図面 (/)

技術 重縮合系樹脂及びそれよりなる光学フィルム

出願人 三菱ケミカル株式会社
発明者 並木慎悟平見優一上原久俊林寛幸
出願日 2020年4月30日 (6ヶ月経過) 出願番号 2020-080467
公開日 2020年7月30日 (3ヶ月経過) 公開番号 2020-114933
状態 未査定
技術分野 ポリエステル、ポリカーボネート
主要キーワード 参考態様 運転機器 紫外可視領域 破断限界 非ベンゼノイド 析出粉 次条件 寸法変形
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2020年7月30日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (0)

図面はありません

課題

光学物性耐熱性機械物性熱安定性等の種々の特性にバランスよく優れた樹脂、並びにそれを用いて得られる光学フィルム及び位相差フィルムを提供する。

解決手段

芳香族構造を含む繰り返し構造単位と、下記式(3)で表される構造単位と、カーボネート結合及びエステル結合のうち少なくとも1種の結合基と、を有する重縮合系の樹脂であって、前記繰り返し構造単位中の芳香族構造の含有量A[質量%]が5≦A≦14.7であり、前記樹脂から作成された延伸フィルムの、450nmにおける位相差(R450)と550nmにおける位相差(R550)の比B(R450/R550)が0.75≦B≦0.89であり、前記樹脂を構成する全ての繰り返し構造単位に対する前記式(3)で表される構造単位の含有量が5〜70質量%であり、ガラス転移温度が110℃以上160℃以下である、樹脂。

化1】

概要

背景

近年、光学レンズ光学フィルム光学記録媒体といった光学系に使用される光学用透明樹脂需要が増大している。その中でも特に、液晶ディスプレイ有機ELディスプレイに代表される薄型平面パネルディスプレイFPD)の普及が顕著であり、コントラスト色つきの改善、視野角拡大、外光反射防止等の表示品質を向上させる目的で各種の光学フィルムが開発され、利用されている。

有機ELディスプレイにおいては、外光反射を防止するための1/4波長板が用いられている。色つきを抑え、きれいな黒表示を可能とするため、1/4波長板に用いられる位相差フィルムは、可視領域の各波長において理想的な位相差特性を得ることができる、広帯域波長分散特性が求められている。

これに相当するものとして、例えば、複屈折波長分散の異なる2種類の位相差フィルムを各々の遅相軸が直交するように積層することにより、広帯域の位相差フィルムが得られることが開示されている(特許文献1)。また、1/2波長板と1/4波長板をそれぞれの遅相軸がある特定の配置となるように積層することによって得られる方法も開示されている(特許文献2)。さらに、特定のアセチル化度を有するセルロースアセテートからなる広帯域位相差フィルム(特許文献3)や、フルオレン環を側鎖に有するビスフェノール構造を含むポリカーボネート共重合体よりなり、短波長ほど位相差が小さくなる逆波長分散性を示す位相差フィルムが開示されている(特許文献4)。

近年では、前記のフルオレン環を側鎖に有する樹脂が多数報告されており、フルオレン環に由来する光学特性耐熱性といった特徴を活かし、光学用途に有用な材料として提案されている。これらの樹脂には比較的入手のしやすいモノマーである、9,9−ビス[4−(2−ヒドロキシエトキシフェニルフルオレンや9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンがよく用いられている(例えば、特許文献5、6)。

さらに、新しい構造を有する樹脂も開発されている。特許文献7には、フルオレン環を側鎖に有するジアミン化合物が開示されており、さらにそれを用いたポリイミド樹脂延伸フィルムが記載されている。特許文献8には、主鎖上に芳香環を含まないフルオレン化合物を用いたポリカーボネート樹脂が開示されている。特許文献9には、同一分子内に2つのフルオレン環を有するジヒドロキシ化合物ジエステル化合物が開示されており、さらにそれを用いたポリエステル樹脂の延伸フィルムが記載されている。

概要

光学物性、耐熱性、機械物性熱安定性等の種々の特性にバランスよく優れた樹脂、並びにそれを用いて得られる光学フィルム及び位相差フィルムを提供する。芳香族構造を含む繰り返し構造単位と、下記式(3)で表される構造単位と、カーボネート結合及びエステル結合のうち少なくとも1種の結合基と、を有する重縮合系の樹脂であって、前記繰り返し構造単位中の芳香族構造の含有量A[質量%]が5≦A≦14.7であり、前記樹脂から作成された延伸フィルムの、450nmにおける位相差(R450)と550nmにおける位相差(R550)の比B(R450/R550)が0.75≦B≦0.89であり、前記樹脂を構成する全ての繰り返し構造単位に対する前記式(3)で表される構造単位の含有量が5〜70質量%であり、ガラス転移温度が110℃以上160℃以下である、樹脂。なし

目的

本発明の目的は、上記の課題を解決し、光学物性や耐熱性、機械物性、熱安定性等の種々の特性に優れた樹脂、並びにそれを用いて得られる光学フィルムを提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

芳香族構造を含む繰り返し構造単位と、下記式(3)で表される構造単位と、カーボネート結合及びエステル結合のうち少なくとも1種の結合基と、を有する重縮合系樹脂であって、前記繰り返し構造単位中の芳香族構造の含有量A[質量%]が5≦A≦14.7であり、前記樹脂から作成された延伸フィルムの、450nmにおける位相差(R450)と550nmにおける位相差(R550)の比B(R450/R550)が0.75≦B≦0.89であり、前記樹脂を構成する全ての繰り返し構造単位に対する前記式(3)で表される構造単位の含有量が5〜70質量%であり、ガラス転移温度が110℃以上160℃以下である、樹脂。

請求項2

前記樹脂は、さらに、下記式(1)及び式(2)で表される構造単位から選ばれる少なくとも1つの構造単位を有する、請求項1に記載の樹脂。(式(1)及び(2)中、R1〜R3は、それぞれ独立に、直接結合置換基を有していてもよい炭素数1〜4のアルキレン基であり、R4〜R9は、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1〜10のアルキル基、置換基を有していてもよい炭素数4〜10のアリール基、置換基を有していてもよい炭素数1〜10のアシル基、置換基を有していてもよい炭素数1〜10のアルコキシ基、置換基を有していてもよい炭素数1〜10のアリールオキシ基、置換基を有していてもよい炭素数1〜10のアシルオキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよい炭素数1〜10のビニル基、置換基を有していてもよい炭素数1〜10のエチニル基、置換基を有する硫黄原子、置換基を有するケイ素原子ハロゲン原子ニトロ基、又はシアノ基である。ただし、R4〜R9のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよく、2つのR4、R5、R6、R7、R8及びR9は、互いに同一であっても、異なっていてもよい。)

請求項3

前記繰り返し構造単位中の芳香族構造の含有量A[質量%]が13.9≦A≦14.7である、請求項1又は2に記載の樹脂。

請求項4

前記樹脂から作成された延伸フィルムの、450nmにおける位相差(R450)と550nmにおける位相差(R550)の比B(R450/R550)が0.80≦B≦0.89である、請求項1乃至3のいずれか1項に記載の樹脂。

請求項5

前記樹脂から作成された延伸フィルムの、450nmにおける位相差(R450)と550nmにおける位相差(R550)の比B(R450/R550)が0.81≦B≦0.87である、請求項1乃至4のいずれか1項に記載の樹脂。

請求項6

ナトリウムd線(波長589nm)における屈折率が、1.49〜1.56である、請求項1乃至5のいずれか1項に記載の樹脂。

請求項7

弾性率が1GPa以上2.5GPa以下である、請求項1乃至6のいずれか1項に記載の樹脂。

請求項8

測定温度240℃、剪断速度91.2sec−1における溶融粘度が1000Pa・s以上、4000Pa・s以下である、請求項1乃至7のいずれか1項に記載の樹脂。

請求項9

前記繰り返し構造単位の含む芳香族構造が、フルオレンのみである、請求項1乃至8のいずれか1項に記載の樹脂。

請求項10

前記式(1)で表される構造単位及び前記式(2)で表される構造単位の含有量が、前記樹脂全体に対して10質量%以上35質量%以下である、請求項1乃至9のいずれか1項に記載の樹脂。

技術分野

0001

本発明は、光学物性耐熱性機械物性熱安定性等の種々の特性に優れた樹脂、並びにそれを用いて得られる光学フィルムに関する。

背景技術

0002

近年、光学レンズ、光学フィルム、光学記録媒体といった光学系に使用される光学用透明樹脂の需要が増大している。その中でも特に、液晶ディスプレイ有機ELディスプレイに代表される薄型平面パネルディスプレイFPD)の普及が顕著であり、コントラスト色つきの改善、視野角拡大、外光反射防止等の表示品質を向上させる目的で各種の光学フィルムが開発され、利用されている。

0003

有機ELディスプレイにおいては、外光反射を防止するための1/4波長板が用いられている。色つきを抑え、きれいな黒表示を可能とするため、1/4波長板に用いられる位相差フィルムは、可視領域の各波長において理想的な位相差特性を得ることができる、広帯域波長分散特性が求められている。

0004

これに相当するものとして、例えば、複屈折波長分散の異なる2種類の位相差フィルムを各々の遅相軸が直交するように積層することにより、広帯域の位相差フィルムが得られることが開示されている(特許文献1)。また、1/2波長板と1/4波長板をそれぞれの遅相軸がある特定の配置となるように積層することによって得られる方法も開示されている(特許文献2)。さらに、特定のアセチル化度を有するセルロースアセテートからなる広帯域位相差フィルム(特許文献3)や、フルオレン環を側鎖に有するビスフェノール構造を含むポリカーボネート共重合体よりなり、短波長ほど位相差が小さくなる逆波長分散性を示す位相差フィルムが開示されている(特許文献4)。

0005

近年では、前記のフルオレン環を側鎖に有する樹脂が多数報告されており、フルオレン環に由来する光学特性や耐熱性といった特徴を活かし、光学用途に有用な材料として提案されている。これらの樹脂には比較的入手のしやすいモノマーである、9,9−ビス[4−(2−ヒドロキシエトキシフェニルフルオレンや9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンがよく用いられている(例えば、特許文献5、6)。

0006

さらに、新しい構造を有する樹脂も開発されている。特許文献7には、フルオレン環を側鎖に有するジアミン化合物が開示されており、さらにそれを用いたポリイミド樹脂延伸フィルムが記載されている。特許文献8には、主鎖上に芳香環を含まないフルオレン化合物を用いたポリカーボネート樹脂が開示されている。特許文献9には、同一分子内に2つのフルオレン環を有するジヒドロキシ化合物ジエステル化合物が開示されており、さらにそれを用いたポリエステル樹脂の延伸フィルムが記載されている。

先行技術

0007

特開平5−27118号公報
特開平10−68816号公報
特開2000−137116号公報
特許第3325560号
特許第5119250号
特許第5204200号
特開2008−112124号公報
特開2008−222965号公報
米国特許出願公開第2012/0170118号明細書

発明が解決しようとする課題

0008

FPDの分野の発展は目覚しく、位相差フィルムにはさらなる光学特性や品質信頼性等の向上や、フィルム薄膜化が求められている。さらに材料のコストダウンや、製膜延伸、積層等の各工程における生産性の向上といった要求もある。それに伴い、位相差フィルムには種々の特性を兼ね備えることが求められるようになっている。例えば、位相差フィルムに用いられる材料としては、必要な波長分散性を有しつつ、低光弾性係数高耐熱性溶融加工性機械強度等の諸特性を兼ね備えており、その上で固有複屈折が大きく、柔軟性や延伸性に優れ、延伸により高い分子配向度が得られるような材料が求められる。

0009

しかしながら、特許文献1や特許文献2のように位相差フィルムを積層する方法は、偏光板が厚くなってしまう。また、遅相軸が特定の配置となるように各位相差フィルムを積層しなければならず、偏光板の生産性や歩留まりが悪化する問題点がある。特許文献3や特許文献4の位相差フィルムは、逆波長分散性を有しており、一枚のフィルムで広帯域の位相差特性が得られるものの、特許文献3のセルロースアセテートは耐熱性が不十分であり、また、吸湿による寸法変形によって画像を発生させる問題点がある。

0010

特許文献4〜6のフルオレン環を有するポリカーボネート樹脂からなる位相差フィルムは、逆波長分散性を示す位相差フィルムや画像表示装置の外光反射防止のための円偏光板として有用であることが知られている。しかしながら、本発明者らが検討したところ、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンを用いた樹脂は、フィルムが脆いために、高い配向度が得られるような延伸は難しく、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレンを用いた樹脂は、延伸性は比較的優れているものの、光弾性係数がやや高く、また、高温下での信頼性に劣ることが分かった。

0011

各種の特性を改良する手段として、共重合成分を変えたり、比率を調整したりすることが考えられるが、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンは、非常に耐熱性が高い反面、樹脂が脆くなってしまう特性があり、適度な耐熱性を保ちつつ、樹脂の柔軟性を改善することは困難であった。また、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレンの場合、所望の逆波長分散性を発現させるためには、これらのモノマー成分を50〜70質量%程度含有させることが必要であり、共重合による分子設計の自由度が低く、耐熱性や機械強度等の特性と、光学特性とを両立させることは難しかった。

0012

また、特許文献8に記載のフルオレン環を含有したジオールを用いたポリカーボネート樹脂は、逆波長分散性、光弾性係数、耐熱性等の特性が不十分である。特許文献9に記載のポリエステルは、負の屈折率方性、即ち、延伸方向の屈折率が延伸直角方向の屈折率よりも小さいことが記載されている。しかしながら、位相差フィルムとしては、正の屈折率異方性を有する必要があり、前述のポリエステル延伸フィルムはこの要件を満たさない。また、特許文献9には、位相差の波長依存性についての記載もない。

0013

以上のように、従来の位相差フィルムは、逆波長分散性、光学特性、耐熱性、機械強度等の諸特性をバランスよく得ることが困難である。位相差フィルムの特性を抜本的に改良するためには、諸特性のバランスに優れた新しい化合物原料に用いることが求められる。
本発明の目的は、上記の課題を解決し、光学物性や耐熱性、機械物性、熱安定性等の種々の特性に優れた樹脂、並びにそれを用いて得られる光学フィルムを提供することにある。

課題を解決するための手段

0014

本発明者らは、上記課題を解決するべく、鋭意検討を重ねた結果、樹脂を構成する繰り返し構造単位中の芳香族構造含有量が特定の範囲にあり、かつ、所望とする波長分散性を発現することを特徴とする樹脂が、優れた光学特性や機械物性を示すことを見出し、本発明に至った。即ち、本発明の一態様は、以下を要旨とする。

0015

[1]芳香族構造を含む繰り返し構造単位と、下記式(3)で表される構造単位と、カーボネート結合及びエステル結合のうち少なくとも1種の結合基と、を有する重縮合系の樹脂であって、
前記繰り返し構造単位中の芳香族構造の含有量A[質量%]が5≦A≦14.7であり、
前記樹脂から作成された延伸フィルムの、450nmにおける位相差(R450)と550nmにおける位相差(R550)の比B(R450/R550)が0.75≦B≦0.89であり、
前記樹脂を構成する全ての繰り返し構造単位に対する前記式(3)で表される構造単位の含有量が5〜70質量%であり、
ガラス転移温度が110℃以上160℃以下である、樹脂。

0016

0017

[2]前記樹脂は、さらに、下記式(1)及び式(2)で表される構造単位から選ばれる少なくとも1つの構造単位を有する、[1]に記載の樹脂。

0018

0019

(式(1)及び(2)中、R1〜R3は、それぞれ独立に、直接結合置換基を有していてもよい炭素数1〜4のアルキレン基であり、R4〜R9は、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1〜10のアルキル基、置換基を有していてもよい炭素数4〜10のアリール基、置換基を有していてもよい炭素数1〜10のアシル基、置換基を有していてもよい炭素数1〜10のアルコキシ基、置換基を有していてもよい炭素数1〜10のアリールオキシ基、置換基を有していてもよい炭素数1〜10のアシルオキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよい炭素数1〜10のビニル基、置換基を有していてもよい炭素数1〜10のエチニル基、置換基を有する硫黄原子、置換基を有するケイ素原子ハロゲン原子ニトロ基、又はシアノ基である。ただし、R4〜R9のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよく、2つのR4、R5、R6、R7、R8及びR9は、互いに同一であっても、異なっていてもよい。)

