図面 (/)

この項目の情報は公開日時点(2020年5月28日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

結合する抗原細胞内への取込が促進され、一分子当りの結合できる抗原の数が増加し、薬物動態が改善され、かつ、細胞外で結合した抗原を細胞内で解離することが促進され、抗原と結合していない状態での細胞外への放出が促進され、血漿中の総抗原濃度または遊離抗原濃度を減少させる機能を有する抗原結合分子、および、当該抗原結合分子を含む医薬組成物、およびそれらの製造方法の提供。

解決手段

pH酸性域の条件下でヒトFcRnに対する結合活性を有し、イオン濃度の条件によって抗原に対する抗原結合分子の結合活性が変化する抗原結合ドメイン、およびpH中性域の条件下で、EUナンバリング297位に結合した糖鎖フコース含有糖鎖である天然型ヒトIgGFc領域のFcγレセプターに対する結合ドメインよりもFcγレセプターに対する結合活性が高いFcγレセプター結合ドメインを含む抗原結合分子を含む医薬組成物。

概要

背景

抗体は血漿中での安定性が高く、副作用も少ないことから医薬品として注目されている。中でもIgG型の抗体医薬は多数上市されており、現在も数多くの抗体医薬が開発されている(非特許文献1および非特許文献2)。一方、第二世代の抗体医薬に適用可能な技術として様々な技術が開発されており、エフェクター機能抗原結合能薬物動態、安定性を向上させる、あるいは、免疫原性リスクを低減させる技術等が報告されている(非特許文献3)。抗体医薬は一般に投与量が非常に高いため、皮下投与製剤の作製が困難であること、製造コストが高いこと等が課題として考えられる。抗体医薬の投与量を低減させる方法として、抗体の薬物動態を改善する方法と、抗体と抗原の親和性(アフィニティー)を向上させる方法が考えられる。

抗体の薬物動態を改善する方法として、定常領域の人工的なアミノ酸置換が報告されている(非特許文献4および5)。抗原結合能、抗原中和能を増強させる技術として、アフィニティーマチレーション技術(非特許文献6)が報告されており、可変領域のCDR領域などのアミノ酸に変異を導入することで抗原に対する結合活性を増強することが可能である。抗原結合能の増強によりin vitroの生物活性を向上させる、あるいは投与量を低減することが可能であり、さらにin vivo(生体内)での薬効を向上させることも可能である(非特許文献7)。

一方、抗体一分子あたりが中和できる抗原量はアフィニティーに依存し、アフィニティーを強くすることで少ない抗体量で抗原を中和することが可能であり、様々な方法で抗体のアフィニティーを強くすることが可能である(非特許文献6)。さらに抗原に共有結合的に結合し、アフィニティーを無限大にすることができれば一分子の抗体で一分子の抗原(二価の場合は二抗原)を中和することが可能である。しかし、これまでの方法では一分子の抗体で一分子の抗原(二価の場合は二抗原)の化学量論的な中和反応限界であり、抗原量以下の抗体量で抗原を完全に中和することは不可能であった。つまり、アフィニティーを強くする効果には限界が存在していた(非特許文献9)。中和抗体の場合、その中和効果を一定期間持続させるためには、その期間に生体内で産生される抗原量以上の抗体量が投与される必要があり、上述の抗体の薬物動態改善、あるいは、アフィニティーマチュレーション技術だけでは、必要抗体投与量の低減には限界が存在していた。そのため、抗原量以下の抗体量で抗原の中和効果を目的期間持続するためには、一つの抗体で複数の抗原を中和する必要がある。これを達成する新しい方法として、最近、抗原に対してpH依存的に結合する抗体が報告された(特許文献1)。抗原に対して血漿中の中性条件下においては強く結合し、エンドソーム内の酸性条件下において抗原から解離するpH依存的抗原結合抗体はエンドソーム内で抗原から解離することが可能である。pH依存的抗原結合抗体は、抗原を解離した後に抗体がFcRnによって血漿中にリサイクルされると再び抗原に結合することが可能であるため、一つのpH依存的抗原結合抗体で複数の抗原に繰り返し結合することが可能となる。

また、抗原の血漿中滞留性は、FcRnに結合してリサイクルされる抗体と比較して非常に短い。このような血漿中滞留性が長い抗体がその抗原に結合すると、抗体抗原複合体の血漿中滞留性は抗体と同様に長くなる。そのため、抗原は抗体と結合することにより、むしろ血漿中滞留性が長くなり、血漿中抗原濃度は上昇する。

このようにpH依存的抗原結合抗体は一つの抗体で複数の抗原に結合し、通常の抗体と比較して抗原の血漿中からの消失を促進することができるため、通常の抗体では成し得なかった作用を有する。しかしながら、これまでにこのpH依存的抗原結合抗体の抗原に繰り返し結合できる効果、および、抗原の血漿中からの消失を促進する効果をさらに向上させる抗体工学の手法は報告されていない。

IgG抗体はFcRnに結合することで長い血漿中滞留性を有する。IgGとFcRnの結合は酸性条件下(pH6.0)においてのみ認められ、中性条件下(pH7.4)においてはほとんど結合は認められない。IgG抗体は非特異的に細胞に取り込まれるが、エンドソーム内の酸性条件下においてエンドソーム内のFcRnに結合することで細胞表面上に戻り、血漿中の中性条件下においてFcRnから解離する。IgGのFc領域に変異を導入し、pH酸性域の条件下におけるFcRnに対する結合を失わせると、エンドソーム内から血漿中にリサイクルされなくなるため、抗体の血漿中滞留性は著しく損なわれる。IgG抗体の血漿中滞留性を改善する方法として、pH酸性域の条件下におけるFcRnに対する結合を向上させる方法が報告されている。IgG抗体のFc領域にアミノ酸置換を導入し、pH酸性域の条件下におけるFcRnに対する結合を向上させることで、エンドソーム内から血漿中へのリサイクル効率が上昇し、その結果、血漿中滞留性が改善する。

IgGクラスの抗体のエフェクター機能である抗体依存性細胞傷害活性(以下、ADCC表記する)、補体依存性細胞傷害活性(以下、CDCと表記する)の研究は、これまでに多数行われ、ヒトIgGクラスの中では、IgG1サブクラスの抗体が最も高いADCC活性CDC活性を有することが報告されている(非特許文献13)。また、IgGクラスの抗体を介した標的細胞ファゴサイトーシスである抗体依存性細胞介在性ファゴサイトーシス(ADCP)も抗体のエフェクター機能の一つとして示唆されている(非特許文献14、非特許文献15)。IgG1サブクラスの抗体は、これらのエフェクター機能を腫瘍に対して発揮させることが可能であるため、癌抗原に対するほとんどの抗体医薬としてIgG1サブクラスの抗体が用いられている。

IgG抗体がADCC、ADCP活性を媒介するためには、IgG抗体のFc領域と、キラー細胞ナチュラルキラー細胞、活性化されたマクロファージ等のエフェクター細胞表面上に存在する抗体レセプター(以下、FcγレセプターまたはFcγRと表記する)との結合が必要である。ヒトでは、Fcγレセプターのタンパク質ファミリーとして、FcγRIa、FcγRIIa、FcγRIIb、FcγRIIIa、FcγRIIIbのアイソフォームが報告されており、それぞれのアロタイプも報告されている(非特許文献16)。

ADCCとADCPなどの細胞傷害性のエフェクター機能の増強は、抗癌抗体抗腫瘍効果を増強するための有望な手段として注目されている。抗体の抗腫瘍効果を目的とするFcγレセプターを介したエフェクター機能の重要性は、マウスモデルを使って報告されている(非特許文献17、非特許文献18)。また、ヒトにおける臨床効果と、FcγRIIIaの高親和性多型(V158)と低親和性多型(F158)との間には相関が観察された(非特許文献19)。これらの報告から、特定のFcγレセプターに対する結合が最適化されたFc領域を有する抗体は、より強力なエフェクター機能を媒介し、それにより効果的な抗腫瘍効果を発揮することが示唆される。FcγRIa、FcγRIIa、FcγRIIIa、FcγRIIIbを含む活性化受容体、FcγRIIbを含む阻害性受容体のそれぞれに対する抗体の親和性のバランスは、抗体のエフェクター機能を最適化する上で重要な要素である。活性化受容体に対する親和性を増強することによって、より強力なエフェクター機能を媒介する性質を抗体に付与する可能性があることから(非特許文献20)、癌抗原に対する抗体医薬の抗腫瘍活性を増強あるいは向上させる抗体エンジニアリングの手法としてこれまで様々な報告がされている。

Fc領域とFcγレセプターの結合については、抗体のヒンジ領域及びCH2ドメイン内のいくつかのアミノ酸残基およびCH2ドメインに結合しているEUナンバリング297番目のAsnに付加される糖鎖が重要であることが示されている(非特許文献13、非特許文献21、非特許文献22)。この結合箇所を中心に、これまでに様々なFcγレセプター結合特性を持つFc領域の変異体が研究され、より高い活性化Fcγレセプターに対する親和性を有するFc領域変異体が得られている(特許文献2、特許文献3)。例えば、Lazarらは、ヒトIgG1のEUナンバリングで表される239位のSer、330位のAla、332位のIleをそれぞれAsp、Leu、Gluに置換することによって、ヒトFcγRIIIa(V158)に対するヒトIgG1の結合を約370倍まで増加させることに成功している(非特許文献23、特許文献3)。この改変体天然型と比べて、FcγRIIIaとFcγRIIbに対する結合の比(A/I比)が約9倍になっている。また、ShinkawaらはEUナンバリングで表される297位のAsnに付加される糖鎖のフコース欠損させることによって、FcγRIIIaに対する結合を約100倍まで増加させることに成功している(非特許文献24)。これらの方法によって、天然型ヒトIgG1と比較してヒトIgG1のADCC活性を大幅に向上させることが可能である。

