図面 (/)

技術 LIDARシステム及び方法

出願人 イノヴィズテクノロジーズリミテッド
発明者 キーラフ,オマーデイビッドデイ,アミールバーマン,パベルスタインバーグ,アミットエルーズ,デイビッドゾハー,ガイクレマー,ハノックブレイコ,ジュリアンメディナ,モッシュカハナ,ニアオシロフ,ニアイェルハミ,オデッドバスキラ,オレンローゼンツヴァイク,オレンエシェル,ローネンデイビッドラリー,スマダーアントマン,ヤイルアルパーン,ヤイルスラーニ,セゾン
出願日 2020年4月24日 (8ヶ月経過) 出願番号 2020-077164
公開日 2020年8月20日 (4ヶ月経過) 公開番号 2020-126065
状態 未査定
技術分野 光学的距離測定 機械的光走査系 光レーダ方式及びその細部
主要キーワード 較正段階中 重複ゾーン 既定パターン ダミー要素 円錐セクション 密封筐体 冷却コンポーネント パルスデューティサイクル
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2020年8月20日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

周囲環境スキャン物体を検出するシステムにおいて、目の安全の規制に従いながら性能を向上させたLIDARシステムを提供する。

解決手段

LIDARシステムはプロセッサを含み、光源からの光を用いた視野のスキャンにおいて光束を変動させ得るように光源を制御し、光源からの光を偏向させるように光偏向器を制御する。視野の第1の部分のスキャンに関連した第1の検出反射を用いて、第1の部分内に第1の距離の第1の物体が存在すると決定し、視野の第2の部分内に第1の距離の物体が不在であると決定し、第1の反射を検出し、第2の部分内に物体が不在であると決定した後、視野の第1の部分の方へ投影されるよりも多くの光が視野の第2の部分の方へ投影されるように光源パラメータを変更し、視野の第2の部分における第2の検出反射を用いて、第1の距離よりも大きい第2の距離に第2の物体が存在すると決定する、ように構成されている。

概要

背景

[003]運転者支援システム及び自律走行車出現によって、自動車は、車両のナビゲーションに影響を及ぼし得る障害物、危険、物体、及び他の物理パラメータ識別することを含めて、周囲の状況を信頼性高く検知し解釈できるシステムを搭載することが必要となっている。この目的のため、単独で又は冗長的に動作するレーダ、LIDAR、カメラベースのシステムを含む多くの異なる技術が提案されている。

[004]運転者支援システム及び自律走行車に伴う1つの検討すべき事項は、雨、霧、暗さ、明るい光、及びを含む様々な条件においてシステムが周囲の状況を判断する能力である。光検出と測距(LIDAR:light detection and ranging system、LADARとしても知られている)は、物体に光を照射して反射したパルスセンサで測定することで物体までの距離を測定することによって、様々な条件で良好に機能することができる技術の一例である。レーザは、LIDARシステムにおいて使用できる光源の一例である。あらゆる検知システムと同様、LIDARベースの検知システムが自動車業界によって充分に導入されるため、システムは、遠方の物体の検出を可能とする信頼性の高いデータを提供しなければならない。しかしながら、現在、LIDARシステムを目に安全なものにする(すなわち、投影光放出が目の角膜及びレンズに吸収されて網膜熱損傷を与える場合に生じ得る人の目に対する損傷を与えないようにする)必要によって、LIDARシステムの最大照射パワーは制限されている。

[005] 本開示のシステム及び方法は、目の安全の規制に従いながらLIDARシステムの性能を向上させることを対象とする。

概要

周囲環境スキャンし物体を検出するシステムにおいて、目の安全の規制に従いながら性能を向上させたLIDARシステムを提供する。LIDARシステムはプロセッサを含み、光源からの光を用いた視野のスキャンにおいて光束を変動させ得るように光源を制御し、光源からの光を偏向させるように光偏向器を制御する。視野の第1の部分のスキャンに関連した第1の検出反射を用いて、第1の部分内に第1の距離の第1の物体が存在すると決定し、視野の第2の部分内に第1の距離の物体が不在であると決定し、第1の反射を検出し、第2の部分内に物体が不在であると決定した後、視野の第1の部分の方へ投影されるよりも多くの光が視野の第2の部分の方へ投影されるように光源パラメータを変更し、視野の第2の部分における第2の検出反射を用いて、第1の距離よりも大きい第2の距離に第2の物体が存在すると決定する、ように構成されている。A

目的

[006] 本開示に従った実施形態は、LIDAR技術を用いて周囲環境における物体を検出するためのシステム及び方法を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

少なくとも1つのプロセッサであって、少なくとも1つの光源からの光を用いた視野スキャンにおいて光束を変動させ得るように前記少なくとも1つの光源を制御し、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御し、前記視野の第1の部分のスキャンに関連した第1の検出反射を用いて、前記第1の部分内に第1の距離の第1の物体が存在すると決定し、前記視野の第2の部分内に前記第1の距離の物体が不在であると決定し、前記第1の反射を検出し、前記第2の部分内に物体が不在であると決定した後、前記視野の前記第1の部分の方へ投影されるよりも多くの光が前記視野の前記第2の部分の方へ投影されるように光源パラメータを変更し、前記視野の前記第2の部分における第2の検出反射を用いて、前記第1の距離よりも大きい第2の距離に第2の物体が存在すると決定する、ように構成された少なくとも1つのプロセッサを備える、LIDARシステム

請求項2

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器が2つの直交軸枢動するように前記少なくとも1つの光偏向器を制御するよう構成されている、請求項1に記載のLIDARシステム。

請求項3

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器を操縦するための回転可能モータを制御するように構成されている、請求項1に記載のLIDARシステム。

請求項4

前記少なくとも1つの光偏向器は枢動可能MEMSミラーを含む、請求項1に記載のLIDARシステム。

請求項5

前記視野の単一のスキャンサイクルは、前記スキャンサイクル中、前記少なくとも1つの光偏向器が複数の異なる瞬時位置に配置されるように前記少なくとも1つの光偏向器を移動させることを含み、前記少なくとも1つのプロセッサは、前記少なくとも1つの光偏向器が特定の瞬時位置に配置されている間に前記少なくとも1つの光源からの光ビームが前記少なくとも1つの光偏向器によって前記視野内の物体の方へ偏向されると共に前記物体からの反射が前記少なくとも1つの光偏向器によって少なくとも1つのセンサの方へ偏向されるように、前記少なくとも1つの光源及び前記少なくとも1つの光偏向器を制御するように構成されている、請求項1に記載のLIDARシステム。

請求項6

前記視野の前記第2の部分は前記少なくとも1つの光偏向器の単一の瞬時位置に対応する、請求項5に記載のLIDARシステム。

請求項7

前記視野の前記第2の部分は前記少なくとも1つの光偏向器の複数の瞬時位置に対応する、請求項5に記載のLIDARシステム。

請求項8

前記少なくとも1つのプロセッサは更に、前記第2の部分内に前記第1の距離の物体が不在であると決定したのと同一のスキャンサイクルにおいて、より高い立体角当たりの放射照度が前記視野の前記第2の部分の方へ投影されるように、前記光源パラメータを変更するよう構成されている、請求項5に記載のLIDARシステム。

請求項9

前記少なくとも1つの光偏向器は枢動可能MEMSミラーを含む、請求項8に記載のLIDARシステム。

請求項10

前記少なくとも1つのプロセッサは更に、前記第2の部分内に前記第1の距離の物体が不在であると決定したのと同一のスキャンサイクルにおいて、より多くの光が前記視野の前記第2の部分の方へ投影されるように、前記光源パラメータを変更するよう構成されている、請求項1に記載のLIDARシステム。

請求項11

前記少なくとも1つのプロセッサは更に、前記第2の部分のスキャンに関連した第3の検出反射を用いて前記2の部分内に前記第1の距離の物体が不在であると決定するように、更に、前記第3の検出反射及び前記第2の検出反射を用いて前記第2の距離に前記第2の物体が存在すると決定するように構成されている、請求項8に記載のLIDARシステム。

請求項12

前記少なくとも1つのプロセッサは更に、前記第2の部分内に前記第1の距離の物体が不在であると決定された先行スキャンサイクルに続く後続スキャンサイクルにおいて前記第2の反射が検出されるように、前記少なくとも1つの光源及び前記少なくとも1つの光偏向器を制御するよう構成されている、請求項1に記載のLIDARシステム。

請求項13

前記少なくとも1つのプロセッサは更に、前記後続スキャンにおいて前記第1の部分の方へ投影される光量が前記先行スキャンにおいて前記第1の部分の方へ投影される光量と実質的に同一であるように前記少なくとも1つの光源を制御するよう構成されている、請求項12に記載のLIDARシステム。

請求項14

前記少なくとも1つのプロセッサは更に、前記第2の部分内に前記第1の距離の物体が不在であることの決定に応答してより多くの光が前記第2の部分の方へ投影されるように前記光源パラメータを変更するよう構成されている、請求項1に記載のLIDARシステム。

請求項15

前記少なくとも1つのプロセッサは更に、前記視野の前記第2の部分に誘導される光束が前記視野の前記第1の部分に誘導される光束よりも多いように前記光源パラメータを制御するよう構成されている、請求項1に記載のLIDARシステム。

請求項16

前記光源パラメータは光パルスパワーを含み、前記少なくとも1つのプロセッサは更に、前記視野の前記第2の部分の方へ投影される光パルスのパワーを増大させるように前記光源パラメータを変更するよう構成されている、請求項1に記載のLIDARシステム。

請求項17

前記光源パラメータは1スキャン当たりの光パルス繰り返し数を含み、前記少なくとも1つのプロセッサは更に、前記第1の部分の方へ投影される光パルス数よりも多くの光パルスを前記第2の部分へ投影するように前記光源パラメータを変更するよう構成されている、請求項1に記載のLIDARシステム。

請求項18

LIDARシステムを用いて物体を検出するための方法であって、少なくとも1つの光源からの光を用いた視野のスキャンにおいて光束を変動させ得るように前記少なくとも1つの光源を制御することと、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御することと、前記視野の第1の部分のスキャンに関連した第1の検出反射を用いて、前記第1の部分内に第1の距離の第1の物体が存在すると決定することと、前記視野の第2の部分内に前記第1の距離の物体が不在であると決定することと、前記第1の反射を検出し、前記第2の部分内に物体が不在であると決定した後、前記視野の前記第1の部分の方へ投影されるよりも多くの光が前記視野の前記第2の部分の方へ投影されるように光源パラメータを変更することと、前記視野の前記第2の部分における第2の検出反射を用いて、前記第1の距離よりも大きい第2の距離に第2の物体が存在すると決定することと、を含む方法。

請求項19

スキャンすることは複数のスキャンサイクルを実行することを含み、単一のスキャンサイクルは前記少なくとも1つの光偏向器を複数の瞬時位置に移動させることを含み、前記少なくとも1つの光偏向器が特定の瞬時位置に配置されている間、前記方法は、前記少なくとも1つの光源からの光ビームを前記視野内の物体の方へ偏向させることと、前記物体から受光した反射を少なくとも1つのセンサの方へ偏向させることと、を含む、請求項18に記載の方法。

請求項20

前記視野の前記第2の部分は前記少なくとも1つの光偏向器の単一の瞬時位置に対応する、請求項18に記載の方法。

請求項21

前記視野の前記第2の部分は前記少なくとも1つの光偏向器の複数の瞬時位置に対応する、請求項18に記載の方法。

請求項22

前記第2の部分内に前記第1の距離の物体が不在であると決定したのと同一のスキャンサイクルにおいて前記第2の反射を検出することを更に含む、請求項18に記載の方法。

請求項23

前記第2の部分内に前記第1の距離の物体が不在であると決定された先行スキャンサイクルに続く後続スキャンサイクルにおいて前記第2の反射を検出することを更に含む、請求項18に記載の方法。

請求項24

前記第2の部分のスキャンに関連した第3の検出反射を用いて前記2の部分内に前記第1の距離の物体が不在であると決定し、前記第3の検出反射及び前記第2の検出反射を用いて前記第2の距離に前記第2の物体が存在すると決定することを更に含む、請求項18に記載の方法。

請求項25

命令を記憶している非一時的コンピュータ読み取り能記媒体であって、前記命令は、少なくとも1つのプロセッサによって実行された場合、LIDARシステムを用いて物体を検出するための方法を前記少なくとも1つのプロセッサに実行させ、前記方法は、少なくとも1つの光源からの光を用いた視野のスキャンにおいて光束を変動させ得るように前記少なくとも1つの光源を制御することと、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御することと、前記視野の第1の部分のスキャンに関連した第1の検出反射を用いて、前記第1の部分内に第1の距離の第1の物体が存在すると決定することと、前記視野の第2の部分内に前記第1の距離の物体が不在であると決定することと、前記第1の反射を検出し、前記第2の部分内に物体が不在であると決定した後、前記視野の前記第1の部分の方へ投影されるよりも多くの光が前記視野の前記第2の部分の方へ投影されるように光源パラメータを変更することと、前記視野の前記第2の部分における第2の検出反射を用いて、前記第1の距離よりも大きい第2の距離に第2の物体が存在すると決定することと、を含む、非一時的コンピュータ読み取り可能記憶媒体。

請求項26

少なくとも1つのプロセッサであって、少なくとも1つの光源からの光を用いた視野のスキャンにおいて光束を変動させ得るように前記少なくとも1つの光源を制御し、前記視野の第1の部分の方へ誘導される少なくとも第1の光放出の投影を制御して、前記視野の前記第1の部分内に第1の距離の物体が不在であると決定することと、前記少なくとも第1の光放出に基づいて前記視野の前記第1の部分内に物体が不在であると決定された場合、前記視野の前記第1の部分の方へ誘導される少なくとも第2の光放出の投影を制御して、前記視野の前記第1の部分において前記第1の距離よりも大きい第2の距離の物体の検出を可能とし、前記視野の前記第1の部分の方へ誘導される少なくとも第3の光放出の投影を制御して、前記視野の前記第1の部分において前記第2の距離よりも大きい第3の距離の物体が存在すると決定する、ように構成された少なくとも1つのプロセッサを備える、LIDARシステム。

請求項27

前記少なくとも1つのプロセッサは更に、スキャンサイクル中、少なくとも1つの光偏向器が複数の異なる瞬時位置に配置されるように、前記視野をスキャンするため前記少なくとも1つの光偏向器を制御するよう構成されている、請求項26に記載のLIDARシステム。

請求項28

前記少なくとも1つのプロセッサは、前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合、光ビームが前記少なくとも1つの光偏向器によって前記少なくとも1つの光源から前記視野の方へ偏向されると共に前記視野内の物体からの反射が前記少なくとも1つの光偏向器によって少なくとも1つのセンサの方へ偏向されるように、前記少なくとも1つの光偏向器と前記少なくとも1つの光源を連携させるように構成されている、請求項27に記載のLIDARシステム。

請求項29

前記少なくとも1つのプロセッサは更に、前記少なくとも第1の光放出、前記少なくとも第2の光放出、前記少なくとも第3の光放出が、前記少なくとも1つの光偏向器の単一の瞬時位置に対応する前記視野の前記第1の部分の方へ投影されるように、前記少なくとも1つの光偏向器を制御するよう構成されている、請求項27に記載のLIDARシステム。

請求項30

前記少なくとも1つのプロセッサは更に、前記少なくとも第3の光放出と、前記少なくとも第1の光放出及び前記少なくとも第2の光放出のうち少なくとも1つと、を用いて、前記視野の前記第1の部分内に前記第3の距離の前記物体が存在すると決定するように構成されている、請求項27に記載のLIDARシステム。

請求項31

前記少なくとも1つのプロセッサは更に、前記少なくとも第1の光放出、前記少なくとも第2の光放出、前記少なくとも第3の光放出が、前記少なくとも1つの光偏向器の異なる瞬時位置から前記視野の前記第1の部分の方へ投影されるように、前記少なくとも1つの光偏向器を制御するよう構成されている、請求項27に記載のLIDARシステム。

請求項32

前記少なくとも1つのプロセッサは更に、前記少なくとも第1の光放出、前記少なくとも第2の光放出、前記少なくとも第3の光放出が、単一のスキャンサイクルにおいて前記視野の前記第1の部分の方へ投影されるように、前記少なくとも1つの光偏向器を制御するよう構成されている、請求項27に記載のLIDARシステム。

請求項33

前記少なくとも1つのプロセッサは更に、前記少なくとも第1の光放出、前記少なくとも第2の光放出、前記少なくとも第3の光放出の各々が、異なるスキャンサイクルにおいて前記視野の前記第1の部分の方へ投影されるように、前記少なくとも1つの光偏向器を制御するよう構成されている、請求項27に記載のLIDARシステム。

請求項34

前記少なくとも1つのプロセッサは更に、前記少なくとも第2の光放出が前記少なくとも第1の光放出の光強度よりも大きい光強度を有すると共に、前記少なくとも第3の光放出が前記少なくとも第2の光放出の光強度よりも大きい光強度を有するように、前記少なくとも1つの光源を制御するよう構成されている、請求項33に記載のLIDARシステム。

請求項35

前記少なくとも1つのプロセッサは更に、前記少なくとも第1の光放出、前記少なくとも第2の光放出、及び前記少なくとも第3の光放出が実質的に同じ光強度に関連付けられるように、前記少なくとも1つの光源を制御するよう構成されている、請求項26に記載のLIDARシステム。

請求項36

前記少なくとも1つのプロセッサは更に、前記少なくとも第1の光放出及び前記少なくとも第2の光放出のうち少なくとも1つの検出に基づいて前記第1の部分内に前記第1の距離の物体が不在であると決定された場合、前記第1の部分の方へ誘導される前記少なくとも第3の光放出の投影を制御するように構成されている、請求項26に記載のLIDARシステム。

請求項37

前記少なくとも1つのプロセッサは更に、前記少なくとも第2の光放出の検出に基づいて前記第1の部分内に前記第2の距離の物体が不在であると決定された場合、前記第1の部分の方へ誘導される前記少なくとも第3の光放出の投影を制御するように構成されている、請求項26に記載のLIDARシステム。

請求項38

前記少なくとも1つのプロセッサは更に、同一のスキャンサイクル中、前記第1の部分に誘導される光の光束が前記視野の少なくとも1つの他の部分に誘導される光の光束よりも多くなるように前記第1の部分に関連した光源パラメータを変更するよう構成されている、請求項26に記載のLIDARシステム。

請求項39

前記少なくとも1つのプロセッサは更に、前記少なくとも第1の光放出及び前記少なくとも第3の光放出の各々が異なる波長に関連付けられるように前記少なくとも1つの光源を制御するよう構成されている、請求項26に記載のLIDARシステム。

請求項40

前記少なくとも1つのプロセッサは更に、前記視野の前記第1の部分における前記光の蓄積エネルギ密度最大許容可能露光量を超えないように前記少なくとも1つの光源を制御するよう構成されている、請求項26に記載のLIDARシステム。

請求項41

LIDARシステムを用いて物体を検出するための方法であって、少なくとも1つの光源からの光を用いた視野のスキャンにおいて光束を変動させ得るように前記少なくとも1つの光源を制御することと、前記視野の第1の部分の方へ誘導される少なくとも第1の光放出の投影を制御して、前記視野の前記第1の部分内に第1の距離の物体が不在であると決定することと、前記少なくとも第1の光放出に基づいて前記視野の前記第1の部分内に物体が不在であると決定された場合、前記視野の前記第1の部分の方へ誘導される少なくとも第2の光放出の投影を制御して、前記視野の前記第1の部分において前記第1の距離よりも大きい第2の距離の物体の検出を可能とすることと、前記視野の前記第1の部分の方へ誘導される少なくとも第3の光放出の投影を制御して、前記視野の前記第1の部分において前記第2の距離よりも大きい第3の距離の物体が存在すると決定することと、を含む方法。

請求項42

前記少なくとも第1の光放出及び前記少なくとも第2の光放出のうち少なくとも1つの検出に基づいて前記第1の部分内に前記第1の距離の物体が不在であると決定された場合、前記第1の部分の方へ誘導される前記少なくとも第3の光放出の投影を制御することを更に含む、請求項41に記載の方法。

請求項43

前記少なくとも第2の光放出の検出に基づいて前記第1の部分内に前記第2の距離の物体が不在であると決定された場合、前記第1の部分の方へ誘導される前記少なくとも第3の光放出の投影を制御することを更に含む、請求項41に記載の方法。

請求項44

前記第1の部分に誘導される光の光束が前記視野の少なくとも1つの他の部分に誘導される光の光束よりも多くなるように前記第1の部分に関連した光源パラメータを変更することを更に含む、請求項41に記載の方法。

請求項45

前記少なくとも第1の光放出、前記少なくとも第2の光放出、及び前記少なくとも第3の光放出が実質的に同じ光強度に関連付けられるように、前記少なくとも1つの光源を制御することを更に含む、請求項41に記載の方法。

請求項46

前記少なくとも第3の光放出と、前記少なくとも第1の光放出及び前記少なくとも第2の光放出のうち少なくとも1つと、を用いて、前記視野の前記第1の部分内に前記第3の距離の前記物体が存在すると決定することを更に含む、請求項41に記載の方法。

請求項47

命令を記憶している非一時的コンピュータ読み取り可能記憶媒体であって、前記命令は、少なくとも1つのプロセッサによって実行された場合、LIDARシステムを用いて物体を検出するための方法を前記少なくとも1つのプロセッサに実行させ、前記方法は、少なくとも1つの光源からの光を用いた視野のスキャンにおいて光束を変動させ得るように前記少なくとも1つの光源を制御することと、前記視野の第1の部分の方へ誘導される少なくとも第1の光放出の投影を制御して、前記視野の前記第1の部分内に第1の距離の物体が不在であると決定することと、前記少なくとも第1の光放出に基づいて前記視野の前記第1の部分内に物体が不在であると決定された場合、前記視野の前記第1の部分の方へ誘導される少なくとも第2の光放出の投影を制御して、前記視野の前記第1の部分において前記第1の距離よりも大きい第2の距離の物体の検出を可能とすることと、前記視野の前記第1の部分の方へ誘導される少なくとも第3の光放出の投影を制御して、前記視野の前記第1の部分において前記第2の距離よりも大きい第3の距離の物体が存在すると決定することと、を含む、非一時的コンピュータ読み取り可能記憶媒体。

請求項48

少なくとも1つのプロセッサであって、第1の部分及び第2の部分を含む視野のスキャンにおいて光束を変動させ得るように少なくとも1つの光源を制御し、画素ごとに少なくとも1つのセンサから信号を受信し、前記信号は、周囲光と、前記視野内の物体によって反射された前記少なくとも1つの光源からの光及び前記少なくとも1つのセンサに関連する雑音の組み合わせと、のうち少なくとも1つを示し、前記視野の前記第1の部分に関連した前記信号の少なくとも一部における雑音を推定し、前記視野の前記第1の部分における雑音の前記推定に基づいて、前記視野の前記第1の部分に関連した反射に対するセンサ感度を変更し、前記視野の前記第2の部分に関連した前記信号の少なくとも一部における雑音を推定し、前記視野の前記第2の部分における雑音の前記推定に基づいて、前記視野の前記第2の部分に関連した反射に対するセンサ感度を変更し、前記第2の部分に関連した反射に関する前記変更されたセンサ感度は前記第1の部分に関連した反射に関する前記変更されたセンサ感度とは異なる、ように構成された少なくとも1つのプロセッサを備える、LIDARシステム。

請求項49

前記少なくとも1つのプロセッサは更に、前記視野をスキャンするため少なくとも1つの光偏向器を制御するように構成され、単一のスキャンサイクルは、前記視野は、前記スキャンサイクル中に前記少なくとも1つの光偏向器が複数の異なる瞬時位置に配置されるように前記少なくとも1つの光偏向器を移動させることを含む、請求項48に記載のLIDARシステム。

請求項50

少なくとも1つのプロセッサは、前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合、光ビームが前記少なくとも1つの光偏向器によって前記少なくとも1つの光源から前記視野の方へ偏向されると共に前記視野内の物体からの反射が前記少なくとも1つの光偏向器によって少なくとも1つのセンサの方へ偏向されるように、前記少なくとも1つの光偏向器と前記少なくとも1つの光源を連携させるように構成されている、請求項49に記載のLIDARシステム。

請求項51

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器の単一の瞬時位置に対応する前記視野の部分に関連した反射に対するセンサ感度を変更するように構成されている、請求項50に記載のLIDARシステム。

請求項52

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器の複数の瞬時位置に対応する前記視野の部分に関連した反射に対するセンサ感度を変更するように構成されている、請求項50に記載のLIDARシステム。

請求項53

前記少なくとも1つのプロセッサは更に、第1のスキャンサイクルで受光した前記第1の部分に関連した第1の反射に対するセンサ感度を変更すると共に、第2のスキャンサイクルで受光した前記第2の部分に関連した第2の反射に対するセンサ感度を変更するように構成されている、請求項50に記載のLIDARシステム。

請求項54

前記少なくとも1つのプロセッサは更に、前記第1の部分に関連した第1の反射及び前記第2の部分に関連した第2の反射に対するセンサ感度を変更するように構成され、前記第1及び第2の反射は単一のスキャンサイクルで受光される、請求項50に記載のLIDARシステム。

請求項55

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器の単一の部分に関連した反射に基づいて各部分における雑音を推定するように構成されている、請求項50に記載のLIDARシステム。

請求項56

前記少なくとも1つのプロセッサは更に、少なくとも1つの先行スキャンサイクルで受光された前記視野の特定の部分に関連した信号の比較に基づいて、前記視野の前記特定の部分に関連した信号における雑音を推定するように構成されている、請求項48に記載のLIDARシステム。

請求項57

前記少なくとも1つのプロセッサは更に、前記第1の部分における雑音の前記推定に基づいて、前記第1の部分及び前記第2の部分とは異なる前記視野の第3の部分に関連した反射に対するセンサ感度を変更するように構成されている、請求項48に記載のLIDARシステム。

請求項58

前記少なくとも1つのプロセッサは更に、前記第1の部分及び前記第2の部分の双方における雑音の前記推定に基づいて、前記第3の部分に関連した反射に対するセンサ感度を変更するように構成されている、請求項57に記載のLIDARシステム。

請求項59

前記少なくとも1つのプロセッサは更に、前記第1の部分における前記雑音の推定が前記第2の部分における前記雑音の推定よりも大きい場合、前記第1の部分の方へ投影される光量を前記第2の部分の方へ投影される光量よりも増大させるように構成されている、請求項48に記載のLIDARシステム。

請求項60

前記センサ感度は信号閾値であり、前記少なくとも1つのプロセッサは更に、前記第1の部分における前記雑音の推定が前記第2の部分における前記雑音の推定よりも大きい場合、前記第1の部分に対する前記信号閾値を前記第2の部分に対する前記信号閾値よりも増大させるように構成されている、請求項48に記載のLIDARシステム。

請求項61

前記少なくとも1つのプロセッサは更に、前記第1の部分において第1の距離の外部光源を検出し、前記第1の部分及び前記第2の部分に関連した反射に対するセンサ感度を異なるように変更して、前記第2の部分において前記第1の距離よりも大きい第2の距離の物体の検出を可能とするように構成されている、請求項60に記載のLIDARシステム。

請求項62

前記少なくとも1つのプロセッサは更に、前記第1の部分及び前記第2の部分の方へ投影された同一の光量に対して、前記第1の部分に関連した検出距離が前記第2の部分に関連した検出距離よりも大きくなるように、前記第1の部分及び前記第2の部分に関連した反射に対するセンサ感度を個別に変更するよう構成されている、請求項48に記載のLIDARシステム。

請求項63

前記少なくとも1つのプロセッサは更に、前記第1の部分及び前記第2の部分の方へ投影された同一の光量に対して、前記第1の部分に関連した分解能が前記第2の部分に関連した分解能よりも大きくなるように、前記第1の部分及び前記第2の部分に関連した反射に対するセンサ感度を個別に変更するよう構成されている、請求項48に記載のLIDARシステム。

請求項64

少なくとも1つのセンサからの信号は増幅電子機器から生じた雑音を更に含む、請求項48に記載のLIDARシステム。

請求項65

LIDARシステムにおいてセンサ感度を変更するための方法であって、第1の部分及び第2の部分を含む視野のスキャンにおいて光束を変動させ得るように少なくとも1つの光源を制御することと、画素ごとに少なくとも1つのセンサから信号を受信することであって、前記信号は、周囲光と、前記視野内の物体によって反射された前記少なくとも1つの光源からの光と、のうち少なくとも1つを示す、ことと、前記視野の第1の部分に関連した前記信号の少なくとも一部における雑音を推定することと、前記視野の前記第1の部分における雑音の前記推定に基づいて、前記視野の前記第1の部分に関連した反射に対するセンサ感度を変更することと、前記視野の第2の部分に関連した前記信号の少なくとも一部における雑音を推定することと、前記視野の前記第2の部分における雑音の前記推定に基づいて、前記視野の前記第2の部分に関連した反射に対するセンサ感度を変更することであって、前記第2の部分に関連した反射に関する前記変更されたセンサ感度は前記第1の部分に関連した反射に関する前記変更されたセンサ感度とは異なる、ことと、を含む方法。

請求項66

少なくとも1つの先行スキャンサイクルで受光された前記視野の特定の部分に関連した信号の比較に基づいて、前記視野の前記特定の部分に関連した信号における雑音を推定することを更に含む、請求項65に記載の方法。

請求項67

前記第1の部分及び前記第2の部分のうち少なくとも1つにおける雑音の前記推定に基づいて、前記視野の第3の部分に関連した反射に対するセンサ感度を変更することを更に含む、請求項65に記載の方法。

請求項68

前記第1の部分に誘導される光束が前記視野の少なくとも1つの他の部分に誘導される光束よりも多くなるように前記第1の部分に関連した光源パラメータを変更することを更に含む、請求項65に記載の方法。

請求項69

前記第1の部分における前記雑音の推定が前記第2の部分における前記雑音の推定よりも大きい場合、前記第1の部分の方へ投影される光量を前記第2の部分の方へ投影される光量よりも増大させることを更に含む、請求項65に記載の方法。

請求項70

命令を記憶している非一時的コンピュータ読み取り可能記憶媒体であって、前記命令は、少なくとも1つのプロセッサによって実行された場合、LIDARシステムにおけるセンサ感度を変更するための方法を前記少なくとも1つのプロセッサに実行させ、前記方法は、第1の部分及び第2の部分を含む視野のスキャンにおいて光束を変動させ得るように少なくとも1つの光源を制御することと、画素ごとに少なくとも1つのセンサから信号を受信することであって、前記信号は、周囲光と、前記視野内の物体によって反射された前記少なくとも1つの光源からの光と、のうち少なくとも1つを示す、ことと、前記視野の第1の部分に関連した前記信号の少なくとも一部における雑音を推定することと、前記視野の前記第1の部分における雑音の前記推定に基づいて、前記視野の前記第1の部分に関連した反射に対するセンサ感度を変更することと、前記視野の第2の部分に関連した前記信号の少なくとも一部における雑音を推定することと、前記視野の前記第2の部分における雑音の前記推定に基づいて、前記視野の前記第2の部分に関連した反射に対するセンサ感度を変更することであって、前記第2の部分に関連した反射に関する前記変更されたセンサ感度は前記第1の部分に関連した反射に関する前記変更されたセンサ感度とは異なる、ことと、を含む、非一時的コンピュータ読み取り可能記憶媒体。

請求項71

少なくとも1つのプロセッサであって、少なくとも1つの光源からの光を用いた視野のスキャンにおいて光強度を変動させ得るように前記少なくとも1つの光源を制御し、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御し、前記視野内の少なくとも1つの明確な関心領域の識別を取得し、第1のスキャンサイクルの後、前記少なくとも1つの明確な関心領域に関連したロケーションにおける少なくとも1つの後続の第2のスキャンサイクルの光強度が、前記少なくとも1つの明確な関心領域に関連した前記ロケーションにおける前記第1のスキャンサイクルの光強度よりも高くなるように、前記少なくとも1つの明確な関心領域に対する光の割り当てを他の領域よりも増大させる、ように構成された少なくとも1つのプロセッサを備える、LIDARシステム。

請求項72

前記プロセッサは、前記少なくとも1つの後続の第2のスキャンサイクルにおける前記少なくとも1つの明確な関心領域の3D表現空間分解能が、前記第1のスキャンサイクルにおける前記少なくとも1つの明確な関心領域の3D表現の空間分解能よりも高くなるように、前記少なくとも1つの明確な関心領域の照射分解能を他の領域に対して変更するよう構成されている、請求項71に記載のLIDARシステム。

請求項73

前記プロセッサは、前記少なくとも1つの後続の第2のスキャンサイクルにおける前記少なくとも1つの明確な関心領域の3D表現の空間分解能が、前記第1のスキャンサイクルにおける前記少なくとも1つの明確な関心領域の3D表現の空間分解能よりも低くなるように、前記少なくとも1つの明確な関心領域又は前記少なくとも1つの非関心領域の照射分解能を他の領域に対して変更するよう構成されている、請求項71に記載のLIDARシステム。

請求項74

前記プロセッサは、前記少なくとも1つの後続の第2のスキャンサイクルにおける前記少なくとも1つの明確な関心領域の3D表現の時間分解能が、前記第1のスキャンサイクルにおける前記少なくとも1つの明確な関心領域の3D表現の時間分解能よりも高くなるように、前記少なくとも1つの明確な関心領域の照射タイミングを他の領域に対して変更するよう構成されている、請求項71に記載のLIDARシステム。

請求項75

前記プロセッサは、前記少なくとも1つの後続の第2のスキャンサイクルにおける前記少なくとも1つの明確な関心領域又は前記少なくとも1つの非関心領域の3D表現の時間分解能が、前記第1のスキャンサイクルにおける前記少なくとも1つの明確な関心領域又は前記少なくとも1つの非関心領域の3D表現の時間分解能よりも低くなるように、前記少なくとも1つの明確な関心領域又は前記少なくとも1つの非関心領域の照射タイミングを他の領域に対して変更するよう構成されている、請求項71に記載のLIDARシステム。

請求項76

前記少なくとも1つのプロセッサは更に、前記視野をスキャンするため前記少なくとも1つの光偏向器を制御するように構成され、前記視野の単一のスキャンサイクルは、前記スキャンサイクル中に前記少なくとも1つの光偏向器が複数の位置に瞬時に配置されるように前記少なくとも1つの光偏向器を移動させることを含む、請求項71に記載のLIDARシステム。

