図面 (/)

技術 繊維状セルロース含有樹脂組成物、シート及び成形体

出願人 王子ホールディングス株式会社
発明者 趙孟晨野口裕一轟雄右
出願日 2019年2月12日 (1年9ヶ月経過) 出願番号 2019-022845
公開日 2020年8月31日 (2ヶ月経過) 公開番号 2020-132650
状態 特許登録済
技術分野 高分子組成物
主要キーワード さく軸 水セクション ハンセン溶解度パラメーター 攪拌乾燥装置 湿式微粒化装置 微量窒素 高周波乾燥装置 平均繊維幅
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2020年8月31日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (1)

課題

本発明は、微細繊維状セルロースを含む樹脂複合体であって、樹脂成分の変質が抑制された樹脂複合体を提供することを課題とする。

解決手段

本発明は、繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロースと、樹脂と、を含み、亜リン酸基又は亜リン酸基に由来する置換基の対イオン有機オニウムイオンであり、有機オニウムイオンの共役塩基のpKbが1.0以上である繊維状セルロース含有樹脂組成物に関する。

概要

背景

従来、セルロース繊維は、衣料吸収性物品紙製品等に幅広く利用されている。セルロース繊維としては、繊維径が10μm以上50μm以下の繊維状セルロースに加えて、繊維径が1μm以下の微細繊維状セルロースも知られている。微細繊維状セルロースは、新たな素材として注目されており、その用途は多岐にわたる。例えば、微細繊維状セルロースを含むシート樹脂複合体の開発が進められている。

一般的に、微細繊維状セルロースは水系溶媒中に安定して分散している。一方で、微細繊維状セルロースと樹脂成分を含む複合体等を製造する際には、微細繊維状セルロースと樹脂成分が均一に分散することも求められる。このため、微細繊維状セルロースと樹脂成分の親和性を高めるために、微細繊維状セルロースと樹脂成分を含む組成物有機アルカリ等の界面活性剤を添加する手法が検討されている。例えば、特許文献1〜4には、カルボキシ基含有の微細繊維状セルロースであって、有機アルカリを結合させた微細繊維状セルロースと特定の樹脂成分を含む複合体が開示されている。

また、特許文献5には、微細繊維状セルローススラリーに、アルカリ可溶金属及び多価金属イオンから選ばれる少なくとも一種を含む化合物を加え、微細繊維状セルロース濃縮物を得る第1工程、及び微細繊維状セルロース濃縮物に、水酸化テトラアルキルオニウム及びアルキルアミンから選ばれる少なくとも一種を添加する第2工程を含む、微細繊維状セルロース再分散スラリーの製造方法が開示されている。特許文献5には、得られた微細繊維状セルロースを樹脂成分と混合する具体的例示がなく、また、水酸化テトラアルキルオニウムの共役塩基のpKbは1.0よりも小さいものである。

概要

本発明は、微細繊維状セルロースを含む樹脂複合体であって、樹脂成分の変質が抑制された樹脂複合体を提供することを課題とする。本発明は、繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロースと、樹脂と、を含み、亜リン酸基又は亜リン酸基に由来する置換基の対イオン有機オニウムイオンであり、有機オニウムイオンの共役塩基のpKbが1.0以上である繊維状セルロース含有樹脂組成物に関する。なし

目的

本発明は、微細繊維状セルロースを含む樹脂複合体であって、樹脂成分の変質が抑制された樹脂複合体を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロースと、樹脂と、を含み、前記亜リン酸基又は亜リン酸基に由来する置換基の対イオン有機オニウムイオンであり、前記有機オニウムイオンの共役塩基のpKbが1.0以上である繊維状セルロース含有樹脂組成物

請求項2

前記有機オニウムイオンは、下記(a)及び(b)から選択される少なくとも一方の条件を満たす請求項1に記載の繊維状セルロース含有樹脂組成物。(a)炭素数が5以上の炭化水素基を含む。(b)総炭素数が17以上である。

請求項3

前記有機オニウムイオンが有機アンモニウムイオンである請求項1又は2に記載の繊維状セルロース含有樹脂組成物。

請求項4

前記樹脂が、アクリル系樹脂ポリカーボネート系樹脂ポリエステル系樹脂ポリアミド系樹脂シリコーン系樹脂フッ素系樹脂塩素系樹脂エポキシ系樹脂メラミン系樹脂フェノール系樹脂ポリウレタン系樹脂ジアリルフタレート系樹脂アルコール系樹脂セルロース誘導体及びこれらの樹脂の前駆体から選択される少なくとも1種である請求項1〜3のいずれか1項に記載の繊維状セルロース含有樹脂組成物。

請求項5

さらに有機溶剤を含む請求項1〜4のいずれか1項に記載の繊維状セルロース含有樹脂組成物。

請求項6

請求項1〜5のいずれか1項に記載の繊維状セルロース含有樹脂組成物から形成されるシート

請求項7

請求項1〜5のいずれか1項に記載の繊維状セルロース含有樹脂組成物又は請求項6に記載のシートから形成される成形体

技術分野

0001

本発明は、繊維状セルロース含有樹脂組成物シート及び成形体に関する。

背景技術

0002

従来、セルロース繊維は、衣料吸収性物品紙製品等に幅広く利用されている。セルロース繊維としては、繊維径が10μm以上50μm以下の繊維状セルロースに加えて、繊維径が1μm以下の微細繊維状セルロースも知られている。微細繊維状セルロースは、新たな素材として注目されており、その用途は多岐にわたる。例えば、微細繊維状セルロースを含むシートや樹脂複合体の開発が進められている。

0003

一般的に、微細繊維状セルロースは水系溶媒中に安定して分散している。一方で、微細繊維状セルロースと樹脂成分を含む複合体等を製造する際には、微細繊維状セルロースと樹脂成分が均一に分散することも求められる。このため、微細繊維状セルロースと樹脂成分の親和性を高めるために、微細繊維状セルロースと樹脂成分を含む組成物有機アルカリ等の界面活性剤を添加する手法が検討されている。例えば、特許文献1〜4には、カルボキシ基含有の微細繊維状セルロースであって、有機アルカリを結合させた微細繊維状セルロースと特定の樹脂成分を含む複合体が開示されている。

0004

また、特許文献5には、微細繊維状セルローススラリーに、アルカリ可溶金属及び多価金属イオンから選ばれる少なくとも一種を含む化合物を加え、微細繊維状セルロース濃縮物を得る第1工程、及び微細繊維状セルロース濃縮物に、水酸化テトラアルキルオニウム及びアルキルアミンから選ばれる少なくとも一種を添加する第2工程を含む、微細繊維状セルロース再分散スラリーの製造方法が開示されている。特許文献5には、得られた微細繊維状セルロースを樹脂成分と混合する具体的例示がなく、また、水酸化テトラアルキルオニウムの共役塩基のpKbは1.0よりも小さいものである。

先行技術

0005

特開2016−188375号公報
特開2010−77248号公報
特開2017−82202号公報
特開2016−156111号公報
特開2017−52943号公報

発明が解決しようとする課題

0006

本発明者らは、微細繊維状セルロースを含む樹脂複合体について研究を進める中で、微細繊維状セルロースと樹脂成分を含む樹脂組成物において、有機アルカリ等の界面活性剤を添加した場合、樹脂成分に変質が生じる場合があることを突き止めた。
そこで本発明は、微細繊維状セルロースを含む樹脂複合体であって、樹脂成分の変質が抑制された樹脂複合体を提供することを目的とする。

課題を解決するための手段

0007

上記の課題を解決するために鋭意検討を行った結果、本発明者らは、微細繊維状セルロースと樹脂を含む樹脂組成物において、微細繊維状セルロースが有する亜リン酸基又は亜リン酸基に由来する置換基対イオンとして、所定の条件を満たす有機オニウムイオンを選択することにより、樹脂組成物において樹脂成分の変質が抑制されることを見出した。
具体的に、本発明は、以下の構成を有する。

0008

[1]繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロースと、樹脂と、を含み、
亜リン酸基又は亜リン酸基に由来する置換基の対イオンが有機オニウムイオンであり、
有機オニウムイオンの共役塩基のpKbが1.0以上である繊維状セルロース含有樹脂組成物。
[2] 有機オニウムイオンは、下記(a)及び(b)から選択される少なくとも一方の条件を満たす[1]に記載の繊維状セルロース含有樹脂組成物。
(a)炭素数が5以上の炭化水素基を含む。
(b)総炭素数が17以上である。
[3] 有機オニウムイオンが有機アンモニウムイオンである[1]又は[2]に記載の繊維状セルロース含有樹脂組成物。
[4] 樹脂が、アクリル系樹脂ポリカーボネート系樹脂ポリエステル系樹脂ポリアミド系樹脂シリコーン系樹脂フッ素系樹脂塩素系樹脂エポキシ系樹脂メラミン系樹脂フェノール系樹脂ポリウレタン系樹脂ジアリルフタレート系樹脂アルコール系樹脂セルロース誘導体及びこれらの樹脂の前駆体から選択される少なくとも1種である[1]〜[3]のいずれかに記載の繊維状セルロース含有樹脂組成物。
[5] さらに有機溶剤を含む[1]〜[4]のいずれかに記載の繊維状セルロース含有樹脂組成物。
[6] [1]〜[5]のいずれかに記載の繊維状セルロース含有樹脂組成物から形成されるシート。
[7] [1]〜[5]のいずれかに記載の繊維状セルロース含有樹脂組成物又は[6]に記載のシートから形成される成形体。

発明の効果

0009

本発明によれば、微細繊維状セルロースと樹脂を含む樹脂組成物において、樹脂成分の変質を抑制することができる。

図面の簡単な説明

0010

図1は、リンオキソ酸基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。

0011

以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。

0012

(繊維状セルロース含有樹脂組成物)
本発明は、繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロースと、樹脂と、を含む繊維状セルロース含有樹脂組成物に関する。ここで、繊維状セルロース含有樹脂組成物は、亜リン酸基又は亜リン酸基に由来する置換基の対イオンとして有機オニウムイオンを含み、該有機オニウムイオンの共役塩基のpKbは1.0以上である。

0013

本発明の繊維状セルロース含有樹脂組成物は、上記構成を有するものであるため、樹脂成分の変質が抑制されている。具体的には、本発明の繊維状セルロース含有樹脂組成物から形成したシート(A)および繊維状セルロース含有樹脂組成物中に含まれる樹脂のみから形成したシート(A)と同一の坪量を有するシート(B)において赤外線吸収スペクトルの測定を行った場合、下式により算出される値(J値)が大きくなる。具体的には、J値は、0.80以上であることが好ましく、0.85以上であることがより好ましく、0.90以上であることがさらに好ましく、0.95以上であることが一層好ましく、0.99以上であることがとくに好ましい。なお、J値の上限値は特に限定されるものではないが、例えば1.50とすることができる。
J値=I1/I0
ただし、
I1値=(シート(A)の1650cm-1における吸収ピーク強度)/(シート(A)の1570cm-1における吸収ピーク強度)
I0値=(シート(B)の1650cm-1における吸収ピーク強度)/(シート(B)の1570cm-1における吸収ピーク強度)
なお、赤外線吸収スペクトルの測定はFT−IRを用いて行う。

