾過助剤を用いることが好ましい。重合触媒に由来する遷移金属原子に対する吸着剤を濾過助剤として用いてもよい。

0118

水素添加反応後の水素添加反応液からメタクリル系樹脂を回収する方法としては、特に制限はないが、例えば、メタクリル系樹脂が溶解しないような炭化水素系溶媒やアルコール系溶媒等の貧溶媒が過剰量存在する中に重合液を添加した後、ホモジナイザーによる処理(乳化分散)を行い、未反応単量体について、液−液抽出、固−液抽出する等の前処理を施すことで、重合液から分離する方法;あるいは、脱揮工程と呼ばれる工程を経由して溶媒や未反応の単量体を分離し、水素化されたメタクリル系樹脂を回収する方法;等が挙げられる。
ここで、脱揮工程とは、溶媒、残存単量体、反応副生成物等の揮発分を、加熱・減圧条件下で、除去する工程をいう。

0119

脱揮工程に用いる装置としては、例えば、管状熱交換器と脱揮槽とからなる脱揮装置;神鋼環境ソリューション社製ワイブレン及びエクセバ、日立製作所製コントラ及び傾斜翼コントラ等の薄膜蒸発機;脱揮性能を発揮するに十分な滞留時間と表面積とを有するベント付き押出機;等を挙げることができる。
これらの中からいずれか2つ以上の装置を組み合わせた脱揮装置を用いた脱揮工程等も利用することができる。

0120

脱揮装置での処理温度は、好ましくは150〜350℃、より好ましくは170〜300℃、さらに好ましくは200〜280℃である。下限温度以上とすることで残存揮発分を抑制でき、上限温度以下とすることで得られるメタクリル系樹脂の着色や分解を抑制できる。

0121

脱揮装置内における真空度としては、10〜500Torrの範囲、中でも、10〜300Torrの範囲が好ましい。この真空度を上限値以下とすることで、揮発分の残存量を抑制できる。また、下限値以上の真空度が、工業的な実施の上で現実的である。

0122

処理時間は、残存揮発分の量により適宜選択されるが、得られるメタクリル系樹脂の着色や分解を抑えるためには短いほど好ましい。

0123

脱揮工程を経て回収された水素化されたメタクリル系樹脂は、造粒工程と呼ばれる工程にて、ペレット状に加工してもよい。
造粒工程では、溶融状態の樹脂を多孔ダイよりストランド状に押出し、コールドカット方式、空中ホットカット方式、水中ストランドカット方式、及びアンダーウォーターカット方式にて、ペレット状に加工してもよい。

0124

なお、脱揮装置としてベント付押出機を採用した場合には、脱揮工程と造粒工程とを兼ねてもよい。

0125

メタクリル系樹脂組成物
本実施形態のメタクリル系樹脂組成物は、前述の本実施形態のメタクリル系樹脂を含むメタクリル系樹脂組成物を含んでいてもよい。メタクリル系樹脂組成物は、前述の本実施形態のメタクリル系樹脂に加えて、任意選択的に添加剤を含んでいてもよく、また、メタクリル系樹脂以外の他の熱可塑性樹脂、ゴム質重合体等を含んでいてもよい。

0126

−添加剤−
本実施形態に係るメタクリル系樹脂組成物は、本発明の効果を著しく損なわない範囲内で、種々の添加剤を含有していてもよい。
添加剤としては、特に制限はないが、例えば、酸化防止剤ヒンダードアミン光安定剤等の光安定剤、紫外線吸収剤離型剤、他の熱可塑性樹脂、パラフィン系プロセスオイルナフテン系プロセスオイル芳香族系プロセスオイルパラフィン有機ポリシロキサンミネラルオイル等の軟化剤可塑剤難燃剤帯電防止剤有機繊維酸化鉄等の顔料等の無機充填剤ガラス繊維炭素繊維金属ウィスカ等の補強剤着色剤亜リン酸エステル類ホスホナイト類リン酸エステル類等の有機リン化合物、その他添加剤、あるいはこれらの混合物等が挙げられる。

0127

−−酸化防止剤−−
本実施形態に係るメタクリル系樹脂組成物は、成形加工時あるいは使用中の劣化や着色を抑制する酸化防止剤を含有することが好ましい。
前記酸化防止剤としては、以下に限定されるものではないが、例えば、ヒンダードフェノール系酸化防止剤リン系酸化防止剤硫黄系酸化防止剤等が挙げられる。本実施形態のメタクリル系樹脂は、溶融押出や、射出成形、フィルム成形用途等、様々な用途で好適に使用される。加工の際に受ける熱履歴は加工方法により異なるが、押出機のように数十秒程度から、肉厚品の成形加工やシート成形のように数十分〜数時間の熱履歴を受けるものまで様々である。
長時間の熱履歴を受ける場合、所望の熱安定性を得るために、熱安定剤量添加量を増やす必要がある。熱安定剤のブリードアウト抑制やフィルム製膜時のフィルムのロールへの貼りつき防止の観点から、複数種の熱安定剤を併用することが好ましく、例えば、リン系酸化防止剤及び硫黄系酸化防止剤から選ばれる少なくとも一種とヒンダードフェノール系酸化防止剤とを併用することが好ましい。
これらの酸化防止剤は、1種又は2種以上を併用してしてもよい。

0128

ヒンダードフェノール系酸化防止剤としては、以下に限定されるものではないが、例えば、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニルプロピオネート]、チオジエチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、3,3’,3’’,5,5’,5’’−ヘキサ−tert−ブチル−a,a’,a’’−(メシチレン−2,4,6−トリイル)トリ−p−クレゾール、4,6−ビスオクチルチオメチル)−o−クレゾール、4,6−ビス(ドデシルチオメチル)−o−クレゾール、エチレンビス(オキシエチレン)ビス[3−(5−tert−ブチル−4−ヒドロキシ−m−トリル)プロピオネート]、ヘキサメチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、1,3,5−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、1,3,5−トリス[(4−tert−ブチル−3−ヒドロキシ−2,6−キシリン)メチル]−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、2,6−ジ−tert−ブチル−4−(4,6−ビス(オクチルチオ)−1,3,5−トリアジン−2−イルアミンフェノール、アクリル酸2−[1−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)エチル]−4,6−ジ−tert−ペンチルフェニル、アクリル酸2−tert−ブチル−4−メチル−6−(2−ヒドロキシ−3−tert−ブチル−5−メチルベンジル)フェニル等が挙げられる。
特に、ペンタエリスリトールテラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、アクリル酸2−[1−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)エチル]−4,6−ジ−tert−ペンチルフェニルが好ましい。