請求項77

少なくとも1つのプロセッサは、前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合、光ビームが前記少なくとも1つの光偏向器によって前記少なくとも1つの光源から前記視野の方へ偏向されると共に前記視野内の物体からの反射が前記少なくとも1つの光偏向器によって少なくとも1つのセンサの方へ偏向されるように、前記少なくとも1つの光偏向器と前記少なくとも1つの光源を連携させるように構成されている、請求項76に記載のLIDARシステム。

請求項78

前記少なくとも1つの明確な関心領域の前記取得された識別は、前記少なくとも1つの明確な関心領域に関連付けられた特定の光偏向器位置の指示を含む、請求項76に記載のLIDARシステム。

請求項79

前記少なくとも1つの明確な関心領域の前記取得された識別は前記LIDARシステムが展開されている車両の現在の運転モードに基づく、請求項71に記載のLIDARシステム。

請求項80

前記少なくとも1つの明確な関心領域の前記取得された識別は前記少なくとも1つの明確な関心領域において検出された物体に基づく、請求項71に記載のLIDARシステム。

請求項81

前記少なくとも1つのプロセッサは更に、前記第1のスキャンサイクルに関連した光の反射を検出するように構成された少なくとも1つのセンサから受信した情報に基づいて前記少なくとも1つの明確な関心領域の前記識別を決定するように構成されている、請求項71に記載のLIDARシステム。

請求項82

前記少なくとも1つのプロセッサは更に、GPS、車両ナビゲーションシステムレーダ、LIDAR、及びカメラのうち少なくとも1つから、前記少なくとも1つの明確な関心領域の前記識別を取得するように構成されている、請求項71に記載のLIDARシステム。

請求項83

前記少なくとも1つのプロセッサは更に、単一のスキャンサイクルにおいて、前記視野の他の領域よりも多くの光が前記少なくとも1つの明確な関心領域の方へ投影されるように光割り当てを調整するよう構成されている、請求項71に記載のLIDARシステム。

請求項84

前記少なくとも1つのプロセッサは更に、前記第1のスキャンサイクルにおいて非関心領域として識別された複数の領域の方へ投影された光量よりも少ない光を、前記少なくとも1つの後続の第2のスキャンサイクルにおいて前記複数の領域に割り当てるように構成されている、請求項71に記載のLIDARシステム。

請求項85

前記少なくとも1つの後続の第2のスキャンサイクルは複数の後続の第2のスキャンサイクルを含み、複数の第2のスキャンサイクルにわたった前記少なくとも1つの明確な関心領域のエリアにおける総光強度は、前記複数の第2のスキャンサイクルにわたった他の非関心領域の総光強度よりも大きい、請求項71に記載のLIDARシステム。

請求項86

前記少なくとも1つのプロセッサは更に、目の安全の閾値内で前記少なくとも1つの明確な関心領域における蓄積光に上限を設定するように構成されている、請求項71に記載のLIDARシステム。

請求項87

前記少なくとも1つの明確な関心領域は複数の関心領域を含み、前記少なくとも1つのプロセッサは更に、前記複数の関心領域にランクを付け、前記ランク付けに基づいて光を割り当てるように構成されている、請求項71に記載のLIDARシステム。

請求項88

前記少なくとも1つのプロセッサは更に、最も高いランク付けの関心領域に最も多くの光を割り当て、これより低いランク付けの関心領域により少ない光を割り当てるように構成されている、請求項87に記載のLIDARシステム。

請求項89

前記少なくとも1つの光偏向器は枢動可能MEMSミラーを含む、請求項71に記載のLIDARシステム。

請求項90

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの明確な関心領域のスキャンに関連した反射を用いて、非関心領域内で第2の物体が検出されなかった第2の距離よりも大きい第1の距離で前記少なくとも1つの明確な関心領域内に第1の物体が存在すると決定するように構成されている、請求項71に記載のLIDARシステム。

請求項91

LIDARシステムを用いて関心領域内の物体を検出するための方法であって、少なくとも1つの光源からの光を用いた視野のスキャンにおいて光強度を変動させ得るように前記少なくとも1つの光源を制御することと、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御することと、前記視野内の少なくとも1つの明確な関心領域の識別を受信することと、第1のスキャンサイクルの後、前記少なくとも1つの明確な関心領域に関連したロケーションにおける少なくとも1つの後続の第2のスキャンサイクルの光強度が、前記少なくとも1つの明確な関心領域に関連した前記ロケーションにおける前記第1のスキャンサイクルの光強度よりも高くなるように、前記少なくとも1つの明確な関心領域に対する光の割り当てを他の領域よりも増大させることと、を含む方法。

請求項92

前記第1のスキャンサイクルに関連した光の反射を検出するように構成された少なくとも1つのセンサから前記少なくとも1つの明確な関心領域の前記識別を受信することを更に含む、請求項91に記載の方法。

請求項93

前記少なくとも1つの後続の第2のスキャンサイクルは複数の後続の第2のスキャンサイクルを含み、複数の第2のスキャンサイクルにわたった前記少なくとも1つの明確な関心領域のエリアにおける総光強度は、前記複数の第2のスキャンサイクルにわたった他の非関心領域の総光強度よりも大きい、請求項91に記載の方法。

請求項94

単一のスキャンサイクルにおいて他の領域よりも多くの光が前記少なくとも1つの明確な関心領域の方へ投影されるように光割り当てを調整することを更に含む、請求項91に記載の方法。

請求項95

前記少なくとも1つの明確な関心領域は複数の関心領域を含み、前記方法は、前記複数の関心領域にランクを付けることと、前記ランク付けに基づいて光を割り当てることであって、最も高いランク付けの関心領域に割り当てられる光量はこれよりも低いランク付けの関心領域に割り当てられる光量よりも多い、ことと、を更に含む、請求項91に記載の方法。

請求項96

命令を記憶している非一時的コンピュータ読み取り可能記憶媒体であって、前記命令は、少なくとも1つのプロセッサによって実行された場合、LIDARシステムを用いて関心領域内の物体を検出するための方法を前記少なくとも1つのプロセッサに実行させ、前記方法は、少なくとも1つの光源からの光を用いた視野のスキャンにおいて光強度を変動させ得るように前記少なくとも1つの光源を制御することと、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御することと、前記視野内の少なくとも1つの明確な関心領域の識別を受信することと、第1のスキャンサイクルの後、前記少なくとも1つの明確な関心領域に関連したロケーションにおける少なくとも1つの後続の第2のスキャンサイクルの光強度が、前記少なくとも1つの明確な関心領域に関連した前記ロケーションにおける前記第1のスキャンサイクルの光強度よりも高くなるように、前記少なくとも1つの明確な関心領域に対する光の割り当てを他の領域よりも増大させることと、を含む、非一時的コンピュータ読み取り可能記憶媒体。

請求項97

少なくとも1つのプロセッサであって、少なくとも1つの光源からの光を用いた視野のスキャンにおいて光束を変動させ得るように前記少なくとも1つの光源を制御し、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御し、前記視野内の物体から反射された光を示す反射信号を少なくとも1つのセンサから受信し、初期光放出の前記反射信号に基づいて、前記LIDARシステムの中間エリアにおいて前記少なくとも1つの光偏向器からの閾値距離内に物体が位置しているか否かを判定し、前記閾値距離安全距離に関連付けられ、前記中間エリアで物体が検出されない場合、前記中間エリアの方へ追加光放出を投影し、これによって前記中間エリアよりも遠くにある物体の検出を可能とするように、前記少なくとも1つの光源を制御し、前記中間エリアで物体が検出された場合、前記中間エリアにおける前記光の蓄積エネルギ密度が最大許容可能露光量を超えないように、前記少なくとも1つの光源及び前記少なくとも1つの光偏向器のうち少なくとも1つを規制する、ように構成された少なくとも1つのプロセッサを備える、LIDARシステム。

請求項98

前記少なくとも1つのプロセッサは更に、前記視野をスキャンするため前記少なくとも1つの光偏向器を制御するように構成され、前記視野の単一のスキャンサイクルは、前記スキャンサイクル中に前記少なくとも1つの光偏向器が複数の異なる瞬時位置に配置されるように前記少なくとも1つの光偏向器を移動させることを含む、請求項97に記載のLIDARシステム。

請求項99

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器が特定の瞬時位置に留まっている間に光ビームが前記少なくとも1つの光源から前記視野の方へ偏向されると共に前記視野内の物体からの反射が少なくとも1つのセンサの方へ偏向されるように、前記少なくとも1つの光偏向器及び前記少なくとも1つの光源を制御するよう構成されている、請求項98に記載のLIDARシステム。

請求項100

前記少なくとも1つのプロセッサは更に、前記初期光放出及び前記追加光放出が単一のスキャンサイクルにおいて前記中間エリアの方へ投影されるように前記少なくとも1つの光偏向器を制御するよう構成されている、請求項98に記載のLIDARシステム。

請求項101

前記少なくとも1つのプロセッサは更に、前記初期光放出が第1のスキャンサイクルにおいて前記中間エリアの方へ投影されると共に前記中間光放出が第2のスキャンサイクルにおいて前記中間エリアの方へ投影されるように前記少なくとも1つの光偏向器を制御するよう構成されている、請求項97に記載のLIDARシステム。

請求項102

規制することは、前記物体までの距離を決定することと、前記物体における前記光の強度を計算することと、前記物体までの前記距離における目に安全な露光時間を決定することと、を含む、請求項97に記載のLIDARシステム。

請求項103

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器と前記中間エリアで検出された前記物体との間の決定された距離に基づいて前記最大許容可能露光量に関連付けられた値を決定するように構成されている、請求項102に記載のLIDARシステム。

請求項104

規制することは、前記物体までの距離を決定することと、前記物体における前記光の強度を計算することと、前記物体までの前記距離における目に安全な許容可光エネルギを決定することと、を含む、請求項97に記載のLIDARシステム。

請求項105

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器と前記中間エリアで検出された前記物体との間の決定された距離に基づいて前記最大許容可能光エネルギに関連付けられた値を決定するように構成されている、請求項104に記載のLIDARシステム。

請求項106

前記少なくとも1つのプロセッサは更に、前記視野を複数のセクタに分割可能であるように前記少なくとも1つの光偏向器を制御し、各セクタは別個の中間エリアに関連付けられ、各セクタからの前記初期光放出の前記反射信号に基づいて、前記複数のセクタに関連付けられた前記中間エリアの各々に物体が位置しているか否かを判定する、ように構成されている、請求項97に記載のLIDARシステム。

請求項107

第1のセクタに関連付けられた第1の中間エリアにおいて物体を検出し、第2のセクタに関連付けられた第2の中間エリアにおいて物体が不在であると決定したら、前記少なくとも1つのプロセッサは更に、単一のスキャンサイクルにおいて、前記第2の中間エリアの方へ追加光放出を投影するように前記少なくとも1つの光源を制御し、前記第1の中間エリアにおける前記光の蓄積エネルギ密度が前記最大許容可能露光量を超えないように前記少なくとも1つの光源及び前記少なくとも1つの光偏向器のうち少なくとも1つを規制する、ように構成されている、請求項106に記載のLIDARシステム。

請求項108

前記少なくとも1つのプロセッサは更に、前記追加光放出に関連した反射信号に基づいて前記安全距離に関連付けられた前記閾値を調整するように構成されている、請求項97に記載のLIDARシステム。

請求項109

前記少なくとも1つの光偏向器は複数の光偏向器を含み、前記少なくとも1つのプロセッサは前記複数の光偏向器に協働して前記視野をスキャンさせるように構成されている、請求項97に記載のLIDARシステム。

請求項110

前記少なくとも1つの光偏向器は単一の光偏向器を含み、前記少なくとも1つの光源は前記単一の光偏向器に照準を合わせた複数の光源を含む、請求項97に記載のLIDARシステム。

請求項111

各光源は概ね前記視野の異なるエリアに関連付けられ、前記少なくとも1つのプロセッサは更に、前記視野の第1のエリアにおいて前記安全距離よりも大きい距離で物体が検出された場合、異なる光源によって前記視野の第2のエリアへ投影される光のエネルギ密度が前記視野の前記第2のエリアに関連付けられた最大許容可能露光量を超えないように、前記少なくとも1つの光偏向器及び前記複数の光源を連携させるよう構成されている、請求項110に記載のLIDARシステム。

請求項112

前記少なくとも1つのプロセッサは更に、別のエリアにおいて前記安全距離よりも大きい距離で別の物体が検出された場合、前記少なくとも1つの光源によって前記視野の前記別の部分へ投影される光のエネルギ密度が前記視野の前記別の部分に関連付けられた最大許容可能露光量を超えないように、前記少なくとも1つの光偏向器及び前記少なくとも1つの光源を連携させるように構成されている、請求項97に記載のLIDARシステム。

請求項113

前記安全距離は公称眼障害距離(NOHD)である、請求項97に記載のLIDARシステム。

請求項114

前記少なくとも1つの光源は1000nm未満の波長の光を投影するように構成されている、請求項97に記載のLIDARシステム。

請求項115

前記少なくとも1つの光源は800nmより大きい波長の光を投影するように構成されている、請求項97に記載のLIDARシステム。

請求項116

前記中間エリアにおいて物体が検出された場合、前記少なくとも1つのプロセッサは更に、前記検出された物体に関連した前記中間エリアの一部の方へ更なる光放出を行わないように構成されている、請求項97に記載のLIDARシステム。

請求項117

前記中間エリアにおいて物体が検出された場合、前記少なくとも1つのプロセッサは更に、前記中間エリアの方へ可視光を放出するように前記少なくとも1つの光源及び前記少なくとも1つの光偏向器のうち少なくとも1つを規制するよう構成されている、請求項97に記載のLIDARシステム。

請求項118

前記少なくとも1つのプロセッサは更に、前記初期光放出及び前記追加光放出を用いて前記中間エリアよりも遠くに位置する物体の距離を決定するように構成されている、請求項97に記載のLIDARシステム。

請求項119

前記少なくとも1つのプロセッサは更に、前記視野を複数のセクタに分割可能であるように前記少なくとも1つの光偏向器を制御し、各セクタは別個の中間エリアに関連付けられ、各セクタからの前記初期光放出の前記反射信号に基づいて、前記複数のセクタに関連付けられた前記中間エリアの各々に物体が位置しているか否かを判定し、第1のセクタに関連付けられた第1の中間エリアにおいて物体を検出し、第2のセクタに関連付けられた第2の中間エリアにおいて物体が不在であると決定したら、単一のスキャンサイクルにおいて、前記第2の中間エリアの方へ追加光放出を投影するように前記少なくとも1つの光源を制御し、前記第1の中間エリアにおける前記光の蓄積エネルギ密度が前記最大許容可能露光量を超えないように前記少なくとも1つの光源及び前記少なくとも1つの光偏向器のうち少なくとも1つを規制する、ように構成されている、請求項100に記載のLIDARシステム。

請求項120

LIDARシステムを用いて物体を検出するための方法であって、少なくとも1つの光源からの光を用いた視野のスキャンにおいて光束を変動させ得るように前記少なくとも1つの光源を制御することと、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御することと、前記視野内の物体から反射された光を示す反射信号を少なくとも1つのセンサから受信することと、初期光放出の前記反射信号に基づいて、前記視野の中間エリアにおいて前記少なくとも1つの光偏向器からの閾値距離内に物体が位置しているか否かを判定することであって、前記閾値距離は眼障害距離に関連付けられている、ことと、前記中間エリアで物体が検出されない場合、前記中間エリアの方へ追加光放出を投影し、これによって前記中間エリアよりも遠くにある物体の検出を可能とするように、前記少なくとも1つの光源を制御することと、前記中間エリアで物体が検出された場合、前記中間エリアにおける前記光の蓄積エネルギ密度が最大許容可能露光量を超えないように、前記少なくとも1つの光源及び前記少なくとも1つの光偏向器のうち少なくとも1つを規制することと、を含む方法。

請求項121

前記初期光放出及び前記追加光放出が単一のスキャンサイクルにおいて前記中間エリアの方へ投影されるように前記少なくとも1つの光偏向器を制御することを更に含む、請求項120に記載の方法。

請求項122

前記中間エリアで検出された前記物体までの距離に基づいて前記最大許容可能露光量を決定することを更に含む、請求項120に記載の方法。

請求項123

規制することは、前記物体までの距離を決定することと、前記物体における前記光の強度を計算することと、前記物体までの前記距離における目に安全な露光時間を決定することと、を含む、請求項120に記載の方法。

請求項124

前記追加光放出に関連した反射信号に基づいて眼障害距離に関連付けられた前記閾値を調整することを更に含む、請求項120に記載の方法。

請求項125

命令を記憶している非一時的コンピュータ読み取り可能記憶媒体であって、前記命令は、少なくとも1つのプロセッサによって実行された場合、LIDARシステムを用いて物体を検出するための方法を前記少なくとも1つのプロセッサに実行させ、前記方法は、少なくとも1つの光源からの光を用いた視野のスキャンにおいて光束を変動させ得るように前記少なくとも1つの光源を制御することと、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御することと、前記視野内の物体から反射された光を示す反射信号を少なくとも1つのセンサから受信することと、初期光放出の前記反射信号に基づいて、前記視野の中間エリアにおいて前記少なくとも1つの光偏向器からの閾値距離内に物体が位置しているか否かを判定することであって、前記閾値距離は眼障害距離に関連付けられている、ことと、前記中間エリアで物体が検出されない場合、前記中間エリアの方へ追加光放出を投影し、これによって前記中間エリアよりも遠くにある物体の検出を可能とするように、前記少なくとも1つの光源を制御することと、前記中間エリアで物体が検出された場合、前記中間エリアにおける前記光の蓄積エネルギ密度が最大許容可能露光量を超えないように、前記少なくとも1つの光源及び前記少なくとも1つの光偏向器のうち少なくとも1つを規制することと、を含む、非一時的コンピュータ読み取り可能記憶媒体。

請求項126

少なくとも1つのプロセッサであって、光源の光放出を制御し、前記光源のアウトバウンド経路に配置された少なくとも1つの光偏向器を繰り返し移動させることによって視野をスキャンし、前記視野の単一のスキャンサイクル中に前記少なくとも1つの光偏向器は複数の位置に瞬時に配置され、前記少なくとも1つの偏向器が特定の瞬時位置にある間、前記少なくとも1つの偏向器を介して、センサへの帰還経路に沿って単一の光ビームスポットの反射を受光し、前記センサから、各光ビームスポットの画像に関連付けられた信号をビームスポットごとに受信し、前記センサは複数の検出器を含み、ビームスポットごとに各光ビームスポットの前記画像が複数の検出器に入射するように、各検出器のサイズは各光ビームスポットの前記画像よりも小さく、前記複数の検出器に対する前記入射によって生じた信号から、前記単一の光ビームスポットの前記画像に関連付けられた少なくとも2つの異なる範囲測定値を決定する、ように構成された少なくとも1つのプロセッサを備える、LIDARシステム。

請求項127

前記少なくとも1つの光偏向器は枢動可能MEMSミラーを含む、請求項126に記載のLIDARシステム。

請求項128

前記少なくとも1つのプロセッサは、前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合に前記光源の前記アウトバウンド経路が少なくとも部分的に前記帰還経路と一致するように、前記少なくとも1つの光偏向器と前記少なくとも1つの光源を連携させるよう構成されている、請求項127に記載のLIDARシステム。

請求項129

前記アウトバウンド経路と前記帰還経路の重複部分は共通の光偏向要素を含む、請求項126に記載のLIDARシステム。

請求項130

前記少なくとも1つの光偏向器は少なくとも1つのアウトバウンド偏向器及び少なくとも1つの帰還偏向器を含み、前記少なくとも1つのプロセッサは更に、前記少なくとも1つの帰還偏向器を介して、前記アウトバウンド経路と一致しない前記センサへの帰還経路に沿って単一の光ビームスポットの反射を受光するように構成されている、請求項126に記載のLIDARシステム。

請求項131

前記スキャンサイクルで決定される異なる範囲測定値の数は前記複数の瞬時位置よりも多い、請求項126に記載のLIDARシステム。

請求項132

前記少なくとも2つの異なる範囲測定値は少なくとも2つの異なる距離に対応する、請求項126に記載のLIDARシステム。

請求項133

前記少なくとも2つの異なる範囲測定値は、物体の一部に対する第1の距離測定値及び前記物体の環境内の要素に対する第2の距離測定値を含む、請求項131に記載のLIDARシステム。

請求項134

前記少なくとも2つの異なる範囲測定値は、物体の第1の部分に対する第1の距離測定値及び前記物体の第2の部分に対する第2の距離測定値を含む、請求項131に記載のLIDARシステム。

請求項135

前記少なくとも2つの異なる範囲測定値は少なくとも2つの異なる強度に対応する、請求項126に記載のLIDARシステム。

請求項136

前記少なくとも2つの異なる範囲測定値は、物体の第1の部分に関連付けられた第1の強度測定値及び前記物体の第2の部分に関連付けられた第2の強度測定値を含む、請求項135に記載のLIDARシステム。

請求項137

前記少なくとも1つのプロセッサは更に、前記単一の光ビームスポットの反射から複数のポイントクラウドデータエントリを発生するように構成されている、請求項126に記載のLIDARシステム。

請求項138

前記複数のポイントクラウドデータエントリは2次元面画定する、請求項137に記載のLIDARシステム。

請求項139

前記少なくとも1つのプロセッサは更に、第1の光ビームスポットの画像に関連付けられた第1の複数の範囲測定値及び第2の光ビームスポットの画像に関連付けられた第2の複数の範囲測定値を同時に決定するように構成され、前記第1の複数の範囲測定値は前記第2の複数の範囲測定値よりも多い、請求項126に記載のLIDARシステム。

請求項140

前記少なくとも1つのプロセッサは更に、共通の光偏向器に照準を合わせた複数の光源の光放出を同時に制御すると共に、各々が異なる帰還経路に沿って配置された複数のセンサから、異なる光ビームスポットの画像に関連付けられた信号を受信するように構成されている、請求項126に記載のLIDARシステム。

請求項141

前記センサは、前記単一の光ビームスポットについて少なくとも2つの異なる飛行時間に関連付けられた反射を検出するように構成されている、請求項126に記載のLIDARシステム。

請求項142

前記センサは、少なくとも4つの個別の検出器を備えた検出器の1次元アレイを含む、請求項126に記載のLIDARシステム。

請求項143

前記センサは、少なくとも8つの個別の検出器を備えた検出器の2次元アレイを含む、請求項126に記載のLIDARシステム。

請求項144

前記センサは複数の検出器を含み、少なくとも1つの検出器は単一光子検知検出器を含む、請求項126に記載のLIDARシステム。

請求項145

LIDARシステムを用いて物体を検出するための方法であって、光源の光放出を制御することと、前記光源のアウトバウンド経路に配置された少なくとも1つの光偏向器を繰り返し移動させることによって視野をスキャンすることであって、前記視野の単一のスキャンサイクル中に前記少なくとも1つの光偏向器は複数の位置に瞬時に配置される、ことと、前記少なくとも1つの偏向器が特定の瞬時位置にある間、前記少なくとも1つの偏向器を介して、センサへの帰還経路に沿って単一の光ビームスポットの反射を受光することと、前記センサから、各光ビームスポットの画像をビームスポットごとに受信することであって、前記センサは複数の検出器を含み、ビームスポットごとに各光ビームスポットの前記画像が複数の検出器に入射するように、各検出器のサイズは各光ビームスポットの前記画像よりも小さい、ことと、前記複数の検出器に対する前記入射によって生じた信号から、前記単一の光ビームスポットの前記画像に関連付けられた少なくとも2つの異なる範囲測定値を決定することと、を含む方法。

請求項146

前記スキャンサイクルで決定される前記少なくとも2つの異なる範囲測定値は前記複数の瞬時位置よりも多い、請求項145に記載の方法。

請求項147

前記少なくとも2つの異なる範囲測定値は異なる強度及び距離のうち少なくとも1つに対応する、請求項145に記載の方法。

請求項148

前記単一の光ビームスポットの反射から複数のポイントクラウドデータエントリを発生することを更に含む、請求項145に記載の方法。

請求項149

第1の光ビームスポットの画像に関連付けられた第1の複数の範囲測定値及び第2の光ビームスポットの画像に関連付けられた第2の複数の範囲測定値を同時に決定することを更に含み、前記第1の複数の範囲測定値は前記第2の複数の範囲測定値よりも多い、請求項145に記載の方法。

請求項150

命令を記憶している非一時的コンピュータ読み取り可能記憶媒体であって、前記命令は、少なくとも1つのプロセッサによって実行された場合、LIDARシステムを用いて物体を検出するための方法を前記少なくとも1つのプロセッサに実行させ、前記方法は、光源の光放出を制御することと、前記光源のアウトバウンド経路に配置された少なくとも1つの光偏向器を繰り返し移動させることによって視野をスキャンすることであって、前記視野の単一のスキャンサイクル中に前記少なくとも1つの光偏向器は複数の位置に瞬時に配置される、ことと、前記少なくとも1つの偏向器が特定の瞬時位置にある間、前記少なくとも1つの偏向器を介して、センサへの帰還経路に沿って単一の光ビームスポットの反射を受光することと、前記センサから、各光ビームスポットの画像をビームスポットごとに受信することであって、前記センサは複数の検出器を含み、ビームスポットごとに各光ビームスポットの前記画像が複数の検出器に入射するように、各検出器のサイズは各光ビームスポットの前記画像よりも小さい、ことと、前記複数の検出器に対する前記入射によって生じた信号から、前記単一の光ビームスポットの前記画像に関連付けられた少なくとも2つの異なる範囲測定値を決定することと、を含む、非一時的コンピュータ読み取り可能記憶媒体。

請求項151

少なくとも1つのプロセッサであって、少なくとも1つの偏向器が特定の瞬時位置にある間、複数の光源からの光を複数のアウトバウンド経路に沿って視野を形成する複数の領域の方へ偏向させるように、前記少なくとも1つの偏向器を制御し、前記少なくとも1つの偏向器が前記特定の瞬時位置にある間、前記視野からの光反射が前記少なくとも1つの偏向器の少なくとも1つの共通エリアで受光されるように前記少なくとも1つの偏向器を制御し、前記少なくとも1つの共通エリアにおいて前記複数の光源のうち少なくともいくつかの前記光反射の少なくとも一部は相互に重なって入射し、複数の検出器の各々から、前記少なくとも1つの偏向器が前記特定の瞬時位置にある間の前記少なくとも1つの共通エリアからの光反射を示す少なくとも1つの信号を受信する、ように構成された少なくとも1つのプロセッサを備える、LIDARシステム。

請求項152

前記複数の光源は少なくとも3つの別個の光源を含み、各光源は概ね前記視野の異なる領域に関連付けられている、請求項151に記載のLIDARシステム。

請求項153

前記視野の少なくとも第1の領域は、少なくとも第2の領域に隣接すると共に少なくとも第3の領域から離間している、請求項152に記載のLIDARシステム。

請求項154

前記複数の検出器は少なくとも3つの別個のセンサに関連付けられ、前記少なくとも3つの別個のセンサの各々は異なる光源に関連付けられ、前記複数の検出器は、前記視野の前記第1の領域に位置する第1の物体及び前記視野の前記第3の領域に位置する第2の物体を同時に検出するように構成されている、請求項153に記載のLIDARシステム。

請求項155

前記視野の少なくとも各領域は前記視野の異なる角度部分に関連付けられている、請求項152に記載のLIDARシステム。

請求項156

前記複数の光源は少なくとも2つの別個の光源を含み、前記少なくとも2つの別個の光源は前記視野の実質的に重複する領域に光を投影するよう構成されている、請求項151に記載のLIDARシステム。

請求項157

各光源は異なる波長の光を投影するように構成されている、請求項151に記載のLIDARシステム。

請求項158

少なくとも第1の光源は400nmから800nmの間の波長の光を投影するように構成され、少なくとも第2の光源は800nmより大きい波長の光を放出するように構成されている、請求項157に記載のLIDARシステム。

請求項159

少なくとも第1の光源は800nmから1000nmの間の波長の光を投影するように構成され、少なくとも第2の光源は1500nmより大きい波長の光を放出するように構成されている、請求項157に記載のLIDARシステム。

請求項160

前記複数の検出器は、前記少なくとも1つの光偏向器の特定の位置に関連付けられた少なくとも2つの異なる距離を測定するように構成された単一のセンサの一部である、請求項151に記載のLIDARシステム。

請求項161

前記少なくとも1つの光偏向器は前記複数の光源とは別個の筐体内に収容されている、請求項151に記載のLIDARシステム。

請求項162

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの偏向器を繰り返し移動させることによって前記視野をスキャンするように構成され、前記視野の単一のスキャンサイクル中、前記少なくとも1つの偏向器は複数の異なる瞬時位置に配置される、請求項151に記載のLIDARシステム。

請求項163

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの共通エリアからの前記光反射に基づいて前記視野の異なる領域に関連した複数の距離測定値を決定するように構成されている、請求項151に記載のLIDARシステム。

請求項164

前記少なくとも1つの偏向器は、2つの別個の軸に沿って枢動するように構成された単一の偏向器を含む、請求項151に記載のLIDARシステム。

請求項165

前記少なくとも1つの偏向器は、個別に枢動するよう構成された複数の偏向器を備えた偏向器アレイを含む、請求項151に記載のLIDARシステム。

請求項166

前記偏向器アレイに含まれる前記複数の偏向器は同期される、請求項165に記載のLIDARシステム。

請求項167

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの偏向器の第1の瞬時位置において第1の光源が第2の光源よりも多くの光束を前記少なくとも1つの偏向器の方へ放出するように、かつ、前記少なくとも1つの偏向器の第2の瞬時位置において前記第2の光源が前記第1の光源よりも多くの光束を前記少なくとも1つの偏向器の方へ放出するように、前記複数の光源を制御するよう構成されている、請求項151に記載のLIDARシステム。

請求項168

LIDARシステムを用いて物体を検出するための方法であって、少なくとも1つの偏向器が特定の瞬時位置にある間、複数の光源からの光を複数のアウトバウンド経路に沿って視野を形成する複数の領域の方へ偏向させるように、前記少なくとも1つの偏向器を移動させることと、前記少なくとも1つの偏向器が前記特定の瞬時位置にある間、前記少なくとも1つの偏向器の少なくとも1つの共通エリア上で、前記視野内の物体からの前記複数の光源の光反射を受光することであって、前記少なくとも1つの共通エリアにおいて前記光反射の少なくとも一部は相互に重なって入射する、ことと、複数の検出器の各々において、前記少なくとも1つの光偏向器が前記瞬時位置にある時の前記少なくとも1つの共通エリアからの光反射を受光することと、を含む方法。

請求項169

前記複数の光源は少なくとも3つの別個の光源を含み、各光源は概ね前記視野の異なる領域に関連付けられている、請求項168に記載の方法。

請求項170

前記複数の光源は少なくとも2つの別個の光源を含み、各光源は異なる波長の光を投影するように構成されている、請求項168に記載の方法。

請求項171

前記少なくとも1つの共通エリアからの前記光反射に基づいて前記視野の異なる領域に関連した複数の距離測定値を決定することを更に含む、請求項168に記載の方法。

請求項172

前記少なくとも1つの偏向器を繰り返し移動させることによって前記視野をスキャンすることを更に含み、前記視野の単一のスキャンサイクル中、前記少なくとも1つの偏向器は複数の異なる瞬時位置に配置される、請求項168に記載の方法。

請求項173

本体と、少なくとも1つのプロセッサであって、少なくとも1つの偏向器に照準を合わせた複数の光源を制御し、前記複数の光源からの反射を検出するように構成された複数の検出器からデータを受信し、前記少なくとも1つの偏向器が特定の瞬時位置にある間、前記複数の光源からの光を複数のアウトバウンド経路に沿って視野を形成する複数の領域の方へ偏向させるように、前記少なくとも1つの偏向器を移動させ、前記少なくとも1つの偏向器が前記特定の瞬時位置にある間、前記視野からの光反射が前記少なくとも1つの偏向器の少なくとも1つの共通エリアで受光されるように、前記少なくとも1つの偏向器を制御し、前記少なくとも1つの共通エリアにおいて前記複数の光源のうち少なくともいくつかの前記光反射の少なくとも一部は相互に重なって入射し、複数の検出器の各々から、前記少なくとも1つの偏向器が前記特定の瞬時位置にある間の前記少なくとも1つの共通エリアからの光反射を示す少なくとも1つの信号を受信する、ように構成された少なくとも1つのプロセッサと、を備える車両。

請求項174

LIDARシステムであって、少なくとも1つのプロセッサであって、メモリに記憶された光学予算アクセスし、前記光学予算は、少なくとも1つの光源に関連付けられると共に前記少なくとも1つの光源によって所定の時間期間内に放出可能な光量を規定し、前記LIDARシステムのプラットフォーム条件を示す情報を受信し、前記受信した情報に基づいて、スキャンレートスキャンパターンスキャン角空間光分布、及び時間光分布のうち少なくとも2つに基づいて、前記LIDARシステムの視野に前記光学予算を動的に配分し、前記動的に配分した光学予算に従って前記視野のスキャンにおいて光束を変動させ得るように前記少なくとも1つの光源を制御するための信号を出力する、ように構成された少なくとも1つのプロセッサを備える、LIDARシステム。

請求項175

前記少なくとも1つのプロセッサは更に、前記視野をスキャンするため少なくとも1つの光偏向器を制御するように構成され、単一のスキャンサイクル中、前記少なくとも1つの光偏向器は複数の異なる瞬時位置に配置される、請求項174に記載のLIDARシステム。

請求項176

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合、光ビームの一部が前記少なくとも1つの光偏向器によって前記少なくとも1つの光源から前記視野内の物体の方へ偏向されると共に前記物体からの前記光ビームの前記一部の反射が前記少なくとも1つの光偏向器によって少なくとも1つのセンサの方へ偏向されるように、前記少なくとも1つの光偏向器と前記少なくとも1つの光源を連携させるよう構成されている、請求項175に記載のLIDARシステム。

請求項177

前記少なくとも1つの光偏向器に照準を合わせた複数の光源を更に備え、少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合に前記複数の光源からの光が前記視野の複数の別個の領域の方へ投影されるように、前記少なくとも1つの光偏向器を制御するよう構成されている、請求項175に記載のLIDARシステム。