このように、膜型抗原を標的とした抗体においては、Fcγレセプターに対する結合活性は細胞傷害活性に重要な役割を果たしていることから、細胞傷害活性が必要な場合、FcγRに対する結合活性が高いヒトIgG1のアイソタイプが用いられ、さらにFcγレセプターに対する結合活性を増強することにより細胞傷害活性を増強させられることは広く用いられている技術である。一方、可溶型抗原を標的とした抗体においては、Fcγレセプターに対する結合活性の果たす役割は知られておらず、Fcγレセプターに対する結合活性が高いヒトIgG1とFcγRに対する結合活性が低いヒトIgG2やヒトIgG4で効果の違いは無いと考えられてきた。そのため、これまでに可溶型抗原を標的とした抗体においてFcγレセプターに対する結合活性を増強することは試みられたことはなく、また、その効果について報告されたことは無い。

概要

結合する抗原の細胞内への取込が促進され、一分子当りの結合できる抗原の数が増加し、薬物動態が改善され、かつ、細胞外で結合した抗原を細胞内で解離することが促進され、抗原と結合していない状態での細胞外への放出が促進され、血漿中の総抗原濃度または遊離抗原濃度を減少させる機能を有する抗原結合分子、および、当該抗原結合分子を含む医薬組成物、およびそれらの製造方法の提供。pH酸性域の条件下でヒトFcRnに対する結合活性を有し、イオン濃度の条件によって抗原に対する抗原結合分子の結合活性が変化する抗原結合ドメイン、およびpH中性域の条件下で、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域のFcγレセプターに対する結合ドメインよりもFcγレセプターに対する結合活性が高いFcγレセプター結合ドメインを含む抗原結合分子を含む医薬組成物。なし

目的

本発明は、結合する抗原の細胞内への取込が促進された抗原結合分子、一分子当りの結合できる抗原の数が増加した抗原結合分子、薬物動態が改善された抗原結合分子、細胞外で結合した抗原を細胞内で解離することが促進された抗原結合分子、抗原と結合していない状態での細胞外への放出が促進された抗原結合分子、血漿中の総抗原濃度または遊離抗原濃度を減少させる機能を有する抗原結合分子、当該抗原結合分子を含む医薬組成物、およびそれらの製造方法を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

pH酸性域の条件下でヒトFcRnに対する結合活性を有し、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメイン、およびpH中性域の条件下でFcγレセプターに対する結合活性が、EUナンバリング297位に結合した糖鎖フコース含有糖鎖である天然型ヒトIgGFc領域のFcγレセプターに対する結合活性よりも高いFcγレセプター結合ドメインを含む抗原結合分子を含む医薬組成物

技術分野

0001

本発明は、結合する抗原細胞内への取込が促進された抗原結合分子一分子当りの結合できる抗原の数が増加した抗原結合分子、薬物動態が改善された抗原結合分子、細胞外で結合した抗原を細胞内で解離することが促進された抗原結合分子、抗原と結合していない状態での細胞外への放出が促進された抗原結合分子、血漿中の総抗原濃度または遊離抗原濃度を減少させる機能を有する抗原結合分子、当該抗原結合分子を含む医薬組成物、およびそれらの製造方法を提供する。

背景技術

0002

抗体は血漿中での安定性が高く、副作用も少ないことから医薬品として注目されている。中でもIgG型の抗体医薬は多数上市されており、現在も数多くの抗体医薬が開発されている(非特許文献1および非特許文献2)。一方、第二世代の抗体医薬に適用可能な技術として様々な技術が開発されており、エフェクター機能抗原結合能、薬物動態、安定性を向上させる、あるいは、免疫原性リスクを低減させる技術等が報告されている(非特許文献3)。抗体医薬は一般に投与量が非常に高いため、皮下投与製剤の作製が困難であること、製造コストが高いこと等が課題として考えられる。抗体医薬の投与量を低減させる方法として、抗体の薬物動態を改善する方法と、抗体と抗原の親和性(アフィニティー)を向上させる方法が考えられる。

0003

抗体の薬物動態を改善する方法として、定常領域の人工的なアミノ酸置換が報告されている(非特許文献4および5)。抗原結合能、抗原中和能を増強させる技術として、アフィニティーマチレーション技術(非特許文献6)が報告されており、可変領域のCDR領域などのアミノ酸に変異を導入することで抗原に対する結合活性を増強することが可能である。抗原結合能の増強によりin vitroの生物活性を向上させる、あるいは投与量を低減することが可能であり、さらにin vivo(生体内)での薬効を向上させることも可能である(非特許文献7)。

0004

一方、抗体一分子あたりが中和できる抗原量はアフィニティーに依存し、アフィニティーを強くすることで少ない抗体量で抗原を中和することが可能であり、様々な方法で抗体のアフィニティーを強くすることが可能である(非特許文献6)。さらに抗原に共有結合的に結合し、アフィニティーを無限大にすることができれば一分子の抗体で一分子の抗原(二価の場合は二抗原)を中和することが可能である。しかし、これまでの方法では一分子の抗体で一分子の抗原(二価の場合は二抗原)の化学量論的な中和反応限界であり、抗原量以下の抗体量で抗原を完全に中和することは不可能であった。つまり、アフィニティーを強くする効果には限界が存在していた(非特許文献9)。中和抗体の場合、その中和効果を一定期間持続させるためには、その期間に生体内で産生される抗原量以上の抗体量が投与される必要があり、上述の抗体の薬物動態改善、あるいは、アフィニティーマチュレーション技術だけでは、必要抗体投与量の低減には限界が存在していた。そのため、抗原量以下の抗体量で抗原の中和効果を目的期間持続するためには、一つの抗体で複数の抗原を中和する必要がある。これを達成する新しい方法として、最近、抗原に対してpH依存的に結合する抗体が報告された(特許文献1)。抗原に対して血漿中の中性条件下においては強く結合し、エンドソーム内の酸性条件下において抗原から解離するpH依存的抗原結合抗体はエンドソーム内で抗原から解離することが可能である。pH依存的抗原結合抗体は、抗原を解離した後に抗体がFcRnによって血漿中にリサイクルされると再び抗原に結合することが可能であるため、一つのpH依存的抗原結合抗体で複数の抗原に繰り返し結合することが可能となる。

0005

また、抗原の血漿中滞留性は、FcRnに結合してリサイクルされる抗体と比較して非常に短い。このような血漿中滞留性が長い抗体がその抗原に結合すると、抗体抗原複合体の血漿中滞留性は抗体と同様に長くなる。そのため、抗原は抗体と結合することにより、むしろ血漿中滞留性が長くなり、血漿中抗原濃度は上昇する。

0006

このようにpH依存的抗原結合抗体は一つの抗体で複数の抗原に結合し、通常の抗体と比較して抗原の血漿中からの消失を促進することができるため、通常の抗体では成し得なかった作用を有する。しかしながら、これまでにこのpH依存的抗原結合抗体の抗原に繰り返し結合できる効果、および、抗原の血漿中からの消失を促進する効果をさらに向上させる抗体工学の手法は報告されていない。

0007

IgG抗体はFcRnに結合することで長い血漿中滞留性を有する。IgGとFcRnの結合は酸性条件下(pH6.0)においてのみ認められ、中性条件下(pH7.4)においてはほとんど結合は認められない。IgG抗体は非特異的に細胞に取り込まれるが、エンドソーム内の酸性条件下においてエンドソーム内のFcRnに結合することで細胞表面上に戻り、血漿中の中性条件下においてFcRnから解離する。IgGのFc領域に変異を導入し、pH酸性域の条件下におけるFcRnに対する結合を失わせると、エンドソーム内から血漿中にリサイクルされなくなるため、抗体の血漿中滞留性は著しく損なわれる。IgG抗体の血漿中滞留性を改善する方法として、pH酸性域の条件下におけるFcRnに対する結合を向上させる方法が報告されている。IgG抗体のFc領域にアミノ酸置換を導入し、pH酸性域の条件下におけるFcRnに対する結合を向上させることで、エンドソーム内から血漿中へのリサイクル効率が上昇し、その結果、血漿中滞留性が改善する。

0008

IgGクラスの抗体のエフェクター機能である抗体依存性細胞傷害活性(以下、ADCC表記する)、補体依存性細胞傷害活性(以下、CDCと表記する)の研究は、これまでに多数行われ、ヒトIgGクラスの中では、IgG1サブクラスの抗体が最も高いADCC活性CDC活性を有することが報告されている(非特許文献13)。また、IgGクラスの抗体を介した標的細胞ファゴサイトーシスである抗体依存性細胞介在性ファゴサイトーシス(ADCP)も抗体のエフェクター機能の一つとして示唆されている(非特許文献14、非特許文献15)。IgG1サブクラスの抗体は、これらのエフェクター機能を腫瘍に対して発揮させることが可能であるため、癌抗原に対するほとんどの抗体医薬としてIgG1サブクラスの抗体が用いられている。

0009

IgG抗体がADCC、ADCP活性を媒介するためには、IgG抗体のFc領域と、キラー細胞ナチュラルキラー細胞、活性化されたマクロファージ等のエフェクター細胞表面上に存在する抗体レセプター(以下、FcγレセプターまたはFcγRと表記する)との結合が必要である。ヒトでは、Fcγレセプターのタンパク質ファミリーとして、FcγRIa、FcγRIIa、FcγRIIb、FcγRIIIa、FcγRIIIbのアイソフォームが報告されており、それぞれのアロタイプも報告されている(非特許文献16)。

0010

ADCCとADCPなどの細胞傷害性のエフェクター機能の増強は、抗癌抗体抗腫瘍効果を増強するための有望な手段として注目されている。抗体の抗腫瘍効果を目的とするFcγレセプターを介したエフェクター機能の重要性は、マウスモデルを使って報告されている(非特許文献17、非特許文献18)。また、ヒトにおける臨床効果と、FcγRIIIaの高親和性多型(V158)と低親和性多型(F158)との間には相関が観察された(非特許文献19)。これらの報告から、特定のFcγレセプターに対する結合が最適化されたFc領域を有する抗体は、より強力なエフェクター機能を媒介し、それにより効果的な抗腫瘍効果を発揮することが示唆される。FcγRIa、FcγRIIa、FcγRIIIa、FcγRIIIbを含む活性化受容体、FcγRIIbを含む阻害性受容体のそれぞれに対する抗体の親和性のバランスは、抗体のエフェクター機能を最適化する上で重要な要素である。活性化受容体に対する親和性を増強することによって、より強力なエフェクター機能を媒介する性質を抗体に付与する可能性があることから(非特許文献20)、癌抗原に対する抗体医薬の抗腫瘍活性を増強あるいは向上させる抗体エンジニアリングの手法としてこれまで様々な報告がされている。