0020

[3]前記繰り返し構造単位中の芳香族構造の含有量A[質量%]が13.9≦A≦14.7である、[1]又は[2]に記載の樹脂。

0021

[4]前記樹脂から作成された延伸フィルムの、450nmにおける位相差(R450)と550nmにおける位相差(R550)の比B(R450/R550)が0.80≦B≦0.89である、[1]乃至[3]のいずれか1に記載の樹脂。

0022

[5]前記樹脂から作成された延伸フィルムの、450nmにおける位相差(R450)と550nmにおける位相差(R550)の比B(R450/R550)が0.81≦B≦0.87である、[1]乃至[4]のいずれか1に記載の樹脂。

0023

[6]ナトリウムd線(波長589nm)における屈折率が、1.49〜1.56である、[1]乃至[5]のいずれか1に記載の樹脂。
[7]弾性率が1GPa以上2.5GPa以下である、[1]乃至[6]のいずれか1に記載の樹脂。

0024

[8]測定温度240℃、剪断速度91.2sec−1における溶融粘度が1000Pa・s以上、4000Pa・s以下である、[1]乃至[7]のいずれか1に記載の樹脂。
[9]前記繰り返し構造単位の含む芳香族構造が、フルオレンのみである、[1]乃至[8]のいずれか1に記載の樹脂。

0025

[10]前記式(1)で表される構造単位及び前記式(2)で表される構造単位の含有量が、前記樹脂全体に対して10質量%以上35質量%以下である、[1]乃至[9]のいずれか1に記載の樹脂。

0026

また、本発明の参考態様は、以下を要旨とする。

0027

[R1]芳香族構造を含む繰り返し構造単位を有する重縮合系の樹脂であって、
該繰り返し構造単位中の芳香族構造の含有量が下記式(I)を満たし、
下記式(1)及び式(2)で表される構造単位から選ばれる少なくとも1つの構造単位を有する樹脂。
5 ≦ A ≦ −22.5×B+38.3 (I)
但し、0.75 ≦ B ≦ 0.93
A:樹脂を構成する繰り返し構造単位中の芳香族構造の含有量[質量%]
B:樹脂から作成された延伸フィルムの、450nmにおける位相差(R450)と550nmにおける位相差(R550)の比(R450/R550)

0028

0029

(式(1)及び(2)中、R1〜R3は、それぞれ独立に、直接結合、置換基を有していてもよい炭素数1〜4のアルキレン基であり、R4〜R9は、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1〜10のアルキル基、置換基を有していてもよい炭素数4〜10のアリール基、置換基を有していてもよい炭素数1〜10のアシル基、置換基を有していてもよい炭素数1〜10のアルコキシ基、置換基を有していてもよい炭素数1〜10のアリールオキシ基、置換基を有していてもよい炭素数1〜10のアシルオキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよい炭素数1〜10のビニル基、置換基を有していてもよい炭素数1〜10のエチニル基、置換基を有する硫黄原子、置換基を有するケイ素原子、ハロゲン原子、ニトロ基、又はシアノ基である。ただし、R4〜R9のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよく、2つのR4、R5、R6、R7、R8及びR9は、互いに同一であっても、異なっていてもよい。)

0030

[R2]芳香族構造を含む繰り返し構造単位を有する重縮合系の樹脂であって、
該繰り返し構造単位中の芳香族構造の含有量が下記式(III)を満たし、かつ、該樹脂のガラス転移温度が110℃以上、160℃以下である樹脂。
5 ≦ A ≦ −22.5×B+34.8 (III)
但し、0.75 ≦ B ≦ 0.93
A:樹脂を構成する繰り返し構造単位中の芳香族構造の含有量[質量%]
B:450nmにおける位相差(R450)と550nmにおける位相差(R550)の比(R450/R550)

0031

[R3]ナトリウムd線(波長589nm)における屈折率が、1.49〜1.56である、[R1]又は[R2]に記載の樹脂。
[R4]弾性率が1GPa以上2.5GPa以下である、[R1]乃至[R3]のいずれか1つに記載の樹脂。
[R5]測定温度240℃、剪断速度91.2sec−1における溶融粘度が1000Pa・s以上、4000Pa・s以下である、[R1]乃至[R4]のいずれか1つに記載の樹脂。
[R6]前記樹脂が、ポリカーボネート、ポリエステル、ポリエステルカーボネートからなる群より選ばれる少なくとも1種の樹脂である、[R1]乃至[R5]のいずれか1つに記載の樹脂。
[R7]前記繰り返し構造単位の含む芳香族構造が、フルオレンのみである、[R1]乃至[R6]のいずれか1つに記載の樹脂。
[R8]下記式(3)で表される構造単位を含有する、[R1]乃至[R7]のいずれか1つに記載の樹脂。

0032

0033

[R9][R1]乃至[R8]のいずれか1つに記載の樹脂を含有する透明フィルム
[R10][R9]に記載の透明フィルムを少なくとも一方向に延伸することで得られる位相差フィルム。
[R11]単一層からなり、膜厚が10μm以上、60μm以下である[R10]に記載の位相差フィルム。

発明の効果

0034

本発明の樹脂は光学特性、耐熱性、機械特性、信頼性等の諸特性のバランスに優れている。それ故、本発明の樹脂は位相差フィルム等の光学フィルムに好適に使用することができる。

0035

以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、以下の内容に限定されない。
尚、本発明において「繰り返し構造単位」とは、樹脂中で同じ構造が繰り返し現れる構造単位であって、それぞれが連結することで当該樹脂を構成するような構造単位のことである。より具体的には例えばポリカーボネート樹脂であれば、カルボニル基も含めて繰り返し構造単位と呼称する。
また、「構造単位」とは、樹脂を構成する部分構造であって、繰り返し構造単位に含まれる特定の部分構造のことをいう。例えば、樹脂中で隣り合う連結基に挟まれた部分構造や、重合体末端部分に存在する重合反応性基と、該重合性反応基に隣り合う連結基とに挟まれた部分構造をいい、より具体的には例えばポリカーボネート樹脂であれば、カルボニル基が連結基であって、隣り合うカルボニル基に挟まれた部分構造のことを構造単位と呼称する。

0036

本発明の第一の参考態様は、芳香族構造を含む繰り返し構造単位を有する重縮合系の樹脂であって、該繰り返し構造単位中の芳香族構造の含有量が下記式(I)を満たし、下記式(1)及び式(2)で表される構造単位から選ばれる少なくとも1つの構造単位を有することを特徴とする樹脂である。
5 ≦ A ≦ −22.5×B+38.3 (I)
但し、0.75 ≦ B ≦ 0.93
A:樹脂を構成する繰り返し構造単位中の芳香族構造の含有量[質量%]
B:450nmにおける位相差(R450)と550nmにおける位相差(R550)の比(R450/R550)

0037

0038

(式(1)及び(2)中、R1〜R3は、それぞれ独立に、直接結合、置換基を有していてもよい炭素数1〜4のアルキレン基であり、R4〜R9は、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1〜10のアルキル基、置換基を有していてもよい炭素数4〜10のアリール基、置換基を有していてもよい炭素数1〜10のアシル基、置換基を有していてもよい炭素数1〜10のアルコキシ基、置換基を有していてもよい炭素数1〜10のアリールオキシ基、置換基を有していてもよい炭素数1〜10のアシルオキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよい炭素数1〜10のビニル基、置換基を有していてもよい炭素数1〜10のエチニル基、置換基を有する硫黄原子、置換基を有するケイ素原子、ハロゲン原子、ニトロ基、又はシアノ基である。ただし、R4〜R9のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよく、2つのR4、R5、R6、R7、R8及びR9は、互いに同一であっても、異なっていてもよい。)

0039

本発明の第二の参考態様は、芳香族構造を含む繰り返し構造単位を有する重縮合系の樹脂であって、該繰り返し構造単位中の芳香族構造の含有量が下記式(III)を満たし、かつ、該樹脂のガラス転移温度が120℃以上、160℃以下であることを特徴とする樹脂である。
5 ≦ A ≦ −22.5×B+34.8 (III)
但し、0.75 ≦ B ≦ 0.93
A:樹脂を構成する繰り返し構造単位中の芳香族構造の含有量[質量%]
B:450nmにおける位相差(R450)と550nmにおける位相差(R550)の比(R450/R550)

0040

<本発明の樹脂>
本発明の樹脂は、重縮合系の樹脂である。重縮合系の樹脂とは、Glossary ofbasicterms in polymer science (IUPAC Recommendations 1996)において定義される、polycondensation により得られる樹脂のことを示し、ポリマー鎖成長分子間の縮合反応によって進行する重合により得られる樹脂のことである。本発明の重縮合系の樹脂は、好ましくはカーボネート結合及びエステル結合から選ばれる少なくとも1つの結合を有する樹脂であり、より具体的には、ポリカーボネート、ポリエステル及びポリエステルカーボネートのいずれかの樹脂であることが好ましい。これらの樹脂は耐熱性、機械物性、溶融加工性に優れており、また、複数のモノマーを共重合することで、光学物性や耐熱性、機械物性等の諸物性を所望の範囲に制御しやすいことが利点に挙げられる。

0041

本発明の樹脂は、芳香族構造を含むものであるが、芳香族構造としては、芳香族性を有する環状構造であれば如何なる構造も含むものとする。より具体的には、ベンゼノイド芳香族環非ベンゼノイド芳香族環、複素芳香環等が挙げられ、そのうちベンゼノイド芳香族環又は複素芳香環が好ましい。本発明において、樹脂を構成する繰り返し構造単位中の芳香族構造の含有量の算出方法について、以下に具体的な事例を挙げて説明する。

0042

[各種芳香族構造の計算上の分子量]
本発明における芳香族構造の分子量には、芳香属性を有する環状構造中の炭素原子、水素原子、ヘテロ原子を含める。芳香属性を有する環状構造に結合する炭素原子やヘテロ原子は芳香族構造には含めない。また、芳香属性を有する環状構造にビニル基やエチニル基、カルボニル基等が結合する場合、芳香環の共役系がそれら官能基まで広がることになるが、芳香属性を有する環状構造に結合する置換基は芳香族構造には含めない。

0043

0044

0045

[計算例1]

0046

0047

繰り返し構造単位の分子量:C10H8O4=192.17
繰り返し構造単位中の芳香族構造の分子量:C6H4=76.10
芳香族構造の含有量=76.10/192.17×100=39.6[質量%]
[計算例2]

0048

0049

繰り返し構造単位Aと繰り返し構造単位Bの共重合樹脂であって、繰り返し構造単位Aと繰り返し構造単位Bとのモル比、m:n=3:7の場合。
繰り返し構造単位Aの分子量:C30H24O5=464.51
繰り返し構造単位A中の芳香族構造の分子量:C6H4×4=304.38
繰り返し構造単位Bの分子量:C16H14O3=254.28
繰り返し構造単位B中の芳香族構造の分子量=C6H4×2=152.19
芳香族構造の含有量:(304.38×0.3+152.19×0.7)/(464.51×0.3+254.28×0.7)×100=62.3[質量%]

0050

本発明の樹脂は、上記のとおり算出された、樹脂を構成する繰り返し構造単位中の芳香族構造の含有量が下記(I)式を満たすことを特徴とする。さらに下記(II)式を満たすことが好ましく、特に式(III)を満たすことが好ましい。
5 ≦ A ≦ −22.5×B+38.3 (I)
7 ≦ A ≦ −22.5×B+37.5 (II)
8 ≦ A ≦ −22.5×B+34.8 (III)
但し、0.75 ≦ B ≦ 0.93 である。
A:樹脂を構成する繰り返し構造単位中の芳香族構造の含有量[質量%]
B:450nmにおける位相差(R450)と550nmにおける位相差(R550)の比(R450/R550)

0051

上記式(I)のR450/R550の値が1未満となる場合、位相差が逆波長分散性を有することになり、1/4波長板として用いる場合、幅広い波長領域において、理想に近い位相差特性を得ることが可能となる。この逆波長分散性を発現させる方法の一つとして、ポリマー鎖の主鎖成分よりも屈折率の波長分散(波長依存性)が大きい成分を、主鎖に対して垂直方向配向させることが挙げられる。一般的に芳香族の共役系が長くなるほど、屈折率の波長分散が大きくなるため、逆波長分散性を有する樹脂は芳香族構造を含有することが好ましい。一方で、主鎖成分に芳香族を含有する場合、主鎖上の芳香族成分は強い正の波長分散性を発現するため、逆波長分散性をキャンセルしてしまう。また、一般的に芳香族を多く含有すると光弾性係数や屈折率が大きくなり、光学物性としては好ましくない方向である。上記式(I)は、逆波長分散発現効率の高い芳香族構造を導入し、その他の芳香族成分を必要最小限に抑えることを意味する。このような分子設計をすることで、逆波長分散性を有しながら、光弾性係数や配向性等の光学特性のバランスに優れた樹脂を得ることができる。具体的な好ましい分子構造について後述する。

0052

オリゴフルオレン構造単位>
本発明の樹脂は、下記一般式(1)で表される構造単位及び下記一般式(2)で表される構造単位からなる群のうち1種以上の構造単位を有することが好ましい。以下、当該構造単位をオリゴフルオレン構造単位ということがある。

0053

0054

前記一般式(1)及び前記一般式(2)中、R1〜R3は、それぞれ独立に、直接結合、置換基を有していてもよい炭素数1〜4のアルキレン基であり、R4〜R9は、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1〜10のアルキル基、置換基を有していてもよい炭素数4〜10のアリール基、置換基を有していてもよい炭素数1〜10のアシル基、置換基を有していてもよい炭素数1〜10のアルコキシ基、置換基を有していてもよい炭素数1〜10のアリールオキシ基、置換基を有していてもよい炭素数1〜10のアシルオキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよい炭素数1〜10のビニル基、置換基を有していてもよい炭素数1〜10のエチニル基、置換基を有する硫黄原子、置換基を有するケイ素原子、ハロゲン原子、ニトロ基、又はシアノ基である。但し、R4〜R9のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。

0055

R1及びR2において、「置換基を有していてもよい炭素数1〜4のアルキレン基」としては、例えば以下のアルキレン基を採用することができる。メチレン基エチレン基、n−プロピレン基、n−ブチレン基等の直鎖状のアルキレン基;メチルメチレン基、ジメチルメチレン基、エチルメチレン基、プロピルメチレン基、(1−メチルエチル)メチレン基、1−メチルエチレン基、2−メチルエチレン基、1−エチルエチレン基、2−エチルエチレン基、1−メチルプロピレン基、2−メチルプロピレン基、1,1−ジメチルエレン基、2,2−ジメチルプロピレン基、3−メチルプロピレン基等の、分岐鎖を有するアルキレン基。ここで、R1及びR2における分岐鎖の位置は、フルオレン環側の炭素が1位となるように付与した番号により示した。

0056

R1及びR2の選択は、逆波長分散性の発現に特に重要な影響を及ぼす。前記樹脂は、フルオレン環が主鎖方向(延伸方向)に対して垂直に配向した状態において、最も強い逆波長分散性を示す。フルオレン環の配向状態を前記の状態に近づけ、強い逆波長分散性を発現させるためには、アルキレン基の主鎖上の炭素数が2〜3であるR1及びR2を採用することが好ましい。炭素数が1の場合は意外にも逆波長分散性を示さない場合がある。
この要因としては、オリゴフルオレン構造単位の連結基であるカーボネート基エステル基立体障害によって、フルオレン環の配向が主鎖方向に対して垂直ではない方向に固定化されてしまうこと等が考えられる。一方、炭素数が多すぎる場合は、フルオレン環の配向の固定が弱くなることで、逆波長分散性が弱くなるおそれがある。また、樹脂の耐熱性も低下する。