請求項178

前記少なくとも1つのプロセッサは更に、前記動的に配分した光学予算に従って前記少なくとも1つの光源と前記少なくとも1つの光偏向器を連携させるように構成されている、請求項175に記載のLIDARシステム。

請求項179

単一の光源当たりの平均光学予算は10ミリワットから1,000ミリワットの間である、請求項174に記載のLIDARシステム。

請求項180

前記光学予算は単一のスキャンサイクルに放出可能な光量を規定する、請求項174に記載のLIDARシステム。

請求項181

前記光学予算は標準的な時間単位に放出可能な光量を規定する、請求項174に記載のLIDARシステム。

請求項182

前記LIDARシステムの前記プラットフォーム条件は前記LIDARシステムの少なくとも1つのコンポーネントの温度を示す情報を含む、請求項174に記載のLIDARシステム。

請求項183

前記少なくとも1つのプロセッサは更に、単一のスキャンサイクル中に前記視野の第2の部分よりも多くの光が前記視野の第1の部分の方へ投影されるように、前記受信した情報に基づいて前記空間光分布を決定するよう構成されている、請求項174に記載のLIDARシステム。

請求項184

前記少なくとも1つのプロセッサは更に、関心領域としての前記第1の領域の識別及び非関心領域としての前記第2の領域の識別を取得するように構成されている、請求項183に記載のLIDARシステム。

請求項185

関心領域としての前記第1の領域の前記取得された識別は前記LIDARシステムが展開されている車両の現在の運転モードに基づく、請求項184に記載のLIDARシステム。

請求項186

前記少なくとも1つのプロセッサは更に、前記第2の部分における物体の存在を決定し、前記第2の部分へ投影される光の蓄積エネルギ密度が最大許容可能露光量を超えるのを防ぐように構成されている、請求項183に記載のLIDARシステム。

請求項187

前記少なくとも1つのプロセッサは更に、時間光分布を決定し、第1のスキャンサイクルで投影される全体的な光量が第2の後続のスキャンサイクルで投影される全体的な光量よりも多いように光束を制御するよう構成されている、請求項174に記載のLIDARシステム。

請求項188

前記光学予算の前記動的な配分の少なくとも一部として、前記少なくとも1つのプロセッサは、前記視野の近視野部分、前記視野の遠視野部分、前記視野の狭角セクタ、及び前記視野の広角セクタのうち少なくとも1つのスキャンレートを決定するように構成されている、請求項174に記載のLIDARシステム。

請求項189

前記少なくとも1つのプロセッサは更に、少なくとも1つのスキャンサイクルのスキャンパターンを決定するように構成され、前記スキャンパターンは、以下の状況タイプ、すなわち、幹線道路の運転、オフロードの運転、雨天での運転、の中での運転、霧の中での運転、都市エリアでの運転、農村エリアでの運転、既定施設付近のエリアの運転、左折右折車線横断、及び横断歩道への接近、のうち少なくとも1つの認識に基づいて決定される、請求項174に記載のLIDARシステム。

請求項190

前記少なくとも1つのプロセッサは更に、前記LIDARシステムの動作パラメータ及び前記LIDARシステムによって与えられる検出情報のうち少なくとも1つに基づいて前記光学予算を変更するように構成されている、請求項174に記載のLIDARシステム。

請求項191

前記光学予算は、車両の周りの異なる位置で展開される複数の光源に関連付けられ、前記光学予算は、前記所定の時間期間において配分に利用できる前記複数の光源からの放出可能な光量を規定し、前記少なくとも1つのプロセッサは更に、前記受信した情報に基づいて前記光学予算を動的に配分するように構成されている、請求項174に記載のLIDARシステム。

請求項192

前記プロセッサは、前記複数の光源中の第1の光源に対する光学予算配分と前記複数の光源中の第2の光源に対する光学予算配分との比を変動させるように構成されている、請求項191に記載のLIDARシステム。

請求項193

前記LIDARシステムの前記プラットフォーム条件は、車両動作パラメータ環境条件、運転決定、車両のナビゲーション状態、又はパワー管理モードのうち少なくとも1つを含む、請求項174に記載のLIDARシステム。

請求項194

前記環境条件は、気候条件照明条件、環境の温度、及び既定のタイプの施設に対する近接のうち少なくとも1つを含み、前記運転決定は、農村部関連の指示、都市部関連の指示、前記LIDARシステムを含む車両の現在の速度、次の運転手順、運転ナビゲーションイベントマニュアル運転指示、及び自動運転指示のうち少なくとも1つを含み、前記パワー管理モードは、通常パワー動作モード及び節電モードの指示のうち少なくとも1つを含む、請求項193に記載のLIDARシステム。

請求項195

LIDARシステムを用いて物体を検出するための方法であって、メモリに記憶された光学予算にアクセスすることであって、前記光学予算は、少なくとも1つの光源に関連付けられると共に前記少なくとも1つの光源によって所定の時間期間内に放出可能な光量を規定する、ことと、環境条件、運転決定、及びパワー管理モードのうち少なくとも1つを含む、車両動作パラメータに関する情報を受信することと、前記受信した情報に基づいて、スキャンレート、スキャンパターン、スキャン角、空間光分布、及び時間光分布のうち少なくとも2つに基づいて、前記LIDARシステムの視野に前記光学予算を動的に配分することと、前記動的に配分した光学予算に従って前記視野のスキャンにおいて光束を変動させ得るように前記少なくとも1つの光源を制御するための信号を出力することと、を含む方法。

請求項196

空間光分布に基づいて前記光学予算を動的に配分することは、単一のスキャンサイクル中に前記視野の第2の部分よりも多くの光を前記視野の第1の部分の方へ投影することを含む、請求項194に記載の方法。

請求項197

関心領域としての前記第1の領域の識別及び非関心領域としての前記第2の領域の識別を取得することを更に含む、請求項196に記載の方法。

請求項198

命令を記憶している非一時的コンピュータ読み取り可能記憶媒体であって、前記命令は、少なくとも1つのプロセッサによって実行された場合、LIDARシステムを用いて物体を検出するための方法を前記少なくとも1つのプロセッサに実行させ、前記方法は、メモリに記憶された光学予算にアクセスすることであって、前記光学予算は、少なくとも1つの光源に関連付けられると共に前記少なくとも1つの光源によって所定の時間期間内に放出可能な光量を規定する、ことと、環境条件、運転決定、及びパワー管理モードのうち少なくとも1つを含む、車両動作パラメータに関する情報を受信することと、前記受信した情報に基づいて、スキャンレート、スキャンパターン、スキャン角、空間光分布、及び時間光分布のうち少なくとも2つに基づいて、前記LIDARシステムの視野に前記光学予算を動的に配分することと、前記動的に配分した光学予算に従って前記視野のスキャンにおいて光束を変動させ得るように前記少なくとも1つの光源を制御するための信号を出力することと、を含む、非一時的コンピュータ読み取り可能記憶媒体。

請求項199

少なくとも1つの光源によって所定の時間期間内に放出可能な光量を動的に配分するためのLIDARシステムであって、少なくとも1つのプロセッサであって、環境条件、運転決定、及びパワー管理モードのうち少なくとも1つを含む、車両動作パラメータに関する情報を受信し、前記受信した情報に基づいて、スキャンレート、スキャンパターン、スキャン角、空間光分布、及び時間光分布のうち少なくとも2つを変動させることにより、前記少なくとも1つの光源によって放出される光を動的に配分し、前記少なくとも1つの光源によって放出される光の前記動的な配分に従って視野をスキャンする場合に光束を変動させ得るように前記少なくとも1つの光源を制御するための信号を出力する、ように構成された少なくとも1つのプロセッサを備える、LIDARシステム。

請求項200

車両での使用向けに構成されたLIDARのための振動抑制システムであって、少なくとも1つのプロセッサであって、視野のスキャンにおいて少なくとも1つの光源からの光の光束を変動させ得るように前記少なくとも1つの光源を制御し、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器の位置決めを制御し、前記車両の振動を示すデータを取得し、前記取得したデータに基づいて、前記車両の前記振動を補償するため前記少なくとも1つの光偏向器の前記位置決めに対する調整を決定し、前記少なくとも1つの光偏向器の前記位置決めに対する前記決定された調整を実施することにより、前記少なくとも1つの光偏向器において、前記視野の前記スキャンに対する前記車両の前記振動の影響の少なくとも一部を抑制する、ように構成された少なくとも1つのプロセッサを備える、振動抑制システム。

請求項201

前記少なくとも1つのプロセッサは更に、スキャンサイクル中、前記少なくとも1つの光偏向器が複数の異なる瞬時位置に配置されるように前記少なくとも1つの光偏向器を制御するよう構成されている、請求項200に記載のLIDARシステム。

請求項202

前記少なくとも1つのプロセッサは、前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合、光ビームが前記少なくとも1つの光偏向器によって前記少なくとも1つの光源から前記視野内の物体の方へ偏向されると共に前記物体からの反射が前記少なくとも1つの光偏向器によって少なくとも1つのセンサの方へ偏向されるように、前記少なくとも1つの光偏向器の制御と前記少なくとも1つの光源の制御を連携させるように構成されている、請求項201に記載のLIDARシステム。

請求項203

前記少なくとも1つの光偏向器に照準を合わせた複数の光源を更に備え、前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合に前記複数の光源からの光が前記視野を形成する複数の別個の領域の方へ投影されるように、前記少なくとも1つの光偏向器を制御するよう構成されている、請求項201に記載のLIDARシステム。

請求項204

前記車両の前記振動を示すデータは前記少なくとも1つの光偏向器以外のセンサから受信された情報を含む、請求項200に記載のシステム

請求項205

前記車両の前記振動を示すデータは前記少なくとも1つの光偏向器の少なくとも一部からから受信された情報を含む、請求項200に記載のシステム。

請求項206

前記少なくとも1つの光源からの偏向された光による前記視野のスキャンを可能とするように移動するよう構成された複数の光偏向器を更に備え、前記少なくとも1つのプロセッサは更に、前記複数の光偏向器のうち少なくとも1つを振動センサとして用いて前記車両の前記振動を示す前記データを決定するように構成されている、請求項200に記載のシステム。

請求項207

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器の現在の位置を検出するように構成された追加のセンサから前記車両の前記振動を示す前記データを受信するよう構成されている、請求項200に記載のシステム。

請求項208

光の反射を少なくとも1つのセンサの方へ偏向させ得るように移動するよう構成された複数の光偏向器要素を更に備え、前記少なくとも1つのプロセッサは更に、追加のセンサから前記データを受信するように構成され、前記データは、前記複数の光偏向器要素のうち少なくとも1つの現在の位置を示す情報を含み、前記少なくとも1つのプロセッサは更に、前記データを用いて前記複数の光偏向器要素の各々の位置を補正するように構成されている、請求項200に記載のシステム。

請求項209

前記光偏向器要素の各々は枢動可能ミラーを含む、請求項208に記載のシステム。

請求項210

前記少なくとも1つの光源からの偏向された光による前記視野のスキャンを可能とするように移動するよう構成された複数の光偏向器要素を更に備え、前記少なくとも1つのプロセッサは更に、少なくとも1つの追加のセンサから前記データを受信するように構成され、前記データは、前記複数の光偏向器要素の各々の現在位置を示す情報、各光偏向器要素の現在の位置を示す情報を含み、各光偏向器要素に一意の前記情報を用いて各光偏向器要素の位置を補正する、請求項200に記載のシステム。

請求項211

前記少なくとも1つの光偏向器はMEMSミラーアレイを含み、前記複数の光偏向器要素の各々は前記MEMSミラーアレイ内の別個のミラーを含む、請求項210に記載のシステム。

請求項212

前記少なくとも1つの光偏向器の要求される位置にアクセスし、前記少なくとも1つの光偏向器の瞬時角度位置を決定し、前記要求される位置と前記瞬時角度位置との差を補償するように前記少なくとも1つの光偏向器の前記瞬時角度位置を変更するための制御ループを更に含む、請求項200に記載のシステム。

請求項213

前記少なくとも1つのプロセッサは更に、光学測定容量測定圧電抵抗測定、誘電率測定、及び圧電分極測定のうち少なくとも1つに基づいて、前記少なくとも1つの光偏向器の前記瞬時角度位置を決定するように構成されている、請求項212に記載のシステム。

請求項214

前記少なくとも1つのプロセッサは更に、前記車両の傾斜角を示す入力を取得し、前記入力に基づいて前記少なくとも1つの光偏向器の前記位置決めに対する調整を決定し、前記決定された調整に基づいて前記少なくとも1つの光偏向器を移動させるように構成されている、請求項200に記載のシステム。

請求項215

前記車両の前記振動を示す前記データに基づいて、前記少なくとも1つのプロセッサは更に、スキャンレート、スキャンパターン、空間光分布、時間光分布のうち少なくとも1つを変化させるように構成されている、請求項200に記載のシステム。

請求項216

前記少なくとも1つの光偏向器は1000Hz未満の共振周波数を有する、請求項200に記載のシステム。

請求項217

前記少なくとも1つの光偏向器は少なくとも4.5mmの幅を有する単一のMEMSミラーを含む、請求項200に記載のシステム。

請求項218

少なくとも1つの光偏向器は、各ミラーが少なくとも2mmの幅を有するミラーの2次元アレイを含む、請求項200に記載のシステム。

請求項219

前記少なくとも1つのプロセッサは更に、スキャンサイクル中に前記少なくとも1つの光偏向器が前記視野の異なる部分の方へ光を偏向させるように前記少なくとも1つの光偏向器を位置決めするため、圧電材料を含む1つ以上のアクチュエータを制御するよう構成されている、請求項200に記載のシステム。

請求項220

車両での使用向けに構成されたLIDARの振動を抑制するための方法であって、視野のスキャンにおいて少なくとも1つの光源からの光の光束を変動させ得るように前記少なくとも1つの光源を制御することと、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器の位置決めを制御することと、前記車両の振動を示すデータを取得することと、前記取得したデータに基づいて、前記車両の前記振動を補償するため前記少なくとも1つの光偏向器の前記位置決めに対する調整を決定することと、前記少なくとも1つの光偏向器の前記位置決めに対する前記決定された調整を実施することにより、前記少なくとも1つの光偏向器において、前記視野の前記スキャンに対する前記車両の前記振動の影響の少なくとも一部を抑制することと、を含む方法。

請求項221

前記少なくとも1つの光偏向器は1000Hz未満の共振周波数を有する、請求項220に記載の方法。

請求項222

前記車両の振動を示す前記データは、前記車両の振動の測定に関連した情報及び前記車両の振動によって影響を受ける前記LIDARの振動の測定に関連した情報のうち少なくとも1つを含む、請求項220に記載の方法。

請求項223

前記少なくとも1つの光偏向器の要求される位置にアクセスし、前記少なくとも1つの光偏向器の瞬時角度位置を決定し、前記要求される位置と前記瞬時角度位置との差を補償するように前記少なくとも1つの光偏向器の前記瞬時角度位置を変更することを更に含む、請求項220に記載の方法。

請求項224

前記少なくとも1つの光偏向器の前記瞬時角度位置を決定することは、光学測定、容量測定、圧電抵抗測定、誘電率測定、及び圧電分極測定のうち少なくとも1つに基づく、請求項223に記載の方法。

請求項225

命令を記憶している非一時的コンピュータ読み取り可能記憶媒体であって、前記命令は、少なくとも1つのプロセッサによって実行された場合、LIDARが配置された車両の振動を抑制するための方法を前記少なくとも1つのプロセッサに実行させ、前記方法は、視野のスキャンにおいて少なくとも1つの光源からの光の光束を変動させ得るように前記少なくとも1つの光源を制御することと、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器の位置決めを制御することと、前記車両の振動を示すデータを取得することと、前記取得したデータに基づいて、前記車両の前記振動を補償するため前記少なくとも1つの光偏向器の前記位置決めに対する調整を決定することと、前記決定された調整に基づいて前記少なくとも1つの光偏向器を制御することにより、前記視野の前記スキャンに対する前記車両の前記振動の影響の少なくとも一部を抑制することと、を含む、非一時的コンピュータ読み取り可能記憶媒体。

請求項226

少なくとも1つのプロセッサであって、視野のスキャンサイクルにおいて少なくとも1つの光源からの光の光束を変動させ得るように前記少なくとも1つの光源を制御し、前記少なくとも1つの光源から投影された前記光は前記視野をスキャンするため少なくとも1つの偏向器に誘導され、前記視野内の物体から反射された光を示す反射信号を少なくとも1つのセンサから受信し、スキャンサイクルにおいて前記視野の少なくとも3つのセクタが発生するように光束とスキャンを連携させ、第1のセクタは第1の光束及び関連付けられた第1の検出範囲を有し、第2のセクタは第2の光束及び関連付けられた第2の検出範囲を有し、第3のセクタは第3の光束及び関連付けられた第3の検出範囲を有し、前記第2の光束は前記第1の光束及び前記第3の光束の各々よりも多く、前記少なくとも1つのセンサからの入力に基づいて、前記第1の検出範囲及び前記第3の検出範囲よりも遠い距離に位置する前記第2のセクタ内の物体を検出する、ように構成された少なくとも1つのプロセッサを備える、LIDARシステム。

請求項227

前記少なくとも1つのプロセッサは更に、前記視野のスキャンサイクル中、前記少なくとも1つの光偏向器が複数の異なる瞬時位置に配置されるように前記少なくとも1つの光偏向器を制御するよう構成されている、請求項226に記載のLIDARシステム。

請求項228

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合、光ビームの一部が前記少なくとも1つの光偏向器によって前記少なくとも1つの光源から前記視野内の物体の方へ偏向されると共に前記物体からの前記光ビームの前記一部の反射が前記少なくとも1つの光偏向器によって少なくとも1つのセンサの方へ偏向されるように、前記少なくとも1つの光偏向器と前記少なくとも1つの光源を連携させるよう構成されている、請求項227に記載のLIDARシステム。

請求項229

前記少なくとも1つの光偏向器に照準を合わせた複数の光源を更に備え、前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合に前記複数の光源からの光が前記視野の複数の別個の領域の方へ投影されるように、前記少なくとも1つの光偏向器を制御するよう構成されている、請求項227に記載のLIDARシステム。

請求項230

前記少なくとも1つのプロセッサは更に、複数のスキャンサイクルにおいて少なくとも1つの光源からの光の光束を変動させ得るように前記少なくとも1つの光源を制御するよう、及び、前記第2のセクタを前記第1のセクタ及び前記第3のセクタに対して移動させるよう構成されている、請求項227に記載のLIDARシステム。

請求項231

前記少なくとも1つのプロセッサは更に、前記LIDARシステムが展開されている車両が移動する際、前記第2のセクタを前記視野内でスイープ運動で移動させるように構成されている、請求項230に記載のLIDARシステム。

請求項232

前記少なくとも1つのプロセッサは更に、前記車両の現在の運転モードに基づいて前記第2のセクタに既定のスイープパターンを選択するように構成されている、請求項231に記載のLIDARシステム。

請求項233

前記少なくとも1つのプロセッサは更に、前記第1のセクタ及び前記第3のセクタの外側境界よりも遠くの前記第2のセクタ内の物体を検出するように、及び、複数のスイープにわたって前記第2のセクタ内の前記物体を検出するように構成されている、請求項231に記載のLIDARシステム。

請求項234

前記少なくとも1つのプロセッサは更に、前記第1の光束、前記第2の光束、及び前記第3の光束の各々が少なくとも2つの連続するスキャンサイクルについて実質的に同じ光束値を有するように、前記少なくとも1つの光源を制御するよう構成されている、請求項230に記載のLIDARシステム。

請求項235

前記少なくとも1つのプロセッサは更に、第1のグループのスキャンサイクルにおいて前記第2のセクタが前記視野の第1のエリアをスイープし、第2の連続したグループのスキャンサイクルにおいて前記第2のセクタが前記第1のエリア以外の前記視野の第2のエリアをスイープするように、前記第2のセクタを非連続的にスイープさせるよう構成されている、請求項231に記載のLIDARシステム。

請求項236

前記少なくとも1つのプロセッサは更に、少なくとも2つの連続したスキャンサイクルにおいて前記第1の光束及び前記第3の光束が相互に実質的に等しいように前記少なくとも1つの光源を制御するよう構成されている、請求項226に記載のLIDARシステム。

請求項237

前記少なくとも1つのプロセッサは更に、少なくとも2つの連続したスキャンサイクルにおいて前記第1の光束が前記第3の光束よりも多いように前記少なくとも1つの光源を制御するよう構成されている、請求項226に記載のLIDARシステム。

請求項238

前記少なくとも1つのプロセッサは更に、前記第2のセクタが前記第1及び第3のセクタによって完全に囲まれるように光束とスキャンを連携させるよう構成されている、請求項226に記載のLIDARシステム。

請求項239

前記少なくとも1つのプロセッサは更に、各スキャンサイクルにおいて前記第2のセクタの少なくとも一部が水平線よりも下にあるように、複数の連続したスキャンサイクルにおいて前記第2のセクタをスイープさせるよう構成されている、請求項238に記載のLIDARシステム。

請求項240

前記第2の検出範囲は前記第1及び第3の検出範囲よりも少なくとも50%遠くに延出する、請求項226に記載のLIDARシステム。

請求項241

LIDARを用いて物体を検出するための方法であって、視野のスキャンサイクルにおいて少なくとも1つの光源からの光の光束を変動させ得るように前記少なくとも1つの光源を制御することであって、前記少なくとも1つの光源から投影された前記光は前記視野をスキャンするため少なくとも1つの光偏向器に誘導される、ことと、前記視野内の物体から反射された光を示す反射信号を少なくとも1つのセンサから受信することと、スキャンサイクルにおいて少なくとも3つのセクタが発生するように光束とスキャンを連携させることであって、第1のセクタは第1の光束及び関連付けられた第1の点分解能を有し、第2のセクタは第2の光束及び関連付けられた第2の点分解能を有し、第3のセクタは第3の光束及び関連付けられた第3の点分解能を有し、前記第2の光束は前記第1の光束及び前記第3の光束の各々よりも多い、ことと、前記少なくとも1つのセンサからの入力に基づいて、前記第1の点分解能及び前記第3の点分解能よりも大きい点分解能の前記第2のセクタ内の物体を検出することと、を含む方法。

請求項242

第2の点分解能を用いて前記第2のセクタ内の物体を検出することを更に含み、前記第2のセクタにおける各ポイント間の平均空間は前記第1のセクタ及び前記第3のセクタにおけるポイント間の平均空間の約50%未満である、請求項241に記載の方法。

請求項243

前記第2のセクタからの反射から導出できる情報は、前記第1のセクタ及び前記第3のセクタからの反射から導出できる情報よりも高い精度で物体の検出を可能とする、請求項241に記載の方法。

請求項244

前記第2のセクタが前記第1及び第3のセクタによって完全に囲まれるように光束とスキャンを連携させることを更に含む、請求項241に記載の方法。

請求項245

前記第1の光束及び前記第3の光束が実質的に同一であると共に、前記第2の検出範囲が前記第1の検出範囲及び第3の検出範囲よりも少なくとも50%遠くに延出するように、前記少なくとも1つの光源を制御することを更に含む、請求項241に記載の方法。

請求項246

命令を記憶している非一時的コンピュータ読み取り可能記憶媒体であって、前記命令は、少なくとも1つのプロセッサによって実行された場合、LIDARシステムを用いて物体を検出するための方法を前記少なくとも1つのプロセッサに実行させ、前記方法は、視野のスキャンサイクルにおいて少なくとも1つの光源からの光束を変動させ得るように前記少なくとも1つの光源を制御することであって、前記少なくとも1つの光源から投影された前記光は前記視野をスキャンするため少なくとも1つの光偏向器に誘導される、ことと、前記視野内の物体から反射された光を示す反射信号を少なくとも1つのセンサから受信することと、スキャンサイクルにおいて少なくとも3つのセクタが発生するように光束とスキャンを連携させることであって、第1のセクタは第1の光束及び関連付けられた第1の検出範囲を有し、第2のセクタは第2の光束及び関連付けられた第2の検出範囲を有し、第3のセクタは第3の光束及び関連付けられた第3の検出範囲を有し、前記第2の光束は前記第1の光束及び前記第3の光束の各々よりも多い、ことと、前記少なくとも1つのセンサからの入力に基づいて、前記第1の検出範囲及び前記第3の検出範囲よりも遠い距離に位置する前記第2のセクタ内の物体を検出することと、を含む、非一時的コンピュータ読み取り可能記憶媒体。

請求項247

少なくとも1つのプロセッサであって、近視野部分及び遠視野部分を含む視野の複数のスキャンにおいて少なくとも1つの光源の光束を変動させ得るように前記少なくとも1つの光源を制御し、前記視野をスキャンするように前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御し、前記近視野部分をカバーするスキャンサイクルに関連した第1のフレームに対する第1のスキャンレートと、前記遠視野部分をカバーするスキャンサイクルに関連した第2のフレームに対する第2のスキャンレートとを実施し、前記第1のスキャンレートは前記第2のレートよりも大きく、前記近視野部分に関連した複数の順次的な第1のフレームにおける物体の検出を可能とする光の投影後、光源パラメータを変更し、これによって前記遠視野部分に関連した前記第2のフレームにおける物体の検出を可能とするように光を投影するよう、前記少なくとも1つの光源を制御する、ように構成された少なくとも1つのプロセッサを備える、LIDARシステム。

請求項248

前記少なくとも1つのプロセッサは更に、前記スキャンサイクル中、前記少なくとも1つの光偏向器が複数の異なる瞬時位置に配置されるように前記少なくとも1つの光偏向器を制御するよう構成されている、請求項247に記載のLIDARシステム。

請求項249

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合、光ビームの一部が前記少なくとも1つの光偏向器によって前記少なくとも1つの光源から前記視野内の物体の方へ偏向されると共に前記物体からの反射が前記少なくとも1つの光偏向器によって少なくとも1つのセンサの方へ偏向されるように、前記少なくとも1つの光偏向器と前記少なくとも1つの光源を連携させるよう構成されている、請求項248に記載のLIDARシステム。

請求項250

前記少なくとも1つの光偏向器における共通エリアに照準を合わせた複数の光源を更に備え、少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合に前記複数の光源からの光が前記視野の複数の別個の領域の方へ投影されるように、前記少なくとも1つの光偏向器を制御するよう構成されている、請求項248に記載のLIDARシステム。

請求項251

前記少なくとも1つのプロセッサは更に、前記LIDARシステムから50メートル未満である前記視野の前記近視野部分における物体の検出を可能とし、更に、前記LIDARシステムから100メートルを超える前記視野の前記遠視野部分における物体の検出を可能とするように、前記光源を制御するよう構成されている、請求項247に記載のLIDARシステム。

請求項252

前記少なくとも1つのプロセッサは更に、前記少なくとも1つのセンサから、前記視野の前記遠視野部分に位置する物体を検出するため前記第2のフレームに関連した情報を受信するように構成されている、請求項247に記載のLIDARシステム。

請求項253

前記少なくとも1つのプロセッサは更に、前記少なくとも1つのセンサから、前記視野の前記近視野部分に位置する物体を検出するため前記第2のフレームに関連した情報を受信するように構成されている、請求項247に記載のLIDARシステム。

請求項254

前記少なくとも1つのプロセッサは更に、第2のスキャンレートよりも少なくとも5倍速い第1のスキャンレートを実施するように構成されている、請求項247に記載のLIDARシステム。

請求項255

前記第2のフレームに関連した検出距離は前記第1のフレームに関連した検出距離よりも少なくとも50%遠くに延出する、請求項247に記載のLIDARシステム。

請求項256

前記第1のフレームにおけるポイント間の平均空間は前記第2のフレームにおけるポイント間の平均空間の約75%未満である、請求項247に記載のLIDARシステム。

請求項257

前記少なくとも1つのプロセッサは更に、前記第1のフレームにおける空間光分布が前記第2のフレームにおける空間光分布とは異なり、前記第2のフレームと実質的に同じ光量が前記第1のフレームで放出されるように、前記少なくとも1つの光源を制御するよう構成されている、請求項247に記載のLIDARシステム。

請求項258

前記少なくとも1つのプロセッサは更に、前記第1のフレームにおいて第1の光分布スキームが用いられ、前記第2のフレームにおいて前記第1の光分布スキーム以外の第2の光分布スキームが用いられるように、前記少なくとも1つの光源を制御するよう構成されている、請求項247に記載のLIDARシステム。

請求項259

前記第2の光分布スキームに関連したスキャンサイクル中、前記第1の光分布スキームに関連した前記近視野部分内のエリアの方へ放出されるよりも多くの光が前記視野の水平線に近い前記遠視野部分内のエリアの方へ放出される、請求項258に記載のLIDARシステム。

請求項260

前記少なくとも1つのプロセッサは更に、前記LIDARシステムを収容している車両の現在の運転モードに基づいて前記第1のスキャンレート及び前記第2のスキャンレートを実施するように構成されている、請求項247に記載のLIDARシステム。

請求項261

少なくとも1つのプロセッサは更に、前記LIDARシステムを収容している車両の現在の速度に基づいて前記第1のスキャンレート及び前記第2のスキャンレートを実施するように構成されている、請求項247に記載のLIDARシステム。

請求項262

LIDARシステムを用いて物体を検出するための方法であって、近視野部分及び遠視野部分を含む視野の複数のスキャンにおいて少なくとも1つの光源からの光の光束を変動させ得るように前記少なくとも1つの光源を制御することと、前記視野をスキャンするように前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御することと、前記近視野部分をカバーするスキャンサイクルに関連した第1のフレームに対する第1のスキャンレートと、前記遠視野部分をカバーするスキャンサイクルに関連した第2のフレームに対する第2のスキャンレートとを実施することであって、前記第1のスキャンレートは前記第2のレートよりも大きい、ことと、前記近視野部分に関連した複数の順次的な第1のフレームにおける物体の検出を可能とする光の投影後、光源パラメータを変更し、これによって前記遠視野部分をカバーする前記第2のフレームにおける物体の検出を可能とするように前記近視野部分よりも遠くに光を投影するよう、前記少なくとも1つの光源を制御することと、を含む方法。

請求項263

前記少なくとも1つのセンサから、前記視野の前記遠視野部分に位置する第1の物体及び前記近視野部分に位置する第2の物体を検出するため前記第2のフレームに関連した情報を受信することを更に含む、請求項262に記載の方法。

請求項264

前記第1のスキャンレートは第2のスキャンレートよりも少なくとも5倍速い、請求項262に記載の方法。

請求項265

前記第2のフレームに関連した検出距離は前記第1のフレームに関連した検出距離よりも少なくとも50%遠くに延出する、請求項262に記載の方法。

請求項266

前記第1のフレームにおけるポイント間の平均空間は前記第2のフレームにおけるポイント間の平均空間の約75%未満である、請求項262に記載の方法。

請求項267

本体と、少なくとも1つのプロセッサであって、近視野部分及び遠視野部分を含む視野の複数のスキャンにおいて少なくとも1つの光源の光束を変動させ得るように前記少なくとも1つの光源を制御し、前記視野をスキャンするように前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御し、前記近視野部分をカバーするスキャンサイクルに関連した第1のフレームに対する第1のスキャンレートと、前記遠視野部分をカバーするスキャンサイクルに関連した第2のフレームに対する第2のスキャンレートとを実施し、前記第1のスキャンレートは前記第2のレートよりも大きく、前記近視野部分に関連した複数の順次的な第1のフレームにおける物体の検出を可能とする光の投影後、光源パラメータを変更し、これによって前記遠視野部分をカバーする前記第2のフレームにおける物体の検出を可能とするように前記近視野部分よりも遠くに光を投影するよう、前記少なくとも1つの光源を制御する、ように構成された少なくとも1つのプロセッサと、を備える車両。

請求項268

車両で使用するためのLIDARシステムであって、少なくとも1つのプロセッサであって、視野のスキャンにおいて少なくとも1つの光源の光束を変動させ得るように前記少なくとも1つの光源を制御し、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御し、前記車両の現在の運転環境を示す入力を受信し、前記現在の運転環境に基づいて、前記視野のスキャンにおいて投影される光量及び光の空間光分布を変動させることによって瞬時検出距離を動的に調整するように前記少なくとも1つの光源の制御と前記少なくとも1つの光偏向器の制御を連携させる、ように構成された少なくとも1つのプロセッサを備えるLIDARシステム。

請求項269

前記少なくとも1つのプロセッサは更に、単一のスキャンサイクル中、前記少なくとも1つの光偏向器が複数の異なる瞬時位置に配置されるように前記少なくとも1つの光偏向器を制御するよう構成されている、請求項268に記載のLIDARシステム。

請求項270

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合、光ビームの一部が前記少なくとも1つの光偏向器によって前記少なくとも1つの光源から前記視野内の物体の方へ偏向されると共に前記光ビームの前記一部の反射が前記物体から少なくとも1つのセンサの方へ偏向されるように、前記少なくとも1つの光偏向器と前記少なくとも1つの光源を連携させるよう構成されている、請求項269に記載のLIDARシステム。

請求項271

前記少なくとも1つの光偏向器の共通エリアに照準を合わせた複数の光源を更に備え、前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合に前記複数の光源からの光が前記視野を形成する複数の別個の領域の方へ投影されるように、前記少なくとも1つの光偏向器を制御するよう構成されている、請求項269に記載のLIDARシステム。

請求項272

前記少なくとも1つのプロセッサは更に、前記視野の第1の部分における検出距離が先行スキャンサイクルから拡大すると共に前記視野の第2の部分における検出距離が前記先行スキャンサイクルから縮小するように、前記単一のスキャンサイクルにおける前記瞬時検出距離を動的に調整するよう構成されている、請求項269に記載のLIDARシステム。

請求項273

前記少なくとも1つのプロセッサは更に、前記視野の前記第1の部分に関連した瞬時点分解能を動的に調整するように前記少なくとも1つのスキャンサイクルにおける前記少なくとも1つの光源と前記少なくとも1つの光偏向器の制御を連携させるよう構成されている、請求項269に記載のLIDARシステム。

請求項274

前記少なくとも1つのプロセッサは更に、前記現在の運転環境に基づいて、前記視野の近視野部分で物体を検出するための第1のスキャンサイクルレート及び前記視野の遠視野部分で物体を検出するための第2のスキャンサイクルレートを動的に調整するように、複数のスキャンサイクルにおける前記少なくとも1つの光源と前記少なくとも1つの光偏向器の制御を連携させるよう構成されている、請求項269に記載のLIDARシステム。