0011

Fc領域とFcγレセプターの結合については、抗体のヒンジ領域及びCH2ドメイン内のいくつかのアミノ酸残基およびCH2ドメインに結合しているEUナンバリング297番目のAsnに付加される糖鎖が重要であることが示されている(非特許文献13、非特許文献21、非特許文献22)。この結合箇所を中心に、これまでに様々なFcγレセプター結合特性を持つFc領域の変異体が研究され、より高い活性化Fcγレセプターに対する親和性を有するFc領域変異体が得られている(特許文献2、特許文献3)。例えば、Lazarらは、ヒトIgG1のEUナンバリングで表される239位のSer、330位のAla、332位のIleをそれぞれAsp、Leu、Gluに置換することによって、ヒトFcγRIIIa(V158)に対するヒトIgG1の結合を約370倍まで増加させることに成功している(非特許文献23、特許文献3)。この改変体天然型と比べて、FcγRIIIaとFcγRIIbに対する結合の比(A/I比)が約9倍になっている。また、ShinkawaらはEUナンバリングで表される297位のAsnに付加される糖鎖のフコース欠損させることによって、FcγRIIIaに対する結合を約100倍まで増加させることに成功している(非特許文献24)。これらの方法によって、天然型ヒトIgG1と比較してヒトIgG1のADCC活性を大幅に向上させることが可能である。

0012

このように、膜型抗原を標的とした抗体においては、Fcγレセプターに対する結合活性は細胞傷害活性に重要な役割を果たしていることから、細胞傷害活性が必要な場合、FcγRに対する結合活性が高いヒトIgG1のアイソタイプが用いられ、さらにFcγレセプターに対する結合活性を増強することにより細胞傷害活性を増強させられることは広く用いられている技術である。一方、可溶型抗原を標的とした抗体においては、Fcγレセプターに対する結合活性の果たす役割は知られておらず、Fcγレセプターに対する結合活性が高いヒトIgG1とFcγRに対する結合活性が低いヒトIgG2やヒトIgG4で効果の違いは無いと考えられてきた。そのため、これまでに可溶型抗原を標的とした抗体においてFcγレセプターに対する結合活性を増強することは試みられたことはなく、また、その効果について報告されたことは無い。

0013

WO2009/125825
WO2000/042072
WO2006/019447

先行技術

0014

Janice M Reichert, Clark J Rosensweig, Laura B Faden & Matthew C Dewitz, Monoclonal antibody successes in the clinic., Nat. Biotechnol. (2005) 23, 1073-1078
Pavlou AK, Belsey MJ., The therapeutic antibodies market to 2008., Eur J Pharm Biopharm. (2005) 59 (3), 389-396
Kim SJ, Park Y, Hong HJ., Antibody engineering for the development of therapeutic antibodies., Mol Cells. (2005) 20 (1), 17-29
Hinton PR, Xiong JM, Johlfs MG, TangMT, Keller S, Tsurushita N., An engineered humanIgG1 antibody with longer serum half-life., J. Immunol. (2006) 176 (1), 346-356
Ghetie V, Popov S, Borvak J, Radu C, Matesoi D, Medesan C, Ober RJ, WardES., Increasing the serum persistence of an IgG fragment by random mutagenesis., Nat. Biotechnol. (1997) 15 (7), 637-640
Rajpal A, Beyaz N, Haber L, Cappuccilli G, Yee H, BhattRR, Takeuchi T, Lerner RA, Crea R., A general method for greatly improving the affinity of antibodies by using combinatorial libraries., Proc. Natl. Acad. Sci. U. S. A. (2005) 102 (24), 8466-8471
Wu H, Pfarr DS, Johnson S, Brewah YA, WoodsRM, Patel NK, White WI, Young JF, Kiener PA., Development of Motavizumab, an Ultra-potent Antibody for the Prevention of Respiratory Syncytial Virus Infection in the Upper and Lower Respiratory Tract., J. Mol. Biol. (2007) 368, 652-665
HansonCV, Nishiyama Y, Paul S., Catalytic antibodies and their applications., Curr Opin Biotechnol. (2005) 16 (6), 631-636
Rathanaswami P, Roalstad S, Roskos L, Su QJ, Lackie S, Babcook J., Demonstration of an in vivo generated sub-picomolar affinity fully human monoclonal antibody to interleukin-8., Biochem. Biophys. Res. Commun. (2005) 334 (4), 1004-1013
Dall'Acqua WF, Woods RM, Ward ES, Palaszynski SR, Patel NK, Brewah YA, Wu H, Kiener PA, Langermann S., Increasing the affinity of a human IgG1 for the neonatal Fc receptor: biological consequences., J. Immunol. (2002) 169 (9), 5171-5180
Yeung YA, Leabman MK, Marvin JS, Qiu J, Adams CW, Lien S, Starovasnik MA, Lowman HB., Engineering human IgG1 affinity to human neonatal Fc receptor: impact of affinity improvement on pharmacokinetics in primates., J. Immunol. (2009) 182 (12), 7663-7671
Datta-Mannan A, Witcher DR, Tang Y, Watkins J, Wroblewski VJ., Monoclonal antibody clearance. Impact of modulating the interaction of IgG with the neonatal Fc receptor., J. Biol. Chem. (2007) 282 (3), 1709-1717
Clark, M., Antibody Engineering IgG Effector Mechanisms., Chemical Immunology (1997) 65, 88-110
Horton HM, Bernett MJ, Pong E, Peipp M, Karki S, Chu SY, Richards JO, Vostiar I, Joyce PF, Repp R, Desjarlais JR, Zhukovsky EA., Potent in vitro and in vivo activity of an Fc-engineered anti-CD19 monoclonal antibody against lymphoma and leukemia., Cancer Res. (2008) 68, 8049-8057
Zalevsky J, Leung IW, Karki S, Chu SY, Zhukovsky EA, Desjarlais JR, CarmichaelDF, Lawrence CE., The impact of Fc engineering on an anti-CD19 antibody: increased Fcγ receptor affinity enhances B-cell clearing in nonhuman primates., Blood (2009) 113, 3735-3743
Jefferis R, Lund J., Interaction sites on human IgG-Fc for FcgammaR: current models., Immunol. Lett. (2002) 82, 57-65
Clynes, R., Yoshizumi, T., Moroi, Y., Houghton, A.N., and Ravetch, J.V., Fc Receptors are required for passive and active immunity to melanoma., Proc. Natl. Acad. Sci. U. S. A. (1998) 95, 652-656
Clynes RA, TowersTL, Presta LG, Ravetch JV., Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets., Nat. Med. (2000) 6, 443-446
Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H., Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene., Blood (2002) 99, 754-758
Nimmerjahn F, Ravetch JV., Divergent immunoglobulin g subclass activity through selective Fc receptor binding., Science (2005) 310, 1510-1512
Greenwood J, Clark M, Waldmann H., Structural motifs involved in human IgG antibody effector functions., Eur. J. Immunol. (1993) 23, 1098-1104
Morgan A, Jones ND, Nesbitt AM, Chaplin L, Bodmer MW, Emtage JS., The N-terminal end of the CH2 domain of chimeric human IgG1 anti-HLA-DR is necessary for C1q, Fc gamma RI and Fc gamma RIII binding., Immunology (1995) 86, 319-324
Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L, Chan C, Chung HS, Eivazi A, Yoder SC, Vielmetter J, Carmichael DF, Hayes RJ, Dahiyat BI., Engineered antibody Fc variants with enhanced effector function., Proc. Nat. Acad. Sci. U. S. A. (2006) 103, 4005-4010
Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K., The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity., J. Biol. Chem. (2003) 278, 3466-3473

発明が解決しようとする課題

0015

本発明はこのような状況に鑑みて為されたものであり、その目的は、結合する抗原の細胞内への取込が促進された抗原結合分子、一分子当りの結合できる抗原の数が増加した抗原結合分子、薬物動態が改善された抗原結合分子、細胞外で結合した抗原を細胞内で解離することが促進された抗原結合分子、抗原と結合していない状態での細胞外への放出が促進された抗原結合分子、血漿中の総抗原濃度または遊離抗原濃度を減少させる機能を有する抗原結合分子、当該抗原結合分子を含む医薬組成物、およびそれらの製造方法を提供することにある。

課題を解決するための手段

0016

本発明者らは、上記の目的を達成するために鋭意研究を進めたところ、pH酸性域の条件下でヒトFcRnに対する結合活性を有し、イオン濃度の条件によって抗原に対する抗原結合分子の結合活性が変化する抗原結合ドメイン、およびpH中性域の条件下で、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域のFcγレセプターに対する結合ドメインよりもFcγレセプターに対する結合活性が高いFcγレセプター結合ドメインを含む抗原結合分子を創作した。また、本発明者らは、前記の抗原結合分子を、Fcγレセプターを発現する細胞に生体内または生体外で細胞に接触させる工程を含む、その結合する抗原の細胞内への取込を促進する方法、一分子の抗原結合分子が結合できる抗原の数を増加させる方法、抗原結合分子の薬物動態を改善する方法、細胞外で抗原結合分子に結合した抗原の細胞内での抗原結合分子からの解離を促進する方法、抗原と結合していない状態での細胞外への放出を促進する方法、および、血漿中の総抗原濃度または遊離抗原濃度を減少させる方法を見出した。また、本発明者らは上記の性質を有する抗原結合分子の製造方法を見出すとともに、そのように抗原結合分子あるいは本発明に係る製造方法によって製造された抗原結合分子を有効成分として含有する医薬組成物の有用性を見出して本発明を完成した。