0014

本発明者らは、このJ値が樹脂成分の脱エステル化進行度合いによって変動する値であることを見出した。すなわち、本発明者らは、J値が小さいと樹脂成分の脱エステル化が進行しており、J値が大きいと樹脂成分の脱エステル化が抑制されていることを突き止めた。本発明においては、繊維状セルロース含有樹脂組成物から形成したシートでは、J値が相対的に大きくなっていることをもって、樹脂の脱エステル化(樹脂の加水分解)が進行していないと評価できる。すなわち、樹脂の変質が抑制されていると言える。

0015

なお、脱エステル化が生じない樹脂を用いた場合、繊維状セルロース含有樹脂組成物から形成したシートの変質については、透明性や着色の有無によって評価することができる。例えば、樹脂としてフッ素系樹脂や塩素系樹脂を用いた場合、繊維状セルロース含有樹脂組成物から形成したシートの全光線透過率は、70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。なお、シートの全光線透過率は、JIS K 7361に準拠し、たとえばヘーズメータ色彩技術研究所社製、HM−150)を用いて測定される値である。また、樹脂としてフッ素系樹脂や塩素系樹脂を用いた場合、繊維状セルロース含有樹脂組成物から形成したシートの黄色度(YI)は、40以下であることが好ましく、20以下であることがより好ましく、10以下であることがさらに好ましい。なお、黄色度(YI)の下限値に特に制限はないが、例えば0.1とすることが好ましい。なお、シートの黄色度(YI)は、JIS K 7373に準拠し、たとえばColour Cute i(スガ試験機株式会社製)を用いて測定される値である。

0016

本発明の繊維状セルロース含有樹脂組成物の形態は、特に限定されないが、たとえばスラリー等の液状物粉粒状等の固形状物ペレットまたはゲル状物などが挙げられる。

0017

(微細繊維状セルロース)
本発明の繊維状セルロース含有樹脂組成物は、繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロースを含む。本明細書においては、繊維幅が1000nm以下の繊維状セルロースを微細繊維状セルロースとも言う。なお、繊維状セルロースの繊維幅は、たとえば電子顕微鏡観察などにより測定することが可能である。

0018

繊維状セルロースの平均繊維幅は、たとえば1000nm以下である。繊維状セルロースの平均繊維幅は、たとえば2nm以上1000nm以下であることが好ましく、2nm以上100nm以下であることがより好ましく、2nm以上50nm以下であることがさらに好ましく、2nm以上10nm以下であることがとくに好ましい。繊維状セルロースの平均繊維幅を2nm以上とすることにより、セルロース分子として水に溶解することを抑制し、繊維状セルロースによる強度や剛性、寸法安定性の向上という効果をより発現しやすくすることができる。なお、繊維状セルロースは、たとえば単繊維状セルロースである。

0019

繊維状セルロースの平均繊維幅は、たとえば電子顕微鏡を用いて以下のようにして測定される。まず、濃度0.05質量%以上0.1質量%以下の繊維状セルロースの水系懸濁液を調製し、この懸濁液を親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察試料とする。幅の広い繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。次いで、観察対象となる繊維の幅に応じて1000倍、5000倍、10000倍あるいは50000倍のいずれかの倍率電子顕微鏡画像による観察を行う。但し、試料、観察条件や倍率は下記の条件を満たすように調整する。
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
上記条件を満足する観察画像に対し、直線X、直線Yと交差する繊維の幅を目視で読み取る。このようにして、少なくとも互いに重なっていない表面部分の観察画像を3組以上得る。次いで、各画像に対して、直線X、直線Yと交差する繊維の幅を読み取る。これにより、少なくとも20本×2×3=120本の繊維幅を読み取る。そして、読み取った繊維幅の平均値を、繊維状セルロースの平均繊維幅とする。

0020

繊維状セルロースの繊維長は、とくに限定されないが、たとえば0.1μm以上1000μm以下であることが好ましく、0.1μm以上800μm以下であることがより好ましく、0.1μm以上600μm以下であることがさらに好ましい。繊維長を上記範囲内とすることにより、繊維状セルロースの結晶領域破壊を抑制できる。また、繊維状セルロースのスラリー粘度を適切な範囲とすることも可能となる。なお、繊維状セルロースの繊維長は、たとえばTEM、SEMAFMによる画像解析より求めることができる。

0021

繊維状セルロースはI型結晶構造を有していることが好ましい。ここで、繊維状セルロースがI型結晶構造を有することは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて同定できる。具体的には、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークをもつことから同定することができる。

0022

微細繊維状セルロースに占めるI型結晶構造の割合は、たとえば30%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることがさらに好ましい。これにより、耐熱性低線熱膨張率発現の点でさらに優れた性能が期待できる。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求められる(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。

0023

繊維状セルロースの軸比(繊維長/繊維幅)は、とくに限定されないが、たとえば20以上10000以下であることが好ましく、50以上1000以下であることがより好ましい。軸比を上記下限値以上とすることにより、微細繊維状セルロースを含有するシートを形成しやすい。また、溶媒分散体を作製した際に十分な増粘性が得られやすい。軸比を上記上限値以下とすることにより、たとえば繊維状セルロースを水分散液として扱う際に、希釈等のハンドリングがしやすくなる点で好ましい。

0024

本実施形態における繊維状セルロースは、たとえば結晶領域と非結晶領域をともに有している。とくに、結晶領域と非結晶領域をともに有し、かつ軸比が高い微細繊維状セルロースは、後述する微細繊維状セルロースの製造方法により実現されるものである。

0025

繊維状セルロースは、亜リン酸基又は亜リン酸基に由来する置換基(単に亜リン酸基ということもある)を有する。

0026

本発明では、亜リン酸基又は亜リン酸基に由来する置換基は、たとえば、下記式(2)で表される置換基である。

0027

式(2)中、bは自然数であり、mは任意の数であり、b×m=1である。αは、水素原子飽和直鎖状炭化水素基、飽和−分岐鎖状炭化水素基、飽和−環状炭化水素基、不飽和−直鎖状炭化水素基、不飽和−分岐鎖状炭化水素基、不飽和−環状炭化水素基、芳香族基、またはこれらの誘導基である。中でも、αは水素原子であることが特に好ましい。なお、式(2)におけるαには、セルロース分子鎖に由来する基は含まれない。

0028

式(2)のαで表される飽和−直鎖状炭化水素基としては、メチル基エチル基、n−プロピル基、又はn−ブチル基等が挙げられるが、特に限定されない。飽和−分岐鎖状炭化水素基としては、i−プロピル基、又はt−ブチル基等が挙げられるが、特に限定されない。飽和−環状炭化水素基としては、シクロペンチル基、又はシクロヘキシル基等が挙げられるが、特に限定されない。不飽和−直鎖状炭化水素基としては、ビニル基、又はアリル基等が挙げられるが、特に限定されない。不飽和−分岐鎖状炭化水素基としては、i−プロペニル基、又は3−ブテニル基等が挙げられるが、特に限定されない。不飽和−環状炭化水素基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられるが、特に限定されない。芳香族基としては、フェニル基、又はナフチル基等が挙げられるが、特に限定されない。

0029

また、αにおける誘導基としては、上記各種炭化水素基の主鎖又は側鎖に対し、カルボキシ基、ヒドロキシ基、又はアミノ基などの官能基のうち、少なくとも1種類が付加又は置換した状態の官能基が挙げられるが、特に限定されない。また、Rの主鎖を構成する炭素原子数は特に限定されないが、20以下であることが好ましく、10以下であることがより好ましい。Rの主鎖を構成する炭素原子数を上記範囲とすることにより、亜リン酸基の分子量を適切な範囲とすることができ、繊維原料への浸透を容易にし、微細セルロース繊維収率を高めることもできる。

0030

式(2)におけるβb+は有機物又は無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、脂肪族アンモニウム、又は芳香族アンモニウムが挙げられ、βb+の少なくとも一部は後述する有機オニウムイオンである。また、無機物からなる1価以上の陽イオンとしては、ナトリウムカリウム、若しくはリチウム等のアルカリ金属イオンや、カルシウム、若しくはマグネシウム等の2価金属の陽イオン、又は水素イオン等が挙げられるが、特に限定されない。これらは1種又は2種類以上を組み合わせて適用することもできる。有機物又は無機物からなる1価以上の陽イオンとしては、βを含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、特に限定されない。

0031

なお、微細繊維状セルロースは、亜リン酸基又は亜リン酸基由来の置換基に加えて、さらにリン酸基又はリン酸基に由来する基を有していてもよい。リン酸基又はリン酸基に由来する基は、例えば、下記式(1)もしくは(3)で表される置換基である。なお、リン酸基又はリン酸基に由来する基は、下記式(3)で表されるような縮合リンオキソ酸基であってもよい。

0032

0033

式(1)中、a及びbは自然数であり、mは任意の数である(ただし、a=b×mである)。α及びα’のうちa個がO-であり、残りはORである。ここで、Rは、水素原子、飽和−直鎖状炭化水素基、飽和−分岐鎖状炭化水素基、飽和−環状炭化水素基、不飽和−直鎖状炭化水素基、不飽和−分岐鎖状炭化水素基、不飽和−環状炭化水素基、芳香族基、またはこれらの誘導基である。なお、式(1)におけるαは、セルロース分子鎖に由来する基であってもよい。

0034

0035

式(3)中、a及びbは自然数であり、mは任意の数であり、nは2以上の自然数である(ただし、a=b×mである)。α1,α2,・・・,αn及びα’のうちa個がO-であり、残りはR又はORのいずれかである。ここで、Rは、水素原子、飽和−直鎖状炭化水素基、飽和−分岐鎖状炭化水素基、飽和−環状炭化水素基、不飽和−直鎖状炭化水素基、不飽和−分岐鎖状炭化水素基、不飽和−環状炭化水素基、芳香族基、またはこれらの誘導基である。なお、式(3)におけるαは、セルロース分子鎖に由来する基であってもよい。

0036

式(1)及び(3)における各基の具体的例示は、式(2)における各基の具体的例示と同様である。また、式(1)及び(3)におけるβb+の具体的例示は、式(2)におけるβb+の具体的例示と同様である。

0037

微細繊維状セルロースが亜リン酸基を置換基として有することは、微細繊維状セルロースを含有する分散液について赤外線吸収スペクトルの測定を行い、1210cm-1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収を観察することで確認できる。また、繊維状セルロースがリン酸基を置換基として有することは、繊維状セルロースを含有する分散液について赤外線吸収スペクトルの測定を行い、1230cm-1付近にリン酸基のP=Oに基づく吸収を観察することで確認できる。また、繊維状セルロースが亜リン酸基やリン酸基を置換基として有することは、NMRを用いて化学シフトを確認する方法や、元素分析滴定を組み合わせる方法などでも確認できる。

0038

繊維状セルロースに対する亜リン酸基の導入量は、たとえば繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.50mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることが特に好ましい。また、繊維状セルロースに対する亜リン酸基の導入量は、たとえば繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましい。亜リン酸基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、繊維状セルロースの安定性を高めることが可能となる。また、亜リン酸基の導入量を上記範囲内とすることにより、繊維状セルロースを含むシートなどにおいて良好な特性を発揮することができる。
ここで、単位mmol/gにおける分母は、亜リン酸基の対イオンが水素イオン(H+)であるときの繊維状セルロースの質量を示す。