請求項275

前記少なくとも1つのプロセッサは更に、前記現在の運転環境を示す前記受信された入力に対応する環境タイプに基づいて前記少なくとも1つの光源を制御するように構成されていえる、請求項268に記載のLIDARシステム。

請求項276

前記受信された入力は農村部関連の指示及び都市部関連の指示のうち少なくとも1つを含む、請求項268に記載のLIDARシステム。

請求項277

前記少なくとも1つのプロセッサは更に、前記車両が都市エリアに位置する時を判定し、非都市エリアで用いられるスキャンサイクルレートに比べて増大したスキャンサイクルレートを生成するために前記少なくとも1つの光源制御及び前記少なくとも1つの光偏向器の制御を連携させるよう構成されている、請求項276に記載のLIDARシステム。

請求項278

前記受信された入力は光条件に関連した情報を含む、請求項268に記載のLIDARシステム。

請求項279

前記少なくとも1つのプロセッサは更に、前記車両がトンネルから出た時を判定し、前記車両が前記トンネル内に位置していた時に前記視野の少なくとも1つの部分において用いた光放出に比べて前記少なくとも1つの部分における光放出を増大させるために前記少なくとも1つの光源及び前記少なくとも1つの光偏向器の制御を連携させるよう構成されている、請求項278に記載のLIDARシステム。

請求項280

前記受信された入力は気候条件に関連した情報を含む、請求項268に記載のLIDARシステム。

請求項281

前記少なくとも1つのプロセッサは更に、前記車両が雨天で運転している時を判定し、雨滴の反射を無視するように少なくとも1つのセンサからの出力に関連した感度モードを調整するよう構成されている、請求項280に記載のLIDARシステム。

請求項282

前記少なくとも1つのプロセッサは更に、GPS、車両ナビゲーションシステム、車両コントローラ、レーダ、LIDAR、及びカメラのうち少なくとも1つから、前記現在の運転環境を示す前記入力を受信するように構成されている、請求項268に記載のLIDARシステム。

請求項283

LIDARを用いて車両の経路内の物体を検出するための方法であって、視野のスキャンにおいて少なくとも1つの光源の光束を変動させ得るように前記少なくとも1つの光源を制御することと、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御することと、前記車両の現在の運転環境を示す入力を受信することと、前記現在の運転環境に基づいて、前記視野のスキャンにおいて投影される光量及び光の空間光分布を変動させることによって瞬時検出距離を動的に調整するように前記少なくとも1つの光源制御の制御と前記少なくとも1つの光偏向器の制御を連携させることと、を含む方法。

請求項284

前記視野の第1の部分における検出距離が先行スキャンサイクルから拡大すると共に前記視野の第2の部分における検出距離が前記先行スキャンサイクルから縮小するように、単一のスキャンサイクルにおける前記瞬時検出距離を動的に調整することを更に含む、請求項283に記載の方法。

請求項285

前記視野の前記第1の部分に関連した瞬時点分解能を動的に調整するように前記少なくとも1つの光源の制御と前記少なくとも1つの光偏向器の制御を連携させることを更に含む、請求項283に記載の方法。

請求項286

前記視野の近視野部分で物体を検出するための第1のスキャンサイクルレートを動的に調整すると共に前記視野の遠視野部分で物体を検出するための第2のスキャンサイクルレートを動的に調整するように、前記少なくとも1つの光源の制御と前記少なくとも1つの光偏向器の制御を連携させることを更に含む、請求項283に記載の方法。

請求項287

前記受信された入力は、少なくとも1つの農村部関連の指示、都市部関連の指示、光条件に関連した情報、気候条件に関連した情報、及び前記車両の速度に関連した情報を含む、請求項283に記載の方法。

請求項288

車両本体と、前記車両本体内に位置する少なくとも1つのプロセッサであって、視野のスキャンにおいて少なくとも1つの光源の光束を変動させ得るように前記少なくとも1つの光源を制御し、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御し、現在の運転環境を示す入力を受信し、前記現在の運転環境に基づいて、前記視野のスキャンにおいて投影される光量及び光の空間光分布を変動させることによって瞬時検出距離を動的に調整するように前記少なくとも1つの光源の制御と前記少なくとも1つの光偏向器の制御を連携させる、ように構成された少なくとも1つのプロセッサと、を備える車両。

請求項289

車両で使用するためのLIDARシステムであって、少なくとも1つのプロセッサであって、視野のスキャンサイクルにおいて少なくとも1つの光源からの光の光束を変動させ得るように前記少なくとも1つの光源を制御し、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御し、前記車両の車線横断方向転換が起こりそうであることを示す入力を取得し、前記車線横断方向転換が起こりそうであることを示す前記入力に応答して、前記車両が合流しようとしている遠い側の車線を含めて前記車両の前記車線横断方向転換の方向とは反対の側の光束を前記視野の他の部分よりも増大させ、前記車両の前記車線横断方向転換の前記方向とは反対側の検出範囲を前記車線横断方向転換の方向の検出範囲よりも一時的に拡大するように、前記少なくとも1つの光源の制御と前記少なくとも1つの光偏向器の制御を連携させる、ように構成された少なくとも1つのプロセッサを備える、LIDARシステム。

請求項290

前記少なくとも1つのプロセッサは更に、前記視野のスキャンサイクル中、前記少なくとも1つの光偏向器が複数の瞬時位置に瞬時に配置されるように前記少なくとも1つの光偏向器を制御するよう構成されている、請求項289に記載のLIDARシステム。

請求項291

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合、光ビームの一部が前記少なくとも1つの光偏向器によって前記少なくとも1つの光源から前記視野内の物体の方へ偏向されると共に前記物体からの前記光ビームの前記一部の反射が前記少なくとも1つの光偏向器によって少なくとも1つのセンサの方へ偏向されるように、前記少なくとも1つの光偏向器と前記少なくとも1つの光源を連携させるよう構成されている、請求項290に記載のLIDARシステム。

請求項292

前記少なくとも1つの光偏向器に照準を合わせた複数の光源を更に備え、前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合に前記複数の光源からの光が前記視野の複数の別個の領域の方へ投影されるように、前記少なくとも1つの光偏向器を制御するよう構成されている、請求項290に記載のLIDARシステム。

請求項293

前記少なくとも1つのプロセッサは更に、前記車両のナビゲーションシステムから前記車線横断方向転換が起こりそうであることを示す前記入力を受信するように構成されている、請求項289に記載のLIDARシステム。

請求項294

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光源から投影された前記光に関連した反射を検出するように構成された少なくとも1つのセンサから受信した情報に基づいて、前記車線横断方向転換が起こりそうであることを示す前記入力を決定するように構成されている、請求項289に記載のLIDARシステム。

請求項295

前記少なくとも1つのプロセッサは更に、前記車両の前記車線横断方向転換の方向とは反対の側の前記増大させた光束に基づいて、前記遠い側の車線における移動中の物体の速度を決定するように構成されている、請求項289に記載のLIDARシステム。

請求項296

前記少なくとも1つのプロセッサは更に、前記車両及び前記移動中の物体が衝突コース上にあると判定された場合に警告を発生するように構成されている、請求項295に記載のLIDARシステム。

請求項297

前記少なくとも1つのプロセッサは更に、前記視野の反射率画像を生成するように構成され、前記反射率画像は、前記移動中の物体の様々な部分から反射された光量を表す前記移動中の物体のフィンガプリントを含む、請求項295に記載のLIDARシステム。

請求項298

前記少なくとも1つのプロセッサは更に、複数のスキャンサイクルからの前記移動中の物体のフィンガプリントを複数の反射率テンプレートと比較して、前記移動中の物体が右折の合図をしている車両であると判定するように構成されている、請求項297に記載のLIDARシステム。

請求項299

前記少なくとも1つのプロセッサは更に、左折とは異なるパワー割り当てスキームを右折に対して適用するように構成されている、請求項289に記載のLIDARシステム。

請求項300

前記少なくとも1つのプロセッサは更に、現在の運転環境を示す入力を受信し、都市エリアの車線横断方向転換とは異なるパワー割り当てスキームを農村エリアの車線横断方向転換に対して適用するように構成されている、請求項289に記載のLIDARシステム。

請求項301

前記少なくとも1つのプロセッサは更に、前記車両の右側に関連した第1の視野及び前記車両の左側に関連した第2の視野のスキャンを可能とするように、少なくとも2つの光源及び少なくとも2つの偏向器を制御するように構成されている、請求項289に記載のLIDARシステム。

請求項302

前記少なくとも1つのプロセッサは更に、前記車両が合流しようとしている道路を含む前記視野の第1の部分へ投影される光量が前記道路に隣接した建物を含む前記視野の第2の部分よりも大きくなるように、前記少なくとも1つの光源を制御するよう構成されている、請求項289に記載のLIDARシステム。

請求項303

LIDARを用いて車両の環境内の物体を検出するための方法であって、視野のスキャンサイクルにおいて少なくとも1つの光源からの光の光束を変動させ得るように前記少なくとも1つの光源を制御することと、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御することと、前記車両の車線横断方向転換が起こりそうであることを示す入力を取得することと、前記車線横断方向転換が起こりそうであることを示す前記入力に応答して、前記車両が合流しようとしている遠い側の車線を含めて前記車両の前記車線横断方向転換の方向とは反対の側の光束を前記視野の他の部分よりも増大させ、前記車両の前記車線横断方向転換の前記方向とは反対側の検出範囲を前記車線横断方向転換の方向の検出範囲よりも一時的に拡大するように、前記少なくとも1つの光源の制御と前記少なくとも1つの光偏向器の制御を連携させることと、を含む方法。

請求項304

前記車両のナビゲーションシステムから前記車線横断方向転換が起こりそうであることを示す前記入力を受信することを更に含む、請求項303に記載の方法。

請求項305

前記車両の前記車線横断方向転換の方向とは反対の側の前記増大させた光束に基づいて、前記遠い側の車線における移動中の物体の速度を決定することを更に含む、請求項303に記載の方法。

請求項306

前記視野の反射率画像を生成することを更に含み、前記反射率画像は、前記移動中の物体の様々な部分から反射された光量を表す前記移動中の物体のフィンガプリントを含む、請求項305に記載の方法。

請求項307

複数のスキャンサイクルからの前記移動中の物体のフィンガプリントを複数の反射率テンプレートと比較して、前記移動中の物体が右折の合図をしている車両であると判定することを更に含む、請求項306に記載の方法。

請求項308

車両本体と、前記車両本体内に位置する少なくとも1つのプロセッサであって、視野のスキャンサイクルにおいて少なくとも1つの光源からの光の光束を変動させ得るように前記少なくとも1つの光源を制御し、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御し、前記車両の車線横断方向転換が起こりそうであることを示す入力を取得し、前記車線横断方向転換が起こりそうであることを示す前記入力に応答して、前記車両が合流しようとしている遠い側の車線を含めて前記車両の前記車線横断方向転換の方向とは反対の側の光束を前記視野の他の部分よりも増大させ、前記車両の前記車線横断方向転換の前記方向とは反対側の検出範囲を前記車線横断方向転換の方向の検出範囲よりも一時的に拡大するように、前記少なくとも1つの光源の制御と前記少なくとも1つの光偏向器の制御を連携させる、ように構成された少なくとも1つのプロセッサと、を備える車両。

請求項309

幹線道路を走行する車道用車両と共に使用するためのLIDARシステムであって、少なくとも1つのプロセッサであって、視野のスキャンサイクルにおいて少なくとも1つの光源からの光の光束を変動させ得るように前記少なくとも1つの光源を制御し、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御し、前記視野は、前記車両が走行している前記幹線道路に概ね対応する中央領域と、前記幹線道路の右側のエリアに概ね対応する右側周辺領域と、前記幹線道路の左側のエリアに概ね対応する左側周辺領域と、に分割可能であり、前記車両が幹線道路の走行に対応するモードであるという入力を取得し、前記車両が幹線道路の走行に対応するモードであるという前記入力に応答して、前記中央領域、前記右側周辺領域、及び前記左側周辺領域を含む前記視野のスキャン中、前記右側周辺領域及び前記左側周辺領域よりも多くの光が前記中央領域へ誘導されるように、前記少なくとも1つの光源の制御と前記少なくとも1つの光偏向器の制御を連携させる、ように構成された少なくとも1つのプロセッサを備える、LIDARシステム。

請求項310

前記少なくとも1つのプロセッサは更に、前記視野のスキャンサイクル中、前記少なくとも1つの光偏向器が複数の異なる瞬時位置に配置されるように前記少なくとも1つの光偏向器を制御するよう構成されている、請求項309に記載のLIDARシステム。

請求項311

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合、光ビームの一部が前記少なくとも1つの光偏向器によって前記少なくとも1つの光源から前記視野内の物体の方へ偏向されると共に前記物体からの前記光ビームの前記一部の反射が前記少なくとも1つの光偏向器によって少なくとも1つのセンサの方へ偏向されるように、前記少なくとも1つの光偏向器と前記少なくとも1つの光源を連携させるよう構成されている、請求項310に記載のLIDARシステム。

請求項312

前記少なくとも1つの光偏向器に照準を合わせた複数の光源を更に備え、前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合に前記複数の光源からの光が前記視野の複数の別個の領域の方へ投影されるように、前記少なくとも1つの光偏向器を制御するよう構成されている、請求項310に記載のLIDARシステム。

請求項313

前記少なくとも1つのプロセッサは更に、前記車両のナビゲーションシステムから、前記車両が幹線道路の走行に対応するモードであるという前記入力を受信するように構成されている、請求項309に記載のLIDARシステム。

請求項314

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光源から投影された前記光に関連した光の反射を検出するように構成された少なくとも1つのセンサから受信した情報に基づいて、前記車両が幹線道路の走行に対応するモードであるという前記入力を決定するように構成されている、請求項309に記載のLIDARシステム。

請求項315

前記少なくとも1つのプロセッサは更に、前記右側周辺領域及び前記左側周辺領域に関連した検出距離よりも大きい距離に前記中央領域内の物体が存在すると決定するように構成されている、請求項309に記載のLIDARシステム。

請求項316

前記少なくとも1つのプロセッサは更に、前記中央領域の検出距離が前記右側周辺領域及び前記左側周辺領域の前記検出距離の少なくとも2倍の大きさとなるように前記少なくとも光源を制御するよう構成されている、請求項315に記載のLIDARシステム。

請求項317

前記右側周辺領域は複数の小領域を含み、前記少なくとも1つのプロセッサは、前記視野のスキャン中、前記複数の小領域のうち1つに対して前記複数の小領域の別のものよりも多くの光が誘導されるように構成されている、請求項309に記載のLIDARシステム。

請求項318

前記少なくとも1つのプロセッサは更に、前記車両が走行している道路のタイプを示すデータを取得すると、複数のスキャンサイクルに関連付けられた空間光スキャンパターンを決定するように構成されている、請求項309に記載のLIDARシステム。

請求項319

前記道路のタイプは、都市部の道路、幹線道路、非分離道路、片側1車線の道路、片側複数車線の道路、及び公共交通機関用車線を有する道路のうち少なくとも1つを含む、請求項318に記載のLIDARシステム。

請求項320

前記車両が走行している前記道路タイプの変化を示すデータを取得すると、先行スキャンサイクルで投影した光に比べて、より少ない光を前記中央領域へ低減し、より多い光を前記右側周辺領域及び前記左側周辺領域へ誘導する、請求項319に記載のLIDARシステム。

請求項321

前記少なくとも1つのプロセッサは更に、運転イベントを示すデータを取得すると、先行スキャンサイクルにおいて前記右側周辺領域の少なくとも一部へ誘導されたよりも多くの光を前記右側周辺領域の前記少なくとも一部へ誘導するように、前記空間光スキャンパターンを変更するよう構成されている、請求項318に記載のLIDARシステム。

請求項322

前記運転イベントは、交通関連イベント、道路関連イベント、既定の施設への接近、及び気候関連イベントのうち少なくとも1つを含む、請求項321に記載のLIDARシステム。

請求項323

前記少なくとも1つのプロセッサは更に、第1のスキャンサイクル中に第1の光束を有する光が前記中央領域へ誘導されると共に第2のスキャンサイクル中に第2の光束を有する光が前記中央領域へ誘導され、前記第2の光束は前記第1の光束よりも多いように、前記少なくとも1つの光源の制御と前記少なくとも1つの光偏向器を連携させるよう構成されている、請求項309に記載のLIDARシステム。

請求項324

LIDARを用いて車両の経路内の物体を検出するための方法であって、視野のスキャンサイクルにおいて少なくとも1つの光源からの光の光束を変動させ得るように前記少なくとも1つの光源を制御することと、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御することであって、前記視野は、前記車両が走行している前記幹線道路に概ね対応する中央領域と、前記幹線道路の右側のエリアに概ね対応する右側周辺領域と、前記幹線道路の左側のエリアに概ね対応する左側周辺領域と、に分割可能である、ことと、前記車両が幹線道路の走行に対応するモードであるという入力を取得することと、前記車両が幹線道路の走行に対応するモードであるという前記入力に応答して、前記中央領域、前記右側周辺領域、及び前記左側周辺領域を含む前記視野のスキャン中、前記右側周辺領域及び前記左側周辺領域よりも多くの光が前記中央領域へ誘導されるように、前記少なくとも1つの光源の制御と前記少なくとも1つの光偏向器の制御を連携させることと、を含む方法。

請求項325

前記右側周辺領域及び前記左側周辺領域に関連した検出距離よりも大きい距離に前記中央領域内の物体が存在すると決定することを更に含む、請求項324に記載の方法。

請求項326

前記右側周辺領域は複数の小領域を含み、前記少なくとも1つのプロセッサは、前記視野のスキャン中、前記複数の小領域のうち1つに対して前記複数の小領域の別のものよりも多くの光が誘導されるように構成されている、請求項324に記載の方法。

請求項327

前記車両が走行している車道のタイプを示すデータを取得すると、複数のスキャンサイクルに関連付けられた空間光スキャンパターンを決定することを更に含む、請求項324に記載の方法。

請求項328

運転イベントを示すデータを取得すると、先行スキャンサイクルにおいて前記右側周辺領域の前記少なくとも一部へ誘導された光よりも多くの光を前記左側周辺領域の少なくとも一部へ誘導するように、前記空間光スキャンパターンを変更することを更に含む、請求項327に記載の方法。

請求項329

車両本体と、前記車両本体内に位置する少なくとも1つのプロセッサであって、視野のスキャンサイクルにおいて少なくとも1つの光源からの光の光束を変動させ得るように前記少なくとも1つの光源を制御し、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御し、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御し、前記視野は、前記車両が走行している前記幹線道路に概ね対応する中央領域と、前記幹線道路の右側のエリアに概ね対応する右側周辺領域と、前記幹線道路の左側のエリアに概ね対応する左側周辺領域と、に分割可能であり、前記車両が幹線道路の走行に対応するモードであるという入力を取得し、前記車両が幹線道路の走行に対応するモードであるという前記入力に応答して、前記中央領域、前記右側周辺領域、及び前記左側周辺領域を含む前記視野のスキャン中、前記右側周辺領域及び前記左側周辺領域よりも多くの光が前記中央領域へ誘導されるように、前記少なくとも1つの光源の制御と前記少なくとも1つの光偏向器の制御を連携させる、ように構成された少なくとも1つのプロセッサと、を備える車両。

請求項330

少なくとも1つのプロセッサであって、視野のスキャンにおいて少なくとも1つの光源からの光の光束を変動させ得るように前記少なくとも1つの光源を制御し、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御し、前記視野における周囲光を示す情報を少なくとも1つのセンサから受信し、前記受信された情報において、前記視野の第2の部分よりも多くの周囲光を含む前記視野の第1の部分の指示を識別し、前記視野をスキャンする場合、前記視野の前記第2の部分の方へ投影される光の光束よりも前記視野の前記第1の部分の方へ投影される光の光束が多くなるように光源パラメータを変更する、ように構成された少なくとも1つのプロセッサを備える、LIDARシステム。

請求項331

前記少なくとも1つのプロセッサは更に、前記視野のスキャンサイクル中、前記少なくとも1つの光偏向器が複数の異なる瞬時位置に配置されるように前記少なくとも1つの光偏向器を制御するよう構成されている、請求項330に記載のLIDARシステム。

請求項332

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合、光ビームの一部が前記少なくとも1つの光偏向器によって前記少なくとも1つの光源から前記視野内の物体の方へ偏向されると共に前記物体からの前記光ビームの前記一部の反射が前記少なくとも1つの光偏向器によって少なくとも1つのセンサの方へ偏向されるように、前記少なくとも1つの光偏向器と前記少なくとも1つの光源を連携させるよう構成されている、請求項330に記載のLIDARシステム。

請求項333

前記少なくとも1つの光偏向器に照準を合わせた複数の光源を更に備え、前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合に前記複数の光源からの光が前記視野の複数の別個の領域の方へ投影されるように、前記少なくとも1つの光偏向器を制御するよう構成されている、請求項331に記載のLIDARシステム。

請求項334

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合にある数の光パルスが前記第1の部分の方へ投影されるように前記少なくとも1つの光偏向器と前記少なくとも1つの光源を連携させるよう構成され、投影される前記光パルスの数は、前記視野の前記第1の部分における物体からの前記投影光の検出された反射に基づいて決定される、請求項331に記載のLIDARシステム。

請求項335

前記少なくとも1つのプロセッサは更に、前記第2の部分の方へ投影される前記光の強度よりも前記第1の部分の方へ投影される前記光の強度が大きくなるように前記光源パラメータを変更するよう構成されている、請求項330に記載のLIDARシステム。

請求項336

前記少なくとも1つのプロセッサは更に、単一のスキャンサイクル中、前記第2の部分の方へ投影される立体角当たりの光パルスの数よりも多くの立体角当たりの光パルス数が前記第1の部分の方へ投影されるように前記光源パラメータを変更するよう構成されている、請求項330に記載のLIDARシステム。

請求項337

前記少なくとも1つのプロセッサは更に、少なくとも1つの単一のスキャンサイクル中、前記視野の前記第2の部分の方へ光が投影されないように前記光源パラメータを変更するよう構成されている、請求項330に記載のLIDARシステム。

請求項338

前記少なくとも1つのプロセッサは更に、前記第1の部分の方へ投影される光が前記第2の部分の方へ投影される光とは異なる波長であるように前記光源パラメータを変更するよう構成されている、請求項330に記載のLIDARシステム。

請求項339

前記少なくとも1つのセンサは、前記視野内の物体からの光の反射を検出するように構成された第1のセンサと、前記視野における前記周囲光を測定するように構成された第2のセンサと、を含む、請求項330に記載のLIDARシステム。

請求項340

前記少なくとも1つのセンサは、前記視野内の物体からの光の反射を検出すると共に前記視野における前記周囲光を測定するように構成された単一のセンサを含む、請求項330に記載のLIDARシステム。

請求項341

前記少なくとも1つの光源による光放出の後、前記少なくとも1つのセンサは、光放出後の第1の検知期間において前記視野からの光の反射を検出すると共に前記光放出後の第2の検知期間において前記視野内の前記周囲光を測定するように構成されている、請求項340に記載のLIDARシステム。

請求項342

前記少なくとも1つのプロセッサは更に、前記受信された情報に基づいて前記視野における前記周囲光を発生させる光源のタイプを識別し、前記識別されたタイプに基づいて前記光源パラメータの値を決定するように構成されている、請求項330に記載のLIDARシステム。

請求項343

前記少なくとも1つのプロセッサは更に、前記受信された情報に基づいて前記視野の第3の部分における光源の存在を識別し、前記第3の部分からの反射に対するセンサ感度を変更するように構成されている、請求項330に記載のLIDARシステム。

請求項344

前記少なくとも1つのプロセッサは更に、前記第1の部分内の関心領域の識別を取得すると、前記第2の部分の方へ投影される光の光束よりも前記第1の部分の方へ投影される光の光束が多くなるように前記光源パラメータを変更するよう構成されている、請求項330に記載のLIDARシステム。

請求項345

前記少なくとも1つのプロセッサは更に、前記視野のスキャンサイクル中、前記視野の前記第1の部分又は前記第2の部分に関連した前記視野における周囲光を示す情報を前記少なくとも1つのセンサから受信する一方で、前記視野の前記第2の部分の方へ投影される光の光束よりも前記視野の前記第1の部分の方へ投影される光の光束が多くなるように光源パラメータを変更するよう構成されている、請求項330に記載のLIDARシステム。

請求項346

LIDARを用いて物体を検出するための方法であって、視野のスキャンにおいて少なくとも1つの光源からの光の光束を変動させ得るように前記少なくとも1つの光源を制御することと、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御することと、前記視野における周囲光を示す情報を少なくとも1つのセンサから受信することと、前記受信された情報において、前記視野の第2の部分よりも多くの周囲光を含む前記視野の第1の部分の指示を識別することと、前記視野をスキャンする場合、前記視野の前記第2の部分の方へ投影される光の光束よりも前記視野の前記第1の部分の方へ投影される光の光束が多くなるように光源パラメータを変更することと、を含む方法。

請求項347

単一のスキャンサイクルにおいて、前記第2の部分の方へ投影される光パルスの数よりも多くの光パルスが前記第1の部分の方へ投影されるように前記光源パラメータを変更することを更に含む、請求項346に記載の方法。

請求項348

前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合にある数の光パルスが前記第1の部分の方へ投影されるように前記少なくとも1つの光偏向器と前記少なくとも1つの光源を連携させることを更に含み、前記第1の部分の方へ投影される前記光パルスの数は、前記視野の前記第1の部分における物体からの前記投影光の検出された反射に基づいて決定される、請求項347に記載の方法。

請求項349

前記第1の部分内の関心領域の識別を取得すると、前記第2の部分の方へ投影される光の光束よりも前記第1の部分の方へ投影される光の光束が多くなるように前記光源パラメータを変更することを更に含む、請求項346に記載の方法。

請求項350

前記少なくとも1つのセンサは、前記視野内の物体からの光の反射を検出するように構成された第1のセンサと、前記視野における前記周囲光を測定するように構成された第2のセンサと、を含む、請求項346に記載の方法。

請求項351

命令を記憶している非一時的コンピュータ読み取り可能記憶媒体であって、前記命令は、少なくとも1つのプロセッサによって実行された場合、LIDARを用いて物体を検出するための方法を前記少なくとも1つのプロセッサに実行させ、前記方法は、視野のスキャンにおいて少なくとも1つの光源からの光の光束を変動させ得るように前記少なくとも1つの光源を制御することと、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御することと、前記視野における周囲光を示す情報を少なくとも1つのセンサから受信することと、前記受信された情報において、前記視野の第2の部分よりも多くの周囲光を含む前記視野の第1の部分を識別することと、前記視野をスキャンする場合、前記視野の前記第2の部分の方へ投影される光の光束よりも前記視野の前記第1の部分の方へ投影される光の光束が多くなるように光源パラメータを変更することと、を含む、非一時的コンピュータ読み取り可能記憶媒体。

請求項352

車両で使用するためのLIDARシステムであって、車両の環境内の複数の物体を照射するために視野の方へ光を投影するように構成された少なくとも1つの光源と、少なくとも1つのプロセッサであって、前記視野の複数の部分のスキャンにおいて前記少なくとも1つの光源からの光の光束を変動させ得るように前記少なくとも1つの光源を制御し、前記視野のスキャン中、少なくとも1つのシステムコンポーネントから熱が放射され、少なくとも1つのシステムコンポーネントに関連した温度が閾値を超えていることを示す情報を受信し、前記温度が前記閾値を超えていることを示す前記受信された情報に応答して、少なくとも1つの後続のスキャンサイクル中に先行スキャンサイクルよりも少ない光が前記視野へ送出されるように前記視野の2つの部分間の照射比を変更する、ように構成された少なくとも1つのプロセッサと、を備えるLIDARシステム。

請求項353

前記少なくとも1つのプロセッサは更に、前記視野のスキャンサイクル中、前記少なくとも1つの光偏向器が複数の異なる瞬時位置に配置されるように前記少なくとも1つの光偏向器を制御するよう構成されている、請求項352に記載のLIDARシステム。

請求項354

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合、光ビームの一部が前記少なくとも1つの光偏向器によって前記少なくとも1つの光源から前記視野内の物体の方へ偏向されると共に前記物体からの前記光ビームの前記一部の反射が前記少なくとも1つの光偏向器によって少なくとも1つのセンサの方へ偏向されるように、前記少なくとも1つの光偏向器と前記少なくとも1つの光源を連携させるよう構成されている、請求項353に記載のLIDARシステム。

請求項355

前記少なくとも1つの光偏向器に照準を合わせた複数の光源を更に備え、前記少なくとも1つのプロセッサは更に、前記少なくとも1つの光偏向器が特定の瞬時位置に配置された場合に前記複数の光源からの光が前記視野の複数の別個の領域の方へ投影されるように、前記少なくとも1つの光偏向器を制御するよう構成されている、請求項353に記載のLIDARシステム。

請求項356

前記少なくとも1つのプロセッサは更に、前記視野の単一のスキャンサイクルにおける光の空間光分布を決定し、前記視野の第2の部分よりも多くの光が前記視野の第1の部分の方へ投影されるように前記照射比を変更するよう構成されている、請求項353に記載のLIDARシステム。

請求項357

前記少なくとも1つのプロセッサは更に、前記少なくとも1つの後続のスキャンサイクル中に前記先行スキャンサイクルで投影されたのと同一の量の光が前記第1の部分の方へ投影されるように、前記少なくとも1つの光源と前記少なくとも1つの光偏向器の制御を連携させるよう構成されている、請求項356に記載のLIDARシステム。

請求項358

前記少なくとも1つのプロセッサは更に、前記第2の部分の方へ投影される光パルスよりも多くの光パルスを前記第1の部分の方へ投影するように前記少なくとも1つの光源と前記少なくとも1つの光偏向器の制御を連携させるよう構成されている、請求項356に記載のLIDARシステム。

請求項359

前記少なくとも1つのプロセッサは更に、前記第1の部分を照射するための第1のスキャンサイクルレート及び前記第2の部分を照射するための第2のスキャンサイクルレートを動的に調整するように、複数のスキャンサイクルにおいて前記少なくとも1つの光源と前記少なくとも1つの光偏向器の制御を連携させるよう構成されている、請求項356に記載のLIDARシステム。

請求項360

前記少なくとも1つのプロセッサは更に、視野の第1の部分内の関心領域の識別を取得し、前記少なくとも1つの後続のスキャンサイクル中に前記視野の第2の部分よりも多くの光が前記第1の部分の方へ誘導されるように前記視野の前記第1の部分と前記第2の部分との前記照射比を変更する、ように構成されている、請求項352に記載のLIDARシステム。

請求項361

前記少なくとも1つのプロセッサは更に、視野の前記第2の部分内の非関心領域の識別を取得するように構成されている、請求項360に記載のLIDARシステム。

請求項362

前記少なくとも1つのプロセッサは更に、前記少なくとも1つのプロセッサに接続可能なセンサから、前記少なくとも1つのシステムコンポーネントに関連した前記温度が前記閾値を超えていることを示す前記情報を受信するように構成されている、請求項352に記載のLIDARシステム。

請求項363

前記少なくとも1つのプロセッサは更に、車両コントローラから、前記少なくとも1つのシステムコンポーネントに関連した前記温度が前記閾値を超えていることを示す前記情報を受信するように構成されている、請求項352に記載のLIDARシステム。

請求項364

前記受信された情報は、前記車両の外部の環境の温度に関する情報、前記車両のエンジンの熱に関する情報、前記少なくとも1つの光源の温度に関する情報、及び前記少なくとも1つのプロセッサの温度に関する情報のうち少なくとも1つを含む、請求項352に記載のLIDARシステム。

請求項365

前記少なくとも1つのプロセッサは更に、前記車両の周囲の環境の温度に関する情報に基づいて前記閾値の値を決定するように構成されている、請求項352に記載のLIDARシステム。

請求項366

前記少なくとも1つのプロセッサは更に、前記温度が前記閾値を超えていることを示す前記受信された情報に応答して、前記少なくとも1つの後続のスキャンサイクル中に前記視野の一部で分解能を低下させるように構成されている、請求項352に記載のLIDARシステム。

請求項367

車両であって、車両本体と、前記車両の環境内の複数の物体を照射するために視野の方へ光を投影するように構成された少なくとも1つの光源と、前記車両本体内に位置する少なくとも1つのプロセッサであって、前記視野の複数の部分のスキャンにおいて前記少なくとも1つの光源からの光の光束を変動させ得るように前記少なくとも1つの光源を制御し、前記視野のスキャン中、少なくとも1つの車両コンポーネントから熱が放射され、少なくとも1つのシステムコンポーネントに関連した温度が閾値を超えていることを示す情報を受信し、前記受信された情報に応答して、少なくとも1つの後続のスキャンサイクル中に先行スキャンサイクルよりも少ない光が前記視野へ送出されるように前記視野の2つの部分間の照射比を変更する、ように構成された少なくとも1つのプロセッサと、を備える車両。

請求項368

前記少なくとも1つのプロセッサは更に、前記視野の単一のスキャンサイクルにおける光の空間光分布を決定し、前記視野の第2の部分よりも多くの光が前記視野の第1の部分の方へ投影されるように前記照射比を変更するよう構成されている、請求項367に記載の車両。

請求項369

前記少なくとも1つのプロセッサは更に、後続のスキャンサイクル中に前記第1の部分の方へ投影される光量が先行スキャンサイクルで前記第1の部分の方へ投影された光量と実質的に等しいように、前記少なくとも1つの光源と前記少なくとも1つの光偏向器の制御を連携させるよう構成されている、請求項367に記載の車両。

請求項370

前記少なくとも1つのプロセッサは更に、視野の第1の部分内の関心領域の識別と、視野の第2の部分内の非関心領域の識別と、を取得し、前記少なくとも1つの後続のスキャンサイクル中に前記第2の部分よりも多くの光が前記第1の部分の方へ誘導されるように前記視野の前記第1の部分と前記第2の部分との前記照射比を変更する、ように構成されている、請求項367に記載の車両。