0017

すなわち、本発明は、より具体的には以下の〔1〕〜〔46〕を提供するものである。
〔1〕pH酸性域の条件下でヒトFcRnに対する結合活性を有し、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメイン、およびpH中性域の条件下でFcγレセプターに対する結合活性が、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりも高いFcγレセプター結合ドメインを含む抗原結合分子を含む医薬組成物。
〔2〕前記抗原が、可溶型抗原である〔1〕に記載の医薬組成物。
〔3〕前記イオン濃度が、カルシウムイオン濃度である〔1〕または〔2〕に記載の医薬組成物。
〔4〕前記抗原結合ドメインが、低カルシウムイオン濃度の条件下での当該抗原に対する結合活性よりも高カルシウムイオン濃度の条件下での抗原に対する結合活性が高い抗原結合ドメインである〔3〕に記載の医薬組成物。
〔5〕前記イオン濃度の条件が、pHの条件である〔1〕または〔2〕に記載の医薬組成物。
〔6〕前記抗原結合ドメインが、pH酸性域の条件下での当該抗原に対する結合活性よりもpH中性域の条件下での抗原に対する結合活性が高い抗原結合ドメインである〔5〕に記載の医薬組成物。
〔7〕前記抗原結合分子が、前記抗原に対する中和活性を有する抗原結合分子である〔1〕から〔6〕のいずれかに記載の医薬組成物。
〔8〕前記Fcγレセプター結合ドメインが、抗体のFc領域を含む〔1〕から〔7〕のいずれかに記載の医薬組成物。
〔9〕前記Fc領域が、Fc領域のEUナンバリングで表される部位のうち、221位、222位、223位、224位、225位、227位、228位、230位、231位、232位、233位、234位、235位、236位、237位、238位、239位、240位、241位、243位、244位、245位、246位、247位、249位、250位、251位、254位、255位、256位、258位、260位、262位、263位、264位、265位、266位、267位、268位、269位、270位、271位、272位、273位、274位、275位、276位、278位、279位、280位、281位、282位、283位、284位、285位、286位、288位、290位、291位、292位、293位、294位、295位、296位、297位、298位、299位、300位、301位、302位、303位、304位、305位、311位、313位、315位、317位、318位、320位、322位、323位、324位、325位、326位、327位、328位、329位、330位、331位、332位、333位、334位、335位、336位、337位、339位、376位、377位、378位、379位、380位、382位、385位、392位、396位、421位、427位、428位、429位、434位、436位および440位の群から選択される少なくともひとつ以上のアミノ酸が、天然型Fc領域の対応する部位のアミノ酸と異なるFc領域である〔8〕に記載の医薬組成物。
〔10〕前記Fc領域が、Fc領域のEUナンバリングで表される部位のうち;
221位のアミノ酸がLysまたはTyrのいずれか、
222位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
223位のアミノ酸がPhe、Trp、GluまたはLysのいずれか、
224位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
225位のアミノ酸がGlu、LysまたはTrpのいずれか、
227位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
228位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
230位のアミノ酸がAla、Glu、GlyまたはTyrのいずれか、
231位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
232位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
233位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
234位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
235位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
236位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
237位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
238位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
239位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
240位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
241位のアミノ酸がAsp、Glu、Leu、Arg、TrpまたはTyrのいずれか、
243位のアミノ酸がLeu、Glu、Leu、Gln、Arg、TrpまたはTyrのいずれか、
244位のアミノ酸がHis、
245位のアミノ酸がAla、
246位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
247位のアミノ酸がAla、Phe、Gly、His、Ile、Leu、Met、Thr、ValまたはTyrのいずれか、
249位のアミノ酸がGlu、His、GlnまたはTyrのいずれか、
250位のアミノ酸がGluまたはGlnのいずれか、
251位のアミノ酸がPhe、
254位のアミノ酸がPhe、MetまたはTyrのいずれか、
255位のアミノ酸がGlu、LeuまたはTyrのいずれか、
256位のアミノ酸がAla、MetまたはProのいずれか、
258位のアミノ酸がAsp、Glu、His、SerまたはTyrのいずれか、
260位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
262位のアミノ酸がAla、Glu、Phe、IleまたはThrのいずれか、
263位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
264位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
265位のアミノ酸がAla、Leu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
266位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
267位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
268位のアミノ酸がAsp、Glu、Phe、Gly、Ile、Lys、Leu、Met、Pro、Gln、Arg、Thr、ValまたはTrpのいずれか、
269位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
270位のアミノ酸がGlu、Phe、Gly、His、Ile、Leu、Met、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
271位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
272位のアミノ酸がAsp、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
273位のアミノ酸がPheまたはIleのいずれか、
274位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
275位のアミノ酸がLeuまたはTrpのいずれか、
276位のアミノ酸が、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
278位のアミノ酸がAsp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
279位のアミノ酸がAla、
280位のアミノ酸がAla、Gly、His、Lys、Leu、Pro、Gln、TrpまたはTyrのいずれか、
281位のアミノ酸がAsp、Lys、ProまたはTyrのいずれか、
282位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
283位のアミノ酸がAla、Gly、His、Ile、Lys、Leu、Met、Pro、ArgまたはTyrのいずれか、
284位のアミノ酸がAsp、Glu、Leu、Asn、ThrまたはTyrのいずれか、
285位のアミノ酸がAsp、Glu、Lys、Gln、TrpまたはTyrのいずれか、
286位のアミノ酸がGlu、Gly、ProまたはTyrのいずれか、
288位のアミノ酸がAsn、Asp、GluまたはTyrのいずれか、
290位のアミノ酸がAsp、Gly、His、Leu、Asn、Ser、Thr、TrpまたはTyrのいずれか、291位のアミノ酸がAsp、Glu、Gly、His、Ile、GlnまたはThrのいずれか、
292位のアミノ酸がAla、Asp、Glu、Pro、ThrまたはTyrのいずれか、
293位のアミノ酸がPhe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
294位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
295位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
296位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、ThrまたはValのいずれか、
297位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
298位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Met、Asn、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
299位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、TrpまたはTyrのいずれか、
300位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
301位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
302位のアミノ酸がIle、
303位のアミノ酸がAsp、GlyまたはTyrのいずれか、
304位のアミノ酸がAsp、His、Leu、AsnまたはThrのいずれか、
305位のアミノ酸がGlu、Ile、ThrまたはTyrのいずれか、
311位のアミノ酸がAla、Asp、Asn、Thr、ValまたはTyrのいずれか、
313位のアミノ酸がPhe、
315位のアミノ酸がLeu、
317位のアミノ酸がGluまたはGln、
318位のアミノ酸がHis、Leu、Asn、Pro、Gln、Arg、Thr、ValまたはTyrのいずれか、
320位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Asn、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
322位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
323位のアミノ酸がIle、
324位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
325位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
326位のアミノ酸がAla、Asp、Glu、Gly、Ile、Leu、Met、Asn、Pro、Gln、Ser、Thr、Val、TrpまたはTyrのいずれか、
327位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
328位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
329位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
330位のアミノ酸がCys、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
331位のアミノ酸がAsp、Phe、His、Ile、Leu、Met、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
332位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
333位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Ser、Thr、ValまたはTyrのいずれか、
334位のアミノ酸がAla、Glu、Phe、Ile、Leu、ProまたはThrのいずれか、
335位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Val、TrpまたはTyrのいずれか、
336位のアミノ酸がGlu、LysまたはTyrのいずれか、
337位のアミノ酸がGlu、HisまたはAsnのいずれか、
339位のアミノ酸がAsp、Phe、Gly、Ile、Lys、Met、Asn、Gln、Arg、SerまたはThrのいずれか、
376位のアミノ酸がAlaまたはValのいずれか、
377位のアミノ酸がGlyまたはLysのいずれか、
378位のアミノ酸がAsp、
379位のアミノ酸がAsn、
380位のアミノ酸がAla、AsnまたはSerのいずれか、
382位のアミノ酸がAlaまたはIleのいずれか、
385位のアミノ酸がGlu、
392位のアミノ酸がThr、
396位のアミノ酸がLeu、
421位のアミノ酸がLys、
427位のアミノ酸がAsn、
428位のアミノ酸がPheまたはLeuのいずれか、
429位のアミノ酸がMet、
434位のアミノ酸がTrp、
436位のアミノ酸がIle、および
440位のアミノ酸がGly、His、Ile、LeuまたはTyrのいずれか、
の群から選択される少なくともひとつ以上のアミノ酸を含むFc領域である〔9〕に記載の医薬組成物。
〔11〕前記EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域が、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgG1、天然型ヒトIgG2、天然型ヒトIgG3または天然型ヒトIgG4のいずれかのFc領域である〔1〕から〔10〕のいずれかに記載の医薬組成物。
〔12〕前記ヒトFcγレセプターが、FcγRIa、FcγRIIa(R)、FcγRIIa(H)、FcγRIIb、FcγRIIIa(V)、またはFcγRIIIa(F)である〔1〕から〔11〕のいずれかに記載の医薬組成物。
〔13〕前記ヒトFcγレセプターが、FcγRIIbである〔1〕から〔11〕のいずれかに記載の医薬組成物。
〔14〕前記Fc領域が、Fc領域のEUナンバリングで表される部位のうち;
238位のアミノ酸がAsp、または
328位のアミノ酸がGlu、
の少なくとも一つ以上のアミノ酸を含むFc領域である〔8〕から〔13〕のいずれかに記載の医薬組成物。
〔15〕pH酸性域の条件下でヒトFcRnに対する結合活性を有し、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメイン、およびpH中性域の条件下でFcγレセプターに対する結合活性が、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりも高いFcγレセプター結合ドメインを含む抗原結合分子を、Fcγレセプターを発現する細胞に生体内または生体外で細胞に接触させる工程を含む、以下(i)〜(vi)のいずれかの方法;
(i)一分子の抗原結合分子が結合できる抗原の数を増加させる方法、
(ii)血漿中抗原を消失させる方法、
(iii) 抗原結合分子の薬物動態を改善する方法、
(iv)細胞外で抗原結合分子に結合した抗原の細胞内での抗原結合分子からの解離を促進する方法、