0129

また、前記酸化防止剤としてのヒンダードフェノール系酸化防止剤は、市販のフェノール系酸化防止剤を使用してもよく、このような市販のフェノール系酸化防止剤としては、以下に限定されるものではないが、例えば、イルガノックス1010(Irganox 1010:ペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、BASF社製)、イルガノックス1076(Irganox 1076:オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、BASF社製)、イルガノックス1330(Irganox 1330:3,3’,3’’,5,5’,5’’−ヘキサ−t−ブチル−a,a’,a’’−(メシチレン−2,4,6−トリイル)トリ−p−クレゾール、BASF社製)、イルガノックス3114(Irganox3114:1,3,5−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、BASF社製)、イルガノックス3125(Irganox 3125、BASF社製)、アデカスタブAO−60(ペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ADEKA社製)、アデカスタブAO−80(3、9−ビス{2−[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルキシオキシ]−1,1−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、ADEKA社製)、スミライザーHT(Sumilizer BHT、住友化学製)、シアノックス1790(Cyanox 1790、サイテック製)、スミライザーGA−80(Sumilizer GA−80、住友化学製)、スミライザーGS(Sumilizer GS:アクリル酸2−[1−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)エチル]−4,6−ジ−tert−ペンチルフェニル、住友化学製)、スミライザーGM(Sumilizer GM:アクリル酸2−tert−ブチル−4−メチル−6−(2−ヒドロキシ−3−tert−ブチル−5−メチルベンジル)フェニル、住友化学製)、ビタミンEエーザイ製)等が挙げられる。
これらの市販のフェノール系酸化防止剤の中でも、当該樹脂での熱安定性付与効果の観点から、イルガノックス1010、アデカスタブAO−60、アデカスタブAO−80、イルガノックス1076、スミライザーGS等が好ましい。
これらは1種のみを単独で用いても、2種以上併用してもよい。

0130

また、前記酸化防止剤としてのリン系酸化防止剤としては、以下に限定されるものではないが、例えば、トリス(2,4−ジ−t−ブチルフェニルフォスファイト、ビス(2,4−ビス(1,1−ジメチルエチル)−6−メチルフェニル)エチルエステル亜リン酸、テトラキス(2,4−ジ−t−ブチルフェニル)(1,1−ビフェニル)−4,4’−ジイルビスホスフォイト、ビス(2,4−ジ−t−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジクミルフェニル)ペンタエリスリトール−ジホスファイト、テトラキス(2,4−t−ブチルフェニル)(1,1−ビフェニル)−4,4’−ジイルビスホスフォナイト、ジ−t−ブチル−m−クレジル−ホスフォナイト、4−[3−[(2,4,8,10−テトラ−tert−ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン)−6−イルオキシ]プロピル]−2−メチル−6−tert−ブチルフェノール等が挙げられる。
さらに、リン系酸化防止剤として市販のリン系酸化防止剤を使用してもよく、このような市販のリン系酸化防止剤としては、以下に限定されるものではないが、例えば、イルガフォス168(Irgafos 168:トリス(2,4−ジ−t−ブチルフェニル)フォスファイト、BASF製)、イルガフォス12(Irgafos 12:トリス[2−[[2,4,8,10−テトラ−t−ブチルジベンゾ[d,f][1,3,2]ジオキサフォスフェフィン−6−イル]オキシ]エチル]アミン、BASF製)、イルガフォス38(Irgafos 38:ビス(2,4−ビス(1,1−ジメチルエチル)−6−メチルフェニル)エチルエステル亜リン酸、BASF製)、アデカスタブ329K(ADK STAB−229K、ADEKA製)、アデカスタブPEP−36(ADK STAB PEP−36、ADEKA製)、アデカスタブPEP−36A(ADK STAB PEP−36A、ADEKA製)、アデカスタブPEP−8(ADK STAB PEP−8、ADEKA製)、アデカスタブHP−10(ADK STAB HP−10、ADEKA製)、アデカスタブ2112(ADK STAB 2112、ADEKA社製)、アデカスタブ1178(ADKA STAB 1178、ADEKA製)、アデカスタブ1500(ADK STAB 1500、ADEKA製)Sandstab P−EPQ(クラリアント製)、ウェストン618(Weston 618、GE製)、ウェストン619G(Weston 619G、GE製)、ウルトラノックス626(Ultranox 626、GE製)、スミライザーGP(Sumilizer GP:4−[3−[(2,4,8,10−テトラ−tert−ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン)−6−イルオキシ]プロピル]−2−メチル−6−tert−ブチルフェノール、住友化学製)、HCA(9,10−ジヒドロ−9−オキサ−10−フォスファフェナントレン−10−オキサイド、三光株式会社製)等が挙げられる。
これらの市販のリン系酸化防止剤の中でも、当該樹脂での熱安定性付与効果、多種の酸化防止剤との併用効果の観点から、イルガフォス168、アデカスタブPEP−36、アデカスタブPEP−36A、アデカスタブHP−10、アデカスタブ1178が好ましく、アデカスタブPEP−36A、アデカスタブPEP−36が特に好ましい。
これらのリン系酸化防止剤は、1種のみを単独で用いても、2種以上を併用してもよい。

0131

また、前記酸化防止剤としての硫黄系酸化防止剤としては、以下に限定されるものではないが、例えば、2、4−ビス(ドデシルチオメチル)−6−メチルフェノール(イルガノックス1726、BASF社製)、2,4−ビス(オクチルチオメチル)−6−メチルフェノール(イルガノックス1520L、BASF社製)、2,2−ビス{〔3−(ドデシルチオ)−1−オキソポロポキシ〕メチル}プロパン−1,3−ジイルビス〔3−ドデシルチオ〕プロピオネート〕(アデカスタブAO−412S、ADEKA社製)、2,2−ビス{〔3−(ドデシルチオ)−1−オキソポロポキシ〕メチル}プロパン−1,3−ジイルビス〔3−ドデシルチオ〕プロピオネート〕(ケミノックスPLS、ケミプロ化成株式会社製)、ジ(トリデシル)3,3’−チオジプロピオネート(AO−503、ADEKA社製)等が挙げられる。
これらの市販の硫黄酸化防止剤の中でも、当該樹脂での熱安定性付与効果、多種の酸化防止剤との併用効果の観点、取り扱い性の観点から、アデカスタブAO−412S、ケミノックスPLSが好ましい。
これらの硫黄系酸化防止剤は、1種のみを単独で用いても、2種以上を併用してもよい。

0132

酸化防止剤の含有量は、熱安定性を向上させる効果が得られる量であればよく、含有量が過剰である場合、加工時にブリードアウトする等の問題が発生するおそれがあることから、メタクリル系樹脂100質量部に対して、5質量部以下であることが好ましく、より好ましくは3質量部以下、さらに好ましくは1質量部以下、さらにより好ましくは0.8質量部以下であり、よりさらに好ましくは0.01〜0.8質量部、特に好ましくは0.01〜0.5質量部である。

0133

酸化防止剤を添加するタイミングについては、特に限定はなく、重合前のモノマー溶液に添加した後に重合を開始する方法、重合後のポリマー溶液に添加・混合した後に脱揮工程に供する方法、脱揮後の溶融状態のポリマーに添加・混合した後にペレタイズする方法、脱揮・ペレタイズ後のペレットを再度溶融押出する際に添加・混合する方法等が挙げられる。これらの中でも、脱揮工程での熱劣化や着色を防止する観点から、重合後のポリマー溶液に添加・混合した後脱揮工程の前に酸化防止剤を添加した後に脱揮工程に供することが好ましい。