請求項371

前記少なくとも1つのプロセッサは更に、前記車両の外部の環境の温度に関する情報に基づいて前記閾値の値を決定するように構成されている、請求項367に記載の車両。

請求項372

命令を記憶している非一時的コンピュータ読み取り可能記憶媒体であって、前記命令は、少なくとも1つのプロセッサによって実行された場合、車両の環境内の複数の物体を照射するために視野の方へ光を投影するように構成された少なくとも1つの光源を含むLIDARシステムを用いて物体を検出するための方法を前記少なくとも1つのプロセッサに実行させ、前記方法は、前記視野の複数の部分のスキャンにおいて前記少なくとも1つの光源からの光の光束を変動させ得るように前記少なくとも1つの光源を制御することであって、前記視野のスキャン中、少なくとも1つのシステムコンポーネントから熱が放射される、ことと、少なくとも1つのシステムコンポーネントに関連した温度が閾値を超えていることを示す情報を受信することと、前記受信された情報に応答して、少なくとも1つの後続のスキャンサイクル中に先行スキャンサイクルよりも少ない光が前記視野へ送出されるように前記視野の2つの部分間の照射比を変更することと、を含む、非一時的コンピュータ読み取り可能記憶媒体。

請求項373

光を受光するためのウィンドウと、前記光を偏向させて偏向光を与えるための微小電気機械MEMS)ミラーと、フレームと、アクチュエータと、前記アクチュエータと前記MEMSミラーとの間に機械的に接続された相互接続要素と、を備えたLIDARシステムであって、各アクチュエータは本体及び圧電要素を含み、前記圧電要素は、電界印加された場合に前記本体を曲げると共に前記MEMSミラーを移動させるように構成され、前記MEMSミラーがアイドル位置位置付けられている場合、前記MEMSミラーは前記ウィンドウに対して配向されている、LIDARシステム。

請求項374

光を受光するためのウィンドウと、前記光を偏向させて偏向光を与えるための微小電気機械(MEMS)ミラーと、フレームと、アクチュエータと、前記アクチュエータと前記MEMSミラーとの間に機械的に接続された相互接続要素と、を備えたLIDARシステムであって、各アクチュエータは本体及び圧電要素を含み、前記圧電要素は、電界が印加された場合に前記本体を曲げると共に前記MEMSミラーを移動させるように構成され、前記相接続要素のうち1つの相互接続要素は、前記MEMSミラーに接続された第1のセグメント及び前記アクチュエータに接続された第2のセグメントを含み、前記第1のセグメント及び前記第2のセグメントは相互に機械的に結合されている、LIDARシステム。

請求項375

光を受光するためのウィンドウと、前記光を偏向させて偏向光を与えるための微小電気機械(MEMS)ミラーと、フレームと、アクチュエータと、前記アクチュエータと前記MEMSミラーとの間に機械的に接続された相互接続要素と、を備えたLIDARシステムであって、各アクチュエータは本体及び圧電要素を含み、前記圧電要素は、電界が印加された場合に前記本体を曲げると共に前記MEMSミラーを移動させるように構成され、前記MEMSミラーは楕円形であり、前記アクチュエータは少なくとも3つの独立して制御されるアクチュエータを含む、LIDARシステム。

請求項376

光を受光するためのウィンドウと、前記光を偏向させて偏向光を与えるための微小電気機械(MEMS)ミラーと、フレームと、アクチュエータと、前記アクチュエータと前記MEMSミラーとの間に機械的に接続された相互接続要素と、を備えたLIDARシステムであって、各アクチュエータは本体及び圧電要素を含み、前記圧電要素は、電界が印加された場合に前記本体を曲げると共に前記MEMSミラーを移動させるように構成され、前記アクチュエータは、第1の方向に沿って相互に対向する第1の対のアクチュエータ及び第2の方向に沿って相互に対向する第2の対のアクチュエータを含み、前記第1の対のアクチュエータは前記第2の対のアクチュエータとは異なり、前記ウィンドウ、前記MEMSミラー、前記フレーム、及び前記アクチュエータはユニットを形成し、前記ユニットは、前記第1の方向に沿って伝搬する機械的振動及び前記第2の方向に沿って伝搬する機械的振動に対して異なるように応答する、LIDARシステム。

請求項377

光を受光するためのウィンドウと、前記光を偏向させて偏向光を与えるための微小電気機械(MEMS)ミラーと、フレームと、アクチュエータと、前記アクチュエータと前記MEMSミラーとの間に機械的に接続された相互接続要素と、を備えたLIDARシステムであって、各アクチュエータは本体及び圧電要素を含み、前記圧電要素は、電界が印加された場合に前記本体を曲げると共に前記MEMSミラーを移動させるように構成され、第1のアクチュエータは前記アクチュエータの前記本体よりも下方に位置付けられた圧電要素を含み、第2のアクチュエータは前記他の圧電要素の前記本体よりも上方に位置付けられた圧電要素を含む、LIDARシステム。

請求項378

光を受光するためのウィンドウと、前記光を偏向させて偏向光を与えるための微小電気機械(MEMS)ミラーと、フレームと、アクチュエータと、前記アクチュエータと前記MEMSミラーとの間に機械的に接続された相互接続要素と、を備えたLIDARシステムであって、各アクチュエータは本体及び圧電要素を含み、前記圧電要素は、電界が印加された場合に前記本体を曲げると共に前記MEMSミラーを移動させるように構成され、アクチュエータは前記本体に機械的に結合されたダミー圧電要素を含み、前記LIDARシステムは前記ダミー圧電要素の状態を検知するように構成されたセンサを更に備える、LIDARシステム。

請求項379

光を受光するためのウィンドウと、前記光を偏向させて偏向光を与えるための微小電気機械(MEMS)ミラーと、フレームと、アクチュエータと、前記アクチュエータと前記MEMSミラーとの間に機械的に接続された相互接続要素と、を備えたLIDARシステムであって、各アクチュエータは本体及び圧電要素を含み、前記圧電要素は、電界が印加された場合に前記本体を曲げると共に前記MEMSミラーを移動させるように構成され、前記LIDARシステムは可変コンデンサ及びセンサを更に備え、前記可変コンデンサの容量は前記フレームと前記アクチュエータのうち1つのアクチュエータとの間の空間的な関係を表し、前記センサは前記可変コンデンサの前記容量を検知するように構成されている、LIDARシステム。

請求項380

光を受光するためのウィンドウと、前記光を偏向させて偏向光を与えるための微小電気機械(MEMS)ミラーと、フレームと、アクチュエータと、前記アクチュエータと前記MEMSミラーとの間に機械的に接続された相互接続要素と、を備えたLIDARシステムであって、各アクチュエータは本体及び圧電要素を含み、前記圧電要素は、制御信号ソースからの制御信号によって誘発された電界が印加された場合に前記本体を曲げると共に前記MEMSミラーを移動させるように構成され、前記制御信号は前記LIDARシステムの電極に供給され、前記制御信号は交番バイアス成分及びステアリング成分を有し、前記本体の曲げは前記ステアリング成分に応答し、前記交番バイアス成分の周波数は前記ステアリング成分の最大周波数よりも大きく、前記センサは、前記アクチュエータの前記曲げに起因した前記アクチュエータの誘電率の変化を検知するように構成されている、LIDARシステム。

請求項381

光を受光するためのウィンドウと、前記光を偏向させて偏向光を与えるための微小電気機械(MEMS)ミラーと、フレームと、アクチュエータと、前記アクチュエータと前記MEMSミラーとの間に機械的に接続された相互接続要素と、を備えたLIDARシステムであって、各アクチュエータは本体及び圧電要素を含み、前記圧電要素は、電界が印加された場合に前記本体を曲げると共に前記MEMSミラーを移動させるように構成され、前記ウィンドウは筐体に付属し、前記筐体は、前記MEMSミラー、前記フレーム、及び前記アクチュエータを収容する密封筐体である、LIDARシステム。

請求項382

光を受光するためのウィンドウと、前記光を偏向させて偏向光を与えるための微小電気機械(MEMS)ミラーと、フレームと、アクチュエータと、前記アクチュエータと前記MEMSミラーとの間に機械的に接続された相互接続要素と、を備えたLIDARシステムであって、各アクチュエータは本体及び圧電要素を含み、前記圧電要素は、電界が印加された場合に前記本体を曲げると共に前記MEMSミラーを移動させるように構成され、前記相互接続要素のうち1つの相互接続要素は、少なくとも1つの継手によって相互に機械的に結合された複数のセグメントを含む、LIDARシステム。

請求項383

前記少なくとも1つのプロセッサは更に、少なくとも1つの偏向器が特定の瞬時位置にある間、複数の光源からの光を複数のアウトバウント経路に沿って視野を形成する複数の領域の方へ偏向させるように前記少なくとも1つの偏向器を制御し、前記少なくとも1つの偏向器が前記特定の瞬時位置にある場合、前記視野からの光反射が前記少なくとも1つの偏向器の少なくとも1つの共通エリア上で受光されるように前記少なくとも1つの偏向器を制御し、前記少なくとも1つの共通エリアにおいて前記複数の光源のうち少なくともいくつかの前記光反射の少なくとも一部は相互に重なって入射し、複数の検出器の各々から、前記少なくとも1つの偏向器が前記特定の瞬時位置にある間の前記少なくとも1つの共通エリアからの光反射を示す少なくとも1つの信号を受信する、ように構成されている、請求項126に記載のLIDARシステム。

請求項384

前記少なくとも1つのプロセッサは更に、少なくとも1つの光源からの光を用いた視野のスキャンにおいて光束を変動させ得るように前記少なくとも1つの光源を制御し、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御し、前記視野内の物体から反射された光を示す反射信号を少なくとも1つのセンサから受信し、初期光放出の前記反射信号に基づいて、前記LIDARシステムの中間エリアにおいて前記少なくとも1つの光偏向器からの閾値距離内に物体が位置しているか否かを判定し、前記閾値距離は安全距離に関連付けられ、前記中間エリアで物体が検出されない場合、前記中間エリアの方へ追加光放出を投影し、これによって前記中間エリアよりも遠くにある物体の検出を可能とするように、前記少なくとも1つの光源を制御し、前記中間エリアで物体が検出された場合、前記中間エリアにおける前記光の蓄積エネルギ密度が最大許容可能露光量を超えないように、前記少なくとも1つの光源及び前記少なくとも1つの光偏向器のうち少なくとも1つを規制する、ように構成されている、請求項383に記載のLIDARシステム。

請求項385

前記少なくとも1つのプロセッサは更に、少なくとも1つの光源からの光を用いた視野のスキャンにおいて光束を変動させ得るように前記少なくとも1つの光源を制御し、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御し、前記視野内の物体から反射された光を示す反射信号を少なくとも1つのセンサから受信し、初期光放出の前記反射信号に基づいて、前記LIDARシステムの中間エリアにおいて前記少なくとも1つの光偏向器からの閾値距離内に物体が位置しているか否かを判定し、前記閾値距離は安全距離に関連付けられ、前記中間エリアで物体が検出されない場合、前記中間エリアの方へ追加光放出を投影し、これによって前記中間エリアよりも遠くにある物体の検出を可能とするように、前記少なくとも1つの光源を制御し、前記中間エリアで物体が検出された場合、前記中間エリアにおける前記光の蓄積エネルギ密度が最大許容可能露光量を超えないように、前記少なくとも1つの光源及び前記少なくとも1つの光偏向器のうち少なくとも1つを規制する、ように構成されている、請求項151に記載のLIDARシステム。

請求項386

光検出器アレイを更に備える、請求項385に記載のLIDARシステム。

請求項387

前記光検出器のアレイの方へ光を誘導するように構成された少なくとも1つのマイクロレンズを更に備える、請求項386に記載のLIDARシステム。

請求項388

光を受光するためのウィンドウと、前記光を偏向させて偏向光を与えるための微小電気機械(MEMS)ミラーと、フレームと、アクチュエータと、前記アクチュエータと前記MEMSミラーとの間に機械的に接続された相互接続要素と、を更に備え、各アクチュエータは本体及び圧電要素を含み、前記圧電要素は、電界が印加された場合に前記本体を曲げると共に前記MEMSミラーを移動させるように構成され、前記MEMSミラーがアイドル位置に位置付けられている場合、前記MEMSミラーは前記ウィンドウに対して配向されている、請求項200に記載のLIDARシステム。

請求項389

前記少なくとも1つのプロセッサは更に、視野のスキャンにおいて少なくとも1つの光源からの光の光束を変動させ得るように前記少なくとも1つの光源を制御し、前記視野をスキャンするため前記少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器の位置決めを制御し、前記車両の振動を示すデータを取得し、前記取得したデータに基づいて、前記車両の前記振動を補償するため前記少なくとも1つの光偏向器の前記位置決めに対する調整を決定し、前記少なくとも1つの光偏向器の前記位置決めに対する前記決定された調整を実施することにより、前記少なくとも1つの光偏向器において、前記視野の前記スキャンに対する前記車両の前記振動の影響の少なくとも一部を抑制する、ように構成されている、請求項126に記載のLIDARシステム。

請求項390

光を受光するためのウィンドウと、前記光を偏向させて偏向光を与えるための微小電気機械(MEMS)ミラーと、フレームと、アクチュエータと、前記アクチュエータと前記MEMSミラーとの間に機械的に接続された相互接続要素と、を更に備え、各アクチュエータは本体及び圧電要素を含み、前記圧電要素は、電界が印加された場合に前記本体を曲げると共に前記MEMSミラーを移動させるように構成され、前記MEMSミラーがアイドル位置に位置付けられている場合、前記MEMSミラーは前記ウィンドウに対して配向されている、請求項389に記載のLIDARシステム。

技術分野

0001

(関連出願の相互参照
[001] 本出願は、2016年9月20日に出願された米国仮特許出願第62/396,858号、2016年9月20日に出願された米国仮特許出願第62/396,863号、2016年9月20日に出願された米国仮特許出願第62/396,864号、2016年9月21日に出願された米国仮特許出願第62/397,379号、2016年10月9日に出願された米国仮特許出願第62/405,928号、2016年10月25日に出願された米国仮特許出願第62/412,294号、2016年10月30日に出願された米国仮特許出願第62/414,740号、2016年11月7日に出願された米国仮特許出願第62/418,298号、2016年11月16日に出願された米国仮特許出願第62/422,602号、2016年11月22日に出願された米国仮特許出願第62/425,089号、2017年1月3日に出願された米国仮特許出願第62/441,574号、2017年1月3日に出願された米国仮特許出願第62/441,581号、2017年1月3日に出願された米国仮特許出願第62/441,583号、及び、2017年6月18日に出願された米国仮特許出願第62/521,450号の優先権の利益を主張する。前述の出願の全ては全体が援用により本願に含まれる。

0002

[002] 本開示は、一般に、周囲環境スキャンするための調査技術に関し、更に特定すれば、LIDAR技術を用いて周囲環境における物体を検出するシステム及び方法に関する。

背景技術

0003

[003]運転者支援システム及び自律走行車出現によって、自動車は、車両のナビゲーションに影響を及ぼし得る障害物、危険、物体、及び他の物理パラメータ識別することを含めて、周囲の状況を信頼性高く検知し解釈できるシステムを搭載することが必要となっている。この目的のため、単独で又は冗長的に動作するレーダ、LIDAR、カメラベースのシステムを含む多くの異なる技術が提案されている。

0004

[004]運転者支援システム及び自律走行車に伴う1つの検討すべき事項は、雨、霧、暗さ、明るい光、及びを含む様々な条件においてシステムが周囲の状況を判断する能力である。光検出と測距(LIDAR:light detection and ranging system、LADARとしても知られている)は、物体に光を照射して反射したパルスセンサで測定することで物体までの距離を測定することによって、様々な条件で良好に機能することができる技術の一例である。レーザは、LIDARシステムにおいて使用できる光源の一例である。あらゆる検知システムと同様、LIDARベースの検知システムが自動車業界によって充分に導入されるため、システムは、遠方の物体の検出を可能とする信頼性の高いデータを提供しなければならない。しかしながら、現在、LIDARシステムを目に安全なものにする(すなわち、投影光放出が目の角膜及びレンズに吸収されて網膜熱損傷を与える場合に生じ得る人の目に対する損傷を与えないようにする)必要によって、LIDARシステムの最大照射パワーは制限されている。

0005

[005] 本開示のシステム及び方法は、目の安全の規制に従いながらLIDARシステムの性能を向上させることを対象とする。

発明が解決しようとする課題

0006

[006] 本開示に従った実施形態は、LIDAR技術を用いて周囲環境における物体を検出するためのシステム及び方法を提供する。

課題を解決するための手段

0007

[007] 開示される実施形態に従って、LIDARシステムは、少なくとも1つのプロセッサであって、少なくとも1つの光源からの光を用いた視野のスキャンにおいて光束を変動させ得るように少なくとも1つの光源を制御し、視野をスキャンするため少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御し、視野の第1の部分のスキャンに関連した第1の検出反射を用いて、第1の部分内に第1の距離の第1の物体が存在すると決定し、視野の第2の部分内に第1の距離の物体が不在であると決定し、第1の反射を検出し、第2の部分内に物体が不在であると決定した後、視野の第1の部分の方へ投影されるよりも多くの光が視野の第2の部分の方へ投影されるように光源パラメータを変更し、視野の第2の部分における第2の検出反射を用いて、第1の距離よりも大きい第2の距離に第2の物体が存在すると決定する、ように構成された少なくとも1つのプロセッサを含むことができる。

0008

[008] 開示される実施形態に従って、LIDARシステムは、少なくとも1つのプロセッサであって、少なくとも1つの光源からの光を用いた視野のスキャンにおいて光束を変動させ得るように少なくとも1つの光源を制御し、視野の第1の部分の方へ誘導される少なくとも第1の光放出の投影を制御して、視野の第1の部分内に第1の距離の物体が不在であると決定することと、少なくとも第1の光放出に基づいて視野の第1の部分内に物体が不在であると決定された場合、視野の第1の部分の方へ誘導される少なくとも第2の光放出の投影を制御して、視野の第1の部分において第1の距離よりも大きい第2の距離の物体の検出を可能とし、視野の第1の部分の方へ誘導される少なくとも第3の光放出の投影を制御して、視野の第1の部分において第2の距離よりも大きい第3の距離の物体が存在すると決定する、ように構成された少なくとも1つのプロセッサを含むことができる。

0009

[009] 開示される実施形態に従って、LIDARシステムは、少なくとも1つのプロセッサであって、第1の部分及び第2の部分を含む視野のスキャンにおいて光束を変動させ得るように少なくとも1つの光源を制御し、画素ごとに少なくとも1つのセンサから信号を受信し、この信号は、周囲光と、視野内の物体によって反射された少なくとも1つの光源からの光及び少なくとも1つのセンサに関連する雑音の組み合わせと、のうち少なくとも1つを示し、視野の第1の部分に関連した信号の少なくとも一部における雑音を推定し、視野の第1の部分における雑音の推定に基づいて、視野の第1の部分に関連した反射に対するセンサ感度を変更し、視野の第2の部分に関連した信号の少なくとも一部における雑音を推定し、視野の第2の部分における雑音の推定に基づいて、視野の第2の部分に関連した反射に対するセンサ感度を変更し、第2の部分に関連した反射に関する変更されたセンサ感度は第1の部分に関連した反射に関する変更されたセンサ感度とは異なる、ように構成された少なくとも1つのプロセッサを含むことができる。

0010

[010] 開示される実施形態に従って、LIDARシステムは、少なくとも1つのプロセッサであって、少なくとも1つの光源からの光を用いた視野のスキャンにおいて光強度を変動させ得るように少なくとも1つの光源を制御し、視野をスキャンするため少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御し、視野内の少なくとも1つの明確な関心領域の識別を取得し、第1のスキャンサイクルの後、少なくとも1つの明確な関心領域に関連したロケーションにおける少なくとも1つの後続の第2のスキャンサイクルの光強度が、少なくとも1つの明確な関心領域に関連したロケーションにおける第1のスキャンサイクルの光強度よりも高くなるように、少なくとも1つの明確な関心領域に対する光の割り当てを他の領域よりも増大させる、ように構成された少なくとも1つのプロセッサを含むことができる。

0011

[011] 開示される実施形態に従って、LIDARシステムは、少なくとも1つのプロセッサであって、少なくとも1つの光源からの光を用いた視野のスキャンにおいて光束を変動させ得るように少なくとも1つの光源を制御し、視野をスキャンするため少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御し、視野内の物体から反射された光を示す反射信号を少なくとも1つのセンサから受信し、初期光放出の反射信号に基づいて、LIDARシステムの中間エリアにおいて少なくとも1つの光偏向器からの閾値距離内に物体が位置しているか否かを判定し、閾値距離安全距離に関連付けられ、中間エリアで物体が検出されない場合、中間エリアの方へ追加光放出を投影し、これによって中間エリアよりも遠くにある物体の検出を可能とするように、少なくとも1つの光源を制御し、中間エリアで物体が検出された場合、中間エリアにおける光の蓄積エネルギ密度最大許容可能露光量を超えないように、少なくとも1つの光源及び少なくとも1つの光偏向器のうち少なくとも1つを規制する、ように構成された少なくとも1つのプロセッサを含むことができる。

0012

[012] 開示される実施形態に従って、LIDARシステムは、少なくとも1つのプロセッサであって、光源の光放出を制御し、光源のアウトバウンド経路に配置された少なくとも1つの光偏向器を繰り返し移動させることによって視野をスキャンし、視野の単一のスキャンサイクル中に少なくとも1つの光偏向器は複数の位置に瞬時に配置され、少なくとも1つの偏向器が特定の瞬時位置にある間、少なくとも1つの偏向器を介して、センサへの帰還経路に沿って単一の光ビームスポットの反射を受光し、センサから、各光ビームスポットの画像に関連付けられた信号をビームスポットごとに受信し、センサは複数の検出器を含み、ビームスポットごとに各光ビームスポットの画像が複数の検出器に入射するように、各検出器のサイズは各光ビームスポットの画像よりも小さく、複数の検出器に対する入射によって生じた信号から、単一の光ビームスポットの画像に関連付けられた少なくとも2つの異なる範囲測定値を決定する、ように構成された少なくとも1つのプロセッサを含むことができる。

0013

[013] 開示される実施形態に従って、LIDARシステムは、少なくとも1つのプロセッサであって、少なくとも1つの偏向器が特定の瞬時位置にある間、複数の光源からの光を複数のアウトバウンド経路に沿って視野を形成する複数の領域の方へ偏向させるように、少なくとも1つの偏向器を制御し、少なくとも1つの偏向器が特定の瞬時位置にある間、視野からの光反射が少なくとも1つの偏向器の少なくとも1つの共通エリアで受光されるように少なくとも1つの偏向器を制御し、少なくとも1つの共通エリアにおいて複数の光源のうち少なくともいくつかの光反射の少なくとも一部は相互に重なって入射し、複数の検出器の各々から、少なくとも1つの偏向器が特定の瞬時位置にある間の少なくとも1つの共通エリアからの光反射を示す少なくとも1つの信号を受信する、ように構成された少なくとも1つのプロセッサを含むことができる。

0014

[014] 開示される実施形態に従って、LIDARシステムは、少なくとも1つのプロセッサであって、メモリに記憶された光学予算(optical budget)にアクセスし、光学予算は、少なくとも1つの光源に関連付けられると共に少なくとも1つの光源によって所定の時間期間内に放出可能な光量を規定し、LIDARシステムのプラットフォーム条件を示す情報を受信し、受信した情報に基づいて、スキャンレートスキャンパターンスキャン角空間光分布、及び時間光分布のうち少なくとも2つに基づいて、LIDARシステムの視野に光学予算を動的に配分し、動的に配分した光学予算に従って視野のスキャンにおいて光束を変動させ得るように少なくとも1つの光源を制御するための信号を出力する、ように構成された少なくとも1つのプロセッサを含むことができる。

0015

[015] 開示される実施形態に従って、車両での使用向けに構成されたLIDARのための振動抑制システムは、少なくとも1つのプロセッサであって、視野のスキャンにおいて少なくとも1つの光源からの光の光束を変動させ得るように少なくとも1つの光源を制御し、視野をスキャンするため少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器の位置決めを制御し、車両の振動を示すデータを取得し、取得したデータに基づいて、車両の振動を補償するため少なくとも1つの光偏向器の位置決めに対する調整を決定し、少なくとも1つの光偏向器の位置決めに対する決定された調整を実施することにより、少なくとも1つの光偏向器において、視野のスキャンに対する車両の振動の影響の少なくとも一部を抑制する、ように構成された少なくとも1つのプロセッサを含むことができる。

0016

[016] 開示される実施形態に従って、LIDARシステムは、少なくとも1つのプロセッサであって、視野のスキャンサイクルにおいて少なくとも1つの光源からの光の光束を変動させ得るように少なくとも1つの光源を制御し、少なくとも1つの光源から投影された光は視野をスキャンするため少なくとも1つの偏向器に誘導され、視野内の物体から反射された光を示す反射信号を少なくとも1つのセンサから受信し、スキャンサイクルにおいて視野の少なくとも3つのセクタが発生するように光束とスキャンを連携させ、第1のセクタは第1の光束及び関連付けられた第1の検出範囲を有し、第2のセクタは第2の光束及び関連付けられた第2の検出範囲を有し、第3のセクタは第3の光束及び関連付けられた第3の検出範囲を有し、第2の光束は第1の光束及び第3の光束の各々よりも多く、少なくとも1つのセンサからの入力に基づいて、第1の検出範囲及び第3の検出範囲よりも遠い距離に位置する第2のセクタ内の物体を検出する、ように構成された少なくとも1つのプロセッサを含むことができる。

0017

[017] 開示される実施形態に従って、LIDARシステムは、少なくとも1つのプロセッサであって、近視野部分及び遠視野部分を含む視野の複数のスキャンにおいて少なくとも1つの光源の光束を変動させ得るように少なくとも1つの光源を制御し、視野をスキャンするように少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御し、近視野部分をカバーするスキャンサイクルに関連した第1のフレームに対する第1のスキャンレートと、遠視野部分をカバーするスキャンサイクルに関連した第2のフレームに対する第2のスキャンレートとを実施し、第1のスキャンレートは第2のレートよりも大きく、近視野部分に関連した複数の順次的な第1のフレームにおける物体の検出を可能とする光の投影後、光源パラメータを変更し、これによって遠視野部分に関連した第2のフレームにおける物体の検出を可能とするように光を投影するよう、少なくとも1つの光源を制御する、ように構成された少なくとも1つのプロセッサを含むことができる。

0018

[018] 開示される実施形態に従って、車両で使用するためのLIDARシステムは、少なくとも1つのプロセッサであって、視野のスキャンにおいて少なくとも1つの光源の光束を変動させ得るように少なくとも1つの光源を制御し、視野をスキャンするため少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御し、車両の現在の運転環境を示す入力を受信し、現在の運転環境に基づいて、視野のスキャンにおいて投影される光量及び光の空間光分布を変動させることによって瞬時検出距離を動的に調整するように少なくとも1つの光源の制御と少なくとも1つの光偏向器の制御を連携させる、ように構成された少なくとも1つのプロセッサを含むことができる。

0019

[019] 開示される実施形態に従って、車両で使用するためのLIDARシステムは、少なくとも1つのプロセッサであって、視野のスキャンサイクルにおいて少なくとも1つの光源からの光の光束を変動させ得るように少なくとも1つの光源を制御し、視野をスキャンするため少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御し、車両の車線横断方向転換が起こりそうであることを示す入力を取得し、車線横断方向転換が起こりそうであることを示す入力に応答して、車両が合流しようとしている遠い側の車線を含めて車両の車線横断方向転換の方向とは反対の側の光束を視野の他の部分よりも増大させ、車両の車線横断方向転換の方向とは反対側の検出範囲を車線横断方向転換の方向の検出範囲よりも一時的に拡大するように、少なくとも1つの光源の制御と少なくとも1つの光偏向器の制御を連携させる、ように構成された少なくとも1つのプロセッサを含むことができる。

0020

[020] 開示される実施形態に従って、幹線道路走行する車道用車両と共に使用するためのLIDARシステムは、少なくとも1つのプロセッサであって、視野のスキャンサイクルにおいて少なくとも1つの光源からの光の光束を変動させ得るように少なくとも1つの光源を制御し、視野をスキャンするため少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御し、視野は、車両が走行している幹線道路に概ね対応する中央領域と、幹線道路の右側のエリアに概ね対応する右側周辺領域と、幹線道路の左側のエリアに概ね対応する左側周辺領域と、に分割可能であり、車両が幹線道路の走行に対応するモードであるという入力を取得し、車両が幹線道路の走行に対応するモードであるという入力に応答して、中央領域、右側周辺領域、及び左側周辺領域を含む視野のスキャン中、右側周辺領域及び左側周辺領域よりも多くの光が中央領域へ誘導されるように、少なくとも1つの光源の制御と少なくとも1つの光偏向器の制御を連携させる、ように構成された少なくとも1つのプロセッサを含むことができる。

0021

[021] 開示される実施形態に従って、LIDARシステムは、少なくとも1つのプロセッサであって、視野のスキャンにおいて少なくとも1つの光源からの光の光束を変動させ得るように少なくとも1つの光源を制御し、視野をスキャンするため少なくとも1つの光源からの光を偏向させるように少なくとも1つの光偏向器を制御し、視野における周囲光を示す情報を少なくとも1つのセンサから受信し、受信された情報において、視野の第2の部分よりも多くの周囲光を含む視野の第1の部分の指示を識別し、視野をスキャンする場合、視野の第2の部分の方へ投影される光の光束よりも視野の第1の部分の方へ投影される光の光束が多くなるように光源パラメータを変更する、ように構成された少なくとも1つのプロセッサを含むことができる。

0022

[022] 開示される実施形態に従って、車両で使用するためのLIDARシステムは、車両の環境内の複数の物体を照射するために視野の方へ光を投影するように構成された少なくとも1つの光源と、少なくとも1つのプロセッサであって、視野の複数の部分のスキャンにおいて少なくとも1つの光源からの光の光束を変動させ得るように少なくとも1つの光源を制御し、視野のスキャン中、少なくとも1つのシステムコンポーネントから熱が放射され、少なくとも1つのシステムコンポーネントに関連した温度が閾値を超えていることを示す情報を受信し、温度が閾値を超えていることを示す受信された情報に応答して、少なくとも1つの後続のスキャンサイクル中に先行スキャンサイクルよりも少ない光が視野へ送出されるように視野の2つの部分間の照射比を変更する、ように構成された少なくとも1つのプロセッサと、を含むことができる。

0023

[023] 開示される実施形態に従って、LIDARシステムは、光を受光するためのウィンドウと、光を偏向させて偏向光を与えるための微小電気機械MEMS)ミラーと、フレームと、アクチュエータと、アクチュエータとMEMSミラーとの間に機械的に接続された相互接続要素と、を含むことができ、各アクチュエータは本体及び圧電要素を含み、圧電要素は、電界印加された場合に本体を曲げると共にMEMSミラーを移動させるように構成され、MEMSミラーがアイドル位置位置付けられている場合、MEMSミラーはウィンドウに対して配向されている。

0024

[024] 他の開示される実施形態に従って、方法は、上述のプロセッサにより実行されるステップの任意のものの1つ以上のステップを含む及び/又は本明細書に記載されるステップの任意のものを含むことができる。

0025

[025] 更に別の開示される実施形態に従って、非一時的コンピュータ読み取り能記媒体プログラム命令を記憶することができ、この命令は、少なくとも1つの処理デバイスによって実行され、本明細書に記載される方法の任意のものを実施する。