(v) 抗原と結合していない状態での抗原結合分子の細胞外への放出を促進する方法、または
(vi) 血漿中の総抗原濃度または遊離抗原濃度を減少させる方法。
〔16〕前記抗原が、可溶型抗原である〔15〕に記載の方法。
〔17〕前記イオン濃度が、カルシウムイオン濃度である〔15〕または〔16〕に記載の方法。
〔18〕前記抗原結合ドメインが、低カルシウムイオン濃度の条件下での当該抗原に対する結合活性よりも高カルシウムイオン濃度の条件下での抗原に対する結合活性が高い抗原結合ドメインである〔17〕に記載の方法。
〔19〕前記イオン濃度の条件が、pHの条件である〔15〕または〔16〕に記載の方法。
〔20〕前記抗原結合ドメインが、pH酸性域の条件下での当該抗原に対する結合活性よりもpH中性域の条件下での抗原に対する結合活性が高い抗原結合ドメインである〔19〕に記載の方法。
〔21〕前記抗原結合分子が、前記抗原に対する中和活性を有する抗原結合分子である〔15〕から〔20〕のいずれかに記載の方法。
〔22〕前記Fcγレセプター結合ドメインが、抗体のFc領域を含む〔15〕から〔21〕のいずれかに記載の方法。
〔23〕前記Fc領域が、Fc領域のEUナンバリングで表される部位のうち、221位、222位、223位、224位、225位、227位、228位、230位、231位、232位、233位、234位、235位、236位、237位、238位、239位、240位、241位、243位、244位、245位、246位、247位、249位、250位、251位、254位、255位、256位、258位、260位、262位、263位、264位、265位、266位、267位、268位、269位、270位、271位、272位、273位、274位、275位、276位、278位、279位、280位、281位、282位、283位、284位、285位、286位、288位、290位、291位、292位、293位、294位、295位、296位、297位、298位、299位、300位、301位、302位、303位、304位、305位、311位、313位、315位、317位、318位、320位、322位、323位、324位、325位、326位、327位、328位、329位、330位、331位、332位、333位、334位、335位、336位、337位、339位、376位、377位、378位、379位、380位、382位、385位、392位、396位、421位、427位、428位、429位、434位、436位および440位の群から選択される少なくともひとつ以上のアミノ酸が、天然型Fc領域の対応する部位のアミノ酸と異なるFc領域である〔22〕に記載の方法。
〔24〕前記Fc領域が、Fc領域のEUナンバリングで表される部位のうち;
221位のアミノ酸がLysまたはTyrのいずれか、
222位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
223位のアミノ酸がPhe、Trp、GluまたはLysのいずれか、
224位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
225位のアミノ酸がGlu、LysまたはTrpのいずれか、
227位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
228位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
230位のアミノ酸がAla、Glu、GlyまたはTyrのいずれか、
231位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
232位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
233位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
234位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
235位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
236位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
237位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
238位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
239位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
240位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
241位のアミノ酸がAsp、Glu、Leu、Arg、TrpまたはTyrのいずれか、
243位のアミノ酸がLeu、Glu、Leu、Gln、Arg、TrpまたはTyrのいずれか、
244位のアミノ酸がHis、
245位のアミノ酸がAla、
246位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
247位のアミノ酸がAla、Phe、Gly、His、Ile、Leu、Met、Thr、ValまたはTyrのいずれか、
249位のアミノ酸がGlu、His、GlnまたはTyrのいずれか、
250位のアミノ酸がGluまたはGlnのいずれか、
251位のアミノ酸がPhe、
254位のアミノ酸がPhe、MetまたはTyrのいずれか、
255位のアミノ酸がGlu、LeuまたはTyrのいずれか、
256位のアミノ酸がAla、MetまたはProのいずれか、
258位のアミノ酸がAsp、Glu、His、SerまたはTyrのいずれか、
260位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
262位のアミノ酸がAla、Glu、Phe、IleまたはThrのいずれか、
263位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
264位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
265位のアミノ酸がAla、Leu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
266位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
267位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
268位のアミノ酸がAsp、Glu、Phe、Gly、Ile、Lys、Leu、Met、Pro、Gln、Arg、Thr、ValまたはTrpのいずれか、
269位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
270位のアミノ酸がGlu、Phe、Gly、His、Ile、Leu、Met、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
271位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
272位のアミノ酸がAsp、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
273位のアミノ酸がPheまたはIleのいずれか、
274位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
275位のアミノ酸がLeuまたはTrpのいずれか、
276位のアミノ酸が、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
278位のアミノ酸がAsp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
279位のアミノ酸がAla、
280位のアミノ酸がAla、Gly、His、Lys、Leu、Pro、Gln、TrpまたはTyrのいずれか、
281位のアミノ酸がAsp、Lys、ProまたはTyrのいずれか、
282位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
283位のアミノ酸がAla、Gly、His、Ile、Lys、Leu、Met、Pro、ArgまたはTyrのいずれか、
284位のアミノ酸がAsp、Glu、Leu、Asn、ThrまたはTyrのいずれか、
285位のアミノ酸がAsp、Glu、Lys、Gln、TrpまたはTyrのいずれか、
286位のアミノ酸がGlu、Gly、ProまたはTyrのいずれか、
288位のアミノ酸がAsn、Asp、GluまたはTyrのいずれか、
290位のアミノ酸がAsp、Gly、His、Leu、Asn、Ser、Thr、TrpまたはTyrのいずれか、291位のアミノ酸がAsp、Glu、Gly、His、Ile、GlnまたはThrのいずれか、
292位のアミノ酸がAla、Asp、Glu、Pro、ThrまたはTyrのいずれか、
293位のアミノ酸がPhe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
294位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
295位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
296位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、ThrまたはValのいずれか、
297位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
298位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Met、Asn、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
299位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、TrpまたはTyrのいずれか、
300位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
301位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
302位のアミノ酸がIle、
303位のアミノ酸がAsp、GlyまたはTyrのいずれか、
304位のアミノ酸がAsp、His、Leu、AsnまたはThrのいずれか、
305位のアミノ酸がGlu、Ile、ThrまたはTyrのいずれか、
311位のアミノ酸がAla、Asp、Asn、Thr、ValまたはTyrのいずれか、
313位のアミノ酸がPhe、
315位のアミノ酸がLeu、
317位のアミノ酸がGluまたはGln、
318位のアミノ酸がHis、Leu、Asn、Pro、Gln、Arg、Thr、ValまたはTyrのいずれか、
320位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Asn、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
322位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
323位のアミノ酸がIle、
324位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
325位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
326位のアミノ酸がAla、Asp、Glu、Gly、Ile、Leu、Met、Asn、Pro、Gln、Ser、Thr、Val、TrpまたはTyrのいずれか、
327位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
328位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
329位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
330位のアミノ酸がCys、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
331位のアミノ酸がAsp、Phe、His、Ile、Leu、Met、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
332位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
333位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Ser、Thr、ValまたはTyrのいずれか、
334位のアミノ酸がAla、Glu、Phe、Ile、Leu、ProまたはThrのいずれか、
335位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Val、TrpまたはTyrのいずれか、
336位のアミノ酸がGlu、LysまたはTyrのいずれか、
337位のアミノ酸がGlu、HisまたはAsnのいずれか、
339位のアミノ酸がAsp、Phe、Gly、Ile、Lys、Met、Asn、Gln、Arg、SerまたはThrのいずれか、
376位のアミノ酸がAlaまたはValのいずれか、
377位のアミノ酸がGlyまたはLysのいずれか、
378位のアミノ酸がAsp、
379位のアミノ酸がAsn、
380位のアミノ酸がAla、AsnまたはSerのいずれか、
382位のアミノ酸がAlaまたはIleのいずれか、
385位のアミノ酸がGlu、
392位のアミノ酸がThr、
396位のアミノ酸がLeu、
421位のアミノ酸がLys、
427位のアミノ酸がAsn、
428位のアミノ酸がPheまたはLeuのいずれか、
429位のアミノ酸がMet、
434位のアミノ酸がTrp、
436位のアミノ酸がIle、および
440位のアミノ酸がGly、His、Ile、LeuまたはTyrのいずれか、
の群から選択される少なくともひとつ以上のアミノ酸を含むFc領域である〔23〕に記載の方法。
〔25〕前記EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域が、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgG1、天然型ヒトIgG2、天然型ヒトIgG3または天然型ヒトIgG4のいずれかのFc領域である〔15〕から〔24〕のいずれかに記載の方法。
〔26〕前記ヒトFcγレセプターが、FcγRIa、FcγRIIa(R)、FcγRIIa(H)、FcγRIIb、FcγRIIIa(V)、またはFcγRIIIa(F)である〔15〕から〔25〕のいずれかに記載の方法。
〔27〕前記ヒトFcγレセプターが、FcγRIIbである〔15〕から〔25〕のいずれかに記載の方法。
〔28〕前記Fc領域が、Fc領域のEUナンバリングで表される部位のうち;
238位のアミノ酸がAsp、または
328位のアミノ酸がGlu、
の少なくとも一つ以上のアミノ酸を含むFc領域である〔22〕から〔27〕のいずれかに記載の方法。
〔29〕pH酸性域の条件下でヒトFcRnに対する結合活性を有し、イオン濃度の条件によって抗原に対する結合活性が変化する抗原結合ドメイン、およびFcγレセプター結合ドメインを含む抗原結合分子におけるFcγレセプター結合ドメインのpH中性域の条件下でのFcγレセプターに対する結合活性を、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域のpH中性域の条件下でのFcγレセプターに対する結合活性よりも増強する工程を含む、以下(i)〜(vii)のいずれかに記載の方法;
(i) 結合する抗原の細胞内への取込が促進された抗原結合分子の改変方法
(ii) 一分子の抗原結合分子が結合できる抗原の数を増加させる方法、
(iii) 抗原結合分子の血漿中抗原消失能を増大させる方法、
(iv) 抗原結合分子の薬物動態を改善する方法、
(v) 細胞外で抗原結合分子に結合した抗原の細胞内での抗原結合分子からの解離を促進する方法、
(vi) 抗原と結合した状態で細胞内に取り込まれた抗原結合分子の、抗原と結合していない状態での細胞外への放出を促進する方法、または
(vii) 血漿中の総抗原濃度または遊離抗原濃度を減少することができる抗原結合分子の改変方法。
〔30〕前記抗原が、可溶型抗原である〔29〕に記載の方法。