0134

−−ヒンダードアミン系光安定剤−−
本実施形態のメタクリル系樹脂組成物は、ヒンダードアミン系光安定剤を含有することができる。
ヒンダードアミン系光安定剤は、特に限定されないが、環構造を3つ以上含む化合物であることが好ましい。ここで、環構造は、芳香族環脂肪族環芳香族複素環及び非芳香族複素環からなる群から選ばれる少なくとも一種であることが好ましく、1つの化合物中に2以上の環構造を有する場合、それらは互いに同一であっても異なっていてもよい。

0135

ヒンダードアミン系光安定剤としては、以下に限定されるものではないが、例えば、具体的には、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)[[3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル]メチル]ブチルマロネート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケートとメチル1,2,2,6,6−ペンタメチル−4−ピペリジルセバケートの混合物、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル)−N,N’−ジホルミルヘキサメチレンジアミンジブチルアミン・1,3,5−トリアジン・N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{2,2,6,6−テトラメチル−4−ピペリジル)イミノヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}]、テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジル)ブタン−1,2,3,4−テトラカルボキシレート、テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)ブタン−1,2,3,4−テトラカルボキシレート、1,2,2,6,6−ペンタメチル−4−ピペリジオールとβ,β,β’,β’−テトラメチル−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン−3,9−ジエタノールの反応物、2,2,6,6−テトラメチル−4−ピペリジオールとβ,β,β’,β’−テトラメチル−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン−3,9−ジエタノールの反応物、ビス(1−ウンデカノキシ−2,2,6,6−テトラメチルピペリジン−4−イル)カーボネート、1,2,2,6,6−ペンタメチル−4−ピペリジルメタクリレート、2,2,6,6−テトラメチル−4−ピペリジルメタクリレート等が挙げられる。
中でも環構造を3つ以上含んでいるビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)[[3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル]メチル]ブチルマロネート、ジブチルアミン・1,3,5−トリアジン・N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}]、1,2,2,6,6−ペンタメチル−4−ピペリジオールとβ,β,β’,β’−テトラメチル−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン−3,9−ジエタノールの反応物、2,2,6,6−テトラメチル−4−ピペリジオールとβ,β,β’,β’−テトラメチル−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン−3,9−ジエタノールの反応物が好ましい。

0136

ヒンダードアミン系光安定剤の含有量は、光安定性を向上させる効果が得られる量であればよく、含有量が過剰である場合、加工時にブリードアウトする等の問題が発生するおそれがあることから、メタクリル系樹脂100質量部に対して、5質量部以下であることが好ましく、より好ましくは3質量部以下、さらに好ましくは1質量部以下、さらにより好ましくは0.8質量部以下であり、よりさらに好ましくは0.01〜0.8質量部、特に好ましくは0.01〜0.5質量部である。

0137

−−紫外線吸収剤−−
本実施形態のメタクリル系樹脂組成物は、紫外線吸収剤を含有することができる。
紫外線吸収剤としては、特に限定されないが、その極大吸収波長を280〜380nmに有する紫外線吸収剤であることが好ましく、例えば、ベンゾトリアゾール系化合物ベンゾトリアジン系化合物ベンゾフェノン系化合物、オキシベンゾフェノン系化合物、ベンゾエート系化合物フェノール系化合物オキサゾール系化合物シアノアクリレート系化合物ベンズオキサジノン系化合物等が挙げられる。

0138

ベンゾトリアゾール系化合物としては、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、2−(3,5−ジ−tert−ブチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(2H−ベンゾトリアゾール−2−イル)−p−クレゾール、2−(2H−ベンゾトリアゾール−2−イル)−4,6−ビス(1−メチル−1−フェニルエチル)フェノール、2−ベンゾトリアゾール−2−イル−4,6−ジ−tert−ブチルフェノール、2−[5−クロロ(2H)−ベンゾトリアゾール−2−イル]−4−メチル−6−t−ブチルフェノール、2−(2H−ベンゾトリアゾール−2−イル)−4,6−ジ−t−ブチルフェノール、2−(2H−ベンゾトリアゾール−2−イル)−4−(1,1,3,3−テトラメチルブチル)フェノール、2−(2H−ベンゾトリアゾール−2−イル)−4−メチル−6−(3,4,5,6−テトラヒドロフタルイミジルメチル)フェノール、メチル3−(3−(2H−ベンゾトリアゾール−2−イル)−5−t−ブチル−4−ヒドロキシフェニル)プロピオネート/ポリエチレングリコール300の反応生成物、2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、3−(2H−ベンゾトリアゾール−2−イル)−5−(1,1−ジメチルエチル)−4−ヒドロキシ−C7−9側鎖及び直鎖アルキルエステルが挙げられる。
これらの中でも、分子量が400以上のベンゾトリアゾール系化合物が好ましく、例えば、市販品の場合、Kemisorb(登録商標)2792(ケミプロ化成製)、アデカスタブ(登録商標)LA31(株式会社ADEKA製)、チヌビン(登録商標)234(BASF社製)等が挙げられる。

0139

ベンゾトリアジン系化合物としては、2−モノ(ヒドロキシフェニル)−1,3,5−トリアジン化合物、2,4−ビス(ヒドロキシフェニル)−1,3,5−トリアジン化合物、2,4,6−トリス(ヒドロキシフェニル)−1,3,5−トリアジン化合物が挙げられ、具体的には、2,4−ジフェニル−6−(2−ヒドロキシ−4−メトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−エトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−(2−ヒドロキシ−4−プロポキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−(2−ヒドロキシ−4−ブトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ブトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ヘキシルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−オクチルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ドデシルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ベンジルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ブトキシエトキシ)−1,3,5−トリアジン、2,4−ビス(2−ヒドロキシ−4−ブトキシフェニル)−6−(2,4−ジブトキシフェニル)−1,3−5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−メトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−エトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−プロポキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−ブトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−ブトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−ヘキシルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−オクチルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−ドデシルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−ベンジルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−エトキシエトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−ブトキシエトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−プロポキシエトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−メトキシカルボニルプロピルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−エトキシカルボニルエチルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−4−(1−(2−エトキシヘキシルオキシ)−1−オキソプロパン−2−イルオキシ)フェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−メトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−エトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−プロポキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−ブトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−ブトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−ヘキシルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−オクチルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−ドデシルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−ベンジルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−エトキシエトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−ブトキシエトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−プロポキシエトキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−メトキシカルボニルプロピルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−エトキシカルボニルエチルオキシフェニル)−1,3,5−トリアジン、2,4,6−トリス(2−ヒドロキシ−3−メチル−4−(1−(2−エトキシヘキシルオキシ)−1−オキソプロパン−2−イルオキシ)フェニル)−1,3,5−トリアジン等が挙げられる。
ベンゾトリアジン系化合物としては、市販品を使用してもよく、例えばKemisorb102(ケミプロ化成社製)、LA−F70(株式会社ADEKA製)、LA−46(株式会社ADEKA製)、チヌビン405(BASF社製)、チヌビン460(BASF社製)、チヌビン479(BASF社製)、チヌビン1577FF(BASF社製)等を用いることができる。
その中でも、アクリル系樹脂との相溶性が高く紫外線吸収特性が優れている点から、2,4−ビス(2,4−ジメチルフェニル)−6−[2−ヒドロキシ−4−(3−アルキルオキシ−2−ヒドロキシプロピルオキシ)−5−α−クミルフェニル]−s−トリアジン骨格(「アルキルオキシ」は、オクチルオキシ、ノニルオキシ、デシルオキシ等の長鎖アルキルオキシ基を意味する)を有する紫外線吸収剤がさらに好ましく用いることができる。