0039

繊維状セルロースに対するリンオキソ酸基(亜リン酸基を含む)の導入量は、たとえば中和滴定法により測定することができる。中和滴定法による測定では、得られた繊維状セルロースを含有するスラリーに、水酸化ナトリウム水溶液などのアルカリを加えながらpHの変化を求めることにより、導入量を測定する。

0040

図1は、リンオキソ酸基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。繊維状セルロースに対するリンオキソ酸基の導入量は、たとえば次のように測定される。
まず、繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。
次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図1の上側部に示すような滴定曲線を得る。図1の上側部に示した滴定曲線では、アルカリを加えた量に対して測定したpHをプロットしており、図1の下側部に示した滴定曲線では、アルカリを加えた量に対するpHの増分(微分値)(1/mmol)をプロットしている。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ確認される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中に含まれる繊維状セルロースの第1解離酸量と等しくなり、第1終点から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる繊維状セルロースの第2解離酸量と等しくなり、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる繊維状セルロースの総解離酸量と等しくなる。そして、滴定開始から第1終点までに必要としたアルカリ量を滴定対象スラリー中の固形分(g)で除して得られる値が、リンオキソ酸基導入量(mmol/g)となる。なお、単にリンオキソ酸基導入量(またはリンオキソ酸基量)と言った場合は、第1解離酸量のことを表す。
なお、図1において、滴定開始から第1終点までの領域を第1領域と呼び、第1終点から第2終点までの領域を第2領域と呼ぶ。例えば、リンオキソ酸基がリン酸基の場合であって、このリン酸基が縮合を起こす場合、見かけ上、リンオキソ酸基における弱酸性基量(本明細書では第2解離酸量ともいう)が低下し、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、リンオキソ酸基における強酸性基量(本明細書では第1解離酸量ともいう)は、縮合の有無に関わらずリン原子の量と一致する。また、リンオキソ酸基が亜リン酸基の場合は、リンオキソ酸基に弱酸性基が存在しなくなるため、第2領域に必要としたアルカリ量が少なくなるか、第2領域に必要としたアルカリ量はゼロとなる場合もある。この場合、滴定曲線において、pHの増分が極大となる点は一つとなる。

0041

なお、上述のリンオキソ酸基導入量(mmol/g)は、分母が酸型の繊維状セルロースの質量を示すことから、酸型の繊維状セルロースが有するリンオキソ酸基量(以降、リンオキソ酸基量(酸型)と呼ぶ)を示している。一方で、リンオキソ酸基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの繊維状セルロースの質量に変換することで、陽イオンCが対イオンである繊維状セルロースが有するリンオキソ酸基量(以降、リンオキソ酸基量(C型))を求めることができる。
すなわち、下記計算式によって算出する。
リンオキソ酸基量(C型)=リンオキソ酸基量(酸型)/{1+(W−1)×A/1000}
A[mmol/g]:繊維状セルロースが有するリンオキソ酸基由来の総アニオン量(リンオキソ酸基の総解離酸量)
W:陽イオンCの1価あたりの式量(たとえば、Naは23、Alは9)

0042

なお、滴定法によるリンオキソ酸基量の測定においては、水酸化ナトリウム水溶液1滴の滴下量が多すぎる場合や、滴定間隔が短すぎる場合、本来より低いリンオキソ酸基量となるなど正確な値が得られないことがある。適切な滴下量、滴定間隔としては、例えば、0.1N水酸化ナトリウム水溶液を5〜30秒に10〜50μLずつ滴定するなどが望ましい。また、繊維状セルロース含有スラリーに溶解した二酸化炭素の影響を排除するため、例えば、滴定開始の15分前から滴定終了まで、窒素ガスなどの不活性ガスをスラリーに吹き込みながら測定するなどが望ましい。

0043

また、亜リン酸基に加えて、リン酸基、縮合リン酸基のいずれかまたは両方を含む場合において検出されるリンオキソ酸が、亜リン酸リン酸、縮合リン酸のどれに由来するのかを区別する方法としては、例えば、酸加水分解などの縮合構造を切断する処理を行ってから上述した滴定操作を行う方法や、酸化処理などの亜リン酸基をリン酸基へ変換する処理を行ってから上述した滴定操作を行う方法などが挙げられる。

0044

繊維状セルロース含有樹脂組成物中に含まれる繊維状セルロースの含有量は、繊維状セルロース含有樹脂組成物中に含まれる固形分の全質量に対して、0.1質量%以上であることが好ましく、1質量%以上であることがより好ましく、2質量%以上であることがさらに好ましい。また、繊維状セルロースの含有量は、繊維状セルロース含有樹脂組成物中に含まれる固形分の全質量に対して、99質量%以下であることが好ましく、90質量%以下であることがより好ましく、80質量%以下であることがさらに好ましい。

0045

(微細繊維状セルロースの製造工程)
<繊維原料>
微細繊維状セルロースは、セルロースを含む繊維原料から製造される。セルロースを含む繊維原料としては、とくに限定されないが、入手しやすく安価である点からパルプを用いることが好ましい。パルプとしては、たとえば木材パルプ非木材パルプ、および脱墨パルプが挙げられる。木材パルプとしては、とくに限定されないが、たとえば広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、溶解パルプDP)、ソーダパルプAP)、未晒しクラフトパルプ(UKP)および酸素漂白クラフトパルプ(OKP)等の化学パルプセミケミカルパルプSCP)およびケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)およびサーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられる。非木材パルプとしては、とくに限定されないが、たとえばコットンリンターおよびコットンリント等の綿系パルプ、麦わらおよびバガス等の非木材系パルプが挙げられる。脱墨パルプとしては、とくに限定されないが、たとえば古紙を原料とする脱墨パルプが挙げられる。本実施態様のパルプは上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。
上記パルプの中でも、入手のしやすさという観点からは、たとえば木材パルプおよび脱墨パルプが好ましい。また、木材パルプの中でも、セルロース比率が大きく解繊処理時の微細繊維状セルロースの収率が高い観点や、パルプ中のセルロースの分解が小さく軸比の大きい長繊維の微細繊維状セルロースが得られる観点から、たとえば化学パルプがより好ましく、クラフトパルプ、サルファイトパルプがさらに好ましい。

0046

セルロースを含む繊維原料としては、たとえばホヤ類に含まれるセルロースや、酢酸菌が生成するバクテリアセルロースを利用することも出来る。また、セルロースを含む繊維原料に代えて、キチンキトサンなどの直鎖型含窒素多糖高分子が形成する繊維を用いることも出来る。

0047

<亜リン酸基導入工程>
亜リン酸基導入工程は、セルロースを含む繊維原料が有する水酸基と反応することで、亜リン酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物A」ともいう)を、セルロースを含む繊維原料に作用させる工程である。この工程により、亜リン酸基導入繊維が得られることとなる。

0048

本実施形態に係る亜リン酸基導入工程では、セルロースを含む繊維原料と化合物Aの反応を、尿素及びその誘導体から選択される少なくとも1種(以下、「化合物B」ともいう)の存在下で行ってもよい。一方で、化合物Bが存在しない状態において、セルロースを含む繊維原料と化合物Aの反応を行ってもよい。

0049

化合物Aを化合物Bとの共存下で繊維原料に作用させる方法の一例としては、乾燥状態湿潤状態またはスラリー状の繊維原料に対して、化合物Aと化合物Bを混合する方法が挙げられる。これらのうち、反応の均一性が高いことから、乾燥状態または湿潤状態の繊維原料を用いることが好ましく、特に乾燥状態の繊維原料を用いることが好ましい。繊維原料の形態は、とくに限定されないが、たとえば綿状や薄いシート状であることが好ましい。化合物Aおよび化合物Bは、それぞれ粉末状または溶媒に溶解させた溶液状または融点以上まで加熱して溶融させた状態で繊維原料に添加する方法が挙げられる。これらのうち、反応の均一性が高いことから、溶媒に溶解させた溶液状、特に水溶液の状態で添加することが好ましい。また、化合物Aと化合物Bは繊維原料に対して同時に添加してもよく、別々に添加してもよく、混合物として添加してもよい。化合物Aと化合物Bの添加方法としては、とくに限定されないが、化合物Aと化合物Bが溶液状の場合は、繊維原料を溶液内に浸漬し吸液させたのちに取り出してもよいし、繊維原料に溶液を滴下してもよい。また、必要量の化合物Aと化合物Bを繊維原料に添加してもよいし、過剰量の化合物Aと化合物Bをそれぞれ繊維原料に添加した後に、圧搾濾過によって余剰の化合物Aと化合物Bを除去してもよい。

0050

本実施態様で使用する化合物Aは、亜リン酸基を有する化合物及びその塩から選択される少なくとも1種である。亜リン酸基を有する化合物としては亜リン酸を挙げることができ、亜リン酸としては、たとえば99%亜リン酸(ホスホン酸)が挙げられる。亜リン酸基を有する化合物の塩としては、亜リン酸のリチウム塩ナトリウム塩カリウム塩アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。これらのうち、リンオキソ酸基の導入の効率が高く、後述する解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、亜リン酸、亜リン酸のナトリウム塩、亜リン酸のカリウム塩、または、亜リン酸のアンモニウム塩が好ましく用いられる。

0051

繊維原料に対する化合物Aの添加量は、特に限定されないが、たとえば化合物Aの添加量をリン原子量に換算した場合において、繊維原料(絶乾質量)に対するリン原子の添加量が0.5質量%以上100質量%以下となることが好ましく、1質量%以上50質量%以下となることがより好ましく、2質量%以上30質量%以下となることがさらに好ましい。繊維原料に対するリン原子の添加量を上記範囲内とすることにより、微細繊維状セルロースの収率をより向上させることができる。一方で、繊維原料に対するリン原子の添加量を上記上限値以下とすることにより、収率向上の効果とコストのバランスをとることができる。

0052

本実施態様で使用する化合物Bは、上述のとおり尿素及びその誘導体から選択される少なくとも1種である。化合物Bとしては、たとえば尿素、ビウレット、1−フェニル尿素、1−ベンジル尿素、1−メチル尿素、および1−エチル尿素などが挙げられる。
反応の均一性を向上させる観点から、化合物Bは水溶液として用いることが好ましい。また、反応の均一性をさらに向上させる観点からは、化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。

0053

繊維原料(絶乾質量)に対する化合物Bの添加量は、とくに限定されないが、たとえば1質量%以上500質量%以下であることが好ましく、10質量%以上400質量%以下であることがより好ましく、100質量%以上350質量%以下であることがさらに好ましい。

0054

セルロースを含む繊維原料と化合物Aの反応においては、化合物Bの他に、たとえばアミド類またはアミン類を反応系に含んでもよい。アミド類としては、たとえばホルムアミドジメチルホルムアミドアセトアミドジメチルアセトアミドなどが挙げられる。アミン類としては、たとえばメチルアミンエチルアミントリメチルアミントリエチルアミンモノエタノールアミンジエタノールアミントリエタノールアミンピリジンエチレンジアミンヘキサメチレンジアミンなどが挙げられる。これらの中でも、特にトリエチルアミンは良好な反応触媒として働くことが知られている。