〔31〕前記イオン濃度が、カルシウムイオン濃度である〔29〕または〔30〕に記載の方法。
〔32〕前記抗原結合ドメインが、低カルシウムイオン濃度の条件下での当該抗原に対する結合活性よりも高カルシウムイオン濃度の条件下での抗原に対する結合活性が高い抗原結合ドメインである〔31〕に記載の方法。
〔33〕前記イオン濃度の条件が、pHの条件である〔29〕または〔30〕に記載の方法。
〔34〕前記抗原結合ドメインが、pH酸性域の条件下での当該抗原に対する結合活性よりもpH中性域の条件下での抗原に対する結合活性が高い抗原結合ドメインである〔33〕に記載の方法。
〔35〕前記抗原結合分子が、前記抗原に対する中和活性を有する抗原結合分子である〔29〕から〔34〕のいずれかに記載の方法。
〔36〕前記Fcγレセプター結合ドメインが、抗体のFc領域を含む〔29〕から〔35〕のいずれかに記載の方法。
〔37〕前記Fc領域が、Fc領域のEUナンバリングで表される部位のうち、221位、222位、223位、224位、225位、227位、228位、230位、231位、232位、233位、234位、235位、236位、237位、238位、239位、240位、241位、243位、244位、245位、246位、247位、249位、250位、251位、254位、255位、256位、258位、260位、262位、263位、264位、265位、266位、267位、268位、269位、270位、271位、272位、273位、274位、275位、276位、278位、279位、280位、281位、282位、283位、284位、285位、286位、288位、290位、291位、292位、293位、294位、295位、296位、297位、298位、299位、300位、301位、302位、303位、304位、305位、311位、313位、315位、317位、318位、320位、322位、323位、324位、325位、326位、327位、328位、329位、330位、331位、332位、333位、334位、335位、336位、337位、339位、376位、377位、378位、379位、380位、382位、385位、392位、396位、421位、427位、428位、429位、434位、436位および440位の群いずれかひとつ以上のアミノ酸が、天然型Fc領域の対応する部位のアミノ酸と異なるFc領域である〔36〕に記載の方法。
〔38〕前記Fc領域が、Fc領域のEUナンバリングで表される部位のうち;
221位のアミノ酸がLysまたはTyrのいずれか、
222位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
223位のアミノ酸がPhe、Trp、GluまたはLysのいずれか、
224位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
225位のアミノ酸がGlu、LysまたはTrpのいずれか、
227位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
228位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
230位のアミノ酸がAla、Glu、GlyまたはTyrのいずれか、
231位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
232位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
233位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
234位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
235位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
236位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
237位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
238位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
239位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
240位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
241位のアミノ酸がAsp、Glu、Leu、Arg、TrpまたはTyrのいずれか、
243位のアミノ酸がLeu、Glu、Leu、Gln、Arg、TrpまたはTyrのいずれか、
244位のアミノ酸がHis、
245位のアミノ酸がAla、
246位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
247位のアミノ酸がAla、Phe、Gly、His、Ile、Leu、Met、Thr、ValまたはTyrのいずれか、
249位のアミノ酸がGlu、His、GlnまたはTyrのいずれか、
250位のアミノ酸がGluまたはGlnのいずれか、
251位のアミノ酸がPhe、
254位のアミノ酸がPhe、MetまたはTyrのいずれか、
255位のアミノ酸がGlu、LeuまたはTyrのいずれか、
256位のアミノ酸がAla、MetまたはProのいずれか、
258位のアミノ酸がAsp、Glu、His、SerまたはTyrのいずれか、
260位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
262位のアミノ酸がAla、Glu、Phe、IleまたはThrのいずれか、
263位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
264位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
265位のアミノ酸がAla、Leu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
266位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
267位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
268位のアミノ酸がAsp、Glu、Phe、Gly、Ile、Lys、Leu、Met、Pro、Gln、Arg、Thr、ValまたはTrpのいずれか、
269位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
270位のアミノ酸がGlu、Phe、Gly、His、Ile、Leu、Met、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
271位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
272位のアミノ酸がAsp、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
273位のアミノ酸がPheまたはIleのいずれか、
274位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
275位のアミノ酸がLeuまたはTrpのいずれか、
276位のアミノ酸が、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
278位のアミノ酸がAsp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
279位のアミノ酸がAla、
280位のアミノ酸がAla、Gly、His、Lys、Leu、Pro、Gln、TrpまたはTyrのいずれか、
281位のアミノ酸がAsp、Lys、ProまたはTyrのいずれか、
282位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
283位のアミノ酸がAla、Gly、His、Ile、Lys、Leu、Met、Pro、ArgまたはTyrのいずれか、
284位のアミノ酸がAsp、Glu、Leu、Asn、ThrまたはTyrのいずれか、
285位のアミノ酸がAsp、Glu、Lys、Gln、TrpまたはTyrのいずれか、
286位のアミノ酸がGlu、Gly、ProまたはTyrのいずれか、
288位のアミノ酸がAsn、Asp、GluまたはTyrのいずれか、
290位のアミノ酸がAsp、Gly、His、Leu、Asn、Ser、Thr、TrpまたはTyrのいずれか、291位のアミノ酸がAsp、Glu、Gly、His、Ile、GlnまたはThrのいずれか、
292位のアミノ酸がAla、Asp、Glu、Pro、ThrまたはTyrのいずれか、
293位のアミノ酸がPhe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
294位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
295位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
296位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、ThrまたはValのいずれか、
297位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
298位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Met、Asn、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
299位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、TrpまたはTyrのいずれか、
300位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
301位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
302位のアミノ酸がIle、
303位のアミノ酸がAsp、GlyまたはTyrのいずれか、
304位のアミノ酸がAsp、His、Leu、AsnまたはThrのいずれか、
305位のアミノ酸がGlu、Ile、ThrまたはTyrのいずれか、
311位のアミノ酸がAla、Asp、Asn、Thr、ValまたはTyrのいずれか、
313位のアミノ酸がPhe、
315位のアミノ酸がLeu、
317位のアミノ酸がGluまたはGln、
318位のアミノ酸がHis、Leu、Asn、Pro、Gln、Arg、Thr、ValまたはTyrのいずれか、
320位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Asn、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
322位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
323位のアミノ酸がIle、
324位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
325位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
326位のアミノ酸がAla、Asp、Glu、Gly、Ile、Leu、Met、Asn、Pro、Gln、Ser、Thr、Val、TrpまたはTyrのいずれか、
327位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
328位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
329位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
330位のアミノ酸がCys、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
331位のアミノ酸がAsp、Phe、His、Ile、Leu、Met、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
332位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
333位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Ser、Thr、ValまたはTyrのいずれか、
334位のアミノ酸がAla、Glu、Phe、Ile、Leu、ProまたはThrのいずれか、
335位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Val、TrpまたはTyrのいずれか、
336位のアミノ酸がGlu、LysまたはTyrのいずれか、
337位のアミノ酸がGlu、HisまたはAsnのいずれか、
339位のアミノ酸がAsp、Phe、Gly、Ile、Lys、Met、Asn、Gln、Arg、SerまたはThrのいずれか、
376位のアミノ酸がAlaまたはValのいずれか、
377位のアミノ酸がGlyまたはLysのいずれか、
378位のアミノ酸がAsp、
379位のアミノ酸がAsn、
380位のアミノ酸がAla、AsnまたはSerのいずれか、
382位のアミノ酸がAlaまたはIleのいずれか、
385位のアミノ酸がGlu、
392位のアミノ酸がThr、
396位のアミノ酸がLeu、
421位のアミノ酸がLys、
427位のアミノ酸がAsn、
428位のアミノ酸がPheまたはLeuのいずれか、
429位のアミノ酸がMet、
434位のアミノ酸がTrp、
436位のアミノ酸がIle、および
440位のアミノ酸がGly、His、Ile、LeuまたはTyrのいずれか、
の群から選択される少なくともひとつ以上のアミノ酸を含むFc領域である〔33〕に記載の方法。
〔39〕前記EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域が、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgG1、天然型ヒトIgG2、天然型ヒトIgG3または天然型ヒトIgG4のいずれかのFc領域である〔29〕から〔38〕のいずれかに記載の方法。
〔40〕前記ヒトFcγレセプターが、FcγRIa、FcγRIIa(R)、FcγRIIa(H)、FcγRIIb、FcγRIIIa(V)、またはFcγRIIIa(F)である〔29〕から〔39〕のいずれかに記載の方法。
〔41〕前記ヒトFcγレセプターが、FcγRIIbである〔29〕から〔39〕のいずれかに記載の方法。
〔42〕前記Fc領域が、Fc領域のEUナンバリングで表される部位のうち;
238位のアミノ酸がAsp、または
328位のアミノ酸がGlu、
の少なくとも一つ以上のアミノ酸を含むFc領域である〔36〕から〔41〕のいずれかに記載の方法。
〔43〕以下(a)〜(f)の工程、
(a) 高カルシウムイオン濃度の条件における抗原結合ドメインの抗原に対する結合活性を得る工程、
(b) 低カルシウムイオン濃度の条件における抗原結合ドメインの抗原に対する結合活性を得る工程、
(c) (a)で得られた抗原結合活性が(b)で得られた抗原結合活性より高い抗原結合ドメインを選択する工程、
(d) (c)で選択された抗原結合ドメインをコードするポリヌクレオチドを、pH酸性域の条件下でヒトFcRnに対する結合活性を有し、pH中性域の条件下でFcγレセプターに対する結合活性が、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりも高いFcγレセプター結合ドメインをコードするポリヌクレオチドに連結させる工程、
(e) (d)で得られたポリヌクレオチドが作用可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む抗原結合分子の製造方法。
〔44〕以下(a)〜(f)の工程、
(a) 高カルシウムイオン濃度の条件における抗体の抗原に対する結合活性を得る工程、
(b) 低カルシウムイオン濃度の条件における抗体の抗原に対する結合活性を得る工程、
(c) (a)で得られた抗原結合活性が(b)で得られた抗原結合活性より高い抗体を選択する工程、
(d) (c)で選択された抗体の抗原結合ドメインをコードするポリヌクレオチドを、pH酸性域においてヒトFcRnに対する結合活性を有し、pH中性域の条件下でFcγレセプターに対する結合活性が、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりも高いFcγレセプター結合ドメインをコードするポリヌクレオチドに連結させる工程、