0140

紫外線吸収剤としては、特に、樹脂との相溶性、加熱時の揮散性の観点から、分子量400以上のベンゾトリアゾール系化合物、ベンゾトリアジン系化合物が好ましく、また、紫外線吸収剤自体の押出加工時加熱による分解抑制の観点から、ベンゾトリアジン系化合物が特に好ましい。

0141

また、前記紫外線吸収剤の融点(Tm)は、80℃以上であることが好ましく、100℃以上であることがより好ましく、130℃以上であることがさらに好ましく、160℃以上であることがさらにより好ましい。
前記紫外線吸収剤は、23℃から260℃まで20℃/分の速度で昇温した場合の重量減少率が50%以下であることが好ましく、30%以下であることがより好ましく、15%以下であることがさらに好ましく、10%以下であることがさらにより好ましく、5%以下であることがよりさらに好ましい。

0142

これら紫外線吸収剤は、1種のみを単独で用いてもよく、2種以上を併用してもよい。
2種類の構造の異なる紫外線吸収剤を併用することにより、広い波長領域の紫外線を吸収することができる。

0143

前記紫外線吸収剤の含有量は、耐熱性、耐湿熱性、熱安定性、及び成形加工性を阻害せず、本発明の効果を発揮する量であれば特に制限はないが、メタクリル系樹脂100質量部に対して、0.1〜5質量部であることが好ましく、好ましくは0.2〜4質量部以下、より好ましくは0.25〜3質量部であり、さらにより好ましくは0.3〜3質量部である。この範囲にあると、紫外線吸収性能、成形性等のバランスに優れる。

0144

−−離型剤−−
本実施形態のメタクリル系樹脂組成物は、離型剤を含有することができる。前記離型剤としては、以下に限定されるものではないが、例えば、脂肪酸エステル脂肪酸アミド脂肪酸金属塩炭化水素滑剤、アルコール系滑剤、ポリアルキレングリコール類や、カルボン酸エステル類炭化水素類のパラフィン系ミネラルオイル等が挙げられる。

0145

前記離型剤として使用可能な脂肪酸エステルとしては、特に制限はなく、従来公知のものを使用することができる。
脂肪酸エステルとしては、例えば、ラウリン酸パルミチン酸ヘプタデカン酸ステアリン酸オレイン酸アラキン酸ベヘニン酸等の炭素数12〜32の脂肪酸と、パルミチルアルコールステアリルアルコールベヘニルアルコール等の1価脂肪族アルコールや、グリセリン、ペンタエリスリトール、ジペンタエリスリトールソルビタン等の多価脂肪族アルコールとのエステル化合物;脂肪酸と多塩基性有機酸と1価脂肪族アルコール又は多価脂肪族アルコールとの複合エステル化合物等を用いることができる。
このような脂肪酸エステル系滑剤としては、例えば、パルミチン酸セチルステアリン酸ブチルステアリン酸ステアリルクエン酸ステアリル、グリセリンモノカプリレート、グリセリンモノカプレート、グリセリンモノラウレート、グリセリンモノパルミテート、グリセリンジパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリントリステアレート、グリセリンモノオレエート、グリセリンジオレエート、グリセリントリオレエート、グリセリンモノリノレート、グリセリンモノベヘネート、グリセリンモノ12−ヒドロキシステアレート、グリセリンジ12−ヒドロキシステアレート、グリセリントリ12−ヒドロキシステアレート、グリセリンジアセトモノステアレート、グリセリンクエン酸脂肪酸エステル、ペンタエリスリトールアジピン酸ステアリン酸エステルモンタン酸部分ケン化エステル、ペンタエリスリトールテトラステアレート、ジペンタエリスリトールヘキサステアレート、ソルビタントリステアレート等を挙げることができる。
これらの脂肪酸エステル系滑剤は、1種を単独で又は2種以上を組み合わせて用いることができる。
市販品としては、例えば、理研ビタミン社製リケマールシリーズ、ポエムシリーズ、リケスターシリーズ、リケマスターシリーズ、花王社製エキセルシリーズ、レオドールシリーズ、エキセパールシリーズ、ココナードシリーズが挙げられ、より具体的にはリケマールS−100、リケマールH−100、ポエムV−100、リケマールB−100、リケマールHC−100、リケマールS−200、ポエムB−200、リケスターEW−200、リケスターEW−400、エキセルS−95、レオドールMS−50等が挙げられる。

0146

脂肪酸アミド系滑剤についても、特に制限はなく、従来公知のものを使用することができる。
脂肪酸アミド系滑剤としては、例えば、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミドベヘン酸アミドヒドロキシステアリン酸アミド等の飽和脂肪酸アミドオレイン酸アミドエルカ酸アミドリシノール酸アミド等の不飽和脂肪酸アミド;N−ステアリルステアリン酸アミド、N−オレイルオレイン酸アミド、N−ステアリルオレイン酸アミド、N−オレイルステアリン酸アミド、N−ステアリルエルカ酸アミド、N−オレイルパルミチン酸アミド等の置換アミドメチロールステアリン酸アミド、メチロールベヘン酸アミド等のメチロールアミド;メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミドエチレンビスステアリルアミド)、エチレンビスイソステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンビスヒドロキシステアリン酸アミド、N,N’−ジステアリルアジピン酸アミド、N,N’−ジステアリルセバシン酸アミド等の飽和脂肪酸ビスアミドエチレンビスオレイン酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’−ジオレイルアジピン酸アミド、N,N’−ジオレイルセバシン酸アミド等の不飽和脂肪酸ビスアミド;m−キシリレンビスステアリン酸アミド、N,N’−ジステアリルイソフタル酸アミド等の芳香族ビスアミド等を挙げることができる。
これらの脂肪酸アミド系離型剤は、1種を単独で又は2種以上を組み合わせて用いることができる。
市販品としては、例えば、ダイヤミッドシリーズ(日本化成社製)、アマイドシリーズ(日本化成社製)、ニッカアマイドシリーズ(日本化成社製)、メチロールアマイドシリーズ、ビスアマイドシリーズ、スリパックスシリーズ(日本化成社製)、カオーワックスシリーズ(花王社製)、脂肪酸アマイドシリーズ(花王社製)、エチレンビスステアリン酸アミド類(大日化学工業社製)等が挙げられる。