0055

亜リン酸基導入工程においては、繊維原料に化合物A等を添加又は混合した後、当該繊維原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解加水分解反応を抑えながら、亜リン酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。また、加熱処理には、種々の熱媒体を有する機器を利用することができ、たとえば攪拌乾燥装置回転乾燥装置円盤乾燥装置ロール型加熱装置プレート型加熱装置、流動層乾燥装置気流乾燥装置減圧乾燥装置赤外線加熱装置遠赤外線加熱装置、マイクロ波加熱装置高周波乾燥装置を用いることができる。

0056

本実施形態に係る加熱処理においては、たとえば薄いシート状の繊維原料に化合物Aを含浸等の方法により添加した後、加熱する方法や、ニーダー等で繊維原料と化合物Aを混練又は攪拌しながら加熱する方法を採用することができる。これにより、繊維原料における化合物Aの濃度ムラを抑制して、繊維原料に含まれるセルロース繊維表面へより均一に亜リン酸基を導入することが可能となる。これは、乾燥に伴い水分子が繊維原料表面に移動する際、溶存する化合物Aが表面張力によって水分子に引き付けられ、同様に繊維原料表面に移動してしまう(すなわち、化合物Aの濃度ムラを生じてしまう)ことを抑制できることに起因するものと考えられる。

0057

また、加熱処理に用いる加熱装置は、たとえばスラリーが保持する水分、及び化合物Aと繊維原料中のセルロース等が含む水酸基等との脱水縮合リン酸エステル化)反応に伴って生じる水分、を常に装置系外に排出できる装置であることが好ましい。このような加熱装置としては、例えば送風方式のオーブン等が挙げられる。装置系内の水分を常に排出することにより、リン酸エステル化の逆反応であるリン酸エステル結合の加水分解反応を抑制できることに加えて、繊維中の糖鎖の酸加水分解を抑制することもできる。このため、軸比の高い微細繊維状セルロースを得ることが可能となる。

0058

加熱処理の時間は、たとえば繊維原料から実質的に水分が除かれてから1秒以上300分以下であることが好ましく、1秒以上1000秒以下であることがより好ましく、10秒以上800秒以下であることがさらに好ましい。本実施形態では、加熱温度と加熱時間を適切な範囲とすることにより、亜リン酸基の導入量を好ましい範囲内とすることができる。

0059

亜リン酸基導入工程は、少なくとも1回行えば良いが、2回以上繰り返して行うこともできる。2回以上の亜リン酸基導入工程を行うことにより、繊維原料に対して多くの亜リン酸基を導入することができる。本実施形態においては、好ましい態様の一例として、亜リン酸基導入工程を2回行う場合が挙げられる。

0060

洗浄工程>
本実施形態における微細繊維状セルロースの製造方法においては、必要に応じて亜リン酸基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、たとえば水や有機溶剤により亜リン酸基導入繊維を洗浄することにより行われる。また、洗浄工程は後述する各工程の後に行われてもよく、各洗浄工程において実施される洗浄回数は、とくに限定されない。

0061

アルカリ処理工程>
微細繊維状セルロースを製造する場合、亜リン酸基導入工程と、後述する解繊処理工程との間に、繊維原料に対してアルカリ処理を行ってもよい。アルカリ処理の方法としては、特に限定されないが、例えばアルカリ溶液中に、亜リン酸基導入繊維を浸漬する方法が挙げられる。

0062

アルカリ溶液に含まれるアルカリ化合物は、特に限定されず、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。本実施形態においては、汎用性が高いことから、たとえば水酸化ナトリウムまたは水酸化カリウムをアルカリ化合物として用いることが好ましい。また、アルカリ溶液に含まれる溶媒は、水または有機溶剤のいずれであってもよい。中でも、アルカリ溶液に含まれる溶媒は、水、またはアルコールに例示される極性有機溶剤などを含む極性溶媒であることが好ましく、少なくとも水を含む水系溶媒であることがより好ましい。アルカリ溶液としては、汎用性が高いことから、たとえば水酸化ナトリウム水溶液、または水酸化カリウム水溶液が好ましい。

0063

アルカリ処理工程におけるアルカリ溶液の温度は、特に限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましい。アルカリ処理工程における亜リン酸基導入繊維のアルカリ溶液への浸漬時間は、特に限定されないが、たとえば5分以上30分以下であることが好ましく、10分以上20分以下であることがより好ましい。アルカリ処理におけるアルカリ溶液の使用量は、特に限定されないが、たとえば亜リン酸基導入繊維の絶乾質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。

0064

アルカリ処理工程におけるアルカリ溶液の使用量を減らすために、亜リン酸基導入工程の後であってアルカリ処理工程の前に、亜リン酸基導入繊維を水や有機溶剤により洗浄してもよい。アルカリ処理工程の後であって解繊処理工程の前には、取り扱い性を向上させる観点から、アルカリ処理を行った亜リン酸基導入繊維を水や有機溶剤により洗浄することが好ましい。

0065

酸処理工程>
微細繊維状セルロースを製造する場合、亜リン酸基を導入する工程と、後述する解繊処理工程の間に、繊維原料に対して酸処理を行ってもよい。例えば、亜リン酸基導入工程、酸処理、アルカリ処理及び解繊処理をこの順で行ってもよい。

0066

酸処理の方法としては、特に限定されないが、たとえば酸を含有する酸性液中に繊維原料を浸漬する方法が挙げられる。使用する酸性液の濃度は、特に限定されないが、たとえば10質量%以下であることが好ましく、5質量%以下であることがより好ましい。また、使用する酸性液のpHは、特に限定されないが、たとえば0以上4以下であることが好ましく、1以上3以下であることがより好ましい。酸性液に含まれる酸としては、たとえば無機酸、スルホン酸カルボン酸等を用いることができる。無機酸としては、たとえば硫酸硝酸塩酸臭化水素酸ヨウ化水素酸次亜塩素酸亜塩素酸塩素酸過塩素酸、リン酸、ホウ酸等が挙げられる。スルホン酸としては、たとえばメタンスルホン酸エタンスルホン酸ベンゼンスルホン酸p-トルエンスルホン酸トリフルオロメタンスルホン酸等が挙げられる。カルボン酸としては、たとえばギ酸酢酸クエン酸グルコン酸乳酸シュウ酸酒石酸等が挙げられる。これらの中でも、塩酸または硫酸を用いることがとくに好ましい。

0067

酸処理における酸溶液の温度は、特に限定されないが、たとえば5℃以上100℃以下が好ましく、20℃以上90℃以下がより好ましい。酸処理における酸溶液への浸漬時間は、特に限定されないが、たとえば5分以上120分以下が好ましく、10分以上60分以下がより好ましい。酸処理における酸溶液の使用量は、特に限定されないが、たとえば繊維原料の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。

0068

<解繊処理>
亜リン酸基導入繊維を解繊処理工程で解繊処理することにより、微細繊維状セルロースが得られる。解繊処理工程においては、たとえば解繊処理装置を用いることができる。解繊処理装置は、特に限定されないが、たとえば高速解繊機グラインダー石臼粉砕機)、高圧ホモジナイザー超高圧ホモジナイザー高圧衝突型粉砕機ボールミルビーズミルディスク型リファイナー、コニカルリファイナー二軸混練機振動ミル高速回転下でのホモミキサー超音波分散機、またはビーターなどを使用することができる。上記解繊処理装置の中でも、粉砕メディアの影響が少なく、コンタミネーションのおそれが少ない高速解繊機、高圧ホモジナイザー、超高圧ホモジナイザーを用いるのがより好ましい。

0069

解繊処理工程においては、たとえば亜リン酸基導入繊維を、分散媒により希釈してスラリー状にすることが好ましい。分散媒としては、水、および極性有機溶剤などの有機溶剤から選択される1種または2種以上を使用することができる。極性有機溶剤としては、とくに限定されないが、たとえばアルコール類多価アルコール類ケトン類エーテル類エステル類非プロトン極性溶媒等が好ましい。アルコール類としては、たとえばメタノールエタノールイソプロパノールn−ブタノールイソブチルアルコール等が挙げられる。多価アルコール類としては、たとえばエチレングリコールプロピレングリコールグリセリンなどが挙げられる。ケトン類としては、アセトンメチルエチルケトン(MEK)等が挙げられる。エーテル類としては、たとえばジエチルエーテルテトラヒドロフランエチレングリコールモノメチルエーテルエチレングリコールモノエチルエーテル、エチレングリコールモノn−ブチルエーテルプロピレングリコールモノメチルエーテル等が挙げられる。エステル類としては、たとえば酢酸エチル酢酸ブチル等が挙げられる。非プロトン性極性溶媒としてはジメチルスルホキシドDMSO)、ジメチルホルムアミド(DMF),ジメチルアセトアミド(DMAc)、N−メチル−2−ピロリジノン(NMP)等が挙げられる。

0070

解繊処理時の微細繊維状セルロースの固形分濃度は適宜設定できる。また、亜リン酸基導入繊維を分散媒に分散させて得たスラリー中には、例えば水素結合性のある尿素などの亜リン酸基導入繊維以外の固形分が含まれていてもよい。

0071

凝集工程>
凝集工程では、解繊処理工程で得られた微細繊維状セルロース含有スラリーに、後述する有機オニウムイオンまたは、中和により有機オニウムイオンを形成する化合物を添加する。この際、有機オニウムイオンは、有機オニウムイオンを含有した溶液として添加することが好ましく、有機オニウムイオンを含有した水溶液として添加することがより好ましい。

0072

有機オニウムイオンを含有した水溶液は、通常、有機オニウムイオンと、対イオン(アニオン)を含んでいる。有機オニウムイオンの水溶液を調製する際、有機オニウムイオンと、対応する対イオンが既に塩を形成している場合は、そのまま水に溶解させればよい。また、有機オニウムイオンは、例えば、ドデシルアミンなどのように、酸によって中和されて始めて生成する場合もある。すなわち、有機オニウムイオンは、中和により有機オニウムイオンを形成する化合物と酸との反応で得ても良い。この場合、中和に使用する酸としては、塩酸、硫酸、硝酸等の無機酸や乳酸、酢酸、ギ酸、シュウ酸等の有機酸が挙げられる。凝集工程では、中和により有機オニウムを形成する化合物を微細繊維状セルロース含有スラリーに直接加え、微細繊維状セルロースが含む亜リン酸基を対イオンとして、有機オニウムイオン化させても良い。

0073

有機オニウムイオンの添加量は、微細繊維状セルロースの全質量に対し、2質量%以上であることが好ましく、10質量%以上であることがより好ましく、50質量%以上であることがさらに好ましく、100質量%以上であることが特に好ましい。なお、有機オニウムイオンの添加量は、微細繊維状セルロースの全質量に対し、1000質量%以下であることが好ましい。
また、添加する有機オニウムイオンのモル数は、微細繊維状セルロースが含む亜リン酸基の量(モル数)に価数を乗じた値の0.2倍以上であることが好ましく、0.5倍以上であることがより好ましく、1.0倍以上であることがさらに好ましい。なお、添加する有機オニウムイオンのモル数は、微細繊維状セルロースが含む亜リン酸基の量(モル数)に価数を乗じた値の10倍以下であることが好ましい。