(e) (d)で得られたポリヌクレオチドが作用可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む抗原結合分子の製造方法。
〔45〕以下(a)〜(f)の工程、
(a) pH中性域の条件における抗原結合ドメインの抗原に対する結合活性を得る工程、
(b) pH酸性域の条件における抗原結合ドメインの抗原に対する結合活性を得る工程、
(c) (a)で得られた抗原結合活性が(b)で得られた抗原結合活性より高い抗原結合ドメインを選択する工程、
(d) (c)で選択された抗原結合ドメインをコードするポリヌクレオチドを、pH酸性域の条件下でヒトFcRnに対する結合活性を有し、pH中性域の条件下でFcγレセプターに対する結合活性が、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりも高いFcγレセプター結合ドメインをコードするポリヌクレオチドに連結させる工程、
(e) (d)で得られたポリヌクレオチドが作用可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む抗原結合分子の製造方法。
〔46〕以下(a)〜(f)の工程、
(a) pH中性域の条件における抗体の抗原に対する結合活性を得る工程、
(b) pH酸性域の条件における抗体の抗原に対する抗原結合活性を得る工程、
(c) (a)で得られた抗原結合活性が(b)で得られた抗原結合活性より高い抗体を選択する工程、
(d) (c)で選択された抗体の抗原結合ドメインをコードするポリヌクレオチドを、pH酸性域の条件下でヒトFcRnに対する結合活性を有し、pH中性域の条件下でFcγレセプターに対する結合活性が、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりも高いFcγレセプター結合ドメインをコードするポリヌクレオチドに連結させる工程、
(e) (d)で得られたポリヌクレオチドが作用可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む抗原結合分子の製造方法。
〔47〕前記抗原が、可溶型抗原である〔43〕から 〔46〕のいずれかに記載の製造方法。
〔48〕前記Fcγレセプター結合ドメインが、抗体のFc領域を含む〔43〕から〔47〕のいずれかに記載の製造方法。
〔49〕前記Fc領域が、Fc領域のEUナンバリングで表される部位のうち、221位、222位、223位、224位、225位、227位、228位、230位、231位、232位、233位、234位、235位、236位、237位、238位、239位、240位、241位、243位、244位、245位、246位、247位、249位、250位、251位、254位、255位、256位、258位、260位、262位、263位、264位、265位、266位、267位、268位、269位、270位、271位、272位、273位、274位、275位、276位、278位、279位、280位、281位、282位、283位、284位、285位、286位、288位、290位、291位、292位、293位、294位、295位、296位、297位、298位、299位、300位、301位、302位、303位、304位、305位、311位、313位、315位、317位、318位、320位、322位、323位、324位、325位、326位、327位、328位、329位、330位、331位、332位、333位、334位、335位、336位、337位、339位、376位、377位、378位、379位、380位、382位、385位、392位、396位、421位、427位、428位、429位、434位、436位および440位の群から選択される少なくともひとつ以上のアミノ酸が、天然型Fc領域の対応する部位のアミノ酸と異なるFc領域である〔48〕に記載の製造方法。
〔50〕前記Fc領域が、Fc領域のEUナンバリングで表される部位のうち;
221位のアミノ酸がLysまたはTyrのいずれか、
222位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
223位のアミノ酸がPhe、Trp、GluまたはLysのいずれか、
224位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
225位のアミノ酸がGlu、LysまたはTrpのいずれか、
227位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
228位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
230位のアミノ酸がAla、Glu、GlyまたはTyrのいずれか、
231位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
232位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
233位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
234位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
235位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
236位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
237位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
238位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
239位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
240位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
241位のアミノ酸がAsp、Glu、Leu、Arg、TrpまたはTyrのいずれか、
243位のアミノ酸がLeu、Glu、Leu、Gln、Arg、TrpまたはTyrのいずれか、
244位のアミノ酸がHis、
245位のアミノ酸がAla、
246位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
247位のアミノ酸がAla、Phe、Gly、His、Ile、Leu、Met、Thr、ValまたはTyrのいずれか、
249位のアミノ酸がGlu、His、GlnまたはTyrのいずれか、
250位のアミノ酸がGluまたはGlnのいずれか、
251位のアミノ酸がPhe、
254位のアミノ酸がPhe、MetまたはTyrのいずれか、
255位のアミノ酸がGlu、LeuまたはTyrのいずれか、
256位のアミノ酸がAla、MetまたはProのいずれか、
258位のアミノ酸がAsp、Glu、His、SerまたはTyrのいずれか、
260位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
262位のアミノ酸がAla、Glu、Phe、IleまたはThrのいずれか、
263位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
264位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
265位のアミノ酸がAla、Leu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
266位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
267位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
268位のアミノ酸がAsp、Glu、Phe、Gly、Ile、Lys、Leu、Met、Pro、Gln、Arg、Thr、ValまたはTrpのいずれか、
269位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
270位のアミノ酸がGlu、Phe、Gly、His、Ile、Leu、Met、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
271位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
272位のアミノ酸がAsp、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
273位のアミノ酸がPheまたはIleのいずれか、
274位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
275位のアミノ酸がLeuまたはTrpのいずれか、
276位のアミノ酸が、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
278位のアミノ酸がAsp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
279位のアミノ酸がAla、
280位のアミノ酸がAla、Gly、His、Lys、Leu、Pro、Gln、TrpまたはTyrのいずれか、
281位のアミノ酸がAsp、Lys、ProまたはTyrのいずれか、
282位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
283位のアミノ酸がAla、Gly、His、Ile、Lys、Leu、Met、Pro、ArgまたはTyrのいずれか、
284位のアミノ酸がAsp、Glu、Leu、Asn、ThrまたはTyrのいずれか、
285位のアミノ酸がAsp、Glu、Lys、Gln、TrpまたはTyrのいずれか、
286位のアミノ酸がGlu、Gly、ProまたはTyrのいずれか、
288位のアミノ酸がAsn、Asp、GluまたはTyrのいずれか、
290位のアミノ酸がAsp、Gly、His、Leu、Asn、Ser、Thr、TrpまたはTyrのいずれか、291位のアミノ酸がAsp、Glu、Gly、His、Ile、GlnまたはThrのいずれか、
292位のアミノ酸がAla、Asp、Glu、Pro、ThrまたはTyrのいずれか、
293位のアミノ酸がPhe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
294位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
295位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
296位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、ThrまたはValのいずれか、
297位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
298位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Met、Asn、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
299位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、TrpまたはTyrのいずれか、
300位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
301位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
302位のアミノ酸がIle、
303位のアミノ酸がAsp、GlyまたはTyrのいずれか、
304位のアミノ酸がAsp、His、Leu、AsnまたはThrのいずれか、
305位のアミノ酸がGlu、Ile、ThrまたはTyrのいずれか、
311位のアミノ酸がAla、Asp、Asn、Thr、ValまたはTyrのいずれか、
313位のアミノ酸がPhe、
315位のアミノ酸がLeu、
317位のアミノ酸がGluまたはGln、
318位のアミノ酸がHis、Leu、Asn、Pro、Gln、Arg、Thr、ValまたはTyrのいずれか、
320位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Asn、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
322位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
323位のアミノ酸がIle、
324位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
325位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
326位のアミノ酸がAla、Asp、Glu、Gly、Ile、Leu、Met、Asn、Pro、Gln、Ser、Thr、Val、TrpまたはTyrのいずれか、
327位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
328位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
329位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
330位のアミノ酸がCys、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
331位のアミノ酸がAsp、Phe、His、Ile、Leu、Met、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
332位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
333位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Ser、Thr、ValまたはTyrのいずれか、
334位のアミノ酸がAla、Glu、Phe、Ile、Leu、ProまたはThrのいずれか、
335位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Val、TrpまたはTyrのいずれか、
336位のアミノ酸がGlu、LysまたはTyrのいずれか、
337位のアミノ酸がGlu、HisまたはAsnのいずれか、
339位のアミノ酸がAsp、Phe、Gly、Ile、Lys、Met、Asn、Gln、Arg、SerまたはThrのいずれか、
376位のアミノ酸がAlaまたはValのいずれか、
377位のアミノ酸がGlyまたはLysのいずれか、
378位のアミノ酸がAsp、
379位のアミノ酸がAsn、
380位のアミノ酸がAla、AsnまたはSerのいずれか、
382位のアミノ酸がAlaまたはIleのいずれか、
385位のアミノ酸がGlu、
392位のアミノ酸がThr、
396位のアミノ酸がLeu、
421位のアミノ酸がLys、
427位のアミノ酸がAsn、
428位のアミノ酸がPheまたはLeuのいずれか、
429位のアミノ酸がMet、
434位のアミノ酸がTrp、
436位のアミノ酸がIle、および
440位のアミノ酸がGly、His、Ile、LeuまたはTyrのいずれか、
の群から選択される少なくともひとつ以上のアミノ酸を含むFc領域である〔49〕に記載の製造方法。
〔51〕前記Fcγレセプター結合ドメインが、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgG1、天然型ヒトIgG2、天然型ヒトIgG3または天然型ヒトIgG4のいずれかのFc領域である〔43〕から〔50〕のいずれかに記載の製造方法。
〔52〕前記ヒトFcγレセプターが、FcγRIa、FcγRIIa(R)、FcγRIIa(H)、FcγRIIb、FcγRIIIa(V)、またはFcγRIIIa(F)である〔43〕から〔51〕のいずれかに記載の製造方法。
〔53〕前記ヒトFcγレセプターが、FcγRIIbである〔43〕から〔51〕のいずれかに記載の製造方法。
〔54〕前記Fc領域が、Fc領域のEUナンバリングで表される部位のうち;
238位のアミノ酸がAsp、または
328位のアミノ酸がGlu、
の少なくとも一つ以上のアミノ酸を含むFc領域である〔48〕から〔53〕のいずれかに記載の製造方法。