0147

脂肪酸金属塩とは、高級脂肪酸金属塩を指し、例えば、ステアリン酸リチウムステアリン酸マグネシウム、ステアリン酸カルシウム、ラウリン酸カルシウムリシノール酸カルシウムステアリン酸ストロンチウムステアリン酸バリウムラウリン酸バリウムリシノール酸バリウムステアリン酸亜鉛ラウリン酸亜鉛リシノール酸亜鉛、2−エチルヘキソイン酸亜鉛、ステアリン酸鉛、2塩基性ステアリン酸鉛、ナフテン酸鉛、12−ヒドロキシステアリン酸カルシウム、12−ヒドロキシステアリン酸リチウム等が挙げられ、その中でも、得られる透明樹脂組成物の加工性が優れ、極めて透明性に優れたものとなることから、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛が特に好ましい。
市販品としては、一例をあげると、堺化学工業社製SZシリーズ、SCシリーズ、SMシリーズ、SAシリーズ等が挙げられる。
上記脂肪酸金属塩を使用する場合の含有量は、透明性保持の観点から、メタクリル系樹脂組成物100質量%に対して0.2質量%以下であることが好ましい。

0148

上記離型剤は、1種単独で用いてもいいし、2種以上を併用して使用してもよい。

0149

使用に供される離型剤としては、分解開始温度が200℃以上であるものが好ましい。ここで、分解開始温度はTGAによる1%質量減量温度によって測定することができる。
離型剤の含有量は、離型剤としての効果が得られる量であればよく、含有量が過剰である場合、加工時にブリードアウトの発生やスクリュー滑りによる押出不良等の問題が発生するおそれがあることから、メタクリル系樹脂100質量部に対して、5質量部以下であることが好ましく、より好ましくは3質量部以下、さらに好ましくは1質量部以下、さらにより好ましくは0.8質量部以下であり、よりさらに好ましくは0.01〜0.8質量部、特に好ましくは0.01〜0.5質量部である。上記範囲の量で添加すると、離型剤添加による透明性の低下を抑制されるうえ、射出成形時の離型不良やシート成形時の金属ロールへの貼りつきが抑制される傾向にあるため、好ましい。

0150

−他の熱可塑性樹脂−
本実施形態のメタクリル系樹脂組成物は、本発明の目的を損なわず、複屈折率の調整や可とう性向上の目的で、メタクリル系樹脂以外の他の熱可塑性樹脂を含有することもできる。
他の熱可塑性樹脂としては、例えば、ポリブチルアクリレート等のポリアクリレート類;ポリスチレン、スチレン−メタクリル酸メチル共重合体スチレンーブチルアクリレート共重合体、スチレン−アクリロニトリル共重合体、アクリロニトリル−ブタジエンスチレンブロック共重合体等のスチレン系ポリマー;さらには、例えば、特開昭59−202213号公報、特開昭63−27516号公報、特開昭51−129449号公報、特開昭52−56150号公報等に記載の、3〜4層構造アクリル系ゴム粒子特公昭60−17406号公報、特開平8−245854公報に開示されているゴム質重合体;国際公開第2014−002491号に記載の、多段重合で得られるメタクリル系ゴム含有グラフ共重合体粒子;等が挙げられる。
この中でも、良好な光学特性と機械的特性とを得る観点からは、スチレン−アクリロニトリル共重合体や、主鎖に環構造を有する構造単位(X)を含むメタクリル系樹脂と相溶し得る組成からなるグラフト部をその表面層に有するゴム含有グラフト共重合体粒子が好ましい。
前述のアクリル系ゴム粒子、メタクリル系ゴム含有グラフ卜共重合体粒子、及びゴム質重合体の平均粒子径としては、本実施形態の組成物より得られる成形体の衝撃強度及び光学特性等を高める観点から、0.03〜1μmであることが好ましく、より好ましくは0.05〜0.5μmである。

0151

他の熱可塑性樹脂の含有量としては、メタクリル系樹脂を100質量部とした場合に、好ましくは0〜50質量部、より好ましくは0〜25質量である。

0152

(メタクリル系樹脂組成物の製造方法)
メタクリル系樹脂組成物を製造する方法としては、例えば、押出機、加熱ロールニーダーローラミキサーバンバリーミキサー等の混練機を用いて混練する方法が挙げられる。その中でも押出機による混練が、生産性の面で好ましい。混練温度は、メタクリル系樹脂を構成する重合体や、混合する他の樹脂の好ましい加工温度に従えばよく、目安としては140〜300℃の範囲、好ましくは180〜280℃の範囲である。また、押出機には、揮発分を減じる目的で、ベント口を設けることが好ましい。
メタクリル系樹脂組成物についてのガラス転移温度(Tg)、重量平均分子量(Mw)、数平均分子量(Mn)、配向複屈折、光弾性係数CRは、メタクリル系樹脂について前述したのと同じであってよい。

0153

(成形体)
本実施形態の成形体は、本実施形態のメタクリル系樹脂を含むものとしてよく、また、本実施形態のメタクリル系樹脂組成物を含むものとしてもよい。

0154

(成形体の製造方法)
本実施形態の成形体の製造方法としては、押出成形、射出成形、圧縮成形カレンダー成形インフレーション成形中空成形等の種々の成形方法を用いることができる。その中でも生産性の観点から射出成形及び射出圧縮成形を適用することが好ましい。
通常、射出成形法は、(1)樹脂を溶融させ、温度制御された金型キャビティ溶融樹脂充填する射出工程、(2)ゲートシールするまでキャビティ内に圧力をかけ、射出工程で充填された溶融樹脂が金型に接し冷却されて収縮した量に相当する樹脂を注入する保圧工程、(3)保圧を開放後、樹脂が冷却されるまで成形品を保持する冷却工程、(4)金型を開いて冷却された成形品を取り出す工程からなる。

0155

この際、成形温度としては、メタクリル系樹脂組成物のガラス転移温度を基準として、Tg+100℃〜Tg+160℃の範囲、好ましくは、Tg+110℃〜Tg+150℃の範囲であることが好ましい。ここで、成形温度とは、射出ノズルに巻かれているバンドヒータ制御温度を指す。
また、金型温度としては、メタクリル系樹脂組成物のガラス転移温度(Tg)を基準として、Tg−70℃〜Tgの範囲、好ましくはTg−50℃〜Tg−20℃の範囲であることが好ましい。

0156

また、射出速度としては、得ようとする射出成形体の厚さや寸法により、適宜選択することができるが、例えば、200〜1000mm/秒の範囲から適宜選択することができる。
また、保圧のための圧力としては、得ようとする射出成形体の形状により、適宜選択することができるが、例えば30〜120MPaの範囲で適宜選択できる。薄肉の成形体で固化速度が早い場合には、保圧をかけない場合もある。
ここで保圧のための圧力とは、溶融樹脂を充填した後に、ゲートから更に溶融樹脂を送り出すためのスクリューによって保持される圧力である。

0157

射出圧縮成形とは、射出成形開始時に、予め金型を僅かに開き、高速、且つ低圧にて溶融樹脂を金型内に充填した後、高速にて型締め圧を高め、樹脂全面に均一保圧する圧縮保圧工程が付加された射出成形法であり、表面特性や光学特性に優れた成形体を成形することが可能となる。
より薄肉、例えば、厚さが1mm未満で対角寸法が100mmを超えるような射出成形体を得ようとする場合には、射出圧縮成形を採用することより光学特性や色調に優れた成形体が得られるので特に好ましい。