0074

有機オニウムイオンを添加し、攪拌を行うと、微細繊維状セルロース含有スラリー中に凝集物が生じる。この凝集物は、対イオンとして有機オニウムイオンを有する微細繊維状セルロースが凝集したものである。ここで、有機オニウムイオンの共役塩基のpKbは1.0以上である。凝集物が生じた微細繊維状セルロース含有スラリーを減圧濾過することで、微細繊維状セルロース凝集物を回収することができる。

0075

得られた微細繊維状セルロース凝集物は、イオン交換水で洗浄してもよい。微細繊維状セルロース凝集物をイオン交換水で繰り返し洗うことで、微細繊維状セルロース凝集物に含まれる余剰な有機オニウムイオン等を除去することができる。

0076

得られた微細繊維状セルロース凝集物中のP原子の含有量に対するN原子の含有量の比(N/Pの値)は0.6よりも大きいことが好ましく、1.0よりも大きいことがより好ましい。また、得られた微細繊維状セルロース凝集物中のP原子の含有量に対するN原子の含有量の比(N/Pの値)は5.0以下であることが好ましい。なお、微細繊維状セルロース凝集物中のP原子の含有量とN原子の含有量は適宜元素分析により算出することができる。元素分析としては、例えば、適当な前処理の後に微量窒素分析モリブデンブルー法などを行うことができる。なお、微細繊維状セルロース凝集物以外の組成物が、P原子、N原子を含む場合は、当該組成物と微細繊維状セルロース凝集物を適当な方法で分離した後に元素分析を行ってもよい。

0077

得られた微細繊維状セルロース凝集物の固形分濃度は、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。

0078

<有機オニウムイオン>
有機オニウムイオンの共役塩基のpKbは1.0以上であればく、1.5以上であることがより好ましく、2.0以上であることがさらに好ましい。有機オニウムイオンの共役塩基のpKbの上限値は特に制限されるものではないが、たとえば7.0であることが好ましい。なお、有機オニウムイオンと有機オニウムイオンの共役塩基は、以下の関係にある。
有機オニウムイオンの共役塩基+H2O⇔有機オニウムイオン+OH-

0079

ここで、有機オニウムイオンの共役塩基のpKbは、以下の方法で測定することができる。まず、有機オニウムイオンの共役塩基を別途準備し、有機オニウムイオンの共役塩基に水を加え、0.01N有機オニウムイオンの共役塩基水溶液を調製する。その後、該水溶液の25℃におけるpHを測定し、有機オニウムイオンの共役塩基のpKbを下記(1)、(2)式に基づいて算出する。共役塩基のpKbが小さいほど共役塩基水溶液の塩基性は強いことを示す。
(1)[OH]=10-(14-pH)
(2)pKb=−log10([OH]2÷(0.01−[OH]))
ただし、[OH]は、有機オニウムの共役塩基水溶液の水酸化物イオン濃度(mol/L)を表す。
なお、水に難溶の有機オニウムの共役塩基は水中でほとんど電離せず、水酸化物イオンをほとんど放出しない。そのため、pKbは非常に大きいと考えられ、本明細書においては、難溶性の有機オニウムの共役塩基については、pKbは3.0より大きいものとする。

0080

また、有機オニウムイオンの共役塩基のpKbとしては、文献値を採用することもできる。

0081

有機オニウムイオンは、下記(a)及び(b)から選択される少なくとも一方の条件を満たすものであることが好ましい。
(a)炭素数が5以上の炭化水素基を含む。
(b)総炭素数が17以上である。
すなわち、微細繊維状セルロースは、炭素数が5以上の炭化水素基を含む有機オニウムイオン、及び総炭素数が17以上の有機オニウムイオンから選択される少なくとも一方を、亜リン酸基又は亜リン酸基に由来する置換基の対イオンとして含むことが好ましい。

0082

炭素数が5以上の炭化水素基は、炭素数が5以上のアルキル基又は炭素数が5以上のアルキレン基であることが好ましく、炭素数が7以上のアルキル基又は炭素数が7以上のアルキレン基であることがより好ましく、炭素数が10以上のアルキル基又は炭素数が10以上のアルキレン基であることがさらに好ましい。中でも、有機オニウムイオンは炭素数が5以上のアルキル基を有するものであることが好ましく、炭素数が5以上のアルキル基を含み、かつ総炭素数が17以上の有機オニウムイオンであることがより好ましい。

0083

炭素数が5以上の炭化水素基を含む有機オニウムイオン、及び総炭素数が17以上の有機オニウムイオンは、下記一般式(A)で表される有機オニウムイオンであることが好ましい。

0084

0085

上記一般式(A)中、Mは窒素原子又はリン原子であり、R1〜R4は、それぞれ独立に水素原子又は有機基を表す。但し、R1〜R4の少なくとも1つは、炭素数が5以上の有機基であるか、R1〜R4の炭素数の合計が17以上である。
中でも、Mは、窒素原子であることが好ましい。すなわち、有機オニウムイオンは有機アンモニウムイオンであることが好ましい。また、R1〜R4の少なくとも1つは、炭素数が5以上のアルキル基であり、かつR1〜R4の炭素数の合計が17以上であることが好ましい。なお、炭素数が5以上のアルキル基は置換基を有していてもよい。

0086

このような有機オニウムイオンとしては、例えば、ラウリルトリメチルアンモニウムセチルトリメチルアンモニウム、ステアリルトリメチルアンモニウムオクチジメチルエチルアンモニウム、ラウリルジメチルエチルアンモニウム、ジデシルジメチルアンモニウム、ラウリルジメチルベンジルアンモニウム、トリブチルベンジルアンモニウム、メチルトリn−オクチルアンモニウム、ヘキシルアンモニウム、n−オクチルアンモニウム、ドデシルアンモニウム、テトラデシルアンモニウム、ヘキサデシルアンモニウムステアリルアンモニウム、N,N−ジメチルドデシルアンモニウム、N,N−ジメチルテトラデシルアンモニウム、N,N−ジメチルヘキサデシルアンモニウム、N,N−ジメチル−n−オクタデシルアンモニウム、ジヘキシルアンモニウム、ジ(2−エチルヘキシル)アンモニウム、ジーn−オクチルアンモニウム、ジデシルアンモニウム、ジドデシルアンモニウム、ジデシルメチルアンモニウム、N,N−ジドデシルメチルアンモニウム、ポリオキシエチレンドデシルアンモニウム、アルキルジメチルベンジルアンモニウム、ジ−n−アルキルジメチルアンモニウム、ベヘニルトリメチルアンモニウム、テトラフェニルホスホニウムテトラオクチルホスホニウム、アセトニルトリフェニルホスホニウムアリルトリフェニルホスホニウム、アミルトリフェニルホスホニウム、ベンジルトリフェニルホスホニウム、エチルトリフェニルホスホニウム、ジフェニルプロピルホスホニウム、トリフェニルホスホニウム、トリシクロヘキシルホスホニウム、トリ−n−オクチルホスホニウム等を挙げることができる。

0087

なお、一般式(A)に示した通り、有機オニウムイオンの中心元素は合計4つの基または水素と結合している。上述した有機オニウムイオンの名称で、結合している基が4つ未満である場合、残りは水素原子が結合して有機オニウムイオンを形成している。例えば、N,N−ジドデシルメチルアンモニウムであれば、名称からドデシル基が2つ、メチル基が1つ結合していると判断できる。この場合、残りの1つには水素が結合し、有機オニウムイオンを形成している。

0088

有機オニウムイオンの分子量は2000以下であることが好ましく、1800以下であることがより好ましい。有機オニウムイオンの分子量を上記範囲内とすることにより、微細繊維状セルロースのハンドリング性を高めることができる。また、全体として、セルロースの含有率が低下してしまうことを抑制できる。

0089

微細繊維状セルロースにおける有機オニウムイオンの含有量は、微細繊維状セルロース中に含まれる亜リン酸基量に対して、等モル量から2倍モル量であることが好ましいが、特に限定されない。有機オニウムイオンの含有量は、有機オニウムイオンに典型的に含まれる原子を追跡することで測定することが出来る。具体的には、有機オニウムイオンがアンモニウムイオンの場合は窒素原子を、有機オニウムイオンがホスホニウムイオンの場合はリン原子の量を測定する。なお、微細繊維状セルロースが有機オニウムイオン以外に、窒素原子やリン原子を含む場合は、有機オニウムイオンのみを抽出する方法、例えば、酸による抽出操作などを行ってから、目的の原子の量を測定すれば良い。

0090

(樹脂)
本発明の繊維状セルロース含有樹脂組成物は、樹脂を含む。樹脂の種類は特に限定されるものではないが、例えば、熱可塑性樹脂熱硬化性樹脂を挙げることができる。

0091

中でも、樹脂は、アクリル系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、シリコーン系樹脂、フッ素系樹脂、塩素系樹脂、エポキシ系樹脂、メラミン系樹脂、フェノール系樹脂、ポリウレタン系樹脂、ジアリルフタレート系樹脂、アルコール系樹脂、セルロース誘導体及びこれらの樹脂の前駆体から選択される少なくとも1種であることが好ましく、アクリル系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、シリコーン系樹脂、エポキシ系樹脂、メラミン系樹脂、フェノール系樹脂、ポリウレタン系樹脂、ジアリルフタレート系樹脂、アルコール系樹脂、セルロース誘導体及びこれらの樹脂の前駆体から選択される少なくとも1種であることがより好ましく、アクリル系樹脂及びポリビニルアルコール系樹脂から選択される少なくとも1種であることがさらに好ましい。
なお、セルロース誘導体としては、たとえば、カルボキシメチルセルロースメチルセルロースヒドロキシエチルセルロースなどを挙げることができる。

0092

また、樹脂はハロゲン系樹脂であることも好ましい。ハロゲン系樹脂は、フッ素系樹脂、塩素系樹脂及びこれらの樹脂の前駆体から選択される少なくとも1種であることが好ましく、塩化ビニル系樹脂ポリ塩化ビニリデン、フッ化ビニル系樹脂及びポリフッ化ビニリデンから選択される少なくとも1種であることがより好ましく、塩化ビニル系樹脂及びポリフッ化ビニリデンから選択される少なくとも1種であることがさらに好ましい。

0093

本発明の微細状セルロース含有樹脂組成物は、樹脂として、樹脂の前駆体を含んでいてもよい。樹脂の前駆体の種類は特に限定されるものではないが、たとえば、熱可塑性樹脂や熱硬化性樹脂の前駆体を挙げることができる。熱可塑性樹脂の前駆体とは、熱可塑性樹脂を製造するために使用されるモノマーや分子量が比較的低いオリゴマーを意味する。また、熱硬化性樹脂の前駆体とは、光、熱、硬化剤の作用によって重合反応または架橋反応を起こして熱硬化性樹脂を形成しうるモノマーや分子量が比較的低いオリゴマーを意味する。なお、ハロゲン系樹脂の前駆体の種類は特に限定されるものではないが、たとえば、フッ素系樹脂、塩素系樹脂の前駆体を挙げることができる。フッ素系樹脂、塩素系樹脂の前駆体としては、フルオロエチレン、1,1−ジフルオロエチレン、1,2−ジフルオロエチレン、トリフルオロエチレンテトラフルオロエチレンクロロエチレン、1,1−ジクロロエチレン、1,2−ジクロロエチレン、トリクロロエチレンテトラクロロエチレンなどに例示されるモノマーや、該モノマーの少なくとも1種を重合することで得られる低分子量重合体などが挙げられる。