0057

前記一般式(1)及び一般式(2)に示すように、R1及びR2は、アルキレン基の一端がフルオレン環に結合し、他端が連結基に含まれる酸素原子またはカルボニル炭素のいずれかに結合している。熱安定性、耐熱性及び逆波長分散性の観点からは、アルキレン基の他端がカルボニル炭素に結合していることが好ましい。後述するとおり、オリゴフルオレン構造を有するモノマーとして、具体的にはジオール若しくはジエステル(以下、ジエステルにはジカルボン酸も含むものとする)の構造が考えられるが、ジエステルを原料に用いて重合することが好ましい。
また、製造を容易にする観点からは、R1及びR2に同一のアルキレン基を採用することが好ましい。

0058

R3において、「置換基を有していてもよい炭素数1〜4のアルキレン基」としては、例えば以下のアルキレン基を採用することができる。メチレン基、エチレン基、n−プロピレン基、n−ブチレン基等の直鎖状のアルキレン基;メチルメチレン基、ジメチルメチレン基、エチルメチレン基、プロピルメチレン基、(1−メチルエチル)メチレン基、1−メチルエチレン基、2−メチルエチレン基、1−エチルエチレン基、2−エチルエチレン基、1−メチルプロピレン基、2−メチルプロピレン基、1,1−ジメチルエチレン基、2,2−ジメチルプロピレン基、3−メチルプロピレン基等の分岐鎖を有するアルキレン基。

0059

R3は、アルキレン基の主鎖上の炭素数が1〜2であることが好ましく、特に炭素数が1であることが好ましい。主鎖上の炭素数が多すぎるR3を採用する場合は、R1及びR2と同様にフルオレン環の固定化が弱まり、逆波長分散性の低下、光弾性係数の増加、耐熱性の低下等を招くおそれがある。一方、主鎖上の炭素数は少ない方が光学特性や耐熱性は良好であるが、二つのフルオレン環の9位が直接結合でつながる場合は熱安定性が悪化する。

0060

R1〜R3において、アルキレン基が有していてもよい置換基としては、以下に例示する置換基を採用することができるが、これら以外の置換基を採用しても良い。フッ素原子塩素原子臭素原子及びヨウ素原子から選択されるハロゲン原子;メトキシ基エトキシ基等の炭素数1〜10のアルコキシ基;アセチル基ベンゾイル基等の炭素数1〜10のアシル基;アセトアミド基ベンゾイルアミド基等の炭素数1〜10のアシルアミノ基;ニトロ基;シアノ基;前記ハロゲン原子、前記アルコキシ基、前記アシル基、前記アシルアミノ基、前記ニトロ基、前記シアノ基等により1〜3個の水素原子が置換されていてもよい、フェニル基ナフチル基等の炭素数6〜10のアリール基。

0061

前記置換基の数は特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。置換基の数が多すぎる場合には重合中に反応を阻害したり、熱分解したりするおそれがある。また、工業的に安価に製造できるとの観点からは、R1〜R3が無置換であることが好ましい。

0062

R4〜R9において、「置換基を有していてもよい炭素数1〜10のアルキル基」としては、例えば以下のアルキル基を採用することができる。メチル基エチル基、n−プロピル基n−ブチル基、n−ペンチル基n−ヘキシルn−デシル等の直鎖状のアルキル基;イソプロピル基、2−メチルプロピル基、2,2−ジメチルプロピル基、2−エチルヘキシル基等の分岐鎖を有するアルキル基;シクロプロピル基シクロペンチル基、シクロヘキシル基シクロオクチル基等の環状のアルキル基。
前記アルキル基の炭素数は、4以下であることが好ましく、2以下であることがより好ましい。前記アルキル基の炭素数がこの範囲内であると、フルオレン環同士の立体障害が生じにくく、フルオレン環に由来する所望の光学特性が得られる傾向がある。

0063

前記アルキル基が有していてもよい置換基としては、以下に例示する置換基を採用することができるが、これら以外の置換基を採用しても良い。フッ素原子、塩素原子、臭素原子及びヨウ素原子から選択されるハロゲン原子;メトキシ基、エトキシ基等の炭素数1〜10のアルコキシ基;アセチル基、ベンゾイル基等の炭素数1〜10のアシル基;アセトアミド基、ベンゾイルアミド基等の炭素数1〜10のアシルアミノ基;ニトロ基;シアノ基;前記ハロゲン原子、前記アルコキシ基、前記アシル基、前記アシルアミノ基、前記ニトロ基、前記シアノ基等により1〜3個の水素原子が置換されていてもよい、フェニル基、ナフチル基等の炭素数6〜10のアリール基。

0064

前記置換基の数は特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。このような置換基の数が多すぎる場合には重合中に反応を阻害したり、熱分解したりするおそれがある。また、工業的に安価に製造できるとの観点からは、R4〜R9が無置換であることが好ましい。前記アルキル基の具体例としては、トリフルオロメチル基ベンジル基、4−メトキシベンジル基、メトキシメチル基等が挙げられる。

0065

また、R4〜R9において、「置換基を有していてもよい炭素数4〜10のアリール基」としては、例えば以下のアリール基を採用することができる。フェニル基、1−ナフチル基、2−ナフチル基等のアリール基;2−ピリジル基、2−チエニル基、2−フリル基等のヘテロアリール基
前記アリール基の炭素数は、8以下であることが好ましく、7以下であることがより好ましい。この範囲内であると、フルオレン環同士の立体障害が生じにくく、フルオレン環に由来する所望の光学特性が得られる傾向がある。

0066

R4〜R9において、前記アリール基が有していてもよい置換基としては、以下に例示する置換基を採用することができるが、これら以外の置換基を採用しても良い。フッ素原子、塩素原子、臭素原子及びヨウ素原子から選択されるハロゲン原子;メチル基、エチル基、イソプロピル基等の炭素数1〜10のアルキル基;メトキシ基、エトキシ基等の炭素数1〜10のアルコキシ基;アセチル基、ベンゾイル基等の炭素数1〜10のアシル基;アセトアミド基、ベンゾイルアミド基等の炭素数1〜10のアシルアミノ基;ニトロ基;シアノ基。前記置換基の数は特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは、R4〜R9が無置換であることが好ましい。

0067

前記アリール基の具体例としては、2−メチルフェニル基、4−メチルフェニル基、3,5−ジメチルフェニル基、4−ベンゾイルフェニル基、4−メトキシフェニル基、4−ニトロフェニル基、4−シアノフェニル基、3−トリフルオロメチルフェニル基、3,4−ジメトキシフェニル基、3,4−メチレンジオキシフェニル基、2,3,4,5,6−ペンタフルオロフェニル基、4−メチルフリル基等が挙げられる。

0068

また、R4〜R9において、「置換基を有していてもよい炭素数1〜10のアシル基」としては、例えば以下のアシル基を採用することができる。ホルミル基、アセチル基、プロピオニル基、2−メチルプロピオニル基、2,2−ジメチルプロピオニル基、2−エチルヘキサノイル基等の脂肪族アシル基;ベンゾイル基、1−ナフチルカルボニル基、2−ナフチルカルボニル基、2−フリルカルボニル基等の芳香族アシル基
前記アシル基の炭素数は、4以下であることが好ましく、2以下であることがより好ましい。この範囲内であると、フルオレン環同士の立体障害が生じにくく、フルオレン環に由来する所望の光学特性が得られる傾向がある。

0069

前記アシル基が有していてもよい置換基としては、以下に例示する置換基を採用することができるが、これら以外の置換基を採用しても良い。フッ素原子、塩素原子、臭素原子及びヨウ素原子から選択されるハロゲン原子;メチル基、エチル基、イソプロピル基等の炭素数1〜10のアルキル基;メトキシ基、エトキシ基等の炭素数1〜10のアルコキシ基;アセトアミド基、ベンゾイルアミド基等の炭素数1〜10のアシルアミノ基;ニトロ基;シアノ基;前記ハロゲン原子、前記アルコキシ基、アセチル基、ベンゾイル基等の炭素数1〜10のアシル基、前記アシルアミノ基、前記ニトロ基、前記シアノ基等により1〜3個の水素原子が置換されていてもよい、フェニル基、ナフチル基等の炭素数6〜10のアリール基。

0070

前記置換基の数は特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは、R4〜R9が無置換であることが好ましい。前記アシル基の具体例としては、クロロアセチル基、トリフルオロアセチル基、メトキシアセチル基、フェノキシアセチル基、4−メトキシベンゾイル基、4−ニトロベンゾイル基、4−シアノベンゾイル基、4−トリフルオロメチルベンソイル基等が挙げられる。

0071

また、R4〜R9において、「置換基を有していてもよい炭素数1〜10のアルコキシ基又はアリールオキシ基」としては、例えば以下のアルコキシ基及びアリールオキシ基を採用することができる。メトキシ基、エトキシ基、イソプロポキシ基、tert−ブトキシ基トリフルオロメトキシ基フェノキシ基等のアルコキシ基。
前記アルコキシ基及び前記アリールオキシ基の炭素数は、4以下であることが好ましく、2以下であることがより好ましい。この範囲内であると、フルオレン環同士の立体障害が生じにくく、フルオレン環に由来する所望の光学特性が得られる傾向がある。

0072

前記アルコキシ基及び前記アリールオキシ基が有していてもよい置換基としては、以下に例示する置換基を採用することができるが、これら以外の置換基を採用しても良い。フッ素原子、塩素原子、臭素原子及びヨウ素原子から選択されるハロゲン原子;メチル基、エチル基、イソプロピル基等の炭素数1〜10のアルキル基;メトキシ基、エトキシ基等の炭素数1〜10のアルコキシ基;アセトアミド基、ベンゾイルアミド基等の炭素数1〜10のアシルアミノ基;ニトロ基;シアノ基;前記ハロゲン原子、前記アルコキシ基、アセチル基、ベンゾイル基等の炭素数1〜10のアシル基、前記アシルアミノ基、前記ニトロ基、前記シアノ基等により1〜3個の水素原子が置換されていてもよい、フェニル基、ナフチル基等の炭素数6〜10のアリール基。

0073

前記置換基の数は特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは、R4〜R9が無置換であることが好ましい。 前記アルコキシ基及び前記アリールオキシ基の具体例としては、クロロメチル基ブロモメチル基、2−ブロモエチル基、トリフルオロメチル基、メトキシメチル基、メトキシエトキシメチル基、3−クロロフェノキシ基、3−ブロモフェノキシ基、4−クロロフェノキシ基、3−クロロフェノキシ基、4−クロロフェノキシ基、3−ブロモフェノキシ基、4−ブロモフェノキシ基、4−メトキシフェノキシ基等が挙げられる。

0074

また、R4〜R9において、「置換基を有していてもよい炭素数1〜10のアシルオキシ基」としては、例えば以下のアシルオキシ基を採用することができる。
ホルミルオキシ基アセチルオキシ基、プロパノイルオキシ基、ブタノイルオキシ基、アクリルオキシ基、メタクリリルオキシ基等の脂肪族アシルオキシ基;ベンゾイルオキシ基等の芳香族アシルオキシ基。
前記アシルオキシ基の炭素数は、4以下であることが好ましく、2以下であることがより好ましい。この範囲内であると、フルオレン環同士の立体障害が生じにくく、フルオレン環に由来する所望の光学特性が得られる傾向がある。

0075

前記アシルオキシ基が有していてもよい置換基としては、以下に例示する置換基を採用することができるが、これら以外の置換基を採用しても良い。フッ素原子、塩素原子、臭素原子及びヨウ素原子から選択されるハロゲン原子;メチル基、エチル基、イソプロピル基等の炭素数1〜10のアルキル基;メトキシ基、エトキシ基等の炭素数1〜10のアルコキシ基;アセトアミド基、ベンゾイルアミド基等の炭素数1〜10のアシルアミノ基;ニトロ基;シアノ基;前記ハロゲン原子、前記アルコキシ基、アセチル基、ベンゾイル基等の炭素数1〜10のアシル基、前記アシルアミノ基、前記ニトロ基、前記シアノ基等により1〜3個の水素原子が置換されていてもよい、フェニル基、ナフチル基等の炭素数6〜10のアリール基。

0076

前記置換基の数は特に限定されないが、1〜3個が好ましい。置換基が2個以上ある場合は、置換基の種類は同一でも異なっていてもよい。また、工業的に安価に製造できるとの観点からは、R4〜R9が無置換であることが好ましい。前記アシルオキシ基の具体例としては、クロロアセチルオキシ基、トリフルオロアセチルオキシ基、メトキシアセチルオキシ基、フェノキシアセチルオキシ基、4−メトキシベンゾイルオキシ基、4−ニトロベンゾイルオキシ基、4−シアノベンゾイルオキシ基、4−トリフルオロメチルベンソイルオキシ基等が挙げられる。

0077

また、R4〜R9において、「置換基を有していてもよいアミノ基」の具体的な構造としては、例えば以下のアミノ基を採用することができるが、これら以外のアミノ基を採用することも可能である。アミノ基;N−メチルアミノ基、N,N−ジメチルアミノ基、N−エチルアミノ基、N,N−ジエチルアミノ基、N,N−メチルエチルアミノ基、N−プロピルアミノ基、N,N−ジプロピルアミノ基、N−イソプロピルアミノ基、N,N−ジイソプロピルアミノ基等の脂肪族アミノ基;N−フェニルアミノ基、N,N−ジフェニルアミノ基等の芳香族アミノ基;ホルムアミド基、アセトアミド基、デカノイルアミド基、ベンゾイルアミド基、クロロアセトアミド基等のアシルアミノ基;ベンジルオキシカルボニルアミノ基、tert−ブチルオキシカルボニルアミノ基等のアルコキシカルボニルアミノ基。

0078

前記アミノ基としては、酸性度の高いプロトンを持たず、分子量が小さく、フルオレン比率を高めることができる傾向を有する、N,N−ジメチルアミノ基、N−エチルアミノ基、又はN,N−ジエチルアミノ基を採用することが好ましく、N,N−ジメチルアミノ基を採用することがより好ましい。

0079

また、R4〜R9において、「置換基を有していてもよい炭素数1〜10のビニル基又はエチニル基」としては、例えば以下のビニル基及びエチニル基を採用することができるが、これら以外のビニル基等を採用することも可能である。ビニル基、2−メチルビニル基、2,2−ジメチルビニル基、2−フェニルビニル基、2−アセチルビニル基、エチニル基、メチルエチニル基、tert—ブチルエチニル基、フェニルエチニル基、アセチルエチニル基、トリメチルシリルエチニル基。

0080

前記ビニル基及び前記エチニル基の炭素数は、4以下であることが好ましい。この範囲内であると、フルオレン環同士の立体障害が生じにくく、フルオレン環に由来する所望の光学特性が得られる傾向がある。また、フルオレン環の共役系が長くなることにより、より強い逆波長分散性を得やすくなる。

0081

また、R4〜R9において「置換基を有する硫黄原子」としては、例えば以下の硫黄含有基を採用することができるが、これら以外の硫黄含有基を採用することも可能である。
スルホ基メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基、イソプロピルスルホニル基等のアルキルスルホニル基フェニルスルホニル基、p−トリルスルホニル基等のアリールスルホニル基メチルスルフィニル基、エチルスルフィニル基、プロピルスルフィニル基、イソプロピルスルフィニル基等のアルキルスルフィニル基フェニルスルフィニル基、p−トリルスルフィニル基等のアリールスルフィニル基メチルチオ基、エチルチオ基等のアルキルチオ基フェニルチオ基、p−トリルチオ基等のアリールチオ基;メトキシスルホニル基エトキシスルホニル基等のアルコキシスルホニル基;フェノキシスルホニル基等のアリールオキシスルホニル基;アミノスルホニル基;N−メチルアミノスルホニル基、N−エチルアミノスルホニル基、N−tert−ブチルアミノスルホニル基、N,N−ジメチルアミノスルホニル基、N,N−ジエチルアミノスルホニル基等のアルキルスルホニル基;N−フェニルアミノスルホニル基、N,N−ジフェニルアミノスルホニル基等のアリールアミノスルホニル基。尚、スルホ基は、リチウム、ナトリウム、カリウムマグネシウムアンモニウム等と塩を形成していてもよい。