0158

また、本実施形態のメタクリル系樹脂組成物を用いて得られる射出成形体を、導光板として用いる際には、その表面に微細な凹凸を付型してあるものも含まれる。このような微細な凹凸を設けることによって、反射層別途印刷等で設ける必要が無くなり好ましい。微細な凹凸とは、特に限定されないが、直方体円柱形楕円柱三角柱、球面、非球面等の構成単位がはっきりしている凹凸や、梨地状ヘアライン状等の凹凸形状ではあるが、構成単位がはっきりしない凹凸あるいはその組み合わせ、さらには構成単位がはっきりしているが、その形状特にサイズが変化している凹凸等が挙げられる。凹凸の形状としては、形状の高さもしくは凹部が0.1〜500μm、凹凸間ピッチ距離としては、10〜1000μmが例示できる。

0159

本実施形態のメタクリル系樹脂及びその樹脂組成物を用いた各種成形体表面には、例えば、ハードコート処理、防眩処理、反射防止処理、透明導電処理電磁波遮蔽処理ガスバリア処理等の表面機能化処理をさらに行うこともできる。
これら機能層の厚さとしては特に制限はないが、通常、0.01〜10μmの範囲で用いられる。

0160

成形体表面にハードコート処理を行う場合、その表面に付与するハードコート層としては、例えば、シリコーン系硬化性樹脂有機ポリマー複合無機微粒子含有硬化性樹脂ウレタンアクリレートエポキシアクリレート多官能アクリレート等のアクリレートと光重合開始剤とを有機溶剤に溶解あるいは分散させた塗布液を従来より公知の塗布方法で、本実施形態のメタクリル系樹脂組成物より得られるフィルム又はシート上に、塗布し、乾燥させ、光硬化させることにより形成される。
また、ハードコート層を塗布する前に、接着性を改良するために、例えば、無機微粒子をその組成に含む易接着層プライマー層アンカー層等を予め設けた後にハードコート層を形成させる方法も用いることができる。
その表面に付与する防眩層としては、シリカ、メラミン樹脂、アクリル樹脂等の微粒子インキ化し、従来より公知の塗布方法で、他の機能層上に塗布し、熱あるいは光硬化させることにより形成させる。
その表面に付与する反射防止層としては、金属酸化物フッ化物ケイ化物ホウ化物、窒化物、硫化物等の無機物薄膜からなるもの、アクリル樹脂、フッ素樹脂等の屈折率の異なる樹脂を単層あるいは多層に積層させたもの等が例示でき、また、無機系化合物有機系化合物との複合微粒子を含む薄層を積層させたものも利用できる。

0161

(成形体の用途)
本発明のメタクリル系樹脂組成物からなる成形体は、家庭用品OA機器AV機器電池電装用部品照明機器自動車部品等における光学部品等の用途に好適に用いることができる。
家庭用品、OA機器、AV機器、電池電装用部品、照明機器等における光学部品としては、例えば、スマートフォン、PDA、タブレットPC、液晶テレビ等のディスプレイに用いられる導光板、ディスプレイ前面板タッチパネル、さらにはスマートフォン、タブレットPCカメラ用レンズ等や、ヘッドマウントディスプレー液晶プロジェクター等の光学レンズ部品、例えば、プリズム素子導波路、レンズ、とりわけ、小型薄肉偏肉形状光学レンズ光ファイバー、光ファイバーの被覆材料、レンズ、フレネルレンズマイクロレンズアレイを備えた位相板光学カバー部品等が挙げられる。
自動車部品等における光学部品としては、車載ディスプレイ用導光板;車載メーターパネル、;カーナビゲーション前面板コンバイナ、光学カバー部品等ヘッドアップディスプレイ向け光学部品;車載用カメラレンズ、導光棒等が挙げられる。
また、上記の他、カメラ焦点板や屋外店頭公共機関交通機関等の場所で宣伝広告等の目的でネットワークに接続した薄型ディスプレイに情報を流すデジタルサイネージ表示装置用部品等にも好ましく用いることができる。

0162

以下、実施例及び比較例を挙げて本発明の内容を具体的に説明する。なお、本発明は下記実施例に限定されるものではない。

0163

<1.重合転化率の測定>
実施例及び比較例における重合液の一部を採取し、この重合液試料中に残存する単量体量を、試料をクロロホルムに溶解させて、5質量%溶液を調整し、内部標準物質としてn−デカンを添加し、ガスクロマトグラフィー島津製作所製GC−2010)を用いて、試料中に残存する単量体濃度を測定し、重合溶液中に残存する単量体の総質量(a)を求めた。そして、この総質量(a)と、試料を採取した時点までに添加した単量体が重合溶液中に全量残存したと仮定した場合の総質量(b)から、計算式(b−a)/b×100により、重合転化率(%)を算出した。

0164

<2.構造単位の解析>
後述の各実施例において特に断りのない限り、1H−NMR測定及び13C−NMR測定により、製造したメタクリル系樹脂の構造単位を同定し、その存在量を算出した。1H−NMR測定及び13C−NMR測定の測定条件は、以下の通りである。
測定機器日本電子株式会社製 JNM−ECZ400S
・測定溶媒:CDCl3又はDMSO−d6
なお、メタクリル系樹脂の環構造がラクトン環構造である場合には、特開2001−151814号公報、特開2007−297620号公報に記載の方法にて確認した。

0165

<3.分子量及び分子量分布の測定>
後述の実施例及び比較例で製造したメタクリル系樹脂の重量平均分子量(Mw)、及び数平均分子量(Mn)は、下記の装置及び条件で測定した。
測定装置:東ソー株式会社製、ゲルパーミエーションクロマトグラフィー(HLC−8320GPC)
・測定条件:
カラム:TSKguardcolumn SuperH−H 1本、TSKgel SuperHM−M 2本、 TSKgel SuperH2500 1本、を順に直列接続して使用した。カラム温度:40℃
展開溶媒テトラヒドロフラン流速:0.6mL/分、内部標準として、2,6−ジ−t−ブチル−4−メチルフェノール(BHT)を、0.1g/L添加した。
検出器:RI(示差屈折)検出器、検出感度:3.0mV/分
サンプル:0.02gのメタクリル系樹脂又はメタクリル系樹脂のテトラヒドロフラン20mL溶液。注入量:10μL
検量線用標準サンプル:単分散の重量ピーク分子量既知で分子量が異なる、以下の10種のポリメタクリル酸メチル(PolymerLaboratories製;PMMACalibration Kit M−M−10)を用いた。
重量ピーク分子量(Mp)
標準試料1 1,916,000
標準試料2 625,500
標準試料3 298,900
標準試料4 138,600
標準試料5 60,150
標準試料6 27,600
標準試料7 10,290
標準試料8 5,000
標準試料9 2,810
標準試料10 850
上記の条件で、メタクリル系樹脂の溶出時間に対する、RI検出強度を測定した。
上記、検量線用標準サンプルの測定により得られた検量線を基に、メタクリル系樹脂の重量平均分子量(Mw)、及び数平均分子量(Mn)を求めた。