0026

[026] 前述の一般的な説明及び以下の詳細な説明は、単なる例示及び説明であり、特許請求の範囲を限定するものではない。

0027

[026] 前述の一般的な記載及び以下の詳細な記載は単に例示及び説明のためのものであり、特許請求の範囲を限定しない。

図面の簡単な説明

0028

[027] 本開示に組み込まれてその一部を構成する添付図面は、開示される様々な実施形態を示している。

0029

[028] 開示される実施形態に従った例示的なLIDARシステムを示す図である。
[029] 開示される実施形態に従った、車両上に搭載されたLIDARシステムの単一スキャンサイクルの例示的な出力を示す画像である。
[030] 開示される実施形態に従ったLIDARシステムの出力から決定されたポイントクラウドモデル表現を示す別の画像である。
[031] 本開示の実施形態に従った投影ユニットの構成を示す図である。
[031] 本開示の実施形態に従った投影ユニットの構成を示す図である。
[031] 本開示の実施形態に従った投影ユニットの構成を示す図である。
[031] 本開示の実施形態に従った投影ユニットの構成を示す図である。
[032] 本開示の実施形態に従ったスキャンユニットの構成を示す図である。
[032] 本開示の実施形態に従ったスキャンユニットの構成を示す図である。
[032] 本開示の実施形態に従ったスキャンユニットの構成を示す図である。
[032] 本開示の実施形態に従ったスキャンユニットの構成を示す図である。
[033] 本開示の実施形態に従った検知ユニットの構成を示す図である。
[033] 本開示の実施形態に従った検知ユニットの構成を示す図である。
[033] 本開示の実施形態に従った検知ユニットの構成を示す図である。
[033] 本開示の実施形態に従った検知ユニットの構成を示す図である。
[033] 本開示の実施形態に従った検知ユニットの構成を示す図である。
[034]視野の単一部分の単一フレーム時間における放出パターンを示す4つの例示的な図を含む。
[035]視野全体の単一フレーム時間における放出スキームを示す3つの例示的な図を含む。
[036] 視野全体の単一フレーム時間中に投影された実際の光放出及び受光された反射を示す図である。
[037] 本開示の実施形態に従った第1の例示的な実施を示す図である。
[037] 本開示の実施形態に従った第1の例示的な実施を示す図である。
[037] 本開示の実施形態に従った第1の例示的な実施を示す図である。
[038] 本開示の実施形態に従った第2の例示的な実施を示す図である。
[039] 本開示の実施形態に従った、LIDARシステムを用いて物体を検出するための例示的な方法を示すフローチャートである。
[040] 本開示のいくつかの実施形態に従った2次元センサの一例を示す図である。
[041] 本開示のいくつかの実施形態に従った1次元センサの一例を示す図である。
[042] 本開示のいくつかの実施形態に従った、送信及び受信の位置合わせを有する例示的なLIDARデバイスを示すブロック図である。
[043] 本開示のいくつかの実施形態に従った、送信及び受信の位置合わせを有する別の例示的なLIDARデバイスを示すブロック図である。
[044] 本開示のいくつかの実施形態に従った、例示的な第1の視野(FOV)及び第2のFOVのいくつかの例を示す図である。
[045] 本開示のいくつかの実施形態に従った、第1のFOVの全域における第2のFOVの例示的なスキャンパターンを示す図である。
[046] 本開示のいくつかの実施形態に従った、第1のFOVの全域における第2のFOVの別の例示的なスキャンパターンを示す図である。
[047] ここに開示される実施形態に従った、LIDARシステムの視野の概略図及びこれに関連する深さマップシーン表現を提供する。
[048] ここに開示される実施形態に従った、動的に変動可能な光束機能を備えたLIDARシステムを用いて生成された視野の概略図及びこれに関連する深さマップシーン表現を提供する。
[049] ここに開示される実施形態に従った、LIDARシステムのスキャン視野において光束を動的に変動させるための方法のフローチャート図を提供する。
[050] ここに開示される実施形態に従った、LIDARシステムの視野の概略図及びこれに関連する深度マップ(depth map)シーン表現を提供する。
[051] ここに開示される実施形態に従った、動的に変動可変な光束機能を備えたLIDARシステムを用いて生成された視野の概略図及びこれに関連する深度マップシーン表現を提供する。
[052] ここに開示される実施形態に従った、LIDARシステムのスキャン視野において光束を動的に変動させるための方法のフローチャート図を提供する。
[053] 本開示のいくつかの実施形態に従った、LIDARシステムにおいてセンサ感度を変更するための例示的な方法を示すフローチャートである。
[054] 本開示のいくつかの実施形態に従った、受信信号の一例を、予想信号を推定するための関数と共に示す図である。
[055] 本開示のいくつかの実施形態に従った、受信信号の一例を、雑音を推定するための関数と共に示す図である。
[056] LIDARシステムを用いて関心領域内の物体を検出するための方法の第1の例を示すフローチャートである。
[057] LIDARシステムを用いて関心領域内の物体を検出するための方法の第2の例を示すフローチャートである。
[058] 開示される実施形態に従った例示的なLIDARシステムを示す別の図である。
[059] 本開示の実施形態に従ったLIDARシステムの概略図である。
[060] 本開示の実施形態に従った、光放出を制御するための例示的なプロセスのフローチャートである。
[061] 本開示の実施形態に従った、図24に示されているプロセスの例示的な実施のフローチャートである。
[062] 本開示のいくつかの実施形態に従った、物体を検出するための例示的な方法を示すフローチャートである。
[063] 本開示のいくつかの実施形態に従った、LIDARを用いて物体を検出するための例示的な方法を示すフローチャートである。
[064] 本開示のいくつかの実施形態に従った、LIDARを用いて物体を検出するための別の例示的な方法を示すフローチャートである。
[065] 本開示のいくつかの実施形態に従った、LIDARを用いて物体を検出するための更に別の例示的な方法を示すフローチャートである。
[066] 本開示のいくつかの実施形態に従った、複数の光源及び共通の偏向器を有するLIDARシステムの図である。
[067] 本開示のいくつかの実施形態に従った、複数の光源及び共通の偏向器を有する別のLIDARシステムの図である。
[068] LIDARシステム100が利用可能な光学予算及び/又は計算予算を配分する際に利用できる様々な情報ソースと共に、LIDARシステム100のブロック図を与えている。
[069] 開示される実施形態に従った、配分した予算に基づいてLIDARシステムを制御するための方法3000の一例を与えるフローチャートを示している。
[070] ここに開示される実施形態に従ってLIDARシステムを制御するための例示的な方法のフローチャート図を示している。
[071] ここに開示される実施形態に従った、光学予算の均等でない配分が妥当である状況の概略図である。
[072] 開示される例示的な実施形態に従った車両、及びいくつかの実施形態に従った振動補償システムを示す図である。
[072] いくつかの実施形態に従った振動補償システムを示す図である。
[072] いくつかの実施形態に従ったステアリングデバイス中央処理装置(CPU)、アクチュエータ−ミラーを示す図である。
[072] いくつかの実施形態に従ったアクチュエータ−ミラーを示す図である。
[072] いくつかの実施形態に従った2軸MEMSミラーを示す図である。
[072] いくつかの実施形態に従った単一軸MEMSミラーを示す図である。
[072] いくつかの実施形態に従った丸いMEMSミラーを示す図である。
[073] 例示的な開示される実施形態に従った、道路に沿って検知された動きを補償することができるLIDARシステム設置の概略図である。
[074]車両振動補償システムを利用する方法を示すフロー図である。
[075] ここに開示される実施形態に従った、異なるセクタにおける異なる検出範囲の概略図である。
[075] ここに開示される実施形態に従った、異なるセクタにおける異なる検出範囲の概略図である。
[075] ここに開示される実施形態に従った、異なるセクタにおける異なる検出範囲の概略図である。
[075] ここに開示される実施形態に従った、異なるセクタにおける異なる検出範囲の概略図である。
[076] ここに開示される実施形態に従った、視野内の異なるセクタを示す概略図である。
[077] ここに開示される実施形態に従った、LIDARシステムを用いて関心領域内の物体を検出するための方法の一例を示すフローチャートである。
[078] 本開示の実施形態に従ったLIDARシステムの視野の概略図である。
[079] 本開示の実施形態に従ったLIDARシステムの例示的な視野の概略図である。
[080] 本開示の実施形態に従ったスキャンプロセスの例示的な実施のフローチャートである。
[080] 本開示の実施形態に従ったスキャンプロセスの例示的な実施のフローチャートである。
[081] 本開示のいくつかの実施形態に従った、LIDARを用いて車両の経路内の物体を検出するための例示的な方法を示すフローチャートである。
[082] 本開示のいくつかの実施形態に従った、LIDARを用いて車両の経路内の物体を検出するための別の例示的な方法を示すフローチャートである。
[083] 本開示のいくつかの実施形態に従った、都市環境における車両の一例を示す図である。
[084] 本開示のいくつかの実施形態に従った、農村環境における車両の一例を示す図である。
[085] 本開示のいくつかの実施形態に従った、交通渋滞における車両の一例を示す図である。
[086] 本開示のいくつかの実施形態に従った、トンネルにおける車両の一例を示す図である。
[087] 本開示のいくつかの実施形態に従った、トンネルから出た車両の一例を示す図である。
[088] 本開示のいくつかの実施形態に従った、図42A図42B、及び図42Cの例示的な車両を異なる角度から示す図である。
[089] 少なくとも1つの光偏向器の共通エリアに照準を合わせた複数の光源を有する例示的なLIDARシステムを示す図である。
[090] 本開示のいくつかの実施形態に従った、車線横断方向転換のためのLIDAR検出スキームの例示的な方法を示すフローチャートである。
[091] 本開示のいくつかの実施形態に従ったLIDAR検出スキャンスキームの一例を示す図である。
[092] 本開示のいくつかの実施形態に従った、車線横断方向転換及びその他の状況のためのLIDAR検出スキームの一例を示す図である。
[092] 本開示のいくつかの実施形態に従った、車線横断方向転換及びその他の状況のためのLIDAR検出スキームの一例を示す図である。
[093] 例示的な開示される実施形態に従ったLIDARシステムの支援のもとで幹線道路環境において走行している車両の概略図である。
[094] 例示的な開示される実施形態に従った、幹線道路環境でのLIDARシステムによる動的な光割り当ての概略図である。
[094] 例示的な開示される実施形態に従った、幹線道路環境でのLIDARシステムによる動的な光割り当ての概略図である。
[094] 例示的な開示される実施形態に従った、幹線道路環境でのLIDARシステムによる動的な光割り当ての概略図である。
[094] 例示的な開示される実施形態に従った、幹線道路環境でのLIDARシステムによる動的な光割り当ての概略図である。
[095] 例示的な開示される実施形態に従った、LIDARシステムを用いて車両の経路内の物体を検出するための方法を示す。
[096] 例示的な開示される実施形態に従ったLIDARシステムの検知構成の一例を示す図である。
[097] LIDAR視野の様々な部分を表す概略図である。
[098] LIDARシステムを用いて関心領域内の物体を検出するための方法の一例を示すフローチャートである。
[099] 本開示の実施形態に従ったLIDARシステムの概略図である。
[0100] 本開示の実施形態に従った温度低下プロセスの例示的な実施のフローチャートである。
[0101] 本開示の実施形態に従った温度低下プロセスの例示的な実施のフローチャートである。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。
[0102] 本開示のいくつかの実施形態に従った、LIDARシステムのスキャンユニットに組み込まれたMEMSミラー及び関連するコンポーネントの例を示す図である。

0030

[0103] 以下の詳細な説明は添付図面を参照する。可能な限り、図面及び以下の記載では同一の参照番号を用いて同一又は同様の部分を指し示す。本明細書ではいくつかの例示的な実施形態を記載するが、変更、適合、及びその他の実施も可能である。例えば、図面に示されたコンポーネントに対する置換、追加、又は変更を行うことができ、開示される方法に対するステップの置換、並べ替え、除去、又は追加によって本明細書に記載される例示的な方法を変更することができる。従って、以下の詳細な説明は開示される実施形態及び例に限定されない。適正な範囲は添付の特許請求の範囲によって規定される。

0031

用語の定義
[0104] 開示される実施形態は光学システムを含み得る。本明細書で用いる場合、「光学システム」という用語は、光の発生、検出、及び/又は操作のために使用される任意のシステムを広く含む。単に一例として、光学システムは、光を発生、検出、及び/又は操作するための1つ以上の光学コンポーネントを含み得る。例えば、光源、レンズ、ミラー、プリズムビームスプリッタコリメータ偏光光学系光学変調器光学スイッチ光学増幅器光学検出器光学センサ光ファイバ半導体光学コンポーネントは、それぞれ必ずしも必須ではないが、光学システムの一部となり得る。1つ以上の光学コンポーネントに加えて、光学システムは、電気的コンポーネント、機械的コンポーネント、化学反応コンポーネント、及び半導体コンポーネントのような、他の非光学コンポーネントも含み得る。非光学コンポーネントは、光学システムの光学コンポーネントと協働することができる。例えば光学システムは、検出された光を分析するための少なくとも1つのプロセッサを含み得る。

0032

[0105] 本開示に従って、光学システムはLIDARシステムとすることができる。本明細書で用いる場合、「LIDARシステム」という用語は、反射光に基づいて1対の有形物体(tangible object)間の距離を示すパラメータの値を決定することができる任意のシステムを広く含む。一実施形態において、LIDARシステムは、LIDARシステムが放出した光の反射に基づいて1対の有形物体間の距離を決定できる。本明細書で用いる場合、「距離を決定する」という用語は、1対の有形物体間の距離を示す出力を発生することを広く含む。決定された距離は、1対の有形物体間の物理的寸法を表すことができる。単に一例として、決定された距離は、LIDARシステムとLIDARシステムの視野内の別の有形物体との間の飛行距離線を含み得る。別の実施形態において、LIDARシステムは、LIDARシステムが放出した光の反射に基づいて1対の有形物体間の相対速度を決定することができる。1対の有形物体間の距離を示す出力の例には、有形物体間の標準的な長さ単位の数(例えばメートル数、インチ数キロメートル数、ミリメートル数)、任意の長さ単位の数(例えばLIDARシステム長の数)、距離と別の長さとの比(例えばLIDARシステムの視野内で検出された物体の長さに対する比)、時間量(例えば標準的な単位、任意の単位又は比、例えば有形物体間を光が移動するのに要する時間として与えられる)、1つ以上のロケーション(例えば承認された座標を用いて規定される、既知のロケーションに対して規定される)、及びその他のものが含まれる。

0033

[0106]LIDARシステムは、反射光に基づいて1対の有形物体間の距離を決定することができる。一実施形態において、LIDARシステムは、光信号の放出とセンサによるその検出の時点との間の時間期間を示す時間情報を生成するセンサの検出結果を処理することができる。この時間期間は時として光信号の「飛行時間(time of flight)」と称される。一例において、光信号は短いパルスであり、受信の際にその立ち上がり時間及び/又は立ち下がり時間を検出することができる。関連する媒体(通常は空気)中における光の速度に関する既知の情報を用いて、光信号の飛行時間に関する情報を処理することで、放出と検出との間で光信号が移動する距離を提供できる。別の実施形態において、LIDARシステムは、周波数位相シフト(又は多周波数位相シフト)に基づいて距離を決定することができる。具体的には、LIDARシステムは、光信号の(例えば最終的な測度を与えるためいくつかの連立方程式解くことによって)1つ以上の変調位相シフトを示す情報を処理することができる。例えば、放出された光学信号を1つ以上の一定周波数によって変調できる。放出された信号と検出された反射との間の変調の少なくとも1つの位相シフトは、放出と検出との間で光が移動した距離を示すことができる。変調は、連続波光信号、準連続波光信号、又は別のタイプの放出される光信号に適用され得る。距離を決定するため、LIDARシステムによって追加情報を使用できることに留意するべきである。追加情報は例えば、信号の投影ロケーションと検出ロケーションとの間のロケーション情報(例えば相対位置)(特に、相互に距離が離れている場合)、及びその他のものである。

0034

[0107] いくつかの実施形態において、LIDARシステムは、LIDARシステムの環境内の複数の物体を検出するために使用できる。「LIDARシステムの環境内の物体を検出する」という用語は、LIDARシステムに関連付けられた検出器の方へ光を反射した物体を示す情報を発生することを広く含む。2つ以上の物体がLIDARシステムによって検出された場合、異なる物体に関して発生された情報、例えば、自動車が道路を走行している、が木にとまっている、人が自転車に触れる、ライトバン(van)が建物の方へ移動するといった情報は、相互に連絡することができる。LIDARシステムが物体を検出する環境の寸法は、実施に伴って変動し得る。例えばLIDARシステムは、LIDARシステムが搭載されている車両の環境内で、最大で100m(又は200m、300m等)の水平方向距離まで、及び最大で10m(又は25m、50m等)の垂直方向距離まで、複数の物体を検出するために使用できる。別の例においてLIDARシステムは、車両の環境内で、又は既定の水平方向範囲内(例えば25°、50°、100°、180°等)で、及び既定の垂直方向高さ(例えば±10°、±20°、+40°〜20°、±90°、又は0°〜90°)まで、複数の物体を検出するため使用できる。

0035

[0108] 本明細書で用いる場合、「物体を検出する」という用語は、物体の存在を決定することを広く指すことができる(例えば、物体はLIDARシステムに対して及び/又は別の基準ロケーションに対して特定の方向に存在し得る、又は、物体は特定の空間体積内に存在し得る)。これに加えて又はこの代わりに、「物体を検出する」という用語は、物体と別のロケーション(例えばLIDARシステムのロケーション、地球上のロケーション、又は別の物体のロケーション)との間の距離を決定することを指す可能性がある。これに加えて又はこの代わりに、「物体を検出する」という用語は、物体を識別すること(例えば自動車、木、道路のような物体の種類を分類すること、特定の物体(例えばワシトン記念)を認識すること、自動車登録番号を判定すること、物体の組成(例えば固体液体、透明、半透明)を明らかにすること、物体の運動パラメータ(例えば移動中であるか、その速度、移動方向、物体の膨張)を決定することを指す可能性がある。これに加えて又はこの代わりに、「物体を検出する」という用語は、ポイントクラウドマップを発生することを指す可能性がある。ポイントクラウドマップの1つ以上のポイントの各々は、物体内のロケーション又は物体面上のロケーションに対応する。一実施形態において、視野のポイントクラウドマップ表現に関するデータ解像度は、視野の0.1°×0.1°又は0.3°×0.3°に関連付けることができる。

0036

[0109] 本開示に従って、「物体」という用語は、その少なくとも一部から光を反射することができる有限組成物を広く含む。例えば物体は、少なくとも部分的に固体である(例えば自動車、木)、少なくとも部分的に液体である(例えば道路の水たまり、雨)、少なくとも部分的に気体である(例えば煙、)、多数の別個粒子から成る(例えば砂あらし、霧、スプレー)、例えば〜1ミリメートル(mm)、〜5mm、〜10mm、〜50mm、〜100mm、〜500mm、〜1メートル(m)、〜5m、〜10m、〜50m、〜100mのような1つ以上の大きさであり得る。また、より小さいか又は大きい物体、及びこれらの例の間の任意の大きさも検出できる。様々な理由から、LIDARシステムは物体の一部のみを検出する場合があることに留意するべきである。例えば、場合によっては、光は物体のいくつかの側面のみから反射される(例えば、LIDARシステムに対向する側面のみが検出される)。他の場合、光は物体の一部のみに投影される(例えば、レーザビームが道路又は建物に投影される)。また他の場合、物体は、LIDARシステムと検出された物体との間の別の物体によって部分的に遮られる。また他の場合、LIDARのセンサは物体の一部から反射された光のみを検出し得る。これは例えば、周囲光又は他の干渉が物体のいくつかの部分の検出を妨害するからである。

0037

[0110] 本開示に従って、LIDARシステムは、LIDARシステムの環境をスキャンすることで物体を検出するように構成できる。「LIDARシステムの環境をスキャンする」という用語は、LIDARシステムの視野又は視野の一部を照射することを広く含む。一例において、LIDARシステムの環境をスキャンすることは、光偏向器を移動又は枢動させて、視野の様々な部分へ向かう様々な方向に光を偏向させることによって達成できる。別の例において、LIDARシステムの環境をスキャンすることは、視野に対するセンサの位置決め(すなわちロケーション及び/又は向き)を変えることによって達成できる。別の例において、LIDARシステムの環境をスキャンすることは、視野に対する光源の位置決め(すなわちロケーション及び/又は向き)を変えることによって達成できる。更に別の例において、LIDARシステムの環境をスキャンすることは、少なくとも1つの光源及び少なくとも1つのセンサが視野に対して固定して(rigidly)移動するようにそれらの位置を変えることによって達成できる(すなわち、少なくとも1つのセンサ及び少なくとも1つの光源の相対的な距離及び向きは維持される)。

0038

[0111] 本明細書で用いる場合、「LIDARシステムの視野」という用語は、物体を検出することができるLIDARシステムの観察可能な環境の範囲を広く含み得る。LIDARシステムの視野(FOV)は様々な条件によって影響を受け得ることに留意するべきである。様々な条件は、限定ではないが、LIDARシステムの向き(例えばLIDARシステムの光軸の方向)、環境に対するLIDARシステムの位置(例えば地面、及び隣接地形、及び障害物からの距離)、LIDARシステムの動作パラメータ(例えば放出パワー、計算設定、規定の動作角度)等である。LIDARシステムの視野は、例えば立体角を用いて規定することができる(例えばφ、θ角を用いて規定される。φ及びθは、例えばLIDARシステム及び/又はそのFOVの対称軸に対する垂直面において規定される)。一例において、視野は、特定の範囲内(例えば最大で200m)で規定することができる。

0039

[0112] 同様に、「瞬時視野(instantaneous field of view)」という用語は、任意の所与の瞬間にLIDARシステムによって物体を検出することができる観察可能な環境の範囲を広く含み得る。例えばスキャンLIDARシステムでは、瞬時視野はLIDARシステムの全FOVよりも狭く、LIDARシステムのFOVの他の部分における検出を可能とするためLIDARシステムのFOV内で移動させることができる。LIDARシステムのFOV内での瞬時視野の移動は、LIDARシステムへの光ビーム及び/又はLIDARシステムからの光ビームを異なる方向に偏向させるようにLIDARシステムの(又はLIDARシステム外部の)光偏向器を移動させることによって達成できる。一実施形態において、LIDARシステムは、LIDARシステムが動作している環境内のシーン(scene)をスキャンするように構成できる。本明細書で用いる場合、「シーン」という用語は、LIDARシステムの視野内の物体のいくつか又は全てを、LIDARシステムの動作期間中の相対位置で及び現在の状態で広く含み得る。例えばシーンは、地上の要素(例えば土、道路、草、歩道路面標識)、空、人工物体(例えば車両、建物、標識)、植物、人物動物、光投影要素(例えば懐中電灯、太陽、他のLIDARシステム)等を含み得る。

0040

[0113] 開示される実施形態は、再構築3次元モデルの生成に使用される情報を取得することを含み得る。使用できるタイプの再構築3次元モデルの例には、ポイントクラウドモデル及びポリゴンメッシュ(Polygon Mesh)(例えば三角形メッシュ)が含まれる。「ポイントクラウド」及び「ポイントクラウドモデル」という用語は、当技術分野において周知であり、ある特定の座標系に空間的に位置付けられるデータポイントセットを含むものと解釈するべきである(すなわち、各座標系によって記述される空間内に識別可能ロケーションを有する)。「ポイントクラウドポイント」という用語は、空間(無次元であるか、又は例えば1cm3のような微小セル空間である場合がある)内のポイントを指し、そのロケーションは座標セットを用いたポイントクラウドモデルによって記述できる(例えば(X、Y、Z)、(r、φ、θ))。単に一例として、ポイントクラウドモデルは、そのポイントのいくつか又は全てのための追加情報を記憶することができる(例えば、カメラ画像から生成されたポイントのための色情報)。同様に、他のいずれのタイプの再構築3次元モデルも、その物体のいくつか又は全てのための追加情報を記憶することができる。同様に、「ポリゴンメッシュ」及び「三角形メッシュ」という用語は当技術分野において周知であり、とりわけ、1つ以上の3D物体(多面体等)の形状を画定する頂点(vertex)、稜線(edge)、及び面(face)のセットを含むように解釈するべきである。面は、レンダリングを簡略化できるという理由から、三角形(三角形メッシュ)、四角形、又は他の単純な凸多角形のうち1つ以上を含み得る。また、面は、より一般的な凹多角形、又はくぼみ(hole)を有する多角形を含み得る。ポリゴンメッシュは、頂点−頂点メッシュ、面−頂点メッシュ、ウイングエッジメッシュ(Winged-edge mesh)、及びレンダーダイナミックメッシュ(Render dynamic mesh)のような様々な技法を用いて表現できる。ポリゴンメッシュの様々な部分(例えば頂点、面、稜線)は、直接的に及び/又は相対的に、ある特定の座標系に空間的に位置付けられる(すなわち、各座標系によって記述される空間内に識別可能ロケーションを有する)。再構築3次元モデルの生成は、任意の標準的な、専用の、及び/又は新規写真測量技法を用いて実施することができ、それらの多くは当技術分野において既知である。LIDARシステムによって他のタイプの環境モデルも生成できることに留意するべきである。

0041

[0114] 開示される実施形態に従って、LIDARシステムは、光を投影するように構成された光源を用いる少なくとも1つの投影ユニットを含み得る。本明細書で用いる場合、「光源」という用語は、光を放出するように構成された任意のデバイスを広く指す。一実施形態において、光源は、固体レーザレーザダイオード高出力レーザのようなレーザ、又は発光ダイオードLED)ベースの光源のような代替的な光源とすればよい。更に、図面全体を通して示されている光源112は、光パルス連続波(CW)、準CW等、異なるフォーマットの光を放出することができる。例えば、使用できる光源の1つのタイプは、垂直キャビティ面発光レーザVCSEL:vertical-cavity surface-emitting laser)である。使用できる別のタイプの光源は、外部キャビティダイオードレーザ(ECDL:external cavity diode laser)である。いくつかの例では、光源は約650nmから1150nmの間の波長の光を放出するように構成されたレーザダイオードを含み得る。あるいは、光源は、約800nmから約1000nm、約850nmから約950nm、又は約1300nmから約1600nmの波長の光を放出するように構成されたレーザダイオードを含み得る。別段の指示がない限り、数値に関する「約」という用語は、言及された値に対して最大5%の分散として規定される。投影ユニット及び少なくとも1つの光源についての更なる詳細は、図2Aから図2Cを参照して以下で説明する。

0042

[0115] 開示される実施形態に従って、LIDARシステムは、視野をスキャンするため光源からの光を偏向させるように構成された少なくとも1つの光偏向器を用いる少なくとも1つのスキャンユニットを含み得る。「光偏向器」という用語は、光を最初の経路から逸脱させるように構成されている任意の機構又はモジュールを広く含み、例えば、ミラー、プリズム、制御可能レンズ、機械的ミラー、機械的スキャンポリゴン(scanning polygon)、アクティブ回折(例えば制御可能LCD)、リスレープリズム(Risley prism)、非機械電子光学ビームステアリング(Vscentにより作製されるもの等)、偏光格子(Boulder Non-Linear Systemsにより提供されるもの等)、光学フェーズドアレイ(OPA:optical phased array)、及びその他のものである。一実施形態において、光偏向器は、少なくとも1つの反射要素(例えばミラー)、少なくとも1つの屈折要素(例えばプリズム、レンズ)等、複数の光学コンポーネントを含み得る。一例において、光偏向器は、光を様々な角度数に(例えば別々の角度数に、又は連続的な角度数範囲に)逸脱させるように、可動性であり得る。光偏向器は、任意選択的に、様々なやり方で制御可能であり得る(例えば、α度に偏向させる、偏向角をΔαだけ変える、光偏向器のコンポーネントをMミリメートル移動させる、偏向角が変わる速度を変化させる)。更に光偏向器は、任意選択的に、単一の面(例えばθ座標)内で偏向の角度を変えるように動作可能であり得る。光偏向器は、任意選択的に、2つの非平行の面(例えばθ及びφ座標)内で偏向の角度を変えるように動作可能であり得る。この代わりに又はこれに加えて、光偏向器は任意選択的に、所定の設定間で(例えば所定のスキャンルートに沿って)又はその他で偏向の角度を変えるように動作可能であり得る。LIDARシステムにおける光偏向器の使用に関して、光偏向器をアウトバウンド方向送信方向すなわちTXとも称される)で用いて、光源からの光を視野の少なくとも一部へ偏向できることに留意するべきである。しかしながら、光偏向器をインバウンド方向(受信方向すなわちRXとも称される)で用いて、視野の少なくとも一部からの光を1つ以上の光センサへ偏向させることも可能である。スキャンユニット及び少なくとも1つの光偏向器についての更なる詳細は、図3Aから図3Cを参照して以下で説明する。

0043

[0116] 開示される実施形態は、視野をスキャンするために光偏向器を枢動することを含み得る。本明細書で用いる場合、「枢動する(pivot)」という用語は、物体(特に固体の物体)を、回転中心を実質的に固定したままに維持しながら、1つ以上の回転軸を中心として回転させることを広く含む。一実施形態において、光偏向器の枢動は、固定軸(例えばシャフト)を中心として光偏向器を回転させることを含み得るが、必ずしもそうとは限らない。例えばいくつかのMEMSミラー実施では、MEMSミラーは、ミラーに接続された複数の曲げ部(bender)の作動によって動くことができ、ミラーは回転に加えてある程度の空間並進を生じ得る。それにもかかわらず、このようなミラーは実質的に固定された軸を中心として回転するように設計できるので、本開示に従って、枢動すると見なされる。他の実施形態において、あるタイプの光偏向器(例えば非機械電子光学ビームステアリング、OPA)は、偏向光の偏向角を変えるために移動コンポーネントも内部移動も必要としない。光偏向器の移動又は枢動に関する検討は、必要な変更を加えて、光偏向器の偏向挙動を変化させるように光偏向器を制御することにも適用できることに留意するべきである。例えば光偏向器を制御することで、少なくとも1つの方向から到達する光ビームの偏向角を変化させることが可能となる。

0044

[0117] 開示される実施形態は、光偏向器の単一の瞬時位置に対応する視野の部分に関連した反射を受信することを含み得る。本明細書で用いる場合、「光偏向器の瞬時位置」(「光偏向器の状態」とも称される)という用語は、ある瞬間的な時点に又は短い時間期間にわたって光偏向器の少なくとも1つの制御されたコンポーネントが位置している空間内のロケーション又は位置を広く指す。一実施形態において、光偏向器の瞬時位置は基準系(frame of reference)に対して測定することができる。基準系はLIDARシステム内の少なくとも1つの固定点に関連し得る。又は、例えば基準系はシーン内の少なくとも1つの固定点に関連し得る。いくつかの実施形態において、光偏向器の瞬時位置は、光偏向器(例えばミラー、プリズム)の1つ以上のコンポーネントのある程度の移動を含み得るが、この移動は通常、視野のスキャン中の最大変化度に対して限られた程度のものである。例えばLIDARシステムの視野全体のスキャンは、光の偏向を30°の範囲にわたって変化させることを含み得る。また、少なくとも1つの光偏向器の瞬時位置は、光偏向器の0.05°内の角度シフトを含み得る。他の実施形態において、「光偏向器の瞬時位置」という用語は、LIDARシステムによって生成されるポイントクラウド(又は別のタイプの3Dモデル)の単一ポイントのデータを与えるために処理される光の取得中の光偏向器の位置を指し得る。いくつかの実施形態において、光偏向器の瞬時位置は、偏向器がLIDAR視野の特定の小領域(sub-region)の照射中に短時間停止する固定の位置又は向きに一致し得る。他の場合、光偏向器の瞬時位置は、光偏向器がLIDAR視野の連続的又は半連続的なスキャンの一部として通過する、光偏向器の位置/向きのスキャン範囲に沿った特定の位置/向きと一致し得る。いくつかの実施形態では、LIDAR FOVのスキャンサイクル中に光偏向器が複数の異なる瞬時位置に位置付けられるように光偏向器を移動させることができる。言い換えると、スキャンサイクルが発生する時間期間中、偏向器を一連の異なる瞬時位置/向きに移動させることができ、偏向器は、スキャンサイクル中の異なる時点でそれぞれ異なる瞬時位置/向きに到達できる。

0045

[0118] 開示される実施形態に従って、LIDARシステムは、視野内の物体からの反射を検出するように構成された少なくとも1つのセンサを用いる少なくとも1つの検知ユニットを含み得る。「センサ」という用語は、電磁波の特性(例えば電力、周波数、位相パルスタイミングパルス持続時間)を測定することができ、測定された特性に関する出力を生成するための任意のデバイス、要素、又はシステムを広く含む。いくつかの実施形態において、少なくとも1つのセンサは、複数の検出要素から構築された複数の検出器を含み得る。少なくとも1つのセンサは、1つ以上のタイプの光センサを含み得る。少なくとも1つのセンサは、他の特性(例えば感度、大きさ)が異なる同じタイプの複数のセンサを含み得ることに留意するべきである。他のタイプのセンサを用いてもよい。例えば、ある距離範囲(特に近距離)における検出の向上、センサのダイナミックレンジの向上、センサの時間的応答の向上、及び、様々な環境条件(例えば大気温度、雨等)における検出の向上のような様々な理由から、いくつかのタイプのセンサを組み合わせて使用することも可能である。

0046

[0119] 一実施形態において、少なくとも1つのセンサは、一般的なシリコン基板上で検出要素として機能する、アバランシェフォトダイオードAPD:avalanche photodiode)、単一光子アバランシェダイオード(SPAD:single photon avalanche diode)から構築された固体単一光子検知デバイスであるSiPM(Silicon photomultiplier、シリコン光電子増倍管)を含む。一例において、SPAD間の典型的な距離は約10μmから約50μの間であり、各SPADは約20nsから約100nsの間の回復時間を有し得る。他の非シリコン材料による同様の光電子増倍管も使用できる。SiPMデバイスデジタルスイッチングモードで動作するが、全ての微小セルが並列に読み出されて、異なるSPADによって検出される単一の光子から数百及び数千の光子までのダイナミックレンジ内で信号を発生することを可能とするので、SiPMはアナログデバイスである。異なるタイプのセンサ(例えばSPAD、APD、SiPM、PINダイオード光検出器)からの出力が組み合わされて単一の出力になり、これをLIDARシステムのプロセッサによって処理できることに留意するべきである。検知ユニット及び少なくとも1つのセンサについての更なる詳細は、図4Aから図4Cを参照して以下で説明する。

0047

[0120] 開示される実施形態に従って、LIDARシステムは、様々な機能を実行するように構成された少なくとも1つのプロセッサを含むか又は少なくとも1つのプロセッサと通信することができる。少なくとも1つのプロセッサは、1つ又は複数の入力に対して論理動作を実行する電気回路を有する任意の物理デバイスを構成し得る。例えば少なくとも1つのプロセッサは、特定用途向け集積回路ASIC)、マイクロチップマイクロコントローラマイクロプロセッサ、中央処理装置(CPU)の全体又は一部、グラフィック処理ユニット(GPU)、デジタル信号プロセッサ(DSP)、フィールドプログラマブルゲートアレイFPGA)、又は命令の実行もしくは論理動作の実行に適した他の回路を含む、1つ以上の集積回路(IC)を含み得る。少なくとも1つのプロセッサによって実行される命令は、例えば、コントローラ一体化されているか又は埋め込まれたメモリに予めロードするか、又は別個のメモリに記憶することができる。メモリは、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、ハードディスク光学ディスク磁気媒体フラッシュメモリ、他の永久メモリ固定メモリ、もしくは揮発性メモリ、又は命令を記憶することができる他の任意の機構を含み得る。いくつかの実施形態において、メモリは、LIDARシステムの環境内の物体に関するデータを表す情報を記憶するように構成されている。いくつかの実施形態において、少なくとも1つのプロセッサは2つ以上のプロセッサを含み得る。各プロセッサは同様の構成を有するか、又は、それらのプロセッサは相互に電気的に接続されるかもしくは切断された異なる構成とすることができる。例えばプロセッサは、別々の回路とするか、又は単一の回路に一体化することができる。2つ以上のプロセッサを用いる場合、これらのプロセッサは、独立して又は協働して動作するように構成できる。これらのプロセッサは、電気的に、磁気的に、光学的に、音響的に、機械的に、又はそれらの相互作用を可能とする他の手段によって、結合することができる。処理ユニット及び少なくとも1つのプロセッサについての更なる詳細は、図5Aから図5Cを参照して以下で説明する。

0048

システムの概要
[0121]図1Aは、投影ユニット102、スキャンユニット104、検知ユニット106、及び処理ユニット108を含むLIDARシステム100を示す。LIDARシステム100は車両110上に搭載可能である。本開示の実施形態に従って、投影ユニット102は少なくとも1つの光源112を含み、スキャンユニット104は少なくとも1つの光偏向器114を含み、検知ユニット106は少なくとも1つのセンサ116を含み、処理ユニット108は少なくとも1つのプロセッサ118を含み得る。一実施形態において、少なくとも1つのプロセッサ118は、視野120をスキャンするため、少なくとも1つの光源112の動作と少なくとも1つの光偏向器114の移動を連携させるように構成できる。スキャンサイクル中、少なくとも1つの光偏向器114の各瞬時位置を視野120の特定の部分122に関連付けることができる。更に、LIDARシステム100は、視野120の方へ投影される光を誘導する及び/又は視野120内の物体から反射された光を受光するための少なくとも1つの任意選択的な光学ウィンドウ124を含み得る。任意選択的な光学ウィンドウ124は、投影光のコリメーション及び反射光の集束のような異なる目的に供することができる。一実施形態において、任意選択的な光学ウィンドウ124は、開口、平坦なウィンドウ、レンズ、又は他の任意のタイプの光学ウィンドウとすればよい。