0082

前記硫黄含有基の中でも、酸性度の高いプロトンを持たず、分子量が小さく、フルオレン比率を高めることができる、メチルスルフィニル基、エチルスルフィニル基、又はフェニルスルフィニル基を採用することが好ましく、メチルスルフィニル基を採用することがより好ましい。
また、R4〜R9において、「置換基を有するケイ素原子」としては、例えば以下のシリル基を採用することができる。トリメチルシリル基トリエチルシリル基等のトリアルキルシリル基トリメトキシシリル基トリエトキシシリル基等のトリアルコキシシリル基。これらの中でも安定に扱えるトリアルキルシリル基が好ましい。

0083

また、R4〜R9において、「ハロゲン原子」としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子を採用することができる。これらの中でも、比較的導入が容易であり、かつ、電子吸引性を有するためにフルオレン9位の反応性を高める傾向を有する、フッ素原子、塩素原子、又は臭素原子を採用することが好ましく、塩素原子又は臭素原子を採用することがより好ましい。

0084

また、R4〜R9のうち隣接する2つの基は、互いに結合して環を形成していてもよい。その具体例としては、下記[A]群に例示される骨格を有する置換フルオレン構造が挙げられる。
[A]群

0085

0086

以上に述べたように、R4〜R9を前述のような特定の原子又は置換基にすることで、主鎖とフルオレン環との間や、フルオレン環同士の間の立体障害が少なく、フルオレン環に由来する所望の光学特性を得ることができる傾向がある。
前記オリゴフルオレン構造単位に含まれるフルオレン環は、R4〜R9の全てが水素原子である構成、或いは、R4及び/又はR9がハロゲン原子、アシル基、ニトロ基、シアノ基、及びスルホ基からなる群から選ばれるいずれかであり、かつ、R5〜R8が水素原子である構成のいずれかであることが好ましい。前者の構成を有する場合には、前記オリゴフルオレン構造単位を含む化合物を、工業的にも安価なフルオレンから誘導できる。また、後者の構成を有する場合には、フルオレン9位の反応性が向上するため、前記オリゴフルオレン構造単位を含む化合物の合成過程において、様々な誘導反応適応可能となる傾向がある。前記フルオレン環は、より好ましくは、R4〜R9の全てが水素原子である構成、或いは、R4及び/又はR9がフッ素原子、塩素原子、臭素原子、及びニトロ基からなる群から選ばれるいずれかであり、かつ、R5〜R8が水素原子である構成のいずれかであることがより好ましく、R4〜R9の全てが水素原子である構成が特に好ましい。
前記の構成を採用することにより、フルオレン比率を高めることができ、かつ、フルオレン環同士の立体障害が生じにくく、フルオレン環に由来する所望の光学特性が得られる傾向もある。

0087

前記一般式(1)及び一般式(2)で表される2価のオリゴフルオレン構造単位のうち、好ましい構造としては具体的に下記[B]群に例示される骨格を有する構造が挙げられる。
[B]群

0088

0089

本発明のオリゴフルオレン構造単位は、従来多用されている9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレンに由来する構造単位(下記構造式(9))や9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンに由来する構造単位(下記構造式(10))と比較して、以下のような特徴を有する。
・従来、ポリマーの主鎖に組み込まれていたフェニル環等の芳香族成分がポリマーの主鎖に組み込まれなくなるため、光弾性係数を低減できる。
・主鎖に組み込まれた前記芳香族成分が、短波長ほど複屈折が大きくなる正の波長分散性を示すため、従来は、側鎖のフルオレン環に由来する逆波長分散性が相殺され、樹脂全体としての逆波長分散性が低下してしまっていた。これに対し、芳香族成分が主鎖に組み込まれなくなることにより、逆波長分散性をより強く発現させることができる。
一分子中にフルオレン環を二つ導入することで、高い耐熱性を付与できる。
・主鎖が柔軟なアルキレン鎖で構成されるため、樹脂に柔軟性や溶融加工性を付与することができる。

0090

0091

本発明の樹脂は、カーボネート結合及びエステル結合のうち少なくとも1種の結合基と、前記オリゴフルオレン構造単位とを含む樹脂を含有する。前記結合基を有する樹脂である、ポリカーボネート、ポリエステルおよびポリエステルカーボネートは、耐熱性、機械特性、溶融加工性に優れている。また、他のモノマーと共重合することで、樹脂中に前記オリゴフルオレン構造単位を比較的容易に導入でき、かつ、樹脂中のオリゴフルオレン構造単位の比率を所望の範囲に制御しやすいという利点を有する。

0092

前記オリゴフルオレン構造単位を樹脂中に導入する方法としては、例えば、前記オリゴフルオレン構造単位を有するジオール又はジエステルと、他のジオールやジエステルと共重合する方法が挙げられる。具体的には、ジオールと下記一般式(11)で表される炭酸ジエステルとの組み合わせで重合を行うことにより、ポリカーボネートを得ることができる。また、ジオールとジエステルとの組み合わせで重合を行うことにより、ポリエステルを得ることができる。また、ジオールとジエステルと炭酸ジエステルの組み合わせで重合を行うことにより、ポリエステルカーボネートを得ることができる。

0093

0094

前記一般式(11)中、A1およびA2は、それぞれ置換基を有していてもよい炭素数1〜18の脂肪族炭化水素基、又は置換基を有していてもよい芳香族炭化水素基であり、A1とA2とは同一であっても異なっていてもよい。

0095

前記オリゴフルオレン構造単位を有するモノマーとしては、例えば、下記一般式(12)で表される特定のジオールや下記一般式(13)で表される特定のジエステルが挙げられる。

0096

0097

前記一般式(12)及び一般式(13)中、R1〜R3は、それぞれ独立に、直接結合、置換基を有していてもよい炭素数1〜4のアルキレン基であり、R4〜R9は、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1〜10のアルキル基、置換基を有していてもよい炭素数4〜10のアリール基、置換基を有していてもよい炭素数1〜10のアシル基、置換基を有していてもよい炭素数1〜10のアルコキシ基、置換基を有していてもよい炭素数1〜10のアリールオキシ基、置換基を有していてもよい炭素数1〜10のアシルオキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよい炭素数1〜10のビニル基、置換基を有していてもよい炭素数1〜10のエチニル基、置換基を有する硫黄原子、置換基を有するケイ素原子、ハロゲン原子、ニトロ基、又はシアノ基である。ただし、R4〜R9のうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。A3およびA4はそれぞれ、水素原子、又はそれぞれ置換基を有していてもよい炭素数1〜18の脂肪族炭化水素基、又は置換基を有していてもよい芳香族炭化水素基であり、A3とA4とは同一であっても異なっていてもよい。

0098

前記2価のオリゴフルオレン構造単位を有する前記モノマーとしては、前記一般式(13)で表される特定のジエステルを用いることが好ましい。前記特定のジエステルは、前記一般式(12)で表される特定のジオールよりも熱安定性が比較的良好であり、また、ポリマー中のフルオレン環が好ましい方向に配向し、より強い逆波長分散性を示す傾向がある。

0099

一方、ポリカーボネートとポリエステルを比較すると、ジオールと炭酸ジエステルとの重合により得られるポリカーボネートの方が耐熱性と機械特性のバランスが良好な傾向がある。そのため、本発明の樹脂としては、オリゴフルオレン構造単位を有する前記特定のジエステルをポリカーボネートの構造に組み込んだ、ポリエステルカーボネートが特に好ましい。

0100

前記一般式(13)のA3とA4が水素原子、又は、メチル基やエチル基等の脂肪族炭化水素基である場合、通常用いられるポリカーボネートの重合条件においては、重合反応が起こりにくいことがある。そのため、前記一般式(13)のA3とA4は、芳香族炭化水素基であることが好ましい。

0101

また、前記一般式(11)で表される炭酸ジエステルも用いて重合反応を行う場合には、前記一般式(11)のA1、A2及び前記一般式(13)のA3、A4がすべて同じ構造であると、重合反応中に脱離する成分が同じであり、回収して再利用しやすい。また、重合反応性と再利用での有用性の観点から、A1〜A4はフェニル基であることが特に好ましい。なお、A1〜A4がフェニル基である場合、重合反応中に脱離する成分はフェノールである。

0102

本発明の樹脂において、後述する正の屈折率異方性と十分な逆波長分散性を得るためには、前記樹脂中の前記オリゴフルオレン構造単位の比率を特定の範囲に調節する必要がある。前記樹脂中の前記オリゴフルオレン構造単位の比率を調節する方法としては、例えば、前記オリゴフルオレン構造単位を有するモノマーと他のモノマーを共重合する方法や、前記オリゴフルオレン構造単位を有する樹脂と他の樹脂とをブレンドする方法が挙げられる。オリゴフルオレン構造単位の含有量を精密に制御でき、かつ、高い透明性が得られ、フィルムの面全体において均一な特性が得られることから、前記オリゴフルオレン構造単位を有するモノマーと他のモノマーを共重合する方法が好ましい。

0103

前記樹脂中の前記オリゴフルオレン構造単位の含有量は、樹脂全体に対して、1質量%以上40質量%以下であることが好ましく、10質量%以上35質量%以下であることがより好ましく、15質量%以上30質量%以下がさらに好ましく、18質量%以上25質量%以下が特に好ましい。オリゴフルオレン構造単位の含有量が多すぎる場合、光弾性係数や信頼性が悪化したり、延伸によって高い複屈折を得られないおそれがある。また、オリゴフルオレン構造単位が樹脂中に占める割合が高くなるため、分子設計の幅が狭くなり、樹脂の改質が求められた時に改良が困難となる。一方、仮に、非常に少量のオリゴフルオレン構造単位により所望の逆波長分散性が得られたとしても、この場合には、オリゴフルオレンの含有量のわずかなばらつきに応じて光学特性が敏感に変化するため、諸特性が一定の範囲に収まるように製造することが困難となる。

0104

本発明の樹脂は、前記オリゴフルオレン構造単位を有するモノマーと他のモノマーとを共重合して得ることが好ましい。共重合する他のモノマーとしては、例えば、ジヒドロキシ化合物やジエステル化合物が挙げられる。
本発明の樹脂は、光学特性、機械特性、耐熱性等の観点から、共重合成分として下記一般式(3)の構造単位を含有することが好ましい。

0105

0106

前記一般式(3)で表される構造単位を導入可能なジヒドロキシ化合物としては、立体異性体の関係にある、イソソルビド(ISB)、イソマンニドイソイデットが挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中でも、入手及び重合反応性の観点からISBを用いるのが最も好ましい。

0107

前記一般式(3)で表される構造単位は、前記樹脂中に5質量%以上、70質量%以下含有されていることが好ましく、10質量%以上、65質量%以下含有されていることがさらに好ましく、20質量%以上、60質量%以下含有されていることが特に好ましい。前記一般式(3)で表される構造単位の含有量が少なすぎると、耐熱性が不十分となるおそれがある。一方、前記一般式(3)で表される構造単位の含有量が多すぎると耐熱性が過度に高くなり、機械特性や溶融加工性が悪化する。また、前記一般式(3)で表される構造単位は吸湿性の高い構造であるため、含有量が過度に多い場合には、樹脂の吸水率が高くなり、高湿度の環境下において寸法変形が起こる懸念がある。

0108

また、本発明の樹脂は、前記一般式(3)の構造単位と組み合わせて、又は前記一般式(3)の構造は用いずに、さらに別の構造単位を含んでいてもよい。(以下、かかる構造単位を「その他の構造単位」と称することがある。)
前記したその他の構造単位としては、芳香族成分を含有しない下記一般式(4)〜(8)で表される構造単位を有することが特に好ましい。

0109

0110

前記一般式(4)中、R10は置換基を有していてもよい炭素数2〜20のアルキレン基を示す。
前記一般式(4)の構造単位を導入可能なジヒドロキシ化合物としては、例えば、以下のジヒドロキシ化合物を採用することができる。エチレングリコール、1,3−プロパンジオール、1,2−プロパンジオール、1,4−ブタンジオール、1,3−ブタンジオール、1,2−ブタンジオール、1,5−ヘプタンジオール、1,6−ヘキサンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,12−ドデカンジオール等の直鎖脂肪族炭化水素のジヒドロキシ化合物;ネオペンチルグリコールヘキシレングリコール等の分岐脂肪族炭化水素のジヒドロキシ化合物。

0111

0112

前記一般式(5)中、R11は置換基を有していてもよい炭素数4〜20のシクロアルキレン基を示す。
前記一般式(5)の構造単位を導入可能なジヒドロキシ化合物としては、例えば、以下のジヒドロキシ化合物を採用することができる。1,2−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,3−アダマンタンジオール水添ビスフェノールA、2,2,4,4−テトラメチル−1,3−シクロブタンジオール等に例示される、脂環式炭化水素の2級アルコール及び3級アルコールであるジヒドロキシ化合物。

0113

0114

前記一般式(6)中、R12は置換基を有していてもよい炭素数4〜20のシクロアルキレン基を示す。
前記一般式(6)の構造単位を導入可能なジヒドロキシ化合物としては、例えば、以下のジヒドロキシ化合物を採用することができる。1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、トリシクロデカンジメタノールペンタシクロペンタデカンジメタノール、2,6−デカリンジメタノール、1,5−デカリンジメタノール、2,3−デカリンジメタノール、2,3−ノルボルナンジメタノール、2,5−ノルボルナンジメタノール、1,3−アダマンタンジメタノールリモネン等の、テルペン化合物から誘導されるジヒドロキシ化合物等に例示される、脂環式炭化水素の1級アルコールであるジヒドロキシ化合物。

0115

0116

前記一般式(7)中、R13は置換基を有していてもよい炭素数2〜10のアルキレン基を示し、pは1〜40の整数である。2以上あるR13は同一であっても、異なっていてもよい。
前記一般式(7)の構造単位を導入可能なジヒドロキシ化合物としては、例えば、以下のジヒドロキシ化合物を採用することができる。ジエチレングリコールトリエチレングリコールテトラエチレングリコールポリエチレングリコールポリプロピレングリコール等のオキシアルキレングリコール類。

0117

0118

前記一般式(8)中、R14は置換基を有していてもよい炭素数2〜20のアセタール環を有する基を示す。
前記一般式(8)の構造単位を導入可能なジヒドロキシ化合物としては、例えば、下記構造式(14)で表されるスピログリコールや下記構造式(15)で表されるジオキサングリコール等を採用することができる。

0119

0120

また、前述したジヒドロキシ化合物以外に、以下に例示する芳香族成分を含有するジヒドロキシ化合物を用いてもよい。2,2−ビス(4−ヒドロキシフェニルプロパン、2,2−ビス(3−メチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジエチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−(3−フェニル)フェニル)プロパン、2,2−ビス(4−ヒドロキシ−(3,5−ジフェニル)フェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパン、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、1,1−ビス(4−ヒドロキシフェニル)−2−エチルヘキサン、1,1−ビス(4−ヒドロキシフェニル)デカン、ビス(4−ヒドロキシ−3−ニトロフェニル)メタン、3,3−ビス(4−ヒドロキシフェニル)ペンタン、1,3−ビス(2−(4−ヒドロキシフェニル)−2−プロピル)ベンゼン、1,3−ビス(2−(4−ヒドロキシフェニル)−2−プロピル)ベンゼン、2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)スルホン、2,4’−ジヒドロキシジフェニルスルホン、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシ−3−メチルフェニル)スルフィド、ビス(4−ヒドロキシフェニル)ジスルフィド、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジクロロジフェニルエーテル等の芳香族ビスフェノール化合物;2,2−ビス(4−(2−ヒドロキシエトキシ)フェニル)プロパン、2,2−ビス(4−(2−ヒドロキシプロポキシ)フェニル)プロパン、1,3−ビス(2−ヒドロキシエトキシ)ベンゼン、4,4’−ビス(2−ヒドロキシエトキシ)ビフェニル、ビス(4−(2−ヒドロキシエトキシ)フェニル)スルホン等の芳香族基に結合したエーテル基を有するジヒドロキシ化合物;9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシプロポキシ)フェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−メチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシプロポキシ)−3−メチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−イソプロピルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−イソブチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−tert−ブチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−シクロヘキシルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−フェニルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3,5−ジメチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−tert−ブチル−6−メチルフェニル)フルオレン、9,9−ビス(4−(3−ヒドロキシ−2,2−ジメチルプロポキシ)フェニル)フルオレン等のフルオレン環を有するジヒドロキシ化合物。