0166

<4.ガラス転移温度>
JIS−K7121に準拠して、メタクリル系樹脂のガラス転移温度(Tg)(℃)を測定した。
まず、標準状態(23℃、65%RH)で状態調節(23℃で1週間放置)した試料から、試験片として4点(4箇所)、それぞれ約10mgを切り出した。
次に、示差走査熱量計パーキンエルマージャパン(株)製 DiamondDSC)を窒素ガス流量25mL/分の条件下で用いて、ここで、10℃/分で室温(23℃)から200℃まで昇温(1次昇温)し、200℃で5分間保持して、試料を完全に融解させた後、10℃/分で200℃から40℃まで降温し、40℃で5分間保持し、さらに、上記昇温条件で再び昇温(2次昇温)する間に描かれるDSC曲線のうち、2次昇温時の階段状変化部分曲線と各ベースライン延長線から縦軸方向に等距離にある直線との交点中間点ガラス転移温度)をガラス転移温度(Tg)(℃)として測定した。1試料当たり4点の測定を行い、4点の算術平均小数点以下四捨五入)を測定値とした。

0167

<5.光弾性係数CRの測定>
製造例、実施例及び比較例にて得られたメタクリル系樹脂を、真空圧成形機を用いてプレスフィルムとすることで、測定用試料とした。
具体的な試料調製条件としては、真空圧縮成形機(神金属工業所製、SFV−30型)を用い、260℃、減圧下(約10kPa)、10分間予熱した後、樹脂を、260℃、約10MPaで5分間圧縮し、減圧及びプレス圧解除した後、冷却用圧縮成形機に移して冷却固化させた。得られたプレスフィルムを、23℃、湿度60%に調整した恒温恒湿室内で24時間以上養生を行った上で、測定用試験片(厚み約150μm、幅6mm)を切り出した。
上記作製した測定用試験片を用い、Polymer Engineering and Science 1999,39,2349−2357に詳細な記載のある複屈折測定装置を用いて、光弾性係数CR(Pa−1)を測定した。
フィルム状の試験片を、同様に恒温恒湿室に設置したフィルムの引張り装置(井元製作所製)にチャック間50mmになるように配置した。次いで、複屈折測定装置(大塚電子製、RETS−100)の光経路がフィルムの中心部に位置するように装置を配置し、チャック間:50mm、チャック移動速度:0.1mm/分で伸張応力をかけながら、波長550nmで試験片の複屈折を測定した。
測定より得られた複屈折(Δn)と伸張応力(σR)の関係から、最小二乗近似によりその直線の傾きを求め、光弾性係数(CR)(Pa−1)を計算した。計算には、伸張応力が2.5MPa≦σR≦10MPaの間のデータを用いた。
CR=Δn/σR
ここで、複屈折(Δn)は、以下に示す値である。
Δn=nx−ny
(nx:伸張方向の屈折率、ny:面内で伸張方向と垂直な方向の屈折率)

0168

<6.メタノール可溶分の量及びメタノール不溶分の量の測定>
実施例及び比較例にて得られたメタクリル系樹脂5gをクロロホルム100mLに溶解させた後、溶液を滴下漏斗に入れ、撹拌子を用いて撹拌している1Lのメタノール中に約1時間かけて滴下して、再沈殿を行った。全量滴下後、1時間静置した後に、メンブランフィルターアドバンテック東洋株式会社製 T05A090C)をフィルターとして用いて、吸引濾過を行った。
濾物は60℃で16時間真空乾燥してメタノール不溶分とした。また、濾液は、ロータリーエバポレーターを用いて、バス温度を40℃として、真空度を初期設定の390Torrから徐々に下げて最終的に30Torrとして、溶媒を除去した後、ナス形フラスコに残存している可溶分を回収し、メタノール可溶分とした。
メタノール不溶分の質量及びメタノール可溶分の質量の各々を量し、メタノール可溶分の量の、メタノール可溶分の量とメタノール不溶分の量の合計量(100質量%)に対する割合(質量%)(メタノール可溶分率)を算出した。

0169

<7.メタノール可溶分中における波長400nmに吸光を持つ成分、分子量2000以下の成分、及びN−フェニルマレイミド単量体の含有量>
(7−1)波長400nmに吸光を持つ成分の含有量の算出
上記再沈殿により得られたメタノール可溶分を濃度0.030g/mLのTHF溶液とした。
このメタノール可溶分溶液について、「3.分子量及び分子量分布の測定」に記載の方法に準じて、ゲルパーミエーションクロマトグラフィー(GPC)測定を行った。ただし検出器として、RI検出器に加えて、UV検出器(東ソー株式会社製、UV−8020、光源タングステンランプとして波長を400nmに設定)も使用した。
具体的には、まず、UV検出器(波長400nm)を用いたGPC測定により、メタノール可溶分の分子量分布の測定を行い、全ピーク面積を求めた。別に、UV検出器(波長400nm)を用いたGPC測定を、N−フェニルマレイミド単量体についても行い、サンプル濃度とピーク面積との検量線を作成した。この検量線を用いて、メタノール可溶分中における400nmに吸光を持つ成分の量を、N−フェニルマレイミドに換算した場合の量として求めた。上記換算量のメタノール可溶分に対する質量割合から、メタノール可溶分中における波長400nmに吸光を持つ成分の含有量(N−フェニルマレイミド換算での質量%)を求めた。
(7−2)分子量2000以下の成分の含有量の算出
上記再沈殿可溶分を濃度0.030g/mLのTHF溶液とし、「3.分子量及び分子量分布の測定」に準じ、検出器としてRI検出器を使用して、GPC測定を行った。
別途測定した重量ピーク分子量2000の標準PMMAのピーク溶出時間を用い、RI検出器の測定結果から分子量2000以下の溶出面積を算出し、全ピーク面積に対する割合から、メタノール可溶分中に含まれる分子量2000以下の成分の含有量(質量%)を算出した。
(7−3)N−フェニルマレイミド単量体の含有量の算出
メタノール可溶分中におけるN−フェニルマレイミド単量体の含有量(質量%)も、<1.重合転化率の測定>に記載の方法に準じて、ガスクロマトグラフィーを用いた測定により、算出した。

0170

<8.成形片の色調測定>
(8−1)光路長3mmでのYI及び全光線透過率の測定
後述の実施例及び比較例で得られたメタクリル系樹脂を、射出成形機(AUTO SHOT C Series MODEL 15A、FANUC株式会社製)により、成形温度を250℃、金型温度90℃の条件にて、厚さ3mm×幅12mm×長さ124mmの短冊形試験片を作製した。
得られた成形片を、分光色彩計(日本電色工業株式会社製、SD−5000)を用いて、光源が成形片の厚み方向に通るよう挟み、D65光源10°視野で光路長3mmのYI(JIS K7373準拠)と全光線透過率(JIS K7361−1準拠)(%)とを測定した。3回測定を行い、平均値を用いた。
(8−2)光路長80mmでのYIの測定
後述の実施例及び比較例で得られたメタクリル系樹脂を、射出成形機(AUTO SHOT C Series MODEL 15A、FANUC株式会社製)により、成形温度を250℃、金型温度90℃の条件にて、厚さ4mm×幅10mm×長さ80mmの短冊形試験片を作製した。
金型は鏡面仕上げとした。金型には、長辺方向に開くようにスライドコアが配置され、抜き勾配がない構造を採用した。
長辺方向に垂直な鏡面仕上げの2端面を入射面・出射面として、長辺方向に80mm光路長の透過光による色調測定が可能な試験片が得られた。
得られた試験片を、色差計(日本電色工業株式会社製、ASA−1)を用いて、C光源2°視野で光路長80mmのYIを測定した。