0094

本発明の繊維状セルロース含有樹脂組成物は、樹脂として、上述した樹脂種とは別にさらに水溶性高分子を含んでいてもよい。水溶性高分子としては、たとえば、キサンタンガムグアーガムタマリンドガムカラギーナンローカストビーンガムクインスシード、アルギン酸プルラン、カラギーナン、ペクチンなどに例示される増粘多糖類カチオン化デンプン生デンプン酸化デンプンエーテル化デンプンエステル化デンプンアミロース等のデンプン類、グリセリン、ジグリセリンポリグリセリン等のグリセリン類等、ヒアルロン酸、ヒアルロン酸の金属塩等を挙げることができる。

0095

繊維状セルロース含有樹脂組成物中に含まれる樹脂の含有量は、繊維状セルロース含有樹脂組成物中に含まれる固形分の全質量に対して、1質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることがさらに好ましい。また、樹脂の含有量は、繊維状セルロース含有樹脂組成物中に含まれる固形分の全質量に対して、99.9質量%以下であることが好ましく、99.0質量%以下であることがより好ましく、98.0質量%以下であることがさらに好ましい。

0096

(有機溶剤)
本発明の繊維状セルロース含有樹脂組成物は、有機溶剤をさらに含んでいてもよい。なお、有機溶剤をさらに含む繊維状セルロース含有樹脂組成物を樹脂含有微細繊維状セルロース分散液と呼んでもよい。

0097

有機溶剤は、特に限定されるものではないが、例えば、メタノール、エタノール、n−プロピルアルコールイソプロピルアルコール(IPA)、1−ブタノールm−クレゾール、グリセリン、酢酸、ピリジン、テトラヒドロフラン(THF)、アセトン、メチルエチルケトン(MEK)、酢酸エチル、アニリンN−メチル−2−ピロリドン(NMP)、ジメチルスルホキシド(DMSO)、N,N−ジメチルホルムアミド(DMF)、ヘキサンシクロヘキサンベンゼントルエンp−キシレン、ジエチルエーテルクロロホルム等を挙げることができる。中でも、N−メチル−2−ピロリドン(NMP)、ジメチルスルホキシド(DMSO)、メチルエチルケトン(MEK)、トルエンは好ましく用いられる。

0098

有機溶剤のハンセン溶解度パラメーター(Hansen solubility parameter,HSP)のδpは、5MPa1/2以上20MPa1/2以下であることが好ましく、10MPa1/2以上19MPa1/2以下であることがより好ましく、12MPa1/2以上18MPa1/2以下であることがさらに好ましい。また、δhは、5MPa1/2以上40MPa1/2以下であることが好ましく、5MPa1/2以上30MPa1/2以下であることがより好ましく、5MPa1/2以上20MPa1/2以下であることがさらに好ましい。また、δpが0MPa1/2以上4MPa1/2以下の範囲であり、δhが0MPa1/2以上6MPa1/2以下の範囲であることを同時に満たすことも好ましい。

0099

繊維状セルロース含有樹脂組成物が有機溶剤を含む場合、有機溶剤の含有量は繊維状セルロース含有樹脂組成物の全質量に対して、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。なお、有機溶剤の含有量は繊維状セルロース含有樹脂組成物の全質量に対して、99質量%以下であることが好ましい。
なお、繊維状セルロース含有樹脂組成物の固形分濃度は、1質量%以上であることが好ましく、10質量%以上であることがより好ましく、30質量%以上であることがさらに好ましく、40質量%以上であることが一層好ましく、50質量%以上であることが特に好ましい、また、繊維状セルロース含有樹脂組成物の固形分濃度は、99質量%以下であることが好ましい。

0100

(任意成分)
繊維状セルロース含有樹脂組成物は、上述した微細繊維状セルロース及び樹脂の他に、たとえば界面活性剤、有機イオンカップリング剤無機層状化合物無機化合物レベリング剤防腐剤消泡剤有機系粒子潤滑剤、帯電防止剤紫外線防御剤染料顔料、安定剤、磁性粉配向促進剤可塑剤分散剤、及び架橋剤から選択される一種または二種以上を含んでもよい。

0101

繊維状セルロース含有樹脂組成物中に含まれる任意成分の含有量は、繊維状セルロース含有樹脂組成物中に含まれる固形分の全質量に対して、40質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。

0102

(繊維状セルロース含有樹脂組成物の含水率
本発明の繊維状セルロース含有樹脂組成物においては、水の含有量は少ない方が好ましい。繊維状セルロース含有樹脂組成物における水の含有量は、繊維状セルロース含有樹脂組成物の全質量に対して、5質量%以下であることが好ましく、1質量%以下であることがより好ましい。なお、繊維状セルロース含有樹脂組成物における水の含有量は0質量%であることも好ましい。

0103

(繊維状セルロース含有樹脂組成物の製造工程)
繊維状セルロース含有樹脂組成物の製造工程は、上述した<凝集工程>で得られた微細繊維状セルロース凝集物(濃縮物)の再分散液と、樹脂溶液を混合する工程を含むことが好ましい。すなわち、繊維状セルロース含有樹脂組成物の製造工程は、共役塩基のpKbが1.0以上の有機オニウムイオンを含有した水溶液を、亜リン酸基又は亜リン酸基に由来する置換基を有する微細繊維状セルロース分散液に添加し、微細繊維状セルロース凝集物(濃縮物)を得る工程と、微細繊維状セルロース凝集物(濃縮物)に溶媒を添加し、微細繊維状セルロースの再分散液を得る工程と、該再分散液と樹脂溶液を混合する工程と、を含むことが好ましい。ここで、微細繊維状セルロース凝集物(濃縮物)の再分散液は、微細繊維状セルロース凝集物(濃縮物)と溶媒を混合することで得ることが好ましい。溶媒の種類は、特に限定されないが、たとえば水、有機溶剤、水と有機溶剤との混合物を挙げることができる。中でも、溶媒は有機溶剤であることが好ましく、有機溶剤としては、上述した有機溶剤を挙げることができる。

0104

再分散液中における微細繊維状セルロースの含有量は、再分散液の全質量に対して、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。また、微細繊維状セルロースの含有量は、再分散液の全質量に対して、20質量%以下であることが好ましく、15質量%以下であることがより好ましい。

0105

樹脂溶液は、樹脂と溶媒を含むことが好ましい。この場合、溶媒は微細繊維状セルロース凝集物(濃縮物)の再分散液に含まれる溶媒と同種の溶媒であることが好ましい。樹脂溶液中樹脂濃度は、樹脂溶液の全質量に対して、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。また、樹脂濃度は、樹脂溶液の全質量に対して、50質量%以下であることが好ましく、40質量%以下であることがより好ましい。

0106

(シート)
本発明は、上述した繊維状セルロース含有樹脂組成物から形成されるシートに関するものであってもよい。本実施形態においては、たとえば上述した繊維状セルロース含有樹脂組成物を用いて、後述のシートの製造工程を実施することにより、シートを得ることができる。すなわち、本発明のシートは、繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロースと、樹脂と、を含む。そして、繊維状セルロースが含む亜リン酸基又は亜リン酸基に由来する置換基の対イオンは有機オニウムイオンであり、有機オニウムイオンの共役塩基のpKbは1.0以上である。

0107

シート中における微細繊維状セルロースの含有量は、たとえばシートの全質量に対して、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、3質量%以上であることがさらに好ましく、5質量%以上であることがとくに好ましい。一方で、シート中における微細繊維状セルロースの含有量は、シートの全質量に対して99質量%以下であることが好ましく、90質量%以下であることがより好ましく、80質量%以上であることがさらに好ましい。

0108

また、シートは、溶媒を含んでいてもよい。溶媒としては、たとえば上述したものを用いることができる。シート中における溶媒の含有量は、たとえばシートの全質量に対して、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、5質量%以上であることがさらに好ましい。これにより、シートに柔軟性を付与することができる。一方で、シート中における溶媒の含有量は、たとえばシートの全質量に対して25質量%以下とすることが好ましく、15質量%以下であることがより好ましい。これにより、可とう性の良好なシートを得ることができる。

0109

シートの全光線透過率は、たとえば70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。一方で、シートの全光線透過率の上限値は、とくに限定されず、たとえば100%であってもよい。ここで、シートの全光線透過率は、JIS K 7361に準拠し、たとえばヘーズメータ(村上色彩技術研究所社製、HM−150)を用いて測定される値である。

0110

シートのヘーズは、たとえば10%以下であることが好ましく、5%以下であることがより好ましく、2%以下であることがさらに好ましい。一方で、シートのヘーズの下限値は、とくに限定されず、たとえば0%であってもよい。ここで、シートのヘーズは、JIS K 7136に準拠し、たとえばヘーズメータ(村上色彩技術研究所社製、HM−150)を用いて測定される値である。

0111

シートの黄色度(YI)は、40以下であることが好ましく、20以下であることがより好ましく、10以下であることがさらに好ましい。なお、黄色度(YI)の下限値に特に制限はないが、例えば0.1とすることが好ましい。なお、シートの黄色度(YI)は、JIS K 7373に準拠し、たとえばColour Cute i(スガ試験機株式会社製)を用いて測定される値である。

0112

シートにおいて赤外線吸収スペクトルの測定を行った場合、前述の式により算出される値(J値)は、0.80以上であることが好ましく、0.85以上であることがより好ましく、0.90以上であることがさらに好ましく、0.95以上であることが一層好ましく、0.99以上であることがとくに好ましい。

0113

シートの厚みは、特に限定されないが、たとえば5μm以上であることが好ましく、10μm以上であることがより好ましく、20μm以上であることがさらに好ましい。またシートの厚みの上限値は、特に限定されないが、たとえば1000μmとすることができる。シートの厚みは、たとえば触針厚さ計マール社製、ミリトロン1202D)で測定することができる。

0114

シートの坪量は、とくに限定されないが、たとえば10g/m2以上であることが好ましく、20g/m2以上であることがより好ましく、30g/m2以上であることがさらに好ましい。また、シートの坪量は、とくに限定されないが、たとえば200g/m2以下であることが好ましく、150g/m2以下であることがより好ましい。ここで、シートの坪量は、たとえばJIS P 8124に準拠し、算出することができる。

0115

<シートの製造工程>
シートの製造工程は、上述した繊維状セルロース含有樹脂組成物(スラリー)を基材上に塗工する塗工工程、又は上述した繊維状セルロース含有樹脂組成物(スラリー)を抄紙する抄紙工程を含む。これにより、微細繊維状セルロースを含むシートが得られることとなる。

0116

<塗工工程>
塗工工程では、たとえば繊維状セルロース含有樹脂組成物(スラリー)を基材上に塗工し、これを乾燥して形成されたシートを基材から剥離することによりシートを得ることができる。また、塗工装置長尺の基材を用いることで、シートを連続的に生産することができる。

0117

塗工工程で用いる基材の材質は、特に限定されないが、組成物(スラリー)に対する濡れ性が高いものの方が乾燥時のシートの収縮等を抑制することができて良いが、乾燥後に形成されたシートが容易に剥離できるものを選択することが好ましい。中でも樹脂製のフィルムや板または金属製のフィルムや板が好ましいが、特に限定されない。例えばアクリルポリエチレンテレフタレート塩化ビニルポリスチレン、ポリ塩化ビニリデン等の樹脂のフィルムや板、アルミ亜鉛、銅、鉄板の金属のフィルムや板、および、それらの表面を酸化処理したもの、ステンレスのフィルムや板、真ちゅうのフィルムや板等を用いることができる。