0121

また、前記オリゴフルオレン構造単位を有するモノマーとの共重合に使用できるジエステル化合物としては、例えば、以下に示すジカルボン酸等を採用することができる。テレフタル酸フタル酸イソフタル酸、4,4’−ジフェニルジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、4,4’−ベンゾフェノンジカルボン酸、4,4’−ジフェノキシエタンジカルボン酸、4,4’−ジフェニルスルホンジカルボン酸、2,6−ナフタレンジカルボン酸等の芳香族ジカルボン酸;1,2−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸等の脂環式ジカルボン酸マロン酸コハク酸グルタル酸アジピン酸ピメリン酸スベリン酸アゼライン酸セバシン酸等の脂肪族ジカルボン酸。尚、これらのジカルボン酸成分はジカルボン酸そのものとして前記ポリエステルカーボネートの原料とすることができるが、製造法に応じて、メチルエステル体、フェニルエステル体等のジカルボン酸エステルや、ジカルボン酸ハライド等のジカルボン酸誘導体を原料とすることもできる。

0122

光学特性の観点からは、前記に挙げたその他の構造単位として、芳香族成分を含有しないものを用いることが好ましい。ポリマーの主鎖に芳香族成分が含まれていると、前述したようにフルオレン環の逆波長分散性が相殺されるため、オリゴフルオレン構造単位の含有量を増やさなければならなくなり、また、光弾性係数も悪化する懸念がある。芳香族成分を含有しない前記その他の構造単位を採用することにより、当該構造単位に由来して主鎖に芳香族成分が組み込まれることを防止できる。

0123

一方、光学特性を確保しつつ、耐熱性や機械特性等とのバランスをとるために、ポリマーの主鎖や側鎖に芳香族成分を組み込むことが有効な場合もある。この場合には、例えば、芳香族成分を含有する前記その他の構造単位により、ポリマーに芳香族成分を導入することができる。
諸特性のバランスをとる観点から、前記樹脂における、芳香族基を含む構造単位(但し、前記一般式(1)で表される構造単位及び前記一般式(2)で表される構造単位を除く。)の含有量が5質量%以下であることが好ましい。

0124

前記に挙げたその他の構造単位を有するモノマーとしては、1,4−シクロヘキサンジメタノール、トリシクロデカンジメタノール、スピログリコール、1,4−シクロヘキサンジカルボン酸(及びその誘導体)を採用することが特に好ましい。これらのモノマーに由来する構造単位を含む樹脂は、光学特性や耐熱性、機械特性等のバランスに優れている。

0125

また、本発明において最も好ましいポリエステルカーボネートである場合には、ジエステル化合物の重合反応性が比較的低いため、反応効率を高める観点から、オリゴフルオレン構造単位を有するジエステル化合物以外のジエステル化合物は用いないことが好ましい。
その他の構造単位を導入するためのジヒドロキシ化合物やジエステル化合物は、得られる樹脂の要求性能に応じて、単独又は2種以上を組み合わせて用いてもよい。樹脂中のその他の構造単位の含有量は、1質量%以上、60質量%以下が好ましく、5質量%以上、55質量%以下がさらに好ましく、10質量%以上、50質量%以下が特に好ましい。その他の構造単位は特に樹脂の耐熱性の調整や、柔軟性や靱性の付与の役割を担うため、含有量が少なすぎると、樹脂の機械特性や溶融加工性が悪くなり、含有量が多すぎると、耐熱性や光学特性が悪化するおそれがある。

0126

<本発明の樹脂の製造方法>
本発明の樹脂と好適に用いられる、ポリカーボネート、ポリエステル、ポリエステルカーボネートは、一般に用いられる重合方法で製造することができる。即ち、前記樹脂は、例えば、ホスゲンカルボン酸ハロゲン化物を用いた溶液重合法又は界面重合法や、溶媒を用いずに反応を行う溶融重合法を用いて製造することができる。これらの製造方法のうち、溶媒や毒性の高い化合物を使用しないことから環境負荷を低減することができ、また、生産性にも優れる溶融重合法によって製造することが好ましい。

0127

また、重合に溶媒を使用する場合、樹脂中の残存溶媒による可塑化効果によって、樹脂のガラス転移温度が低下するため、後述する延伸工程において、分子配向を一定に制御することが困難になる。また、樹脂中に塩化メチレン等のハロゲン系の有機溶媒が残存する場合、この樹脂を用いた成形体電子機器等に組み込まれると腐食の原因ともなり得る。
溶融重合法によって得られる樹脂は溶媒を含有しないため、加工工程や製品品質の安定化にとっても有利である。

0128

溶融重合法により前記樹脂を製造する際は、オリゴフルオレン構造単位を有するモノマーと、その他のジオールやジエステルの共重合モノマーと、重合触媒とを混合し、溶融下でエステル交換反応させ、脱離成分を系外に除去しながら反応率を上げていく。重合の終盤では高温、高真空の条件で目的の分子量まで反応を進める。反応が完了したら、反応器から溶融状態の樹脂を抜き出して、位相差フィルム等の成形品に用いられる樹脂原料を得る。

0129

本発明において、ポリカーボネート又はポリエステルカーボネートは、少なくともオリゴフルオレン構造単位を含有するモノマーと、一種以上のジヒドロキシ化合物と炭酸ジエステルとを原料に用いて、これらを重縮合させて得ることができる。
重縮合反応に用いられる炭酸ジエステルとしては、通常、前述した一般式(11)で表されるものが挙げられる。これらの炭酸ジエステルは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。

0130

0131

前記一般式(11)中、A1およびA2は、それぞれ置換基を有していてもよい炭素数1〜18の脂肪族炭化水素基、又は置換基を有していてもよい芳香族炭化水素基であり、A1とA2とは同一であっても異なっていてもよい。A1およびA2は、置換または無置換の芳香族炭化水素基であることが好ましく、無置換の芳香族炭化水素基がより好ましい。尚、脂肪族炭化水素基の置換基としては、エステル基、エーテル基、カルボン酸、アミド基、ハロゲンが挙げられ、芳香族炭化水素基の置換基としては、メチル基、エチル基等のアルキル基が挙げられる。

0132

前記一般式(11)で表される炭酸ジエステルとしては、例えば、ジフェニルカーボネートDPC)、ジトリルカーボネート等の置換ジフェニルカーボネート、ジメチルカーボネートジエチルカーボネート及びジ−tert−ブチルカーボネート等が例示されるが、好ましくはジフェニルカーボネート、置換ジフェニルカーボネートであり、特に好ましくはジフェニルカーボネートである。尚、炭酸ジエステルは、塩化物イオン等の不純物を含む場合があり、重合反応を阻害したり、得られるポリカーボネートの色相を悪化させたりする場合があるため、必要に応じて、蒸留等により精製したものを使用することが好ましい。

0133

重縮合反応は、反応に用いる全ジヒドロキシ化合物と、ジエステル化合物のモル比率を厳密に調整することで、反応速度や得られる樹脂の分子量を制御できる。ポリカーボネートの場合、全ジヒドロキシ化合物に対する炭酸ジエステルのモル比率を、0.90〜1.10に調整することが好ましく、0.96〜1.05に調整することがより好ましく、0.98〜1.03に調整することが特に好ましい。ポリエステルの場合、全ジヒドロキシ化合物に対する全ジエステル化合物のモル比率を、0.70〜1.10に調整することが好ましく、0.80〜1.05に調整することがより好ましく、0.85〜1.00に調整することが特に好ましい。ポリエステルカーボネートの場合、全ジヒドロキシ化合物に対する炭酸ジエステルと全ジエステル化合物との合計量のモル比率を、0.90〜1.10に調整することが好ましく、0.96〜1.05に調整することがより好ましく、0.98〜1.03に調整することが特に好ましい。

0134

前記のモル比率が上下に大きく外れると、所望とする分子量の樹脂が製造できなくなる。また、前記のモル比率が小さくなりすぎると、製造された樹脂のヒドロキシ基末端が増加して、樹脂の熱安定性が悪化する場合がある。また、前記のモル比率が大きくなりすぎると、同一条件下ではエステル交換反応の速度が低下したり、製造された樹脂中の炭酸ジエステルやジエステル化合物の残存量が増加し、この残存低分子成分が製膜時や延伸時に揮発し、フィルムの欠陥を招く可能性がある。

0135

溶融重合法は、通常、2段階以上の多段工程で実施される。重縮合反応は、1つの重合反応器を用い、順次条件を変えて2段階以上の工程で実施してもよいし、2つ以上の反応器を用いて、それぞれの条件を変えて2段階以上の工程で実施してもよいが、生産効率の観点からは、2つ以上、好ましくは3つ以上の反応器を用いて実施する。重縮合反応はバッチ式連続式、あるいはバッチ式と連続式の組み合わせの何れでも構わないが、生産効率と品質の安定性の観点から、連続式が好ましい。

0136

重縮合反応においては、反応系内の温度と圧力のバランスを適切に制御することが重要である。温度、圧力のどちらか一方でも早く変化させすぎると、未反応のモノマーが反応系外に留出する。その結果、ジヒドロキシ化合物とジエステル化合物のモル比率が変化し、所望の分子量の樹脂が得られない場合がある。
また、重縮合反応の重合速度は、ヒドロキシ基末端とエステル基末端あるいはカーボネート基末端とのバランスによって制御される。そのため、特に連続式で重合を行う場合は、未反応モノマーの留出によって末端基のバランスが変動すると、重合速度を一定に制御することが難しくなり、得られる樹脂の分子量の変動が大きくなるおそれがある。樹脂の分子量は溶融粘度と相関するため、得られた樹脂を溶融製膜する際に、溶融粘度が変動し、フィルムの膜厚等の品質を一定に保つことが難しくなり、フィルムの品質や生産性の低下を招く。

0137

さらに、未反応モノマーが留出すると、末端基のバランスだけでなく、樹脂の共重合組成が所望の組成から外れ、位相差フィルムの光学品質にも影響するおそれがある。本発明の位相差フィルムにおいては、後述する位相差の波長分散性は樹脂中のオリゴフルオレンと共重合成分との比率によって制御されるため、重合中に比率がくずれると、設計どおりの光学特性が得られなくなってしまったり、長尺のフィルムを取得する場合は、フィルムの位置によって光学特性が変化し、一定の品質の偏光板を製造できなくなるおそれがある。

0138

具体的に、第1段目の反応における反応条件としては、以下の条件を採用することができる。即ち、重合反応器の内温の最高温度は、通常130℃以上、好ましくは150℃以上、より好ましくは170℃以上、かつ、通常250℃以下、好ましくは240℃以下、より好ましくは230℃以下の範囲で設定する。また、重合反応器の圧力は、通常70kPa以下(以下、圧力とは絶対圧力を表す)、好ましくは50kPa以下、より好ましくは30kPa以下、かつ、通常1kPa以上、好ましくは3kPa以上、より好ましくは5kPa以上の範囲で設定する。また、反応時間は、通常0.1時間以上、好ましくは0.5時間以上、かつ、通常10時間以下、好ましくは5時間以下、より好ましくは3時間以下の範囲で設定する。第1段目の反応は、発生するジエステル化合物由来のモノヒドロキシ化合物を反応系外へ留去しながら実施される。例えば炭酸ジエステルとしてジフェニルカーボネートを用いる場合には、第1段目の反応において反応系外へ留去されるモノヒドロキシ化合物はフェノールである。

0139

第1段目の反応においては、反応圧力を低くするほど重合反応を促進することができるが、一方で未反応モノマーの留出が多くなってしまう。未反応モノマーの留出の抑制と、減圧による反応の促進を両立させるために、還流冷却器具備した反応器を用いることが有効である。特に未反応モノマーの多い反応初期に還流冷却器を用いるのがよい。
第2段目以降の反応は、反応系の圧力を第1段目の圧力から徐々に下げ、引き続き発生するモノヒドロキシ化合物を反応系外へ除きながら、最終的には反応系の圧力を5kPa以下、好ましくは3kPa以下、より好ましくは1kPa以下にする。また、内温の最高温度は、通常210℃以上、好ましくは220℃以上、かつ、通常270℃以下、好ましくは260℃以下の範囲で設定する。また、反応時間は、通常0.1時間以上、好ましくは0.5時間以上、より好ましくは1時間以上、かつ、通常10時間以下、好ましくは5時間以下、より好ましくは3時間以下の範囲で設定する。着色や熱劣化を抑制し、色相や熱安定性の良好な樹脂を得るには、全反応段階における内温の最高温度が270℃以下、好ましくは260℃以下、さらに好ましくは250℃以下であることが好ましい。

0140

重合時に使用し得るエステル交換反応触媒(以下、単に触媒、重合触媒と言うことがある)は、反応速度や重縮合して得られる樹脂の色調や熱安定性に非常に大きな影響を与え得る。用いられる触媒としては、製造された樹脂の透明性、色相、耐熱性、熱安定性、及び機械的強度満足させ得るものであれば限定されないが、長周期型周期表における1族又は2族(以下、単に「1族」、「2族」と表記する。)の金属化合物塩基性ホウ素化合物、塩基性リン化合物塩基性アンモニウム化合物アミン系化合物等の塩基性化合物が挙げられる。好ましくは長周期型周期表第2族の金属およびリチウムからなる群より選ばれる少なくとも1種の金属化合物が使用される。

0141

前記の1族金属化合物としては、例えば以下の化合物を採用することができるが、これら以外の1族金属化合物を採用することも可能である。水酸化ナトリウム水酸化カリウム水酸化リチウム水酸化セシウム炭酸水素ナトリウム炭酸水素カリウム炭酸水素リチウム炭酸水素セシウム炭酸ナトリウム炭酸カリウム炭酸リチウム炭酸セシウム酢酸ナトリウム酢酸カリウム酢酸リチウム酢酸セシウムステアリン酸ナトリウムステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸セシウム、水素化ホウ素ナトリウム水素化ホウ素カリウム水素化ホウ素リチウム水素化ホウ素セシウム、テトラフェニルホウ酸ナトリウムテトラフェニルホウ酸カリウムテトラフェニルホウ酸リチウム、テトラフェニルホウ酸セシウム、安息香酸ナトリウム安息香酸カリウム安息香酸リチウム、安息香酸セシウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、リン酸水素2セシウム、フェニルリン酸2ナトリウム、フェニルリン酸2カリウム、フェニルリン酸2リチウム、フェニルリン酸2セシウム、ナトリウム、カリウム、リチウム、セシウムのアルコレートフェノレートビスフェノールAの2ナトリウム塩、2カリウム塩、2リチウム塩、2セシウム塩。これらのうち、重合活性と得られるポリカーボネートの色相の観点から、リチウム化合物を用いることが好ましい。

0142

前記の2族金属化合物としては、例えば以下の化合物を採用することができるが、これら以外の2族金属化合物を採用することも可能である。水酸化カルシウム水酸化バリウム水酸化マグネシウム水酸化ストロンチウム炭酸水素カルシウム、炭酸水素バリウム炭酸水素マグネシウム、炭酸水素ストロンチウム炭酸カルシウム炭酸バリウム炭酸マグネシウム炭酸ストロンチウム酢酸カルシウム酢酸バリウム酢酸マグネシウム酢酸ストロンチウムステアリン酸カルシウムステアリン酸バリウムステアリン酸マグネシウムステアリン酸ストロンチウム。これらのうち、マグネシウム化合物カルシウム化合物バリウム化合物を用いることが好ましく、重合活性と得られるポリカーボネートの色相の観点から、マグネシウム化合物及び/又はカルシウム化合物を用いることが更に好ましく、カルシウム化合物を用いることが最も好ましい。