0171

[原料]
後述する製造実施例及び製造比較例において使用した原料について下記に示す。
[[単量体]]
メチルメタクリレート:旭化成株式会社製
・N−フェニルマレイミド(phMI):株式会社日本触媒製
・N−シクロヘキシルマレイミド(chMI):株式会社日本触媒製
[[重合開始剤]]
・1,1−ジ(t−ブチルパーオキシ)シクロヘキサン:日油株式会社製「パーヘキサC」
[[連鎖移動剤]]
・n−オクチルメルカプタン:花王株式会社製
[[酸化防止剤]]
ペンタエリトリトール=テトラキス[3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオナート]:BASF社製「Irganox1010」
・トリス(2,4−ジ−t−ブチルフェニル)フォスファイト:BASF社製「Irgafos168」

0172

[製造例]
メチルメタクリレート(以下MMAと記す)340.7kg、N−フェニルマレイミド39.6kg(以下phMIと記す)、N−シクロヘキシルマレイミド(以下chMIと記す)59.7kg、連鎖移動剤であるn−オクチルメルカプタンを0.275kg、メタキシレン236.9kg(以下mXyと記す)を計量し、ジャケットによる温度調節装置撹拌翼具備した1.25m3反応器に加え撹拌し、混合単量体溶液を得た。
次いで、mXy123.1kgを計量して、タンク1に追添用溶媒を準備した。
さらに、タンク2にMMA110.0kg、mXy90.0kgを計量し、撹拌して追添用MMA溶液を得た。
反応器の内容液については30L/分の速度で窒素によるバブリングを1時間実施し、タンク1、タンク2のそれぞれについては10L/分の速度で窒素によるバブリングを30分間実施し、溶存酸素を除去した。
その後ジャケット内スチームを吹き込んで反応器内の溶液温度を128℃に上昇させ、50rpmで撹拌しながら、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン0.371kgをmXy3.004kgに溶解させた重合開始剤溶液を、1kg/時間の速度で添加することで重合を開始した。
なお、重合中は反応器内の溶液温度をジャケットによる温度調節で128±2℃で制御した。重合開始から30分後、開始剤溶液の添加速度を0.25kg/時間に低下させ、さらにタンク1から30.78kg/時間で3.5時間の間mXyを添加した。
次いで重合開始から4時間後に開始剤溶液の添加速度を0.75kg/時間に上げるとともにタンク2から追添用MMA溶液を100kg/時間で2時間の間添加した。
さらに重合開始から6時間後に開始剤溶液の添加速度を0.5kg/時間に低下させ、重合開始7時間後に添加を停止した。
重合開始から8時間経過した後、メタクリル系樹脂を含む重合溶液を得た。
重合開始3時間後、4時間後、8時間後(重合終了時)にそれぞれポリマー溶液のサンプリングを行い、残存している単量体濃度から重合転化率の解析を行ったところ、3時間後がMMA87.7%、phMI84.6%、chMI74.7%、4時間後がMMA92.9%、phMI90.3%、chMI84.1%、8時間後がMMA92.2%、phMI99.4%、chMI98.3%であった。
また、重合終了後に得られたメタクリル系樹脂について、後述の比較例1と同様の処理を行い、その光弾性係数CRを測定したところ、−0.11×10−12Pa−1であった。

0173

[実施例1]
製造例で得られた重合体溶液160kgを別の1.25m3反応器に移し、メタキシレン533kgを追加して希釈した。これにNEケムキャット製5%Pdカーボン粉末乾燥品)4.3kgを添加した後、反応器内部を水素で0.5MPaまで昇圧した後、降圧することを2回繰り返して水素置換を行った。その後、反応器内部を水素で0.4MPaまで昇圧した後、溶液温度を70℃に昇温して2時間水素添加反応を実施した。その後40℃まで速やかに降温し、反応器内部を窒素で置換した後、溶液を濾過精度0.2μmのメンブランフィルターにより濾過することで触媒を除去した。
次に得られた溶液を、脱揮用に複数のベント口を装備した二軸押出機に導入することにより、脱揮を行った。二軸押出機では、樹脂換算で10kg/時となるように、得られた共重合体溶液を供給し、バレル温度260℃、スクリュー回転数150rpm、真空度10〜40Torrの条件とした。二軸押出機で脱揮された樹脂を、ストランドダイから押出し、水冷ペレット化し、水素化に供されたメタクリル系樹脂を得た。
得られたペレット状の重合物の組成を確認したところ、MMA、phMI、chMI各単量体由来の構造単位は、それぞれ、80.9質量%、7.7質量%、11.4質量%であった。また、重量平均分子量は148,000、Mw/Mnは2.28であった。その他の物性は表1に示す。

0174

[比較例1]
製造例で得られた重合体溶液を、脱揮用に複数のベント口を装備した二軸押出機に導入することにより、脱揮を行った。二軸押出機では、樹脂換算で10kg/時となるように、得られた共重合体溶液を供給し、バレル温度260℃、スクリュー回転数150rpm、真空度10〜40Torrの条件とした。二軸押出機で脱揮された樹脂を、ストランドダイから押出し、水冷後ペレット化し、メタクリル系樹脂を得た。
得られたペレット状の重合物の組成を確認したところ、MMA、phMI、chMI各単量体由来の構造単位は、それぞれ、80.9質量%、7.7質量%、11.4質量%であった。また、重量平均分子量は149,000、Mw/Mnは2.26であった。その他の物性は表1に示す。

0175

実施例

0176

表1に示すとおり、本実施形態のメタクリル系樹脂は、得られる成形体の長光路でのYIが低く色調に優れ、また透過率が高いことから、成形体は、導光板等の光学部品用途や、テールランプメーターカバーヘッドランプ等の自動車部品用途に好適に用いることができる。

0177

本発明のメタクリル系樹脂は、耐熱性が高く、高度に複屈折率が制御され、色調及び透明性に優れている。
本発明のメタクリル系樹脂は、光学材料として、例えば、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、フィールドエミッションディスプレイリアプロジェクションテレビ等のディスプレイ等に用いられる導光板、拡散板、偏光板保護フィルム;1/4波長板、1/2波長板等の位相差板視野角制御フィルム等の液晶光学補償フィルム;ディスプレイ前面板;ディスプレイ基板;レンズ;太陽電池に用いられる透明基板、タッチパネル等の透明導電性基板;光通信システム光交換システム光計測システムの分野、あるいはヘッドマウントディスプレーや液晶プロジェクター等の光学製品における、導波路、レンズ、レンズアレイ、光ファイバー、光ファイバーの被覆材料;LEDのレンズ;レンズカバー等、さらに家庭用品、OA機器、AV機器、電池電装用、照明機器;テールランプ、メーターカバー、ヘッドランプ、導光棒、レンズ等の自動車部品用途;ハウジング用途;衛生陶器代替等のサニタリー用途として、好適に用いることができる。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