0118

塗工工程において、スラリーの粘度が低く、基材上で展開してしまう場合には、所定の厚み及び坪量のシートを得るため、基材上に止用の枠を固定して使用してもよい。堰止用の枠としては、特に限定されないが、たとえば乾燥後に付着するシートの端部が容易に剥離できるものを選択することが好ましい。このような観点から、樹脂板または金属板成形したものがより好ましい。本実施形態においては、例えばアクリル板ポリエチレンテレフタレート板、塩化ビニル板、ポリスチレン板、ポリ塩化ビニリデン板等の樹脂板や、アルミ板亜鉛板銅板、鉄板等の金属板、及びこれらの表面を酸化処理したもの、ステンレス板、真ちゅう板等を成形したものを用いることができる。

0119

スラリーを基材に塗工する塗工機としては、とくに限定されないが、たとえばロールコーターグラビアコーターダイコーターカーテンコーター、エアドクターコーター等を使用することができる。シートの厚みをより均一にできることから、ダイコーター、カーテンコーター、スプレーコーターがとくに好ましい。

0120

スラリーを基材へ塗工する際のスラリー温度および雰囲気温度は、特に限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましく、15℃以上50℃以下であることがさらに好ましく、20℃以上40℃以下であることが特に好ましい。塗工温度が上記下限値以上であれば、スラリーをより容易に塗工できる。塗工温度が上記上限値以下であれば、塗工中の分散媒の揮発を抑制できる。

0121

塗工工程においては、シートの仕上がり坪量が好ましくは10g/m2以上200g/m2以下となるように、より好ましくは20g/m2以上150g/m2以下となるように、スラリーを基材に塗工することが好ましい。坪量が上記範囲内となるように塗工することで、強度に優れたシートが得られる。

0122

塗工工程は、上述のとおり、基材上に塗工したスラリーを乾燥させる工程を含む。スラリーを乾燥させる工程は、特に限定されないが、たとえば非接触の乾燥方法、もしくはシートを拘束しながら乾燥する方法、またはこれらの組み合わせにより行われる。非接触の乾燥方法としては、特に限定されないが、たとえば熱風赤外線、遠赤外線もしくは近赤外線により加熱して乾燥する方法(加熱乾燥法)、または真空にして乾燥する方法(真空乾燥法)を適用することができる。加熱乾燥法と真空乾燥法を組み合わせてもよいが、通常は、加熱乾燥法が適用される。赤外線、遠赤外線または近赤外線による乾燥は、とくに限定されないが、たとえば赤外線装置、遠赤外線装置または近赤外線装置を用いて行うことができる。加熱乾燥法における加熱温度は、特に限定されないが、たとえば20℃以上150℃以下とすることが好ましく、25℃以上105℃以下とすることがより好ましい。加熱温度を上記下限値以上とすれば、分散媒を速やかに揮発させることができる。また、加熱温度を上記上限値以下であれば、加熱に要するコストの抑制及び繊維状セルロースの熱による変色の抑制を実現できる。

0123

<抄紙工程>
抄紙工程は、抄紙機によりスラリーを抄紙することにより行われる。抄紙工程で用いられる抄紙機としては、とくに限定されないが、たとえば長網式、円網式、傾斜式等の連続抄紙機、またはこれらを組み合わせた多層抄き合わせ抄紙機等が挙げられる。抄紙工程では、手抄き等の公知の抄紙方法を採用してもよい。

0124

抄紙工程は、スラリーをワイヤーにより濾過、脱水して湿紙状態のシートを得た後、このシートをプレス、乾燥することにより行われる。スラリーを濾過、脱水する際に用いられる濾布としては、特に限定されないが、たとえば繊維状セルロースは通過せず、かつ濾過速度が遅くなりすぎないものであることがより好ましい。このような濾布としては、特に限定されないが、たとえば有機ポリマーからなるシート、織物多孔膜が好ましい。有機ポリマーとしては特に限定されないが、たとえばポリエチレンテレフタレートやポリエチレンポリプロピレンポリテトラフルオロエチレンPTFE)等のような非セルロース系の有機ポリマーが好ましい。本実施形態においては、たとえば孔径0.1μm以上20μm以下であるポリテトラフルオロエチレンの多孔膜や、孔径0.1μm以上20μm以下であるポリエチレンテレフタレートやポリエチレンの織物等が挙げられる。

0125

シート化工程において、スラリーからシートを製造する方法は、たとえば繊維状セルロース含有樹脂組成物(スラリー)を無端ベルトの上面に吐出し、吐出されたスラリーから分散媒を搾水してウェブを生成する搾水セクションと、ウェブを乾燥させてシートを生成する乾燥セクションとを備える製造装置を用いて行うことができる。搾水セクションから乾燥セクションにかけて無端ベルトが配設され、搾水セクションで生成されたウェブが無端ベルトに載置されたまま乾燥セクションに搬送される。

0126

抄紙工程において用いられる脱水方法としては、特に限定されないが、たとえば紙の製造で通常に使用している脱水方法が挙げられる。これらの中でも、長網、円網、傾斜ワイヤーなどで脱水した後、さらにロールプレスで脱水する方法が好ましい。また、抄紙工程において用いられる乾燥方法としては、特に限定されないが、たとえば紙の製造で用いられている方法が挙げられる。これらの中でも、シリンダードライヤーヤンキードライヤー熱風乾燥近赤外線ヒーター赤外線ヒーターなどを用いた乾燥方法がより好ましい。

0127

(成形体)
本発明は、上述した繊維状セルロース含有樹脂組成物又は上述したシートから形成される成形体に関するものでもある。本発明では、樹脂との相溶性に優れた微細繊維状セルロースを用いているため、成形体は、優れた曲げ弾性率を有し、さらに強度と寸法安定性にも優れている。加えて、本発明の成形体は透明性にも優れている。

0128

<成形体の製造工程>
成形体の成形方法には特に制限はなく、射出成形法加熱加圧成形法等を採用することができる。また、成形体をシートから成形する場合、プレス成形法又は真空成形法によって成形してもよい。

0129

(用途)
本発明の繊維状セルロース含有樹脂組成物の用途は特に限定されない。例えば、増粘剤補強材添加材として、化粧品セメント塗料インクなどに使用することができる。また、繊維状セルロース含有樹脂組成物を成形することで補強材としての用途に使用することもできる。さらに、繊維状セルロース含有樹脂組成物の再分散スラリーを用いて製膜し、各種シートとして使用することができる。

0130

本発明のシートは、各種のディスプレイ装置、各種の太陽電池、等の光透過性基板の用途に適している。また、電子機器基板電気化学素子用セパレータ家電の部材、各種の乗り物建物窓材内装材外装材包装用資材等の用途にも適している。さらに、糸、フィルタ、織物、緩衝材スポンジ研磨材などの他、シートそのものを補強材として使う用途にも適している。

0131

以下の実施例により本発明を更に具体的に説明するが、本発明の範囲は以下の実施例により限定されるものではない。

0132

<製造例1>
〔微細繊維状セルロース濃縮物の製造〕
原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量245g/m2シート状、離解してJIS P 8121に準じて測定されるカナダ標準濾水度CSF)が700ml)を使用した。

0133

この原料パルプに対してリンオキソ酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、亜リン酸(ホスホン酸)と尿素の混合水溶液を添加して、亜リン酸(ホスホン酸)33質量部、尿素120質量部、水150質量部となるように調製し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で250秒加熱し、パルプ中のセルロースに亜リン酸基を導入し、亜リン酸化パルプを得た。

0134

次いで、得られた亜リン酸化パルプに対して洗浄処理を行った。洗浄処理は、亜リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。

0135

洗浄後の亜リン酸化パルプに対して、さらに上記亜リン酸化処理、上記洗浄処理をこの順に1回ずつ行った。

0136

次いで、洗浄後の亜リン酸化パルプに対して中和処理を次のようにして行った。まず、洗浄後の亜リン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下の亜リン酸化パルプスラリーを得た。次いで、当該亜リン酸化パルプスラリーを脱水して、中和処理が施された亜リン酸化パルプを得た。次いで、中和処理後の亜リン酸化パルプに対して、上記洗浄処理を行った。

0137

これにより得られた亜リン酸化パルプに対しFT−IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1210cm-1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収が観察され、パルプに亜リン酸基(ホスホン酸基)が付加されていることが確認された。また、得られた亜リン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。なお、得られた亜リン酸化パルプについて、後述する〔亜リン酸基量の測定〕に記載の測定方法で測定される亜リン酸基量(第1解離酸量)は1.51mmol/gだった。なお、総解離酸量は、1.54mmol/gであった。

0138

得られた亜リン酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置スギマシン社製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液Aを得た。

0139

0.84質量%のポリオキシエチレンドデシルアミン(オキシエチレン残基個数は2)水溶液100gに3.00mLの1N塩酸を添加して中和した後、微細繊維状セルロース分散液A100gに添加し、ディスパーザーで5分間撹拌処理を行ったところ、微細繊維状セルロース分散液中に凝集物が生じた。凝集物が生じた微細繊維状セルロース分散液を減圧濾過することにより、微細繊維状セルロース凝集物を得た。得られた微細繊維状セルロース凝集物をイオン交換水で繰り返し洗うことで、微細繊維状セルロース凝集物に含まれる余剰なポリオキシエチレンドデシルアミン、塩酸及び溶出したイオン等を除去し、微細繊維状セルロース濃縮物Aを得た。微細繊維状セルロース濃縮物Aに含まれる亜リン酸基の対イオンは、ポリオキシエチレンドデシルアンモニウムイオン(POEDA+)となっていた。得られた微細繊維状セルロース濃縮物Aの固形分濃度は89質量%であった。POEDA+の共役塩基であるポリオキシエチレンドデシルアミンのpKbは7.9であった。

0140

<製造例2>
1.78質量%のジ−n−ステアリルジメチルアンモニウムクロリド水溶液100gを、塩酸で中和したポリオキシエチレンドデシルアミン水溶液の代わりに用いたこと以外は、製造例1と同様にして、微細繊維状セルロース濃縮物Bを得た。微細繊維状セルロース濃縮物Bに含まれる亜リン酸基の対イオンは、ジ−n−ステアリルジメチルアンモニウムイオン(DADMA+)となっていた。得られた微細繊維状セルロース濃縮物Bの固形分濃度は90質量%であった。DADMA+の共役塩基であるジ−n−ステアリルジメチルアンモニウムヒドロキシドのpKbは2.9であった。

0141

<製造例3>
1.12質量%のN,N−ジドデシルメチルアミン水溶液100gを、ポリオキシエチレンドデシルアミン水溶液の代わりに用いたこと以外は、製造例1と同様にして、微細繊維状セルロース濃縮物Cを得た。微細繊維状セルロース濃縮物Cに含まれる亜リン酸基の対イオンは、N,N−ジドデシルメチルアンモニウムイオン(DDMA+)となっていた。得られた微細繊維状セルロース濃縮物Cの固形分濃度は89質量%であった。DDMA+の共役塩基であるN,N−ジドデシルメチルアミンのpKbは3以上であった。