0143

尚、前記の1族金属化合物及び/又は2族金属化合物と共に、補助的に、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物を併用することも可能であるが、長周期型周期表第2族の金属およびリチウムからなる群より選ばれる少なくとも1種の金属化合物を使用することが特に好ましい。
前記の塩基性リン化合物としては、例えば以下の化合物を採用することができるが、これら以外の塩基性リン化合物を採用することも可能である。トリエチルホスフィントリ−n−プロピルホスフィントリイソプロピルホスフィン、トリ−n−ブチルホスフィントリフェニルホスフィントリブチルホスフィン、あるいは四級ホスホニウム塩

0144

前記の塩基性アンモニウム化合物としては、例えば以下の化合物を採用することができるが、これら以外の塩基性アンモニウム化合物を採用することも可能である。テトラメチルアンモニウムヒドロキシドテトラエチルアンモニウムヒドロキシドテトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、N,N,N−トリメチルエタノールアミンコリン)、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシドトリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシド、ブチルトリフェニルアンモニウムヒドロキシド。

0145

前記のアミン系化合物としては、例えば以下の化合物を採用することができるが、これら以外のアミン系化合物を採用することも可能である。4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン、4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾールアミノキノリングアニジン

0146

前記重合触媒の使用量は、通常、重合に使用した全ジヒドロキシ化合物1mol当たり0.1μmol〜300μmol、好ましくは0.5μmol〜100μmolである。
前記重合触媒として、長周期型周期表第2族の金属およびリチウムからなる群より選ばれる少なくとも1種の金属化合物を用いる場合、特にマグネシウム化合物及び/又はカルシウム化合物を用いる場合には、金属量として、前記全ジヒドロキシ化合物1mol当たり、通常、0.1μmol以上、好ましくは0.3μmol以上、特に好ましくは0.5μmol以上の前記重合触媒を使用する。また、前記重合触媒の使用量は、30μmol以下がよく、好ましくは20μmol以下であり、特に好ましくは10μmol以下である。

0147

また、モノマーにジエステル化合物を用いて、ポリエステルやポリエステルカーボネートを製造する場合は、前記塩基性化合物と併用して、又は併用せずに、チタン化合物スズ化合物ゲルマニウム化合物アンチモン化合物ジルコニウム化合物鉛化合物オスミウム化合物亜鉛化合物マンガン化合物等のエステル交換触媒を用いることもできる。これらのエステル交換触媒の使用量は、反応に用いる全ジヒドロキシ化合物1molに対して、金属量として、通常、1μmol〜1mmolの範囲内で用い、好ましくは5μmol〜800μmolの範囲内であり、特に好ましくは10μmol〜500μmolである。

0148

触媒量が少なすぎると、重合速度が遅くなるため、所望の分子量の樹脂を得ようとするにはその分だけ重合温度を高くせざるを得なくなる。そのために、得られる樹脂の色相が悪化する可能性が高くなり、また、未反応の原料が重合途中で揮発してジヒドロキシ化合物とジエステル化合物のモル比率が崩れ、所望の分子量に到達しない可能性がある。一方、重合触媒の使用量が多すぎると、好ましくない副反応併発し、得られる樹脂の色相の悪化や成形加工時の樹脂の着色を招く可能性がある。

0149

族金属の中でもナトリウム、カリウム、セシウムは、樹脂中に多く含まれると色相に悪影響を及ぼす可能性がある。そして、これらの金属は使用する触媒からのみではなく、原料や反応装置から混入する場合がある。出所にかかわらず、樹脂中のこれらの金属の化合物の合計量は、金属量として、前記全ジヒドロキシ化合物1mol当たり、2μmol以下がよく、好ましくは1μmol以下、より好ましくは0.5μmol以下である。

0150

尚、オリゴフルオレン構造単位を有するモノマーとして、前記一般式(13)で表されるジエステル化合物を用いてポリエステルカーボネートを製造する場合には、A3及びA4が芳香族炭化水素基である前記ジエステル化合物を用いることが好ましく、A3及びA4がフェニル基である前記ジエステル化合物を用いることが特に好ましい。これらのジエステル化合物を用いることにより、重合反応性が良好であり、用いる触媒の量を少なくすることができ、得られる樹脂の色調や熱安定性を向上させ、また、樹脂中の異物を低減することができる。

0151

本発明の樹脂は、前述のとおり重合させた後、通常、冷却固化させ、回転式カッター等でペレット化することができる。ペレット化の方法は限定されるものではないが、最終段の重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させてペレット化させる方法、最終段の重合反応器から溶融状態で一軸又は二軸押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法、又は、最終段の重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させて一旦ペレット化させた後に、再度一軸又は二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法等が挙げられる。

0152

このようにして得られた樹脂の分子量は、還元粘度で表すことができる。樹脂の還元粘度が低すぎると成形品の機械強度が小さくなる可能性がある。そのため、還元粘度は、通常0.20dL/g以上であり、0.30dL/g以上であることが好ましい。一方、樹脂の還元粘度が大きすぎると、成形する際の流動性が低下し、生産性や成形性を低下する傾向がある。そのため、還元粘度は、通常1.20dL/g以下であり、1.00dL/g以下であることが好ましく、0.80dL/g以下であることがより好ましい。尚、還元粘度は、溶媒として塩化メチレンを用い、ポリカーボネート濃度を0.6g/dLに精密に調製し、温度20.0℃±0.1℃でウベローデ粘度計を用いて測定する。

0153

前記の還元粘度は樹脂の溶融粘度と相関があるため、通常は重合反応器の撹拌動力や、溶融樹脂移送するギアポンプ吐出圧等を運転管理指標に用いることができる。即ち、上記の運転機器指示値目標値に到達した段階で、反応器の圧力を常圧に戻したり、反応器から樹脂を抜き出すことで重合反応を停止させる。

0154

本発明の樹脂の溶融粘度は、温度240℃、剪断速度91.2sec−1の測定条件において1000Pa・s以上4000Pa・s以下であることが好ましい。さらには1200Pa・s以上3800Pa・s以下が好ましく、特には1500Pa・s以上3500Pa・s以下が好ましい。尚、溶融粘度はキャピラリーレオメーター(東洋精機(株)製)を用いて測定する。

0155

本発明の樹脂のガラス転移温度は、110℃以上、160℃以下であることが好ましく、120℃以上、155℃以下であることがより好ましく、130℃以上、150℃以下であることが特に好ましい。ガラス転移温度が過度に低いと耐熱性が悪くなる傾向にあり、フィルム成形後に寸法変化を起こしたり、位相差フィルムの使用条件下における品質の信頼性が悪化したりする可能性がある。一方、ガラス転移温度が過度に高いと、フィルム成形時にフィルム厚みの斑が生じたり、フィルムが脆くなり、延伸性が悪化したりする場合があり、また、フィルムの透明性を損なう場合がある。

0156

前記樹脂は、貯蔵弾性率が1GPa以上2.7GPa以下であることが好ましく、1.1GPa以上2.5GPa以下であることがより好ましく、1.2GPa以上2.3GPa以下であることがさらに好ましく、1.3GPa以上2.2GPa以下であることが特に好ましい。貯蔵弾性率が上記範囲であると、フィルムのハンドリング性や強度に優れる。貯蔵弾性率の測定方法は、実施例の項において後述する。

0157

重縮合反応にジエステル化合物を用いる場合、副生したモノヒドロキシ化合物が樹脂中に残存し、フィルム製膜時や延伸時に揮発し、臭気となって作業環境を悪化させたり、搬送ロール等を汚染し、フィルムの外観を損ねるおそれがある。特に有用な炭酸ジエステルであるジフェニルカーボネート(DPC)を用いる場合、副生するフェノールは比較的沸点が高く、減圧下での反応によっても十分に除去されず、樹脂中に残存しやすい。

0158

そのため、本発明の樹脂中に含まれる炭酸ジエステル由来のモノヒドロキシ化合物は1500質量ppm以下であることが好ましい。さらには1000質量ppm以下が好ましく、特に700質量ppm以下であることが好ましい。なお、モノヒドロキシ化合物は、前記問題を解決するためには、含有量が少ないほどよいが、溶融重合法では高分子中に残存するモノヒドロキシ化合物をゼロにすることは困難であり、除去のためには過大な労力が必要である。通常は、モノヒドロキシ化合物の含有量を1質量ppmまで低減することにより、前記の問題を十分に抑制することができる。

0159

本発明の樹脂中に残存する、炭酸ジエステル由来のモノヒドロキシ化合物をはじめとする低分子成分を低減するためには、前記のように樹脂を押出機で脱気処理することや、重合終盤の圧力を3kPa以下、好ましくは2kPa以下、さらに好ましくは1kPa以下にすることが効果的である。
重合終盤の圧力を低下させる場合には、反応の圧力を下げすぎると分子量が急激に上昇して、反応の制御が困難になる場合があるため、樹脂の末端基濃度をヒドロキシ基末端過剰かエステル基末端過剰にして、末端基バランスを偏らせて製造することが好ましい。中でも熱安定性の観点から、ヒドロキシ基末端量を50mol/ton以下、特には40mol/ton以下にすることが好ましい。ヒドロキシ基末端量は1H−NMR等で定量することができる。ヒドロキシ基末端量は全ジヒドロキシ化合物と全ジエステル化合物の仕込みのモル比により調節することができる。

0160

本発明の樹脂には、必要に応じて、成形時等における分子量の低下や色相の悪化を防止するために熱安定剤を配合することができる。かかる熱安定剤としては、通常知られるヒンダードフェノール系熱安定剤および/又はリン系熱安定剤が挙げられる。
ヒンダードフェノール系化合物としては、例えば、以下の化合物を採用することができる。2,6−ジ−tert−ブチルフェノール、2,4−ジ−tert−ブチルフェノール、2−tert−ブチル−4−メトキシフェノール、2−tert−ブチル−4,6−ジメチルフェノール、2,6−ジ−tert−ブチル−4−メチルフェノール、2,6−ジ−tert−ブチル−4−エチルフェノール、2,5−ジ−tert−ブチルヒドロキノン、n−オクタデシル−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,2’−メチレン−ビス−(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレン−ビス−(6−シクロヘキシル−4−メチルフェノール)、2,2’−エチリデン−ビス−(2,4−ジ−tert−ブチルフェノール)、テトラキス−[メチレン−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート]−メタン、1,3,5−トリメチル−2,4,6−トリス−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン等が挙げられる。中でも、テトラキス−[メチレン−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート]−メタン、n−オクタデシル−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン。

0161

リン系化合物としては、例えば、以下に示す亜リン酸リン酸亜ホスホン酸ホスホン酸及びこれらのエステル等を採用することができるが、これらの化合物以外のリン系化合物を採用することも可能である。トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリデシルホスファイトトリオクチルホスファイト、トリオタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリブチルホスフェートトリエチルホスフェート、トリメチルホスフェートトリフェニルホスフェートジフェニルモノオルソキセニルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェート、4,4’−ビフェニレンジホスフィン酸テトラキス(2,4−ジ−tert−ブチルフェニル)、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、ベンゼンホスホン酸ジプロピル。これらの熱安定剤は、1種を単独で用いても良く、2種以上を併用してもよい。

0162

かかる熱安定剤は、溶融重合時に反応液に添加してもよく、押出機を用いて樹脂に添加し、混練してもよい。溶融押出法によりフィルムを製膜する場合、押出機に前記熱安定剤等を添加して製膜してもよいし、予め押出機を用いて、樹脂中に前記熱安定剤等を添加して、ペレット等の形状にしたものを用いてもよい。
これらの熱安定剤の配合量は、本発明に用いられる樹脂を100質量部とした場合、0.0001質量部以上が好ましく、0.0005質量部以上がより好ましく、0.001質量部以上がさらに好ましく、また、1質量部以下が好ましく、0.5質量部以下がより好ましく、0.2質量部以下がさらに好ましい。

0163

本発明の樹脂には、必要に応じて、酸化防止の目的で通常知られた酸化防止剤を配合することもできる。かかる酸化防止剤としては、例えば、以下に示す化合物を採用することができるが、これら以外の化合物を採用することも可能である。ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、グリセロール−3−ステアリルチオプロピオネート、トリエチレングリコール−ビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、N,N−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナマイド)、3,5−ジ−tert−ブチル−4−ヒドロキシ−ベンジルホスホネートジエチルエステル、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、4,4’−ビフェニレンジホスフィン酸テトラキス(2,4−ジ−tert−ブチルフェニル)、3,9−ビス{1,1−ジメチル−2−[β−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]エチル}−2,4,8,10−テトラオキサスピロ(5,5)ウンデカン。前記の酸化防止剤は、1種を単独で用いても良く、2種以上を併用しても良い。これら酸化防止剤の配合量は、本発明の樹脂を100質量部とした場合、0.0001質量部以上が好ましく、また、0.5質量部が好ましい。

0164

更に、本発明の樹脂には、本発明の目的を損なわない範囲で、通常用いられる紫外線吸収剤離型剤帯電防止剤滑剤潤滑剤、可塑剤相溶化剤核剤難燃剤無機充填剤衝撃改良剤発泡剤、染顔料等が含まれても差し支えない。
また、本発明の樹脂は、樹脂の機械特性や耐溶剤性等の特性を改質する目的で、芳香族ポリカーボネート芳香族ポリエステル脂肪族ポリエステルポリアミドポリスチレンポリオレフィンアクリルアモルファスポリオレフィン、ABS、AS、ポリ乳酸ポリブチレンスクシネート等の合成樹脂ゴム等の1種又は2種以上と混練してなるポリマーアロイとしてもよい。

0165

前記の添加剤改質剤は、本発明の樹脂に前記成分を同時に、又は任意の順序タンブラーV型ブレンダーナウターミキサーバンバリーミキサー混練ロール、押出機等の混合機により混合して製造することができるが、中でも押出機、特には二軸押出機により混練することが、分散性向上の観点から好ましい。
前記のとおり得られた樹脂は、複屈折が小さく、耐熱性および成形性にも優れ、さらに着色が少なく、高い透明性を兼ね備えているため、光学フィルムや光ディスク光学プリズムピックアップレンズ等に用いることができるが、特に位相差フィルムとして好適に用いられる。

0166

未延伸フィルムの製造方法>
本発明の樹脂を用いて未延伸フィルムを製膜する方法としては、前記樹脂を溶媒に溶解させてキャストした後、溶媒を除去する流延法や、溶媒を用いずに前記樹脂を溶融させて製膜する溶融製膜法を採用することができる。溶融製膜法としては、具体的にはTダイを用いた溶融押出法、カレンダー成形法熱プレス法、共押出法、共溶融法多層押出インフレーション成形法等がある。未延伸フィルムの製膜方法は特に限定されないが、流延法では残存溶媒による問題が生じるおそれがあるため、好ましくは溶融製膜法、中でも後の延伸処理のし易さから、Tダイを用いた溶融押出法が好ましい。

0167

溶融製膜法により未延伸フィルムを成形する場合、成形温度を270℃以下とすることが好ましく、265℃以下とすることがより好ましく、260℃以下とすることが特に好ましい。成形温度が高過ぎると、得られるフィルム中の異物や気泡の発生による欠陥が増加したり、フィルムが着色したりする可能性がある。ただし、成形温度が低過ぎると樹脂の溶融粘度が高くなりすぎ、原反フィルムの成形が困難となり、厚みの均一な未延伸フィルムを製造することが困難になる可能性があるので、成形温度の下限は通常200℃以上、好ましくは210℃以上、より好ましくは220℃以上である。ここで、未延伸フィルムの成形温度とは、溶融製膜法における成形時の温度であって、通常、溶融樹脂を押し出すダイス出口の温度を測定した値である。