0049

[0122] 本開示に従って、LIDARシステム100は、自律走行又は半自律走行の道路車両(例えば自動車、バス、ライトバン、トラック、及び他の任意の地上車)において使用することができる。LIDARシステム100を備えた自律走行道路車両は、環境をスキャンし、人の入力なしで目的地車両まで運転することができる。同様に、LIDARシステム100は、自律型/半自律型航空機(例えばUAV、ドローンクワッドプター、及び他の任意の航空機もしくは飛行デバイス)、又は自律型もしくは半自律型の水上船(例えばボート潜水艦、及び他の任意の船舶)においても使用され得る。LIDARシステム100を備えた自律型航空機及び水上船は、環境をスキャンし、自律的に又は遠隔の人のオペレータを用いて目的地までナビゲートすることができる。一実施形態に従って、車両110(道路車両、航空機、又は水上船)は、車両110が動作している環境の検出及びスキャンに役立てるためLIDARシステム100を使用することができる。

0050

[0123] いくつかの実施形態において、LIDARシステム100は、車両110の周りの環境をスキャンするための1つ以上のスキャンユニット104を含み得る。LIDARシステム100は、車両110の任意の部分に取り付けるか又は搭載することができる。検知ユニット106は、車両110の周囲からの反射を受信し、視野120内の物体から反射した光を示す反射信号を処理ユニット108に転送することができる。本開示に従って、スキャンユニット104は、車両110のバンパーフェンダーサイドパネルスポイラ屋根ヘッドライトアセンブリテールライトアセンブリバックミラーアセンブリフードトランク、又はLIDARシステムの少なくとも一部を収容できる他の任意の適切な部分に搭載するか又は組み込むことができる。場合によっては、LIDARシステム100は車両110の環境の完全な周囲ビューキャプチャする。このため、LIDARシステム100は360°の水平方向視野を有し得る。一例において、図1Aに示されているように、LIDARシステム100は車両110の屋根に搭載された単一のスキャンユニット104を含み得る。あるいはLIDARシステム100は、それぞれ視野を有する複数のスキャンユニット(例えば2、3、4、又はそれ以上のスキャンユニット104)を含み、これらの視野を合わせると車両110の周りの360度のスキャンによって水平方向視野をカバーすることができる。LIDARシステム100は任意のやり方で配置された任意の数のスキャンユニット104を含み、使用されるユニット数に応じて各ユニットが80°から120°又はそれ未満の視野を有し得ることは、当業者に認められよう。更に、各々が単一のスキャンユニット104を備えた複数のLIDARシステム100を車両110上に搭載することによって、360°の水平方向視野を得ることも可能である。それにもかかわらず、1つ以上のLIDARシステム100が完全な360°の視野を与える必要はないこと、及び、いくつかの状況ではより狭い視野が有用であり得ることに留意するべきである。例えば車両110は、車両の前方に75°の視野を有する第1のLIDARシステム100と、場合によっては後方に同様のFOVを有する(任意選択的に、より小さい検出範囲を有する)第2のLIDARシステム100と、を必要とする可能性がある。また、様々な垂直方向視野角も実施され得ることに留意するべきである。

0051

[0124]図1Bは、開示される実施形態に従った、車両110上に搭載されたLIDARシステム100の単一のスキャンサイクルからの例示的な出力を示す画像である。この例において、スキャンユニット104は車両110の右ヘッドライトアセンブリに組み込まれている。画像における全ての灰色ドットは、検知ユニット106によって検出された反射から決定された車両110の周りの環境内のロケーションに対応する。ロケーションに加えて、各灰色ドットは、例えば強度(例えばそのロケーションからどのくらいの量の光が戻るか)、反射率、他のドットに対する近接、及びその他のもの等、様々なタイプの情報に関連付けることも可能である。一実施形態において、LIDARシステム100は、視野の複数のスキャンサイクルで検出された反射から複数のポイントクラウドデータエントリを生成して、例えば車両110の周りの環境のポイントクラウドモデルの決定を可能とすることができる。

0052

[0125]図1Cは、LIDARシステム100の出力から決定されたポイントクラウドモデルの表現を示す画像である。開示される実施形態に従って、車両110の周りの環境の生成されたポイントクラウドデータエントリを処理することにより、ポイントクラウドモデルから周囲ビュー画像を生成できる。一実施形態において、ポイントクラウドモデルは、ポイントクラウド情報を処理して複数のフィーチャを識別するフィーチャ抽出モジュールに提供することができる。各フィーチャは、ポイントクラウド及び/又は車両110の周りの環境内の物体(例えば自動車、木、人物、及び道路)の様々な様相(aspect)に関するデータを含み得る。フィーチャは、同一の解像度のポイントクラウドモデルを有する(すなわち、任意選択的に同様の大きさの2Dアレイに配置された同数のデータポイントを有する)、又は異なる解像度を有し得る。フィーチャは、任意の種類のデータ構造内に記憶することができる(例えばラスタベクトル、2Dアレイ、1Dアレイ)。更に、車両110の表現、境界線、又は(例えば図1Bに示されているような)画像内の領域もしくは物体を分離する境界ボックス、及び1つ以上の識別された物体を表すアイコンのような仮想フィーチャを、ポイントクラウドモデルの表現の上に重ねて、最終的な周囲ビュー画像を形成できる。例えば、周囲ビュー画像の中央に車両110の記号を重ねることができる。

0053

投影ユニット
[0126]図2Aから図2Dは、LIDARシステム100における投影ユニット102の様々な構成及びその役割を示す。具体的には、図2Aは単一の光源を備えた投影ユニット102を示す図であり、図2Bは共通の光偏向器114に照準を合わせた複数の光源を備えた複数の投影ユニット102を示す図であり、図2Cは一次及び二次光源112を備えた投影ユニット102を示す図であり、図2Dは投影ユニット102のいくつかの構成で使用される非対称偏向器を示す図である。投影ユニット102の図示される構成は多くの変形及び変更を有し得ることは当業者に認められよう。

0054

[0127]図2Aは、投影ユニット102が単一の光源112を含むLIDARシステム100のバイスタティック構成の一例を示す。「バイスタティック構成(bi-static configuration)」という用語は、LIDARシステムから出射する投影光及びLIDARシステムに入射する反射光が異なる光学チャネルを通るLIDARシステム構成を広く指す。具体的には、アウトバウンド光放出は第1の光学ウィンドウ(図示せず)を通過し、インバウンド光放出は別の光学ウィンドウ(図示せず)を通過することができる。図2Aに示される例において、バイスタティック構成は、スキャンユニット104が2つの光偏向器を含む構成を含んでいる。第1の光偏向器114Aはアウトバウンド光用であり、第2の光偏向器114Bはインバウンド光用のものである(LIDARシステムのインバウンド光は、シーン内の物体から反射した放出光を含み、更に、他のソースから到達する周囲光も含み得る)。そのような構成において、インバウンド経路及びアウトバウンド経路は異なる。

0055

[0128] この実施形態において、LIDARシステム100の全てのコンポーネントは、単一の筐体200内に収容するか、又は複数の筐体間に分割することができる。図示のように、投影ユニット102は、光(投影光204)を放出するように構成されたレーザダイオード202A(又は共に結合された1つ以上のレーザダイオード)を含む単一の光源112に関連付けられている。1つの非限定的な例では、光源112によって投影される光は、約800nmから約950nmの間の波長であり、約50mWから約500mWの間の平均パワーを有し、約50Wから約200Wの間のピークパワーを有し、約2nsから約100nsの間のパルス幅を有し得る。更に、光源112は任意選択的に、レーザダイオード202Aによって放出された光の操作のため(例えばコリメーションや集束等のため)に使用される光学アセンブリ202Bに関連付けることができる。他のタイプの光源112も使用可能であり、本開示はレーザダイオードに限定されないことに留意するべきである。更に、光源112は、光パルス、変調周波数、連続波(CW)、準CW、又は使用される特定の光源に対応した他の任意の形態のように、様々なフォーマットで光を放出することができる。投影フォーマット及び他のパラメータは、処理ユニット108からの命令のような異なるファクタに基づいて、時々光源によって変更されることがある。投影光は、視野120に投影光を誘導するためのステアリング要素として機能するアウトバウンド偏向器114Aの方へ投影される。この例において、スキャンユニット104は、視野120内の物体208から反射して戻った光子(反射光206)をセンサ116の方へ誘導する枢動可能帰還偏向器114Bも含む。反射光はセンサ116によって検出され、物体に関する情報(例えば物体212までの距離)は処理ユニット118によって決定される。

0056

[0129] この図において、LIDARシステム100はホスト210に接続されている。本開示に従って、「ホスト」という用語は、LIDARシステム100とインタフェースで接続する任意のコンピューティング環境を指し、車両システム(例えば車両110の一部)、試験システムセキュリティシステム調査システム交通制御システム都会モデリングシステム、又はその周囲を監視する任意のシステムであり得る。そのようなコンピューティング環境は、少なくとも1つのプロセッサを含む、及び/又はクラウドを介してLIDARシステム100に接続され得る。いくつかの実施形態において、ホスト210は、カメラや、ホスト210の様々な特徴(例えば加速度ハンドルの偏向、車の後退等)を測定するように構成されたセンサのような外部デバイスに対するインタフェースも含み得る。本開示に従って、LIDARシステム100は、ホスト210に関連付けられた静止物体(例えば建物、三脚)、又はホスト210に関連付けられた携帯型システム(例えば携帯型コンピュータムービーカメラ)に固定することができる。本開示に従って、LIDARシステム100をホスト210に接続することで、LIDARシステム100の出力(例えば3Dモデル、反射率画像)をホスト210に提供できる。具体的には、ホスト210はLIDARシステム100を用いて、ホスト210の環境又は他の任意の環境の検出及びスキャンに役立てることができる。更に、ホスト210は、LIDARシステム100の出力を、他の検知システム(例えばカメラ、マイクロフォンレーダシステム)の出力と一体化するか、同期するか、又は他の方法で共に使用することができる。一例において、LIDARシステム100はセキュリティシステムによって使用され得る。この実施形態については図7を参照して以下で詳細に記載する。

0057

[0130] また、LIDARシステム100は、LIDARシステム100内で情報を転送するためサブシステム及びコンポーネントを相互接続するバス212(又は他の通信機構)も含み得る。任意選択的に、バス212(又は別の通信機構)は、LIDARシステム100をホスト210と相互接続するため使用することができる。図2Aの例において、処理ユニット108は、少なくとも部分的にLIDARシステム100の内部フィードバックから受信した情報に基づいて、投影ユニット102、スキャンユニット104、及び検知ユニット106の動作を連携させて規制するための2つのプロセッサ118を含む。言い換えると、処理ユニット108は、LIDARシステム100を閉ループ内で動的に動作させるように構成できる。閉ループシステムは、要素のうち少なくとも1つからのフィードバックを有し、受信したフィードバックに基づいて1つ以上のパラメータを更新することによって特徴付けられる。更に、閉ループシステムは、フィードバックを受信し、少なくとも部分的にそのフィードバックに基づいてそれ自体の動作を更新することができる。動的システム又は要素は、動作中に更新できるものである。

0058

[0131] いくつかの実施形態によれば、LIDARシステム100の周りの環境をスキャンすることは、視野120を光パルスで照射することを含み得る。光パルスは、パルス持続時間、パルス角分散、波長、瞬時パワー、光源112からの異なる距離における光子密度、平均パワー、パルスパワー強度、パルス幅、パルス繰り返し率パルスシーケンスパルスデューティサイクル、波長、位相、偏光、及びその他のもののようなパラメータを有し得る。また、LIDARシステム100の周りの環境をスキャンすることは、反射光の様々な様相を検出し特徴付けることを含み得る。反射光の特徴は、例えば飛行時間(すなわち放出から検出までの時間)、瞬時パワー(例えばパワーシグネチャ(power signature))、帰還パルス全体の平均パワー、及び帰還パルス期間における光子分布/信号を含み得る。光パルスの特徴を対応する反射の特徴と比較することによって、距離を推定し、場合によっては物体212の反射強度のような物理特性も推定することができる。このプロセスを、所定のパターン(例えばラスタ、リサジュー、又は他のパターン)で複数の隣接部分122に繰り返すことによって、視野120の全体的なスキャンを達成できる。以下で更に詳しく検討するように、いくつかの状況においてLIDARシステム100は、各スキャンサイクルにおいて視野120の部分122の一部にのみ光を誘導することができる。これらの部分は相互に隣接している場合があるが、必ずしもそうとは限らない。

0059

[0132] 別の実施形態において、LIDARシステム100は、ホスト210(例えば車両コントローラ)と通信を行うためのネットワークインタフェース214を含み得る。LIDARシステム100とホスト210との間の通信は破線の矢印によって表されている。一実施形態においてネットワークインタフェース214は、総合デジタル通信網ISDN:integrated services digital network)カードケーブルモデム衛星モデム、又は対応するタイプの電話線データ通信接続を与えるモデムを含み得る。別の例として、ネットワークインタフェース214は、コンパチブルなローカルエリアネットワーク(LAN)にデータ通信接続を与えるLANカードを含み得る。別の実施形態において、ネットワークインタフェース214は、無線周波数受信器及び送信器及び/又は光学(例えば赤外線受信器及び送信器に接続されたイーサネットポートを含み得る。ネットワークインタフェース214の具体的な設計及び実施は、LIDARシステム100及びホスト210が動作するように意図された1又は複数の通信ネットワークに依存する。例えば、ネットワークインタフェース214を用いて、3DモデルやLIDARシステム100の動作パラメータのようなLIDARシステム100の出力を外部システムに提供することができる。他の実施形態では、通信ユニットを用いて、例えば外部システムから命令を受信し、検査された環境に関する情報を受信し、別のセンサからの情報を受信することができる。

0060

[0133]図2Bは、複数の投影ユニット102を含むLIDARシステム100のモノスタティック構成の一例を示す。「モノスタティック構成(monostatic configuration)」という用語は、LIDARシステムから出射する投影光及びLIDARシステムに入射する反射光が少なくとも部分的に共有される光路を通るLIDARシステム構成を広く指す。一例において、アウトバウンド光ビーム及びインバウンド光ビームは、双方の光ビームが通る少なくとも1つの光学アセンブリを共有する。別の例では、アウトバウンド光放射は光学ウィンドウ(図示せず)を通過し、インバウンド光放射は同一の光学ウィンドウ(図示せず)を通過し得る。モノスタティック構成は、スキャンユニット104が単一の光偏向器114を含み、これが投影光を視野120の方へ誘導すると共に反射光をセンサ116の方へ誘導する構成を含み得る。図示のように、投影光204及び反射光206は双方とも非対称偏向器216に入射する。「非対称偏向器」という用語は、2つの側を有する任意の光学デバイスであって、一方の側から入射する光ビームを第2の側から入射する光ビームを偏向させるのとは異なる方向に偏向させ得るものを指す。一例において、非対称偏向器は投影光204を偏向させず、反射光206をセンサ116の方へ偏向させる。非対称偏向器の一例は偏光ビームスプリッタを含み得る。別の例において、非対称216は、光を一方向にのみ通過させることができる光アイソレータを含み得る。本開示に従って、LIDARシステム100のモノスタティック構成は、反射光が光源112に入射するのを防止すると共に全ての反射光をセンサ116の方へ誘導することで検出感度を増大させる非対称偏向器を含み得る。

0061

[0134]図2Bの実施形態において、LIDARシステム100は、共通の光偏向器114に照準を合わせた単一の光源112をそれぞれ備える3つの投影ユニット102を含む。一実施形態において、複数の光源112(2つ以上の光源を含む)は実質的に同じ波長で光を投影することができ、各光源112は概ね、視野の異なるエリア(120A、120B、120Cとして図に示されている)に関連付けられている。これによって、1つの光源112で達成され得るよりも広い視野のスキャンが可能となる。別の実施形態では、複数の光源102は異なる波長で光を投影することができ、全ての光源112を視野120の同じ部分(又は重複部分)に誘導することができる。

0062

[0135]図2Cは、投影ユニット102が一次光源112A及び二次光源112Bを含むLIDARシステム100の例を示す。一次光源112Aは、SNR及び検出範囲を最適化するため、人の目に感知されるよりも長い波長の光を投影することができる。例えば一次光源112Aは、約750nmから1100nmの間の波長の光を投影できる。これに対して二次光源112Bは、人の目に見える波長の光を投影することができる。例えば二次光源112Bは、約400nmから700nmの間の波長の光を投影できる。一実施形態において、二次光源112Bは、一次光源112Aによって投影される光と実質的に同じ光路に沿って光を投影できる。双方の光源は時間同期することができ、同時に又は交互のパターンで光放出を投影できる。交互のパターンは、光源が同時にアクティブにならないことを意味し、相互干渉を軽減することができる。波長範囲及び活性スケジュールの他の組み合わせも実施され得ることは当業者に認められよう。

0063

[0136] いくつかの実施形態に従って、二次光源112BがLIDAR光学出力ポートに近すぎる場合、人はまばたきする可能性がある。これによって、近赤外スペクトルを利用する典型的なレーザ源では実現できない目に安全な機構を保証し得る。別の実施形態において、二次光源112Bは、POS(point of service:サービス提供時点管理)における較正及び信頼性のため使用することができる。これは、車両110に対して地面から特定の高さの特別なリフレクタ/パターンを用いて行われるヘッドライトの較正と多少類似した方法で行われる。POSのオペレータは、LIDARシステム100から指定距離にある試験パターンボード等の特徴的なターゲット上のスキャンパターンを単に目視検査することで、LIDARの較正を調べることができる。更に、二次光源112Bは、LIDARがエンドユーザのため動作しているという動作信頼性のための手段を提供できる。例えばシステムは、光偏向器114の前に人が手を置いてその動作を試すことができるように構成され得る。

0064

[0137] また、二次光源112Bは、一次光源112Aが故障した場合にバックアップシステムとして兼用できる非可視要素も有し得る。この特徴は、高い機能的安全性ランクを有するフェイルセーフデバイスに有用であり得る。二次光源112Bが可視であることを踏まえ、更にコスト及び複雑さの理由から、二次光源112Bは一次光源112Aよりも小さいパワーを伴い得る。従って、もし一次光源112Aが故障した場合、システムの機能性は二次光源112Bの機能及び能力セットへ低下することになる。二次光源112Bの能力は一次光源112Aの能力よりも劣る場合があるが、LIDARシステム100のシステムは、車両110が目的地に安全に到着できるように設計され得る。

0065

[0138]図2Dは、LIDARシステム100の一部となり得る非対称偏向器216を示す。図示されている例において、非対称偏向器216は、反射面218(ミラー等)及び一方向偏向器220を含む。必ず当てはまるわけではないが、非対称偏向器216は任意選択的に静電型偏向器(static deflector)とすることができる。非対称偏向器216は、例えば図2B及び図2Cに示すように、少なくとも1つの偏向器114を介した光の送信及び受信に共通の光路を可能とするため、LIDARシステム100のモノスタティック構成において使用できる。しかしながら、ビームスプリッタのような典型的な非対称偏向器は、特に送信路よりもパワー損失に敏感である可能性のある受信路において、エネルギ損失によって特徴付けられる。

0066

[0139]図2Dに示されているように、LIDARシステム100は送信路に位置決めされた非対称偏向器216を含むことができる。非対称偏向器216は、送信光信号受信光信号とを分離するための一方向偏向器220を含む。任意選択的に、一方向偏向器220は送信光に対して実質的に透明であり、受信光に対して実質的に反射性であり得る。送信光は投影ユニット102によって生成され、一方向偏向器220を通ってスキャンユニット104へ進むことができる。スキャンユニット104は送信光を光アウトレットの方へ偏向させる。受信光は光インレットを通って少なくとも1つの偏向要素114に到達し、偏向要素114は反射信号を光源から離れて検知ユニット106へ向かう別の経路に偏向させる。任意選択的に、非対称偏向器216は、一方向偏向器220と同一の偏光軸直線偏光される偏光光源112と組み合わせてもよい。特に、アウトバウンド光ビームの断面は反射信号の断面よりも著しく小さい。従って、LIDARシステム100は、放出された偏光ビームを非対称偏向器216の寸法まで集束させるか又は他の方法で操作するための1つ以上の光学コンポーネント(例えばレンズ、コリメータ)を含み得る。一実施形態において、一方向偏向器220は、偏光ビームに対して事実上透明である偏光ビームスプリッタとすることができる。

0067

[0140] いくつかの実施形態に従って、LIDARシステム100は、放出光の偏光を変えるための光学系222(例えば4分の1波長位相差板)を更に含み得る。例えば、光学系222は放出光ビームの直線偏光を円偏光に変えることができる。視野から反射してシステム100に戻った光は、偏向器114を通って光学系222に到達し、送信光とは逆回りの円偏光である。次いで光学系222は、受信した反対回りの偏光を、偏光ビームスプリッタ216と同一の軸でない直線偏光に変換する。上記のように、ターゲットまでの距離を伝達するビーム光学分散のため、受信光部分は送信光部分よりも大きい。

0068

[0141]受信光の一部は一方向偏向器220に入射し、一方向偏向器220は、いくらかのパワー損失を伴って光をセンサ106の方へ反射する。しかしながら、受信光の別の部分は、一方向偏向器220を取り囲む反射面218(例えば偏光ビームスプリッタのスリット)に入射する。反射面218は、実質的にパワー損失なしで光を検知ユニット106の方へ反射する。一方向偏向器220は、様々な偏光軸及び方向から構成された光を反射し、これは最終的には検出器に到達する。任意選択的に、検知ユニット106は、レーザ偏光に依存せず、主に特定波長範囲入射光子量に対する感度が高いセンサ116を含むことができる。

0069

[0142] 提案される非対称偏向器216は、貫通孔を備えた単純なミラーに比べてはるかに優れた性能を提供することに留意するべきである。孔を備えたミラーでは、孔に到達した反射光は全て検出器から失われる。しかしながら偏向器216では、一方向偏向器220がその光のかなりの部分(例えば約50%)を各センサ116の方へ偏向させる。LIDARシステムにおいて、遠隔距離からLIDARに到達する光子数は極めて限られるので、光子捕獲率の向上は重要である。

0070

[0143] いくつかの実施形態に従って、ビーム分割及びステアリングのためのデバイスが記載される。第1の偏光を有する光源から偏光ビームを放出することができる。放出されたビームは偏光ビームスプリッタアセンブリを通過するように誘導できる。偏光ビームスプリッタアセンブリは、第1の側の一方向スリット及び反対側のミラーを含む。一方向スリットによって、放出された偏光ビームを4分の1波長位相差板の方へ伝達することができる。4分の1波長位相差板は、放出された信号を偏光信号ら線形信号へ(又はその逆に)変化させることで、後に反射ビームが一方向スリットを通過できないようにする。

0071

スキャンユニット
[0144]図3Aから図3Dは、LIDARシステム100におけるスキャンユニット104の様々な構成及びその役割を示す。具体的には、図3AはMEMSミラー(例えば方形)を備えたスキャンユニット104を示す図であり、図3BはMEMSミラー(例えば円形)を備えたスキャンユニット104を示す図であり、図3CはモノスタティックスキャンLIDARシステムで使用されるリフレクタのアレイを備えたスキャンユニット104を示す図であり、図3DはLIDARシステム100の周りの環境を機械的にスキャンする例示的なLIDARシステム100を示す図である。スキャンユニット104の図示されている構成は単なる例示であり、本開示の範囲内で多くの変形及び変更を有し得ることは、当業者に認められよう。

0072

[0145]図3Aは、単一軸の方形MEMSミラー300を備えた例示的なスキャンユニット104を示す。この例において、MEMSミラー300は少なくとも1つの偏向器114として機能する。図示のように、スキャンユニット104は1つ以上のアクチュエータ302(具体的には302A及び302B)を含み得る。一実施形態において、アクチュエータ302は、半導体(例えばシリコン)で作製することができ、作動コントローラによって印加された電気信号に応答して寸法を変える圧電層(例えばPZTチタン酸ジルコン酸塩窒化アルミニウム)と、半導体層と、ベース層と、を含む。一実施形態において、アクチュエータ302の物理特性は、電流が流れた場合にアクチュエータ302に加わる機械的応力を決定し得る。圧電材料が活性化されると、これがアクチュエータ302に力を加えてアクチュエータ302を曲げる。一実施形態において、ミラー300が特定の角度位置に偏向した場合のアクティブ状態の1つ以上のアクチュエータ302の抵抗率(Ractive)を測定し、休止状態の抵抗率(Rrest)と比較することができる。Ractiveを含むフィードバックは、予想角と比べられる実際のミラー偏向角を決定するための情報を与え、必要に応じてミラー300の偏向を補正することができる。RrestとRactiveとの差を、ループを閉じるように機能し得る角度偏向値へのミラー駆動相関付けることができる。この実施形態は、実際のミラー位置の動的追跡のために使用され、線形モード及び共振モードの双方のMEMSミラースキームにおいて応答、振幅偏向効率、及び周波数を最適化することができる。この実施形態については図32から図34を参照して以下で更に詳しく説明する。

0073

[0146]スキャン中、接点304Aから接点304Bまで(アクチュエータ302A、ばね306A、ミラー300、ばね306B、及びアクチュエータ302Bを介して)電流が流れ得る(図では破線で表されている)。絶縁ギャップ310のような半導体フレーム308の絶縁ギャップによって、アクチュエータ302A及び302Bは、ばね306及びフレーム308を介して電気的に接続された2つの別個のアイランドとなり得る。電流、又は任意の関連付けられた電気的パラメータ電圧電流周波数、容量、比誘電率等)を、関連した位置フィードバックによって監視することができる。コンポーネントのうち1つが損傷する機械的故障の場合、構造を流れる電流が変わり、機能的な較正値から変化する。極端な状況では(例えば、ばねが破損した場合)、故障した要素による電気チェーン回路遮断のため、電流は完全に中断する。

0074

[0147]図3Bは、二軸円形MEMSミラー300を備えた別の例示的なスキャンユニット104を示す。この例において、MEMSミラー300は少なくとも1つの偏向器114として機能する。一実施形態において、MEMSミラー300は約1mmから約5mmの間の直径を有し得る。図示のように、スキャンユニット104は、それぞれ異なる長さである可能性がある4つのアクチュエータ302(302A、302B、302C、及び302D)を含み得る。図示する例において、電流(図では破線で表されている)は接点304Aから接点304Dへ流れるが、他の場合、電流は接点304Aから接点304Bへ、接点304Aから接点304Cへ、接点304Bから接点304Cへ、接点304Bから接点304Dへ、又は接点304Cから接点304Dへ流れ得る。いくつかの実施形態に従って、二軸MEMSミラーは、水平方向及び垂直方向に光を偏向させるように構成できる。例えば二軸MEMSミラーの偏向角は、垂直方向に約0°から30°の間であり、水平方向に約0°から50°の間とすることができる。ミラー300の図示されている構成は多くの変形及び変更を有し得ることは当業者に認められよう。一例において、少なくとも偏向器114は、二軸方形ミラー又は単一軸円形ミラーを有することも可能である。円形ミラー及び方形ミラーの例は、単に一例として図3A及び図3Bに示されている。システム仕様に応じて任意の形状を採用できる。一実施形態においては、アクチュエータ302を少なくとも偏向器114の一体的な部分として組み込んで、MEMSミラー300を移動させるためのパワーを直接与えられるようになっている。更に、MEMSミラー300は1つ以上の剛性支持要素によってフレーム308に接続することができる。別の実施形態では、少なくとも偏向器114は静電又は電磁MEMSミラーを含み得る。

0075

[0148] 上述のように、モノスタティックスキャンLIDARシステムは、投影光204の放出及び反射光206の受光のために同じ光路の少なくとも一部を利用する。アウトバウンド経路の光ビームはコリメートされて細いビームに集束され得るが、帰還経路の反射は分散のためより大きい光部分に広がる。一実施形態において、スキャンユニット104は帰還経路において大きい反射エリアを有し、反射(すなわち反射光206)をセンサ116へ方向転換する非対称偏向器216を有し得る。一実施形態において、スキャンユニット104は、大きい反射エリアを備えたMEMSミラーを含むことができ、視野及びフレームレート性能に対する影響は無視できる程度である。非対称偏向器216についての更なる詳細は図2Dを参照して以下に与えられる。

0076

[0149] いくつかの実施形態において(例えば図3Cに例示されているように)、スキャンユニット104は、小型の光偏向器(例えばミラー)を備えた偏向器アレイ(例えばリフレクタアレイ)を含み得る。一実施形態においては、同期して動作する個別の小型の光偏向器のグループとして光偏向器114を実施することで、光偏向器114は、より大きな偏向角及び高いスキャンレートで実行可能となる。偏向器アレイは事実上、有効エリアに関して大型の光偏向器(例えば大型のミラー)として機能できる。偏向器アレイは、共有ステアリングアセンブリ構成を用いて動作させることができる。この構成によって、センサ116は、光源112によって同時に照射される視野120の実質的に同じ部分からの反射光子を収集できる。「同時に」という用語は、2つの選択された機能が、一致するか又は重複する時間期間中に発生することを意味する。この場合、一方が他方の持続期間中に開始及び終了するか、又は後のものが他方の完了前に開始する。

0077

[0150]図3Cは、小型のミラーを有するリフレクタアレイ312を備えたスキャンユニット104の一例を示す。この実施形態において、リフレクタアレイ312は少なくとも1つの偏向器114として機能する。リフレクタアレイ312は、(個別に又は一緒に)枢動し、光パルスを視野120の方へ向かわせるように構成された複数のリフレクタユニット314を含み得る。例えばリフレクタアレイ312は、光源112から投影された光のアウトバウンド経路の一部であり得る。具体的には、リフレクタアレイ312は、投影光204を視野120の一部へ誘導することができる。また、リフレクタアレイ312は、視野120の照射部分内に位置する物体の表面から反射した光の帰還経路の一部であり得る。具体的には、リフレクタアレイ312は、反射光206をセンサ116の方へ又は非対称偏向器216の方へ誘導することができる。一例において、リフレクタアレイ312の面積は約75から約150mm2の間であり得る。ここで、各リフレクタユニット314は約10μmの幅を有し、支持構造は100μmよりも低くすることができる。

0078

[0151] いくつかの実施形態によれば、リフレクタアレイ312は、操縦可能(steerable)偏向器の1つ以上のサブグループを含み得る。電気的に操縦可能な偏向器の各サブグループは、リフレクタユニット314のような1つ以上の偏向器ユニットを含み得る。例えば、各操縦可能偏向器ユニット314は、MEMSミラー、反射面アセンブリ、及び電気機械アクチュエータのうち少なくとも1つを含むことができる。一実施形態において、各リフレクタユニット314は、1つ以上の別個の軸の各々に沿って特定の角度に傾斜するように個々のプロセッサ(図示せず)によって個別に制御することができる。あるいは、リフレクタアレイ312は、リフレクタユニット314の少なくとも一部が同時に枢動してほぼ同じ方向を指し示すようにリフレクタユニット314の移動を同期して管理するよう構成された共通コントローラ(例えばプロセッサ118)に関連付けることができる。

0079

[0152] 更に、少なくとも1つのプロセッサ118は、アウトバウンド経路用の少なくとも1つのリフレクタユニット314(以降、「送信用ミラー」と称する)、及び、帰還経路用のリフレクタユニット314のグループ(以降、「受信用ミラー」と称する)を選択することができる。本開示に従って、送信用ミラーの数を増やすと、反射光子ビーム広がりが増大する可能性がある。更に、受信用ミラーの数を減らすと、受信フィールドが狭くなり、周囲光条件(雲、雨、霧、極端な熱、及び他の環境条件)が補償され、信号対雑音比が改善する可能性がある。また、上記のように、放出光ビームは典型的に反射光部分よりも細いので、偏向アレイの小さい部分によって充分に検出できる。更に、送信に使用される偏向アレイの部分(例えば送信用ミラー)から反射した光がセンサ116に到達するのを阻止し、これによって、システム動作に対するLIDARシステム100の内部反射の効果を低減できる。また、少なくとも1つのプロセッサ118は、1つ以上のリフレクタユニット314を枢動させて、例えば熱的効果及び利得効果による機械的障害及びドリフトを克服することができる。一例において、1つ以上のリフレクタユニット314は、意図されるもの(周波数、レート、速度等)とは異なるように移動する可能性があるが、それらの移動は偏向器を適切に電気的に制御することによって補償され得る。

0080

[0153]図3Dは、LIDARシステム100の環境を機械的にスキャンする例示的なLIDARシステム100を示す。この例において、LIDARシステム100は、LIDARシステム100の軸を中心として筐体200を回転させるためのモータ又は他の機構を含み得る。あるいは、モータ(又は他の機構)は、1つ以上の光源112及び1つ以上のセンサ116が搭載されているLIDARシステム100の剛性構造を機械的に回転させ、これによって環境をスキャンすることができる。上述のように、投影ユニット102は、光放出を投影するように構成された少なくとも1つの光源112を含み得る。投影された光放出はアウトバウンド経路に沿って視野120の方へ進むことができる。具体的には、投影光204が任意選択的な光学ウィンドウ124の方へ進む場合、投影された光放出は偏向器114Aによって反射されて出射アパーチャ314を通ることができる。反射された光放出は、物体208から帰還経路に沿って検知ユニット106の方へ進むことができる。例えば、反射光206が検知ユニット106の方へ進む場合、反射光206は偏向器114Bによって反射される。1つ以上の光源又は1つ以上のセンサを同期して回転させるための回転機構を備えたLIDARシステムは、内部光偏向器を操縦する代わりに(又はそれに加えて)この同期させた回転を用い得ることは、当業者によって認められよう。