0142

<製造例4>
製造例1と同様に微細繊維状セルロース分散液Aを得た。微細繊維状セルロース分散液A100gを分取し、撹拌しながら0.19gの硫酸アルミニウムを添加した。さらに5時間撹拌を続けたところ、微細繊維状セルロースの凝集物が認められた。次いで、微細繊維状セルロース分散液を濾過した後、ろ紙で圧搾し、微細繊維状セルロース凝集物を得た。得られた微細繊維状セルロース凝集物を、イオン交換水で微細繊維状セルロースの含有量が2.0質量%となるよう再懸濁した。その後、再び濾過と圧搾を行う操作を繰り返すことで洗浄し、微細繊維状セルロース濃縮物Dを得た。洗浄終点は、ろ液の電気伝導度が100μS/cm以下となった点とした。得られた微細繊維状セルロース濃縮物Dの固形分濃度は17質量%であった。

0143

<実施例1>
〔微細繊維状セルロース濃縮物の再分散〕
微細繊維状セルロース濃縮物Aに、微細繊維状セルロースの含有量が2.0質量%となるようジメチルスルホキシド(DMSO)を添加した。その後、超音波処理装置ヒールシャー製、UP400S)を用いて超音波処理を10分間行い、微細繊維状セルロース再分散スラリーを得た。

0144

〔樹脂の溶解〕
アクリル樹脂(1)(化成(株)製、NeoCryl B−817)の濃度が2.0質量%となるように、ジメチルスルホキシドを添加撹拌し、アクリル樹脂溶液を得た。

0145

〔分散液の調製〕
微細繊維状セルロース10質量部に対しアクリル樹脂が90質量部となるよう、得られた微細繊維状セルロース再分散スラリーにアクリル樹脂溶液を添加し、固形分濃度が2.0質量%である樹脂含有微細繊維状セルロース分散液を得た。

0146

〔シート化〕
樹脂含有微細繊維状セルロース分散液を、シートの仕上がり坪量が100g/m2となるように計量して、ガラスシャーレ上に注ぎ、100℃の熱風乾燥機で24時間乾燥させ、シートを得た。得られたシートのJ値を後述の方法で算出した。

0147

<実施例2>
アクリル樹脂(1)(楠本化成(株)製、NeoCryl B−817)の代わりに別種のアクリル樹脂(2)(DIC(株)製、アクディック A−181)を用い、微細繊維状セルロース濃縮物Aの代わりに微細繊維状セルロース濃縮物Bを用い、ジメチルスルホキシドの代わりにトルエンを用い、熱風乾燥機の温度を100℃の代わりに40℃としたこと以外は実施例1と同様にしてシートを得た。得られたシートのJ値を後述の方法で算出した。

0148

<実施例3>
アクリル樹脂の代わりにポリビニルアルコール((株)クラレ製、ポバール117)を用い、微細繊維状セルロース濃縮物Aの代わりに微細繊維状セルロース濃縮物Cを用いたこと以外は実施例1と同様にしてシートを得た。得られたシートのJ値を後述の方法で算出した。

0149

<実施例4>
ポリビニルアルコールの代わりにポリフッ化ビニリデン(ソルベイ製、ソレフ6020)を用い、ジメチルスルホキシドの代わりにN−メチルー2ーピロリドン(NMP)を用い、熱風乾燥機の温度を100℃の代わりに80℃としたこと以外は実施例3と同様にしてシートを得た。得られたシートの全光線透過率及び黄色度(YI)を後述の方法で測定した。

0150

<実施例5>
ポリフッ化ビニリデンの代わりにポリ塩化ビニル和光純薬工業製)を用いたこと以外は実施例4と同様にしてシートを得た。得られたシートの全光線透過率及び黄色度(YI)を後述の方法で測定した。

0151

<比較例1>
微細繊維状セルロース濃縮物Dに、55%テトラブチルアンモニウムヒドロキシド水溶液1.85gを添加し、微細繊維状セルロースの含有量が1.0質量%となるようメチルエチルケトンを添加した。次いで、超音波ホモジナイザー(hielscher製、UP400S)で10分間処理し、微細繊維状セルロース再分散スラリーを得た。これにより、亜リン酸基がアルミニウムイオンで架橋され、凝集していた状態から、対イオンがテトラブチルアンモニウムイオン(TBA+)に変換され分散した。
アクリル樹脂(1)(楠本化成(株)製、NeoCryl B−817)の濃度が2.0質量%となるように、メチルエチルケトン(MEK)を添加撹拌し、アクリル樹脂溶液を得た。テトラブチルアンモニウムヒドロキシドのpKbは0.5であった。
微細繊維状セルロース10質量部に対しアクリル樹脂が90質量部となるよう、得られた微細繊維状セルロース再分散スラリーにアクリル樹脂溶液を添加し、固形分濃度が1.0質量%となるようさらにメチルエチルケトンを加えることで、樹脂含有微細繊維状セルロース分散液を得た。
樹脂含有微細繊維状セルロース分散液を、シートの仕上がり坪量が100g/m2となるように計量して、ガラスシャーレ上に注ぎ、60℃の熱風乾燥機で24時間乾燥させ、シートを得た。得られたシートのJ値を後述の方法で算出した。

0152

<比較例2>
アクリル樹脂(1)(楠本化成(株)製、B−817)の代わりに別種のアクリル樹脂(2)(DIC(株)製、アクリディック A−181)を用い、メチルエチルケトンの代わりにトルエンを用い、熱風乾燥機の温度を60℃の代わりに40℃としたこと以外は比較例1と同様にしてシートを得た。得られたシートのJ値を後述の方法で算出した。

0153

<比較例3>
アクリル樹脂の代わりにポリビニルアルコールを用い、メチルエチルケトンの代わりにジメチルスルホキシドを用い、熱風乾燥機の温度を60℃の代わりに100℃としたこと以外は比較例1と同様にしてシートを得た。得られたシートのJ値を後述の方法で算出した。

0154

<比較例4>
ポリビニルアルコールの代わりにポリフッ化ビニリデンを用い、ジメチルスルホキシドの代わりにN−メチルー2ーピロリドンを用い、熱風乾燥機の温度を100℃の代わりに80℃としたこと以外は比較例3と同様にしてシートを得た。得られたシートの全光線透過率及び黄色度(YI)を後述の方法で測定した。

0155

<比較例5>
ポリフッ化ビニリデンの代わりにポリ塩化ビニルを用いたこと以外は比較例4と同様にしてシートを得た。得られたシートの全光線透過率及び黄色度(YI)を後述の方法で測定した。

0156

<評価>
〔亜リン酸基量の測定〕
微細繊維状セルロースの亜リン酸基量は、対象となる微細繊維状セルロースを含む微細繊維状セルロース分散液をイオン交換水で含有量が0.2質量%となるように希釈して作製した繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
イオン交換樹脂による処理は、上記繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を5秒に10μLずつ加えながら、スラリーが示すpHの値の変化を計測することにより行った。なお、滴定開始の15分前から窒素ガスをスラリーに吹き込みながら滴定を行った。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ観測される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ(図1)。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中の第1解離酸量と等しくなる。また、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中の総解離酸量と等しくなる。なお、滴定開始から第1終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値を亜リン酸基量(mmol/g)とした。

0157

〔シートの全光線透過率の測定〕
JIS K 7361に準拠し、ヘーズメータ(村上色彩技術研究所社製、HM−150)を用いて得られたシートの全光線透過率を測定した。

0158

〔シートの黄色度(YI)の測定〕
JIS K 7373に準拠し、Colour Cute i(スガ試験機株式会社製)を用いて得られたシートの黄色度を測定した。

0159

〔シートのJ値の算出〕
実施例及び比較例で得られたシートをシート(A)とし、シート(A)と同一の坪量を有する繊維状セルロース含有樹脂組成物中に含まれる樹脂のみから形成したシートをシート(B)とし、それぞれについてFT−IRを用いて赤外線吸収スペクトルの測定を行い、下式によりJ値を算出した。
J値=I1/I0
ただし、
I1値=(シート(A)の1650cm-1における吸収ピーク強度)/(シート(A)の1570cm-1における吸収ピーク強度)
I0値=(シート(B)の1650cm-1における吸収ピーク強度)/(シート(B)の1570cm-1における吸収ピーク強度)

0160

〔有機オニウムイオンの共役塩基のpKbの算出〕
有機オニウムイオンの共役塩基を別途準備し、有機オニウムイオンの共役塩基に水を加え、0.01N有機オニウムイオンの共役塩基水溶液を調製した。水溶液の25℃におけるpHを測定し、有機オニウムイオンの共役塩基のpKbを下記(1)、(2)式に基づいて算出した。
(1)[OH]=10-(14-pH)
(2)pKb=−log10([OH]2÷(0.01−[OH]))
ただし、[OH]は、有機オニウムの共役塩基水溶液の水酸化物イオン濃度(mol/L)を表す。
なお、水に難溶の有機オニウムの共役塩基は水中でほとんど電離せず、水酸化物イオンをほとんど放出しない。そのため、pKbは非常に大きいと考えられ、難溶性の有機オニウムの共役塩基については、pKbは3.0より大きいものとした。

0161

下記に有機オニウムイオンとそれに対応する有機オニウムの共役塩基を示した。

0162

0163

0164

0165

0166

実施例では、樹脂の変質が抑制されていることがわかる。
実施例1〜3では、J値が高く、これにより、樹脂の脱エステル化が抑制されていることがわかった。また、実施例4及び5では、全光線透過率が高く、また、YI値が低いため、樹脂の変質が抑制されていることがわかった。

実施例

0167

なお、亜リン酸基又は亜リン酸基に由来する置換基の対イオンとして、ポリオキシエチレンドデシルアンモニウムイオン(POEDA+)、ジ−n−アルキルステアリルジメチルアンモニウムイオン(DADMA+)又はN,N−ジドデシルメチルアンモニウムイオン(DDMA+)を有する繊維状セルロースと、ポリウレタン樹脂を実施例と同様の方法で混合した例においても、高いJ値が得られ、樹脂の変質が抑制されていた。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 三井化学株式会社の「 ゴム組成物およびその架橋体」が 公開されました。( 2020/09/24)

    【課題】EPDMなどのエチレン・α−オレフィン・非共役ポリエン共重合体が有するほかの特性を維持しながら、優れた耐油性をも有するゴム組成物およびゴム架橋体を提供する。【解決手段】エチレン・炭素原子数3〜... 詳細

  • 旭化成株式会社の「 難燃性メタクリル系樹脂組成物及び成形体」が 公開されました。( 2020/09/24)

    【課題】本発明は、難燃性、透明性、流動性、及び耐熱性に優れた難燃性メタクリル系樹脂組成物を提供することを目的とする。【解決手段】本発明の難燃性メタクリル系樹脂組成物は、メタクリル系樹脂(A)、リン系難... 詳細

  • 株式会社ミカサの「 鋼板のアルカリ洗浄工程で使用されるゴムロール」が 公開されました。( 2020/09/24)

    【課題】鋼板のアルカリ洗浄工程で使用されるゴムロールとして耐油性、耐アルカリ性等に優れた特性を有するゴムロールを提供する。【解決手段】本発明に係るゴムロールは、鋼板の洗浄時の水素イオン指数(pH)が1... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