0168

また、フィルム中に異物が存在すると、偏光板として用いられた場合に光抜け等の欠点として認識される。樹脂中の異物を除去するために、前記の押出機の後にポリマーフィルターを取り付け、樹脂を濾過した後に、ダイスから押し出してフィルムを成形する方法が好ましい。その際、押出機やポリマーフィルター、ダイスを配管つなぎ、溶融樹脂を移送する必要があるが、配管内での熱劣化を極力抑制するため、滞留時間最短になるように各設備を配置することが重要である。また、押出後のフィルムの搬送や巻き取りの工程はクリーンルーム内で行い、フィルムに異物が付着しないように最善の注意が求められる。

0169

未延伸フィルムの厚みは、延伸後の位相差フィルムの膜厚の設計や、延伸倍率等の延伸条件に合わせて決められるが、厚すぎると厚み斑が生じやすく、薄すぎると延伸時の破断を招く可能性があるため、通常30μm以上、好ましくは40μm以上、さらに好ましくは50μm以上であり、また、通常200μm以下、好ましくは160μm以下、さらに好ましくは120μmである。また、未延伸フィルムに厚み斑があると、位相差フィルムの位相差斑を招くため、位相差フィルムとして使用する部分の厚みは設定厚み±3μm以下であることが好ましく、設定厚み±2μm以下であることが更に好ましく、設定厚み±1μm以下であることが特に好ましい。

0170

未延伸フィルムの長手方向の長さは500m以上であることが好ましく、さらに1000m以上が好ましく、特に1500m以上が好ましい。生産性や品質の観点から、本発明の位相差フィルムを製造する際は、連続で延伸を行うことが好ましいが、通常、延伸開始時に所定の位相差に合わせ込むために条件調整が必要であり、フィルムの長さが短すぎると条件調整後に取得できる製品の量が減ってしまう。尚、本明細書において「長尺」とは、フィルムの幅方向よりも長手方向の寸法が十分に大きいことを意味し、実質的には長手方向に巻回しコイル状にできる程度のものを意味する。より具体的には、フィルムの長手方向の寸法が幅方向の寸法よりも10倍以上大きいものを意味する。

0171

前記のように得られた未延伸フィルムは、内部ヘイズが3%以下であることが好ましく、2%以下であることがより好ましく、1%以下であることが特に好ましい。未延伸フィルムの内部ヘイズが前記上限値よりも大きいと光の散乱が起こり、例えば偏光子と積層した際、偏光解消を生じる原因となる場合がある。内部ヘイズの下限値は特に定めないが、通常0.1%以上である。内部ヘイズの測定には、事前ヘイズ測定を行っておいた粘着剤付き透明フィルムを未延伸フィルムの両面に貼り合せ、外部ヘイズの影響を除去した状態のサンプルを用い、粘着剤付き透明フィルムのヘイズ値を前記サンプルの測定値から差し引いた値を内部ヘイズの値とする。

0172

未延伸フィルムのb*値は3以下であることが好ましい。フィルムのb*値が大き過ぎると着色等の問題が生じる。b*値はより好ましくは2以下、特に好ましくは1以下である。

0173

未延伸フィルムは、厚みによらず、当該フィルムそのものの全光線透過率が85%以上であることが好ましく、90%以上であることがさらに好ましく、91%以上であることがさらに好ましく、特に92%以上であることが好ましい。透過率が前記下限以上であれば、着色の少ないフィルムが得られ、偏光板と貼り合わせた際、偏光度や透過率の高い円偏光板となり、画像表示装置に用いた際に、高い表示品位を実現することが可能となる。尚、本発明のフィルムの全光線透過率の上限は特に制限はないが通常99%以下である。

0174

前記のヘイズやb*値を低くすることに加えて、樹脂の屈折率を低くすることによっても、フィルム表面の反射が抑えられ、全光線透過率を向上させることができる。本発明の樹脂を外光反射防止用の円偏光板に用いる場合、全光線透過率を高めることは外光の反射率を低減することに繋がる。本発明に用いられる樹脂の、ナトリウムd線(589nm)における屈折率は1.49〜1.56であることが好ましい。また、前記屈折率は、1.50〜1.55であることがより好ましく、1.51〜1.54であることがさらに好ましく、特に1.51〜1.53であることが好ましい。本発明で用いられる樹脂はオリゴフルオレン構造単位を含有するため、全脂肪族ポリマーと比較すると屈折率は高くなってしまうが、共重合成分に芳香族化合物を用いないことで、屈折率を前記の範囲に収めることができる。

0175

本発明の樹脂は、光弾性係数が25×10−12Pa−1以下であることが好ましく、20×10−12Pa−1以下であることがさらに好ましく、15×10−12Pa−1以下であることが特に好ましい。光弾性係数が過度に大きいと、位相差フィルムを偏光板と張り合わせた際に、画面の周囲が白くぼやけるような画像品質の低下が起きる可能性がある。特に大型の表示装置に用いられる場合にはこの問題が顕著に現れる。

0176

前記未延伸フィルムは、後述する折り曲げ試験において脆性破壊しないことが好ましい。脆性破壊が生じるフィルムでは、フィルムの製膜時や延伸時にフィルムの破断が起こりやすく、製造の歩留まりを悪化させるおそれがある。脆性破壊しないフィルムとするには、本発明に用いられる樹脂の分子量や溶融粘度、ガラス転移温度を前述の好ましい範囲に設計することが重要である。また、柔軟性を付与できる成分を共重合したり、ブレンドすることにより、フィルムの特性を調整する方法も効果的である。

0177

本発明の樹脂は、飽和吸水率が1.0質量%より大きいことが好ましい。飽和吸水率が1.0質量%より大きければ、このフィルムを他のフィルム等と貼りあわせる際、容易に接着性を確保することができる傾向がある。例えば、偏光板と貼りあわせる際、フィルムが親水性であるため、水の接触角も低く、接着剤を自由に設計し易く、高い接着設計ができる。飽和吸水率が1.0質量%以下の場合は、疎水性となり、水の接触角も高く、接着性の設計が困難になる。また、フィルムが帯電し易くなり、異物の巻き込み等、円偏光板、画像表示装置に組み込んだ際、外観欠点が多くなるという問題が生じる傾向がある。一方、飽和吸水率が3.0質量%より大きくなると湿度環境下での光学特性の耐久性が悪くなる傾向があるため好ましくない。本発明の樹脂は、飽和吸水率が1.0質量%より大きいことが好ましく、1.1質量%以上であることがより好ましく、また、3.0質量%以下であることが好ましく、2.5質量%以下であることがより好ましい。一方で、フィルムやそれを用いた画像表示装置の使用条件によっては、飽和吸水率を1.0質量%以下としてもよい。

0178

<位相差フィルムの製造方法>
前記未延伸フィルムを延伸配向させることにより、位相差フィルムを得ることができる。延伸方法としては縦一軸延伸テンター等を用いる横一軸延伸、あるいはそれらを組み合わせた同時二軸延伸、逐次二軸延伸等、公知の方法を用いることができる。延伸はバッチ式で行ってもよいが、連続で行うことが生産性において好ましい。さらにバッチ式に比べて、連続の方がフィルム面内の位相差のばらつきの少ない位相差フィルムが得られる。

0179

延伸温度は、原料として用いる樹脂のガラス転移温度(Tg)に対して、(Tg−20℃)〜(Tg+30℃)の範囲であり、好ましくは(Tg−10℃)〜(Tg+20℃)、さらに好ましくは(Tg−5℃)〜(Tg+15℃)の範囲内である。延伸倍率は目的とする位相差値により決められるが、縦、横それぞれ、1.2倍〜4倍、より好ましくは1.5倍〜3.5倍、さらに好ましくは2倍〜3倍である。延伸倍率が小さすぎると、所望とする配向度と配向角が得られる有効範囲が狭くなる。一方、延伸倍率が大きすぎると、延伸中にフィルムが破断したり、しわが発生するおそれがある。

0180

延伸速度も目的に応じて適宜選択されるが、下記数式で表される歪み速度で通常50%〜2000%、好ましくは100%〜1500%、より好ましくは200%〜1000%、特に好ましくは250%〜500%となるように選択することができる。延伸速度が過度に大きいと延伸時の破断を招いたり、高温条件下での長期使用による光学的特性の変動が大きくなったりする可能性がある。また、延伸速度が過度に小さいと生産性が低下するだけでなく、所望の位相差を得るのに延伸倍率を過度に大きくしなければならない場合がある。
歪み速度(%/分)={延伸速度(mm/分)/原反フィルムの長さ(mm)}×100

0181

フィルムを延伸した後、必要に応じて加熱炉により熱固定処理を行ってもよいし、テンターの幅を制御したり、ロール周速を調整したりして、緩和工程を行ってもよい。熱固定処理の温度としては、未延伸フィルムに用いられる樹脂のガラス転移温度(Tg)に対し、60℃〜(Tg)、好ましくは70℃〜(Tg−5℃)の範囲で行う。熱処理温度が高すぎると、延伸により得られた分子の配向が乱れ、所望の位相差から大きく低下してしまう可能性がある。また、緩和工程を設ける場合は、延伸によって広がったフィルムの幅に対して、95%〜100%に収縮させることで、延伸フィルムに生じた応力を取り除くことができる。この際にフィルムにかける処理温度は、熱固定処理温度と同様である。前記のような熱固定処理や緩和工程を行うことで、高温条件下での長期使用による光学特性の変動を抑制することができる。

0182

本発明の樹脂を用いた位相差フィルムは、このような延伸工程における処理条件を適宜選択・調整することによって作製することができる。
本発明の樹脂を用いた位相差フィルムは、波長550nmにおける面内の複屈折(Δn)が0.002以上であると好ましく、0.0025以上がより好ましく、0.003以上が特に好ましい。位相差は、フィルムの厚み(d)と複屈折(Δn)に比例するため、複屈折を前記特定の範囲にすることにより、薄いフィルムで設計どおりの位相差を発現させることが可能となり、薄型の機器適合するフィルムを容易に作製することができる。
高い複屈折を発現させるためには、延伸温度を低くする、延伸倍率を高くする等して、ポリマー分子の配向度を上げなければならないが、そのような延伸条件ではフィルムが破断しやすくなるため、用いる樹脂が靱性に優れているほど有利である。

0183

本発明の樹脂を用いた位相差フィルムは、位相差の設計値にもよるが、厚みが60μm以下であることが好ましい。また、位相差フィルムの厚みは50μm以下であることがより好ましく、45μm以下であることがさらに好ましく、40μm以下であることが特に好ましい。一方、厚みが過度に薄いと、フィルムの取り扱いが困難になり、製造中にしわが発生したり、破断が起こったりするため、本発明の位相差フィルムの厚みの下限としては、好ましくは10μm以上、より好ましくは15μm以上である。

0184

本発明の樹脂を用いた位相差フィルムは、波長450nmで測定した位相差(R450)の、波長550nmで測定した位相差(R550)に対する比である波長分散(R450/R550)の値が、0.75以上0.93以下である。0.78以上0.91以下であることがより好ましく、0.80以上0.89以下であることが特に好ましい。前記波長分散の値がこの範囲であれば、可視領域の広い波長範囲において理想的な位相差特性を得ることができる。例えば1/4波長板としてこのような波長依存性を有する位相差フィルムを作製し、偏光板と貼り合わせることにより、円偏光板等を作製することができ、色相の波長依存性が少ない偏光板および表示装置の実現が可能である。一方、前記比率がこの範囲外の場合には、色相の波長依存性が大きくなり、可視領域のすべての波長において光学補償がなされなくなり、偏光板や表示装置に光が通り抜けることによる着色やコントラストの低下等の問題が生じる。

0185

<本発明の樹脂を用いた位相差フィルムの用途例>
前記位相差フィルムは、公知の偏光フィルムとを積層貼合し、所望の寸法に切断することにより円偏光板となる。かかる円偏光板は、例えば、各種ディスプレイ液晶表示装置有機EL表示装置プラズマ表示装置、FED電界放出表示装置、SED表面電界表示装置)の視野角補償用、外光の反射防止用色補償用直線偏光円偏光への変換用等に用いることができる。特に有機ELディスプレイの外光反射防止用の円偏光板に用いると、きれいな黒表示が可能となり、品質の信頼性にも優れている。さらに今後の機器の薄型化にも対応し得る性能を有している。

0186

前記偏光フィルムとしては、幅方向または長手方向のいずれかに吸収軸を有する偏光フィルムを採用することができる。具体的には、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質吸着させて一軸延伸したフィルム、ポリビニルアルコール脱水処理物ポリ塩化ビニル脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。これらの中でも、ポリビニルアルコール系フィルムにヨウ素などの二色性物質を吸着させて一軸延伸した長尺偏光フィルムが、偏光二色比が高く特に好ましい。これら長尺偏光フィルムの厚さは特に制限されないが、一般的に1〜80μm程度である。

0187

ポリビニルアルコール系フィルムにヨウ素を吸着させて一軸延伸した偏光フィルムは、例えば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3〜7倍に延伸することで作製することができる。前記の水溶液は、必要に応じてホウ酸や硫酸亜鉛塩化亜鉛等を含んでいてもよい。また、ポリビニルアルコールをヨウ化カリウムなどの水溶液に浸漬することもできる。

0188

また、必要に応じて染色の前にポリビニルアルコール系フィルムを水に浸漬して水洗してもよい。ポリビニルアルコール系フィルムを水洗することで、ポリビニルアルコール系フィルム表面の汚れブロッキング防止剤洗浄することができる。更に、ポリビニルアルコール系フィルムが膨潤するため、染色の斑などの不均一を防止する効果もある。延伸はヨウ素で染色した後に行ってもよいし、染色しながら延伸してもよいし、また、延伸してからヨウ素で染色してもよい。ホウ酸やヨウ化カリウムなどの水溶液中や水浴中でも延伸することができる。

0189

前記円偏光板において、前記位相差フィルムの遅相軸と前記偏光フィルムの幅方向とがなす角度は38°以上52°以下であることが好ましく、40°以上50°以下であることがより好ましく、42°以上48°以下であることが特に好ましい。前記範囲外となる場合、後述する外光反射率が増加したり、反射光が色づくため、画像の表示品質が低下するおそれがある。

0190

前記位相差フィルムと前記偏光フィルムとは、粘接着剤を介して積層されていてもよい。粘接着剤としては、前記積層フィルムの光学特性を損なわないものであれば、公知の粘接着剤を使用することができる。
前記円偏光板は、前述のごとく、十分な光学特性を備えると共に、精密性・薄型・均質性を求められる機器に好適に用いることができるよう構成されている。そのため、前記円偏光板は、例えば液晶ディスプレイに用いる液晶パネルや、有機ELディスプレイに用いられる有機ELパネルなどに好適に用いることができる。特に有機ELパネルは外光を反射しやすい金属層を備えているため、外光反射や背景の映り込み等の問題を生じやすい。このような外光反射等を防止するためには、前記円偏光板を発光面に設けることが有効である。

0191

以下、実施例、参考例及び比較例により本発明を更に詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例により限定されるものではない。本発明のオリゴフルオレンモノマーの品質評価、及び樹脂と透明フィルムの特性評価は次の方法により行った。尚、特性評価手法は以下の方法に限定されるものではなく、当業者が適宜選択することができる。

0192

<モノマー及び樹脂の評価>
(1)フルオレン系モノマー中のアルミニウム、ナトリウム含有率
フルオレン環を含むモノマー(以下、フルオレン系モノマーということがある。)中のアルミニウム、ナトリウム含有率は次の通り測定した。分析試料湿式分解処理後、ICP−AES(HORIBA Jobin Yvon社製 ULTIMA 2C)を用いてアルミニウム含有率及びナトリウム含有率の定量を行った。また、ナトリウム含有率に関しては、分析試料によっては原子吸光法(VARIAN製SpectrAA−220P)による分析も併用した。