0081

[0154]視野120のスキャンが機械的である実施形態において、投影された光放出は、投影ユニット102をLIDARシステム100の他の部分から分離する壁316の一部である出射アパーチャ314へ誘導できる。いくつかの例において、壁316は、偏向器114Bを形成するため反射性材料で覆われた透明な材料(例えばガラス)で形成することができる。この例において、出射アパーチャ314は、反射性材料で覆われていない壁316の部分に相当し得る。これに加えて又はこの代わりに、出射アパーチャ314は壁316の孔又は切断部を含み得る。反射光206は、偏向器114Bによって反射され、検知ユニット106の入射アパーチャ318の方へ誘導され得る。いくつかの例において、入射アパーチャ318は、特定の波長範囲内の波長を検知ユニット106に入射させると共に他の波長を減衰させるように構成されたフィルタウィンドウを含み得る。視野120からの物体208の反射は、偏向器114Bによって反射されてセンサ116に入射することができる。反射光206のいくつかの特性を投影光204と比較することによって、物体208の少なくとも1つの様相を決定できる。例えば、投影光204が光源112によって放出された時点とセンサ116が反射光206を受光した時点とを比較することによって、物体208とLIDARシステム100との間の距離を決定できる。いくつかの例では、物体208の形状、色、材料のような他の様相も決定され得る。

0082

[0155] いくつかの例において、LIDARシステム100(又は、少なくとも1つの光源112及び少なくとも1つのセンサ116を含むその一部)を、少なくとも1つの軸を中心として回転させて、LIDARシステム100の周囲の3次元マップを決定することができる。例えば、視野120をスキャンするため、矢印320で示されているように実質的な垂直軸を中心としてLIDARシステム100を回転させることができる。図3Dは、矢印320で示されているように軸を中心として時計回りにLIDARシステム100を回転させることを示すが、これに加えて又はこの代わりに、LIDARシステム100を反時計回りに回転させてもよい。いくつかの例において、LIDARシステム100は垂直軸を中心として360度回転させることができる。他の例において、LIDARシステム100は、LIDARシステム100の360度よりも小さいセクタに沿って前後に回転させ得る。例えば、LIDARシステム100を、完全な回転を行うことなく軸を中心として前後に揺れるプラットフォーム上に搭載することができる。

0083

検知ユニット
[0156]図4Aから図4Eは、LIDARシステム100における検知ユニット106の様々な構成及びその役割を示す。具体的には、図4Aは、検出器アレイを備えた例示的な検知ユニット106を示す図であり、図4Bは、2次元センサを用いたモノスタティックスキャンを示す図であり、図4Cは、2次元センサ116の一例を示す図であり、図4Dは、センサ116に関連付けられたレンズアレイを示す図であり、図4Eは、レンズ構造を示す3つの図を含む。図示されている検知ユニット106の構成は単なる例示であり、本開示の原理と一致する多くの代替的な変形及び変更を有し得ることは、当業者に認められよう。

0084

[0157]図4Aは、検出器アレイ400を備えた検知ユニット106の一例を示す。この例において、少なくとも1つのセンサ116は検出器アレイ400を含む。LIDARシステム100は、LIDARシステム100から異なる距離に位置する(数メートル又はそれ以上であり得る)視野120内の物体(例えば自転車208A及び雲208B)を検出するように構成されている。物体208は、固体の物体(例えば道路、木、自動車、人物)、流体の物体(例えば霧、水、大気中の粒子)、又は別のタイプの物体(例えばほこり又は照射された粉末状物体)であり得る。光源112から放出された光子が物体208に当たると、光子は反射、屈折、又は吸収される。典型的には、図に示されているように、物体208Aから反射した光子のうち一部分のみが任意選択的な光学ウィンドウ124に入射する。距離の15cmまでの変化によって1nsの移動時間差が生じるので(光子は物体208との間で光の速度で移動するので)、異なる物体に当たった異なる光子の移動時間時間差は、充分に迅速な応答で光時間センサによって検出可能であり得る。

0085

[0158]センサ116は、視野120から反射して戻ってきた光子パルスの光子を検出するための複数の検出要素402を含む。検出要素は全て、(例えば図示されているような)矩形配列又は他の任意の配列を有し得る検出器アレイ400に含まれ得る。検出要素402は同時に又は部分的に同時に動作することができる。具体的には、各検出要素402はサンプリング期間ごとに(例えば1ナノ秒ごとに)検出情報を提供し得る。一例において、検出器アレイ400は、共通のシリコン基板上の単一光子アバランシェダイオード(SPAD、検出要素402として機能する)のアレイから構築された固体単一光子検知デバイスであるSiPM(シリコン光電子増倍管)とすることができる。他の非シリコン材料による同様の光電子増倍管も使用できる。SiPMデバイスはデジタル/スイッチングモードで動作するが、全ての微小セルが並列に読み出されて、異なるSPADによって検出される単一の光子から数百及び数千の光子までのダイナミックレンジ内で信号を発生することを可能とするので、SiPMはアナログデバイスである。上述のように、2つ以上のタイプのセンサが実施され得る(例えばSiPM及びAPD)。場合によっては、検知ユニット106は、別個の又は共通のシリコン基板上に、SiPMアレイに一体化された少なくとも1つのAPD及び/又はSiPMに隣接して配置された少なくとも1つのAPD検出器を含む。

0086

[0159] 一実施形態において、検出要素402を複数の領域404にグループ化することができる。これらの領域は、センサ116内の(例えば検出器アレイ400内の)幾何学的ロケーション又は環境であり、様々な形状に形成できる(例えば図示のような矩形、方形、環状等、又は他の任意の形状)。ある領域404の幾何学的エリア内に含まれる個々の検出器の全てがその領域に属するわけではないが、ほとんどの場合、領域間境界にある程度の重複が望ましい場合を除いて、それらの検出器は、センサ310の他のエリアをカバーする他の領域404には属さない。図4Aに示されているように、これらの領域は非重複領域404であり得るが、重複する場合もある。全ての領域に、その領域に関連した領域出力回路406を関連付けることができる。領域出力回路406は、対応する検出要素402のグループの領域出力信号を提供できる。例えば、出力回路406の領域は加算回路であり得るが、他の形態の各検出器の出力の単一出力への組み合わせも採用され得る(スカラー、ベクトル、又は他の任意のフォーマットにかかわらず)。任意選択的に、各領域404は単一のSiPMであるが、必ずしもそうとは限らず、1つの領域は、単一のSiPMの小部分、いくつかのSiPMのグループ、又は異なるタイプの検出器の組み合わせとしてもよい。

0087

[0160] 図示されている例において、処理ユニット108は、(例えば車両110内の)ホスト210(の内部又は外部の)分離された筐体200Bに配置され、検知ユニット106は、反射光を分析するための専用プロセッサ408を含み得る。あるいは、反射光206を分析するために処理ユニット108を使用してもよい。LIDARシステム100は、図示されている例とは異なるやり方で複数の筐体に実装できることに留意するべきである。例えば、光偏向器114を、投影ユニット102及び/又は検知モジュール106とは異なる筐体に配置してもよい。一実施形態において、LIDARシステム100は、電気ワイヤ接続、無線接続(例えばRF接続)、光ファイバケーブル、及び上記のものの任意の組み合わせのような異なるやり方で相互に接続された複数の筐体を含むことができる。

0088

[0161] 一実施形態において、反射光206の分析は、異なる領域の個々の検出器の出力に基づいて反射光206の飛行時間を決定することを含み得る。任意選択的に、プロセッサ408は、複数の領域の出力信号に基づいて反射光206の飛行時間を決定するように構成できる。飛行時間に加えて、処理ユニット108は反射光206を分析して帰還パルス全体の平均パワーを決定することができ、帰還パルス期間における光子分布/信号(「パルス形状」)を決定できる。図示されている例において、任意の検出要素402の出力は直接プロセッサ408に送信されず、領域404の他の検出器の信号と組み合わされ(例えば加算され)た後にプロセッサ408に渡すことができる。しかしながら、これは単なる例示であり、センサ116の回路は検出要素402からの情報を他のルートで(領域出力回路406を介することなく)プロセッサ408に送信することも可能である。

0089

[0162]図4Bは、2次元センサ116を用いてLIDARシステム100の環境をスキャンするように構成されたLIDARシステム100を示す図である。図4Bの例において、センサ116は、4×6の検出器410(「画素」とも称される)の行列である。一実施形態において、画素サイズは約1×1mmとすることができる。センサ116は、2つの非平行な軸(例えば、図示の例に示されているような直交軸)において検出器410の2つ以上のセット(例えば行、列)を有するという意味で2次元である。センサ116内の検出器410の数は、例えば所望の分解能、信号対雑音比(SNR)、所望の検出距離等に応じて、様々な実施において変動し得る。例えば、センサ116は5から5,000までのいずれかの数の画素を有し得る。別の例(図には示していない)では、センサ116を1次元行列としてもよい(例えば1×8画素)。

0090

[0163] 各検出器410は複数の検出要素402を含み得る。検出要素402は、例えばアバランシェフォトダイオード(APD)、単一光子アバランシェダイオード(SPAD)、アバランシェフォトダイオード(APD)と単一光子アバランシェダイオード(SPAD)の組み合わせ、又は、レーザパルス送信イベントから受信イベントまでの飛行時間及び受信光子の強度の双方を測定する検出要素である。例えば各検出器410は、20から5,000までのいずれかの数のSPADを含み得る。各検出器410内の検出要素402の出力を、加算、平均化、又は他の方法で組み合わせて、一体的な画素出力を与えることができる。

0091

[0164] 図示されている例において、検知ユニット106は、LIDARシステム100の視野120よりも小さい視野を有する2次元センサ116(又は複数の2次元センサ116)を含み得る。この考察において、視野120(いずれの方向にも移動、回転、又は横揺れすることなくLIDARシステム100によってスキャンできる全視野)を「第1のFOV412」と表記し、より小さいセンサ116の視野を「第2のFOV412」(「瞬時FOV」と言い換え可能である)と表記する。第1のFOV412に対する第2のFOV414の対象範囲は、LIDARシステム100の具体的な用途に応じて異なり、例えば0.5%から50%の間とすることができる。一例において、第2のFOV412は垂直方向に細長い0.05°から1°の間とすればよい。LIDARシステム100が2つ以上の2次元センサ116を含む場合であっても、それらのセンサアレイの視野の組み合わせは依然として第1のFOV412よりも小さく、例えば少なくとも5分の1、少なくとも10分の1、少なくとも20分の1、少なくとも50分の1であり得る。

0092

[0165] 第1のFOV412をカバーするため、スキャンユニット106は、異なる時点で環境の異なる部分から到達する光子をセンサ116へ誘導することができる。図示されているモノスタティック構成では、投影光204を視野120の方へ誘導すると共に、少なくとも1つの偏向器114が瞬時位置に配置された場合、スキャンユニット106は反射光206をセンサ116へ誘導することができる。典型的に、第1のFOV412のスキャン中の各時点で、LIDARシステム100によって放出される光ビームは、(角度開口で)第2のFOV414よりも大きい環境の部分をカバーし、スキャンユニット104及びセンサ116によって集光される環境の部分を含む。

0093

[0166]図4Cは2次元センサ116の一例を示す図である。この実施形態において、センサ116は8×5の検出器410の行列であり、各検出器410は複数の検出要素402を含む。一例において、検出器410Aはセンサ116の第2の行(「R2」と表記されている)及び第3の列(「C3」と表記されている)に位置し、4×3の検出要素402の行列を含む。別の例において、検出器410Bはセンサ116の第4の行(「R4」と表記されている)及び第6の列(「C6」と表記されている)に位置し、3×3の検出要素402の行列を含む。従って、各検出器410内の検出要素402の数は一定であるか又は異なる場合があり、共通アレイ内の異なる検出器410は異なる数の検出要素402を有し得る。各検出器410内の全ての検出要素402の出力を、加算、平均化、又は他の方法で組み合わせて、単一の画素出力値を提供することができる。図4Cの例における検出器410は矩形の行列(直線の行及び直線の列)に配列されているが、例えば円形の配列又はハニカム配列のような他の配列を用いてもよい。

0094

[0167] いくつかの実施形態によれば、各検出器410からの測定によって、光パルス放出イベントから受信イベントまでの飛行時間及び受信光子の強度を決定することが可能となる。受信イベントは、光パルスが物体208から反射された結果であり得る。飛行時間は、反射物体から任意選択的な光学ウィンドウ124までの距離を表すタイムスタンプ値であり得る。飛行時間値は、時間相関単一光子計数TCSPC:Time Correlated Single Photon Counter)のような光子検出及び計数方法信号積分及び検定(signal integration and qualification)のようなアナログの光子検出方法(アナログ−デジタル変換又は簡素な比較器による)、又は他の方法によって認識することができる。

0095

[0168] いくつかの実施形態において、また図4Bを参照すると、スキャンサイクル中、少なくとも1つの光偏向器114の各瞬時位置を視野120の特定の部分122に関連付けることができる。センサ116の設計によって、視野120の単一部分からの反射光と複数の検出器410との関連付けが可能となる。従って、LIDARシステムのスキャン解像度は、(1スキャンサイクル当たりの)瞬時位置の数にセンサ116内の検出器410の数を乗算することによって表され得る。各検出器410(すなわち各画素)からの情報は、3次元空間においてキャプチャされた視野が構築される基本データ要素を表す。これは例えば、ポイントクラウド表現の基本要素を含み、空間位置及び関連付けられた反射強度値を有する。一実施形態において、複数の検出器410によって検出された視野120の単一部分からの反射は、視野120のその単一部分内に位置する様々な物体から戻ってきた可能性がある。例えば、視野120の単一部分は遠視野で50×50cmよりも大きい場合があり、相互に部分的に重なった2つ、3つ、又はそれ以上の物体を容易に含み得る。

0096

[0169]図4Dは、ここに開示される主題の例に従ったセンサ116の一部の横断面図である。センサ116の図示されている部分は、4つの検出要素402(例えば4つのSPAD、4つのAPD)を含む検出器アレイ400の一部を含む。検出器アレイ400は、相補型金属酸化膜半導体(CMOS)で実現された光検出器センサとすればよい。検出要素402の各々は、基板周囲内に位置決めされた検知エリアを有する。必ずしもそうとは限らないが、センサ116は、狭い視野を有するモノスタティックLiDARシステムにおいて使用することができる(例えば、スキャンユニット104が異なる時点で異なる視野部分をスキャンするので)。入射光ビームのための狭い視野は、実施された場合、焦点外撮像の問題を解消する。図4Dに例示されているように、センサ116は複数のレンズ422(例えばマイクロレンズ)を含むことができ、各レンズ422は入射光を異なる検出要素402の方へ(例えば検出要素402のアクティブエリアの方へ)誘導することができ、これは焦点外の撮像が問題でない場合に使用可能であり得る。センサ116に到達する光のほとんどを検出要素402のアクティブエリアの方へ偏向させ得るので、レンズ422を用いて検出器アレイ400の開口率(optical fill factor)及び感度を増大することができる。

0097

[0170]図4Dに例示されているような検出器アレイ400は、様々な方法(例えばインプラント)によってシリコン基板内に埋め込まれたいくつかの層を含むことができ、この結果、検知エリア、金属層に対する接点要素、及び絶縁要素(例えばシャロートレンチインプラント(STI)、ガードリング、光学トレンチ等)が得られる。検知エリアは、CMOS検出器における体積測定要素(volumetric element)であり、デバイスに適正な電圧バイアスが印加された場合に、入射する光子の電流への光学的変換を可能とする。APD/SPADの場合、検知エリアは、電界の組み合わせによって、光子吸収により生じた電子増倍エリアの方へ引っ張り、このエリアで光子誘起電子が増幅されて、増倍された電子のアバランシェ破壊を引き起こす。

0098

[0171] 前側の照射された検出器(例えば図4Dに示されているような)は、半導体(シリコン)の上にある金属層と同じ側に入力光ポートを有する。金属層は、個々の光検出器要素(例えばアノード及びカソード)と、バイアス電圧クエンチングバラスト要素、及び共通アレイ内の他の光検出器のような様々な要素との電気的接続を実現する必要がある。光子が検出器の検知エリアに入射する際に通過する光学ポートは、金属層を介した通路で構成されている。この通路を介したいくつかの方向からの光の通過は、1つ以上の金属層(例えば図4Dの最も左側の検出器要素402に図示されている金属層ML6)によって阻止され得ることに留意するべきである。このような阻止は、検出器の全体的な光吸収効率を低下させる。

0099

[0172]図4Eは、ここに開示される主題の例に従った、それぞれにレンズ422が関連付けられた3つの検出要素402を示す。402(1)、402(2)、及び402(3)と表記された図4Eの3つの検出要素の各々は、センサ116の検出要素402の1つ以上に関連付けて実施され得るレンズ構成を示している。これらのレンズ構成の組み合わせも実施できることに留意するべきである。

0100

[0173]検出要素402(1)に関して図示されているレンズ構成では、関連付けられたレンズ422の焦点は半導体表面よりも上に位置することができる。任意選択的に、検出要素の異なる金属層の開口は、関連付けられたレンズ422によって生じる集束光円錐形整合した様々な大きさを有し得る。このような構造は、デバイス全体としてアレイ400の信号対雑音比及び分解能を改善することができる。パワーの伝送及び接地シールドのために大きい金属層が重要であり得る。この手法は例えば、入射光ビームが平行光線で構成され、撮像焦点が検出信号に対して何の影響も及ぼさない場合、狭い視野を有するモノスタティックLiDAR設計において有用であり得る。

0101

[0174]検出要素402(2)に関して図示されているレンズ構成では、スイートスポットを識別することによって、検出要素402による光子検出の効率を改善することができる。具体的には、CMOSで実装される光検出器は、検知体積エリア内に、光子がアバランシェ効果を生じる確率が最も高いスイートスポットを有し得る。従って、検出要素402(2)で例証されるように、レンズ422の焦点を検知体積エリア内部のスイートスポットロケーションに位置決めすることができる。レンズ形状及び焦点からの距離は、レンズから半導体材料内に埋め込まれた検知スイートスポットロケーションまでの経路に沿ってレーザビームが通過する全ての要素の屈折率を考慮に入れることができる。

0102

[0175]図4Eの右側の検出要素に関して図示されているレンズ構成では、拡散器及び反射要素を用いて、半導体材料における光子吸収の効率を改善することができる。具体的には、近IR波長は、シリコン材料の著しく長い経路によって、この経路を進む光子の高い吸収確率を達成する必要がある。典型的なレンズ構成では、光子は検知エリアを横断することがありし、吸収されて検出可能電子にならない可能性がある。光子が電子を生じる確率を改善する長い吸収経路によって、検知エリアの大きさは、典型的な製造プロセスで製造されるCMOSデバイスにとって実用的でない寸法(例えば数十um)になる。図4Eの最も右側の検出器要素は、入射光子を処理するための技法を示している。関連付けられたレンズ422は入射光を拡散器要素424上に集束する。一実施形態において、光センサ116は、検出器のうち少なくともいくつかの外面から離れたギャップ内に位置する拡散器を更に含み得る。例えば拡散器424は、光ビームを横方向へ(例えばできる限り垂直方向に)検知エリア及び反射性光学トレンチ426の方へ向けることができる。拡散器の位置は、焦点、焦点よりも上方、又は焦点よりも下方である。この実施形態において、入射光は、拡散器要素が配置されている特定のロケーション上に集束され得る。任意選択的に、検出器要素422は、光子誘起電子が失われて有効検出効率を低下させ得る非アクティブエリアを光学的に回避するように設計される。反射性光学トレンチ426(又は他の形態の光学的に反射性の構造)は、光子を検知エリア内往復させ、これによって検出の可能性が増大する。理想的には、光子が吸収されて電子/ホール対を生成するまで無制限に、光子は、検知エリア及び反射性トレンチから成るキャビティ内でトラップされる。

0103

[0176] 本開示に従って、入射する光子を吸収して高い検出確率に寄与するため、長い経路が生成される。また、検出要素422において、他の検出器に漏れて誤検出イベントを発生する可能性のあるなだれ中の寄生光子のクロストーク効果を低減するため、光学トレンチも実施することができる。いくつかの実施形態によれば、より高い歩留まりの受信信号を利用する、つまり、できるだけ多くの受信信号を受信し、信号の内部劣化で失われる信号が少なくなるように、光検出器アレイを最適化することができる。光検出器アレイは、(a)任意選択的に基板の上にある金属層を適切に設計することによって、半導体表面よりも上のロケーションに焦点を移動させること、(b)基板の最も応答性の高い/感度の高いエリア(すなわちは「スイートスポット」)に焦点を誘導すること、(c)基板よりも上方に拡散器を追加して信号を「スイートスポット」の方へ誘導すること、及び/又は反射性材料をトレンチに追加して、偏向された信号を反射して「スイートスポット」に戻すことによって、改善することができる。

0104

[0177] いくつかのレンズ構成において、レンズ422は、対応する検出要素402の中心の上方に焦点があるように位置決めされ得るが、必ずしもそうとは限らないことに留意するべきである。他のレンズ構成では、対応する検出要素402の中心に対するレンズ422の焦点の位置は、検出アレイ400の中心からの各検出要素402の距離に基づいてシフトされる。これは、中心から遠い検出器要素の方が軸から大きく外れた角度で光を受光する比較的大きい検出アレイ400において有用であり得る。焦点のロケーションを(例えば検出アレイ400の中心の方へ)シフトさせると、入射角の補正が可能となる。具体的には、焦点のロケーションを(例えば検出アレイ400の中心の方へ)シフトさせると、検出器の表面に対して同一角度に位置決めされた全ての検出要素で実質的に同じレンズ422を用いながら、入射角の補正が可能となる。

0105

[0178]検出要素402のアレイにレンズ422のアレイを追加することは、視野の小さい部分のみをカバーする比較的小さいセンサ116を用いる場合に有用であり得る。そのような場合、シーンからの反射信号は実質的に同じ角度から検出器アレイ400に到達するので、全ての光を個々の検出器上に容易に集束できるからである。また、一実施形態においては、空間的な区別性(distinctiveness)を犠牲にして、アレイ400全体の検出確率の増大を促進する(検出器/サブ検出器間の無効エリアで光子が「無駄になる」ことを防止する)ため、LIDARシステム100でレンズ422を用いることができる。この実施形態は、空間的な区別性を優先するCMOSRGBカメラのような従来の実施(すなわち、検出要素Aの方向に伝搬する光をレンズによって検出要素Bの方へ誘導することはできない、つまり、アレイの別の検出要素に「流す(bleed)」ことはできない)とは対照的である。任意選択的に、センサ116は、各々が対応する検出要素402に相関付けられたレンズ422のアレイを含むが、レンズ422のうち少なくとも1つは、第1の検出要素402へ伝搬する光を第2の検出要素402の方へ偏向させる(これによってアレイ全体の検出確率を増大することができる)。

0106

[0179] 具体的には、本開示のいくつかの実施形態に従って、光センサ116は光検出器のアレイ(例えば検出器アレイ400)を含むことができ、各光検出器(例えば検出器410)は、各検出器の外面を光が通過した場合に電流を流すように構成されている。更に、光センサ116は、光検出器のアレイの方へ光を誘導するように構成された少なくとも1つのマイクロレンズを含むことができ、少なくとも1つのマイクロレンズは焦点を有する。光センサ116は更に、少なくとも1つのマイクロレンズと光検出器のアレイとの間に介在すると共に少なくとも1つのマイクロレンズからアレイへ光を通過させるギャップを有する導電性材料の少なくとも1つの層を含むことができ、少なくとも1つの層は、少なくとも1つのマイクロレンズとアレイとの間に空間を維持するような大きさに形成され、ギャップ内で、光検出器のアレイの検出表面から離間したロケーションに焦点(例えば焦点は平面であり得る)を位置付ける。

0107

[0180] 関連する実施形態において、各検出器は複数の単一光子アバランシェダイオード(SPAD)又は複数のアバランシェフォトダイオード(APD)を含み得る。導電性材料は多層金属狭窄部(constriction)とすることができ、導電性材料の少なくとも1つの層はアレイ内の検出器に電気的に接続することができる。一例において、導電性材料の少なくとも1つの層は複数の層を含む。更に、ギャップは、少なくとも1つのマイクロレンズから焦点の方へ収束し、かつ、焦点の領域からアレイの方へ発散するような形状とすることができる。他の実施形態において、光センサ116は、各光検出器に隣接した少なくとも1つのリフレクタを更に含み得る。一実施形態において、レンズアレイに複数のマイクロレンズを配置し、検出器アレイに複数の検出器を配置することができる。別の実施形態において、複数のマイクロレンズは、アレイ内の複数の検出器へ光を投影するように構成された単一のレンズを含み得る。

0108

処理ユニット
[0181]図5Aから図5Cは、本開示のいくつかの実施形態に従った処理ユニット108の様々な機能を示している。具体的には、図5Aは視野の単一の部分の単一のフレーム時間内の放出パターンを示す図であり、図5Bは視野全体の単一のフレーム時間内の放出スキームを示す図であり、図5Cは単一のスキャンサイクル中に視野の方へ投影された実際の光放出を示す図である。

0109

[0182]図5Aは、少なくとも1つの光偏向器114の瞬時位置に関連付けられた視野120の単一の部分122の単一のフレーム時間内の放出パターンの4つの例を示す。本開示の実施形態に従って、処理ユニット108は、視野120のスキャンにおいて光束を変動させ得るように、少なくとも1つの光源112及び光偏向器114を制御する(又は、少なくとも1つの光源112及び少なくとも1つの光偏向器114の動作を連携させる)ことができる。他の実施形態に従って、処理ユニット108は少なくとも1つの光源112のみを制御し、光偏向器114は固定の既定パターンで移動又は枢動させることができる。

0110

[0183]図5Aの図AからDは、視野120の単一の部分122の方へ放出された光のパワーを経時的に示す。図Aにおいて、プロセッサ118は、視野120のスキャン中に初期光放出が視野120の部分122の方へ投影されるように光源112の動作を制御することができる。投影ユニット102がパルス光光源を含む場合、初期光放出は1つ以上の初期パルス(「パイロットパルス」とも称される)を含み得る。処理ユニット108は、初期光放出に関連付けられた反射についてのパイロット情報をセンサ116から受信することができる。一実施形態において、パイロット情報は、1つ以上の検出器(例えば1つ以上のSPAD、1つ以上のAPD、1つ以上のSiPM等)の出力に基づく単一の信号として、又は複数の検出器の出力に基づく複数の信号として表現され得る。一例において、パイロット情報はアナログ及び/又はデジタル情報を含み得る。別の例において、パイロット情報は単一の値及び/又は(例えば異なる時点及び/又はセグメントの異なる部分の)複数の値を含み得る。

0111

[0184]初期光放出に関連付けられた反射についての情報に基づいて、処理ユニット108は、この後に視野120の部分122の方へ投影される光放出のタイプを決定するように構成できる。視野120の特定部分について決定されたこの後の光放出は、同一のスキャンサイクル中に(すなわち同一のフレーム内で)、又は後続のスキャンサイクルで(すなわち後続のフレーム内で)実施され得る。この実施形態については図23から図25を参照して以下で更に詳しく説明する。

0112

[0185] 図Bにおいて、プロセッサ118は、視野120のスキャン中に異なる強度の光パルスが視野120の単一の部分122の方へ投影されるように光源112の動作を制御することができる。一実施形態において、LIDARシステム100は、1つ以上の異なるタイプの深度マップを生成するように動作可能であり得る。深度マップのタイプは例えば、ポイントクラウドモデル、ポリゴンメッシュ、深度画像(画像の各画素もしくは2Dアレイの深度情報を保持する)、又はシーンの他の任意のタイプの3Dモデルのうちいずれか1つ以上である。深度マップのシーケンスは、異なる深度マップが異なる時点で生成される時系列であり得る。スキャンサイクル(「フレーム」と言い換え可能である)に関連付けられたシーケンスの各深度マップは、対応するその後のフレーム時間の期間内に生成できる。一例において、典型的なフレーム時間は1秒未満持続し得る。いくつかの実施形態において、LIDARシステム100は、固定フレームレート(例えば毎秒10フレーム、毎秒25フレーム、毎秒50フレーム)を有するか、又はフレームレートは動的であり得る。他の実施形態において、シーケンス内の異なるフレームのフレーム時間は同一でない場合がある。例えばLIDARシステム100は、毎秒10フレームのレートを実施し、(平均)100ミリ秒で第1の深度マップ、92ミリ秒で第2のフレーム、142ミリ秒で第3のフレームを生成する等とすることができる。

0113

[0186] 図Cにおいて、プロセッサ118は、視野120のスキャン中に異なる持続時間に関連付けられた光パルスが視野120の単一の部分122の方へ投影されるように光源112の動作を制御することができる。一実施形態において、LIDARシステム100は、各フレームにおいて異なる数のパルスを発生するように動作可能であり得る。パルスの数は0から32の間のパルス(例えば1、5、12、28、又はそれ以上のパルス)で変動する可能性があり、以前の放出から得られた情報に基づき得る。光パルス間の時間は所望の検出範囲に依存し、500nsから5000nsまでの間とすることができる。一例において、処理ユニット108は、各光パルスに関連付けられた反射についての情報をセンサ116から受信することができる。この情報(又は情報の欠如)に基づいて、処理ユニット108は追加の光パルスが必要であるか否かを判定できる。図AからDにおける処理時間及び放出時間の期間は縮尺どおりでないことに留意するべきである。具体的には、処理時間は放出時間よりも著しく長い場合がある。図Dにおいて、処理ユニット102は連続波光源を含み得る。一実施形態において、初期光放出は光が放出される時間期間を含み、後続の放出は初期光放出に連続しているか、又は不連続であり得る。一実施形態において、連続的な放出の強度は経時的に変化し得る。

0114

[0187] 本開示のいくつかの実施形態に従って、放出パターンは、視野120の各部分ごとに決定することができる。言い換えると、プロセッサ118は、視野120の異なる部分の照射の差別化を可能とするように光放出を制御できる。一例において、プロセッサ118は、同一スキャンサイクル(例えば初期放出)からの反射光の検出に基づいて、視野120の単一の部分122に対する放出パターンを決定することができる。これによってLIDARシステム100は極めて動的となる。別の例において、プロセッサ118は、以前のスキャンサイクルからの反射光の検出に基づいて、視野120の単一の部分122に対する放出パターンを決定することができる。後続の放出について、以下のうちいずれか1つのような光源パラメータの異なる値を決定することによって、後続の放出のパターンに差が生じ得る。
a.後続の放出の全体的なエネルギ
b.後続の放出のエネルギプロファイル
c.1フレーム当たりの光パルス繰り返し数
d.持続時間、レート、ピーク、平均パワー、及びパルス形状等の光変調特性
e.偏光や波長等、後続の放出の波動特性

0115

[0188] 本開示に従って、後続の放出の差別化を異なる用途に供することができる。一例において、安全性が検討事項である視野120の部分では放出パワーレベルを制限すると共に、視野120の他の部分ではより高いパワーレベルを放出することができる(これによって信号対雑音比及び検出範囲を改善する)。これは目の安全に関連するが、更に、皮膚の安全、光学システムの安全、検知材料の安全、及びそれ以外のものにも関連し得る。別の例では、同一フレーム又は以前のフレームからの検出結果に基づいて、より有益である視野120の部分(例えば関心領域、遠くにあるターゲット、低反射ターゲット等)の方へ、より大きいエネルギを誘導すると共に、視野120の他の部分への照射エネルギを制限することができる。処理ユニット108は、単一のスキャンフレーム時間内で単一の瞬時視野からの検出信号を数回処理できることに留意するべきである。例えば、各パルスの放出後、又はある数のパルスの放出後に、後続の放出を決定できる。

0116

[0189]図5Bは、視野120の単一のフレーム時間における放出スキームの3つの例を示す。本開示の実施形態に従って、少なくとも処理ユニット108は、取得情報を用いて、動的にLIDARシステム100の動作モードを調整する及び/又はLIDARシステム100の特定のコンポーネントのパラメータ値を決定できる。取得情報は、視野120でキャプチャされた処理データから決定するか、又はホスト210から(直接的又は間接的に)受信することができる。処理ユニット108は、取得情報を用いて、視野120の異なる部分をスキャンするためのスキャンスキームを決定できる。取得情報は、現在の光条件、現在の気候条件ホスト車両の現在の運転環境、ホスト車両の現在のロケーション、ホスト車両の現在の軌道、ホスト車両の周りの道路の現在の地形、又は光反射によって検出できる他の任意の条件もしくは物体を含み得る。いくつかの実施形態において、決定されるスキャンスキームは以下のうち少なくとも1つを含み得る。(a)スキャンサイクルの一部としてアクティブにスキャンされる視野120内の部分の指定、(b)視野120の異なる部分における光放出プロファイルを規定する投影ユニット102の投影プラン、(c)例えば偏向方向、周波数を規定し、リフレクタアレイ内のアイドル要素を指定するスキャンユニット104の偏向プラン、及び(d)検出器の感度又は応答パターンを規定する検知ユニット106の検出プラン。

0117

[0190] 更に処理ユニット108は、少なくとも部分的に、視野120内の少なくとも1つの関心領域及び視野120内の少なくとも1つの非関心領域の識別を得ることによって、スキャンスキームを決定できる。いくつかの実施形態において処理ユニット108は、少なくとも部分的に、視野120内の少なくとも1つの高い関心領域及び視野120内の少なくとも1つの低い関心領域の識別を得ることによって、スキャンスキームを決定できる。視野120内の少なくとも1つの関心領域の識別は、例えば、視野120内でキャプチャされた処理データから、別のセンサ(例えばカメラ、GPS)のデータに基づいて、ホスト210から(直接的に又は間接的に)受信して、又は上記のもののいずれかの組み合わせによって決定され得る。いくつかの実施形態において、少なくとも1つの関心領域の識別は、監視することが重要である視野120内の部分、エリア、セクション、画素、又は物体の識別を含み得る。関心領域として識別される可能性のあるエリアの例は、横断歩道、移動する物体、人物、付近の車両、又は車両ナビゲーションに役立ち得る他の任意の環境条件もしくは物体を含み得る。非関心領域(又は低関心領域)として識別される可能性のあるエリアの例は、静的な(移動していない)遠くの建物、スカイライン地平線よりも上のエリア、及び視野内の物体であり得る。視野120内の少なくとも1つの関心領域の識別を取得したら、処理ユニット108は、スキャンスキームを決定するか又は既存のスキャンスキームを変更することができる。(上述したように)光源パラメータを決定又は変更することに加えて、処理ユニット108は、少なくとも1つの関心領域の識別に基づいて検出器リソースを割り当てることができる。一例においては、ノイズを低減するため、処理ユニット108は、関心領域に相当すると予想される検出器410を活性化し、非関心領域に相当すると予想される検出器410を無効にすることができる。別の例において、処理ユニット108は、例えば反射パワーが低い長距離検出に対するセンサ感度を増大するように、検出器感度を変更できる。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