0193

(2)フルオレン系モノマー中の塩素含有率
フルオレン系モノマー中の塩素含有率は次の通り測定した。三菱化学(株)製燃焼装置AQF−2100Mを用いて分析試料を燃焼させ、発生したガスを純水に吸収させた。その後、ガスを吸収させた純水を日本ダイオネクス(株)製イオンクロマトグラフDX−500に導入し、塩素含有率の定量を行った。

0194

(3)フルオレン系モノマーの熱分解温度
フルオレン系モノマーのガラス転移温度は、エスアイアイナノテクノロジー社製示差熱重量同時分析装置TG−DTA6300を用いて測定した。約4mgのフルオレン系モノマーを同社製アルミパンに入れて密封し、200mL/分の窒素気流下、昇温速度10℃/分で室温(20〜30℃)から600℃まで昇温した。得られたTGデータ(熱重量データ)より、試料重量が5wt%減少した温度を5wt%重量減少温度とした。溶媒を含有しているモノマーに関しては、測定開始時の重量から1H−NMRより見積もられた溶媒重量が減少した後、重量変化がなくなった時点での重量を初期重量とし、その初期重量が5wt%減少した温度を5wt%重量減少温度とした。また、得られたTGデータ(熱重量データ)より、重量の減少が認められず、かつ、急峻な吸熱ピーク観測された、そのピークトップ試料融点とした。

0195

(4)フルオレン系モノマーの紫外可視領域(UV−Vis)における吸収極大波長
フルオレン系モノマーの紫外可視領域(UV−Vis:280〜800nm)における吸収極大波長は、(株)島津製作所製紫外可視吸収分光光度計UV−1650PCを用いて測定した。測定溶液は、溶媒としてテトラヒドロフランを用い、フルオレン環として濃度が10μMとなるように、精密に調製した。測定セルには1cm角の石英セルを用い温度23±5℃の環境で測定した。測定溶液の吸収スペクトルを280〜800nmの範囲で測定し、吸収の極大値を吸収極大波長(λmax)とした。

0196

(5)樹脂の還元粘度
前記樹脂を塩化メチレンに溶解させ、0.6g/dLの濃度の樹脂溶液を調製した。森友理化工業社製ウベローデ型粘度管を用いて、温度20.0℃±0.1℃で測定を行い、溶媒の通過時間t0及び溶液の通過時間tを測定した。得られたt0及びtの値を用いて次式(I)により相対粘度ηrelを求め、更に、得られた相対粘度ηrelを用いて次式(ii)により比粘度ηspを求めた。
ηrel=t/t0 ・・・(I)
ηsp=(η−η0)/η0=ηrel−1 ・・・(ii)
その後、得られた比粘度ηspを濃度c(g/dL)で割って、還元粘度ηsp/cを求めた。この値が高いほど分子量が大きい。

0197

(6)樹脂の溶融粘度
ペレット状の樹脂を90℃で5時間以上、真空乾燥させた。乾燥したペレットを用いて、東洋精機(株)製キャピラリーレオメーターで測定を行った。測定温度は240℃とし、剪断速度9.12〜1824sec−1間で溶融粘度を測定し、91.2sec−1における溶融粘度の値を用いた。なお、オリフィスには、ダイス径がφ1mm、長さが10mmのものを用いた。

0198

(7)樹脂のガラス転移温度(Tg)
前記樹脂のガラス転移温度は、エスアイアイ・ナノテクノロジー社製示差走査熱量計DSC6220を用いて測定した。約10mgの樹脂を同社製アルミパンに入れて密封し、50mL/分の窒素気流下、昇温速度20℃/分で30℃から250℃まで昇温した。3分間温度を保持した後、30℃まで20℃/分の速度で冷却した。30℃で3分保持し、再び200℃まで20℃/分の速度で昇温した。2回目の昇温で得られたDSCデータより、低温側のベースラインを高温側に延長した直線と、ガラス転移階段状変化部分の曲線勾配が最大になるような点で引いた接線との交点の温度である、補外ガラス転移開始温度を求め、それをガラス転移温度とした。このガラス転移温度が125℃以上のものを、耐熱性に優れるものと評価した。

0199

<未延伸フィルムの評価>
(8)フィルムの成形
未延伸フィルムは、以下の2通りの方法により作成した。
後述する参考例1、及び比較例1〜12においては、以下の手順によりプレス成形を行い、未延伸フィルムを作製した。90℃で5時間以上、真空乾燥をした樹脂のペレット約4gを、縦14cm、横14cm、厚さ0.1mmのスペーサーを用い、試料の上下にポリイミドフィルムを敷いて、温度200〜230℃で3分間予熱し、圧力40MPaの条件で5分間加圧後、スペーサーごと取り出し、冷却してフィルムを作製した。この方法では、フィルムの厚み精度を5%以下とすることはできなかった。尚、本明細書において、厚み精度は下記式で計算される。即ち、厚み精度は、フィルムの各位置の厚みを計測し、変動範囲最大値又は最小値設定値との差の、平均値に対する比率を示す。
厚み精度[%]=|厚みの最大値又は最小値−平均値|/平均値×100

0200

また、後述する参考例2〜3、実施例1〜3、及び比較例13〜17においては、溶融押出法によって長尺の未延伸フィルムを作製した。溶融押出法は次の通り行った。90℃で5時間以上、真空乾燥をした樹脂のペレットを、いすず化工機(株)製単軸押出機スクリュー径25mm、シリンダー設定温度:220℃〜240℃)を用い、Tダイ(幅200mm、設定温度:200〜240℃)から押し出した。押し出したフィルムを、チルロール(設定温度:120〜150℃)により冷却しつつ巻取機ロール状にし、長尺未延伸フィルムを作製した。また、前述の方法においては、Tダイのリップ幅やチルロールの温度、Tダイとチルロールとの距離等を調整することにより、5%以下のフィルムの厚み精度を実現することができた。

0201

(9)屈折率の測定
前述の、熱プレス法又は溶融押出法により作製した未延伸フィルムから、長さ40mm、幅8mmの長方形試験片切り出して測定試料とした。589nm(D線)の干渉フィルターを用いて、(株)アタゴ製多波長アッベ屈折率計DR−M4/1550により屈折率nDを測定した。測定は界面液としてモノブロモナフタレンを用い、20℃で行った。

0202

(10)全光線透過率の測定
前述の溶融押出法により、膜厚約100μmの未延伸フィルムを作製し、日本電色工業(株)製濁度計COH400を用いて全光線透過率を測定した。

0203

(11)光弾性係数
He−Neレーザー、偏光子、補償板検光子光検出器からなる複屈折測定装置振動型粘弾性測定装置レオロジー社製DVE−3)を組み合わせた装置を用いて測定した。(詳細は、日本レオロジー学会誌Vol.19,p93−97(1991)を参照。)

0204

前述のいずれかの方法により作製した未延伸フィルムから、幅5mm、長さ20mmの試料を切り出し、粘弾性測定装置に固定し、25℃の室温で貯蔵弾性率E’を周波数96Hzにて測定した。同時に、出射されたレーザー光を偏光子、試料、補償板、検光子の順に通し、光検出器(フォトダイオード)で拾い、ロックインアンプを通して角周波数ω又は2ωの波形について、その振幅とひずみに対する位相差を求め、ひずみ光学係数O’を求めた。このとき、偏光子と検光子の方向は直交し、またそれぞれ、試料の伸長方向に対してπ/4の角度をなすように調整した。光弾性係数Cは、貯蔵弾性率E’とひずみ光学係数O’を用いて次式より求めた。
C=O’/E’
この光弾性係数が20以下のものを、光弾性特性が優れるものと評価した。

0205

(12)弾性率
前述の方法で取得したフィルムから幅5mm、長さ50mmの長方形の試験片を切り出し、貯蔵弾性率(E’)と損失弾性率(E’’)を測定した。測定には、TA Instruments社製レオメーターRSA−IIIを用いて、引っ張りモードにて、チャック間距離20mm、昇温速度3℃/min、周波数1Hz、歪み0.1%の条件で、温度は0℃から各サンプルのガラス転移温度以上まで昇温し、サンプルが切れて停止するまで測定を行った。本発明における弾性率には、30℃における貯蔵弾性率を用いた。

0206

(13)吸水率
前述のいずれかの方法により、厚さ100〜300μmの未延伸フィルムを作製し、縦100mm、横100mmの正方形に切り出して試料を作製した。この試料を用いてJIS K 7209に記載の「プラスティックの吸水率及び沸騰吸水率試験方法」に準拠して吸水率を測定した。

0207

(14)フィルムの靱性(折り曲げ試験)
前述のいずれかの方法により、厚み100〜200μmの未延伸フィルムを作製し、このフィルムから長さ40mm、幅10mmの長方形の試験片を作製した。万力の左右の接合面の間隔を40mmに開き、試験片の両端を接合面内に固定した。次に左右の接合面の間隔を2mm/秒以下の速度で狭めていき、フィルムが万力の接合面の外にはみ出さないようにしながら、略U字状に折れ曲がったフィルム全体を該接合面内で圧縮していった。接合面間が完全に密着するに試験片が折れ曲がり部で2片(又は3片以上の破片)に割れた場合を「割れあり」、接合面間が完全に密着してもなお試験片が割れずに折り曲げられた場合「割れなし」とした。同一の種類のフィルムについて5回繰り返して試験を実施し、そのうち4回以上「割れあり」となったものを「×:脆性破壊する」、3回以下「割れあり」となったものを「○:脆性破壊しない」とし、脆性破壊しないものを、靭性に優れるものと評価した。

0208

<位相差フィルムの評価>
(15)フィルムの延伸
前述した未延伸フィルムの作製方法に応じて、以下の2通りの方法により位相差フィルムを作製した。
熱プレス法によって作製した未延伸フィルムについては、次の方法により延伸を行った。未延伸フィルムから幅50mm、長さ125mmのフィルム片を切り出し、バッチ式二軸延伸装置アイランド工業社製二軸延伸装置BIX−277−AL)を用いて、樹脂のガラス転移温度+15℃の延伸温度、300%/分の延伸速度及び1.5倍の延伸倍率で前記フィルム片の自由端一軸延伸を行い、延伸フィルムを得た。

0209

溶融押出法によって作製した未延伸フィルムについては、300%/分の延伸速度、2倍の延伸倍率とし、樹脂のガラス転移温度+10℃の延伸温度で延伸し、破断せずに延伸フィルムが得られたら、延伸温度を1℃ずつ下げ、延伸中にフィルムが破断するまで行った。破断した温度の一つ前の延伸温度で取得した延伸フィルムを用いて、後述の評価を行った。

0210

(16)延伸フィルムの位相差、波長分散、複屈折
上記の方法で得られた延伸フィルムの中央部を幅4cm、長さ4cmに切り出し、王子計測機器(株)製位相差測定装置KOBRA−WPRを用いて、測定波長450、500、550、590、630nmで位相差を測定し、波長分散性を測定した。波長分散性は450nmと550nmで測定した位相差R450とR550の比(R450/R550)で示した。R450/R550が1より大きいと波長分散は正であり、1未満では逆波長分散となる。1/4波長板として用いる場合、R450/R550の理想値は0.818である(450/550=0.818)。
1からR450/R550の値を引いた値を、フルオレン系モノマーのモル比率で割った値を逆波長分散の発現性とした際に、この値が0.01以上のものを、逆波長分散の発現性に優れるものと評価した。
なお、本発明の式(1)〜(3)のB(R450/R550)の値としては、前記の熱プレス法によって作製した未延伸フィルムから得られる延伸フィルムを用いた評価で測定される波長分散の値が用いられる。

0211

また、550nmの位相差R550と延伸フィルムの厚みを用い、次式より複屈折Δnを求めた。
複屈折=R550[nm]/(フィルム厚み[mm]×106)複屈折の値が大きいほど、ポリマーの配向度が高いことを示す。また、複屈折の値が大きいほど、所望の位相差値を得るためのフィルムの厚みを薄くすることができる。
総合評価
上記種々の評価のうち、劣るものと評価される項目がないものを、諸特性のバランスに優れたものと評価した。

0212

<モノマーの合成例>
以下に、樹脂の製造に用いたモノマーの合成方法を説明する。
[合成例1]ビス(フルオレン−9−イル)メタン(化合物1)の合成

0213

1L四口フラスコにフルオレン(120g、722mmol)、N,N−ジメチルホルムアミド(480ml)を入れ、窒素置換後、5℃以下に冷却した。ナトリウムエトキシド(24.6g、361mmol)を加え、パラホルムアルデヒド(8.7g、289mmol)を10℃を超えないように少量ずつ添加し、撹拌した。2時間後、1N塩酸(440ml)を滴下し、反応を停止した。得られた懸濁溶液を吸引ろ過し、脱塩水(240ml)でふりかけ洗浄した。その後、得られた粗生成物を脱塩水(240ml)に分散させ、1時間撹拌した。この懸濁液を吸引ろ過後、脱塩水(120ml)でふりかけ洗浄した。得られた粗生成物をトルエン(480ml)に分散させた後、ディーン−スターク装置を用いて、加熱還流条件下脱水を行なった。室温(20℃)に戻した後、吸引ろ過し、80℃で恒量になるまで減圧乾燥することで、白色固体としてビス(フルオレン−9−イル)メタン(化合物1)を84.0g(収率:84.5%、HPLC純度:94.0%)得た。化合物1の1H−NMRスペクトルにおけるケミカルシフトは以下の通りであった。
1H−NMR(400MHz,CDCl3)δ7.83(d,J=7.6Hz,4H),7.56(dd,J1=7.6Hz,J2=0.8Hz,4H),7.41(t,J=7.3Hz,4H),7.29(dt,J1=7.3Hz,J2=1.3Hz,4H),4.42(t,J=7.6Hz,2H),2.24(d,J=7.6Hz,2H).

0214

[合成例2]ビス[9−(2−エトキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2)の合成

0215

0216

1L三口フラスコに合成例1で得られたビス(フルオレン−9−イル)メタン(化合物1、80g、232.3mmol)、N−ベンジル−N,N,N−トリエチルアンモニウムクロリド(10.6g、46.5mmol)、塩化メチレン(400ml)を入れ、窒素置換後、水浴で15℃〜20℃に制御し、50%水酸化ナトリウム水溶液(64ml)を加えたところ、溶液の色は薄赤色に変化した。その後、アクリル酸エチル(50.5ml、465mmol)を5分かけて滴下した。1時間後さらにアクリル酸エチル(25.3ml、232mmol)を加え、反応の進行をHPLCで追跡しながら、9時間撹拌した。HPLCでモノ付加体が5%以下になったのを確認後、氷浴で冷却し、3N塩酸(293ml)を温度見合いで滴下し、クエンチした。有機層液性中性になるまで水で洗浄後、無水硫酸マグネシウムで乾燥、ろ過し、溶媒を減圧留去した。得られた粗生成物をメタノール(400ml)に分散させ、30分間加熱還流することで、熱懸洗した。その後、室温(20℃)に戻し、吸引ろ過後、80℃で恒量になるまで減圧乾燥することで、白色固体としてビス[9−(2−エトキシカルボニルエチル)フルオレン−9−イル]メタン(化合物2)を96.1g(収率:75.9%、HPLC純度:96.0%)得た。化合物2の1H−NMRスペクトルにおけるケミカルシフトは以下の通りであった。1H−NMR(400MHz,CDCl3)δ7.03(d,J=7.6Hz,4H),6.97(dt,J1=7.6Hz,J2=1.5Hz,4H),6.82(dt,J1=7.6Hz,J2=1.3Hz,4H),6.77(d,J=7.6Hz,4H),3.88(q,J=7.1Hz,4H),3.12(s,2H),2.23(m,4H),1.13(m,4H),1.02(t,J=7.1Hz,6H).
また、化合物2の5wt%重量減少温度(窒素雰囲気下)は295℃であり、融点は141℃であった。

0217

[合成例3]ビス[9−(2−フェノキシカルボニルエチル)フルオレン−9−イル]メタン(化合物3)の合成

0218

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い法人

関連性が強い法人一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