図面の簡単な説明

0018

既存の中和抗体に比べて中性pHにおけるFcγレセプターに対する結合を増強したイオン濃度依存的に抗原に対して結合する抗体の投与により、血漿中から可溶型抗原が消失する非限定の作用メカニズムを表す図である。
H54/L28-IgG1またはヒトIL-6レセプターに対してpH依存的に結合するFv4-IgG1が、ヒトFcRnトランスジェニックマウスに投与されたときの当該マウスの血漿中のヒトIL-6レセプター濃度推移を示す図である。
ヒトIL-6レセプターに対してpH依存的に結合するFv4-IgG1、マウスFcγRに対する結合が欠損したFv4-IgG1の改変体であるFv4-IgG1-F760、マウスFcγRに対する結合が増強されたFv4-IgG1の改変体であるFv4-IgG1-F1022、またはFv4-IgG1の低フコース型抗体であるFv4-IgG1-Fucが、ヒトFcRnトランスジェニックマウスに投与されたときの当該マウスの血漿中のヒトIL-6レセプター濃度推移を示す図である。
Fv4-IgG1、Fv4-IgG1-F1022、およびFv4-IgG1-F1022の改変体であってpH酸性域におけるFcRnに対する結合が向上したFv4-IgG1-F1093を重鎖として含む抗原結合分子が、ヒトFcRnトランスジェニックマウスに投与されたときの当該マウスの血漿中のヒトIL-6レセプター濃度推移を示す図である。
Fv4-IgG1、Fv4-IgG1-F1022、およびFv4-IgG1-F1022の改変体であってpH酸性域におけるFcRnに対する結合が向上したFv4-IgG1-F1093を重鎖として含む抗原結合分子が、ヒトFcRnトランスジェニックマウスに投与されたときの当該マウスの血漿中における投与された抗原結合分子の濃度推移を示す図である。
Fv4-IgG1、マウスFcγRに対する結合が増強された(特にマウスFcγRIIb、マウスFcγRIIIに対する結合が増強された)Fv4-IgG1の改変体であるFv4-IgG1-F1087、およびマウスFcγRに対する結合が増強された(特にマウスFcγRI、マウスFcγRIVに対する結合が増強された)Fv4-IgG1の改変体であるFv4-IgG1-F1182が、ヒトFcRnトランスジェニックマウスに投与されたときの当該マウスの血漿中のヒトIL-6レセプター濃度推移を示す図である。
Fv4-IgG1、Fv4-IgG1-F1087、およびpH酸性域におけるFcRnに対する結合が向上したFv4-IgG1-F1087の改変体であるFv4-IgG1-F1180、Fv4-IgG1-F1412が、ヒトFcRnトランスジェニックマウスに投与されたときの当該マウスの血漿中における投与された抗原結合分子の濃度推移を示す図である。
Fv4-IgG1、Fv4-IgG1-F1182、およびpH酸性域におけるFcRnに対する結合が向上したFv4-IgG1-F1182の改変体であるFv4-IgG1-F1181が、ヒトFcRnトランスジェニックマウスに投与されたときの当該マウスの血漿中における投与された抗原結合分子の濃度推移を示す図である。
Fv4-IgG1、Fv4-IgG1-F1087、およびpH酸性域におけるFcRnに対する結合が向上したFv4-IgG1-F1087の改変体であるFv4-IgG1-F1180、Fv4-IgG1-F1412が、ヒトFcRnトランスジェニックマウスに投与されたときの当該マウスの血漿中のヒトIL-6レセプター濃度推移を示す図である。
Fv4-IgG1、Fv4-IgG1-F1182、およびpH酸性域におけるFcRnに対する結合が向上したFv4-IgG1-F1182の改変体であるFv4-IgG1-F1181が、ヒトFcRnトランスジェニックマウスに投与されたときの当該マウスの血漿中のヒトIL-6レセプター濃度推移を示す図である。
Fv4-IgG1、Fv4-IgG1-F1782またはFv4-IgG1-F1087がヒトFcRnトランスジェニックマウスに投与されたときの当該マウスの血漿中におけるFv4-IgG1、Fv4-IgG1-F1782またはFv4-IgG1-F1087の濃度推移の結果を示す図である。
Fv4-IgG1、Fv4-IgG1-F1782またはFv4-IgG1-F1087がヒトFcRnトランスジェニックマウスに投与されたときの当該マウスの血漿中における可溶型ヒトIL-6レセプター濃度推移の結果を示す図である。
Fv4-mIgG1、マウスFcγRIIb、マウスFcγRIIIに対する結合が増強されたFv4-mIgG1の改変体であるFv4-mIgG1-mF44、および更にマウスFcγRIIb、マウスFcγRIIIに対する結合が増強されたFv4-mIgG1の改変体であるFv4-mIgG1-mF46が、ノーマルマウスに投与されたときの当該マウスの血漿中のヒトIL-6レセプター濃度推移を示す図である。
Fv4-mIgG1、マウスFcγRIIb、マウスFcγRIIIに対する結合が増強されたFv4-mIgG1の改変体であるFv4-mIgG1-mF44、および更にマウスFcγRIIb、マウスFcγRIIIに対する結合が増強されたFv4-mIgG1の改変体であるFv4-mIgG1-mF46が、FcγRIII欠損マウスに投与されたときの当該マウスの血漿中のヒトIL-6レセプター濃度推移を示す図である。
Fv4-mIgG1、マウスFcγRIIb、マウスFcγRIIIに対する結合が増強されたFv4-mIgG1の改変体であるFv4-mIgG1-mF44、および更にマウスFcγRIIb、マウスFcγRIIIに対する結合が増強されたFv4-mIgG1の改変体であるFv4-mIgG1-mF46が、Fc受容体γ鎖欠損マウスに投与されたときの当該マウスの血漿中のヒトIL-6レセプター濃度推移を示す図である。
Fv4-mIgG1、マウスFcγRIIb、マウスFcγRIIIに対する結合が増強されたFv4-mIgG1の改変体であるFv4-mIgG1-mF44、および更にマウスFcγRIIb、マウスFcγRIIIに対する結合が増強されたFv4-mIgG1の改変体であるFv4-mIgG1-mF46が、FcγRIIb欠損マウスに投与されたときの当該マウスの血漿中のヒトIL-6レセプター濃度推移を示す図である。
FcγRIIaの多型(R/H) を有するドナー由来血小板を用いた血小板凝集アッセイにおけるomalizumab-G1d-v3/IgE免疫複合体による血小板凝集能の評価結果を示した図である。
FcγRIIaの多型 (H/H) を有するドナー由来の血小板を用いた血小板凝集アッセイにおけるomalizumab-G1d-v3/IgE免疫複合体による血小板凝集能の評価結果を示した図である。
洗浄血小板の膜表面のCD62p発現を評価した結果を表した図である。黒色塗りつぶされたグラフPBSと反応させた後ADPを加え刺激した場合の結果を示し、グラフの中が塗りつぶされていないものは免疫複合体と反応させた後ADPで刺激した場合の結果を示した図である。
洗浄血小板の膜表面の活性型インテグリン発現を評価した結果を表した図である。黒色で塗りつぶされたグラフはPBSと反応させた後ADPを加え刺激した場合の結果を示し、グラフの中が塗りつぶされていないものは免疫複合体と反応させた後ADPで刺激した場合の結果を示した図である。
FcγRIIaの多型(R/H) を有するドナー由来の血小板を用いた血小板凝集アッセイにおけるomalizumab-G1d-v3/IgE免疫複合体およびomalizumab-BP230/IgE免疫複合体による血小板凝集能の評価結果を示す図である。
洗浄血小板膜表面のCD62p発現を評価した結果を表した図である。灰色で塗りつぶされたグラフはPBSと反応させた後ADPを加え刺激した場合の結果を示し、実線はomalizumab-G1d-v3/IgE免疫複合体、点線はomalizumab-BP230/IgE免疫複合体と反応させた後ADPで刺激した場合の結果を示す。
洗浄血小板膜表面の活性型インテグリン発現を評価した結果を表した図である。灰色で塗りつぶされたグラフはPBSと反応させた後ADPを加え刺激した場合の結果を示し、実線はomalizumab-G1d-v3/IgE免疫複合体、点線はomalizumab-BP230/IgE免疫複合体と反応させた後ADPで刺激した場合の結果を示す。
横軸は各PD variantのFcγRIIbに対する相対的な結合活性の値、縦軸は各PD variantのFcγRIIaR型に対する相対的な結合活性の値を表す。各PD variantの各FcγRに対する結合量の値を、コントロールとした改変導入前の抗体であるIL6R-F652/IL6R-L(IL6R-F652は配列番号:142で規定された、EUナンバリングで表される238位のProをAspに置換した改変Fcを含む抗体重鎖)の各FcγRに対する結合量の値で割り、さらに100倍した値を各PD variantの各FcγRに対する相対的な結合活性の値とした。図中のF652というプロットはIL6R-F652/IL6R-Lの値を示す。
縦軸はP238D改変を有さないGpH7-B3(配列番号:159)/GpL16-k0(配列番号:160)に各改変を導入した改変体のFcγRIIbに対する相対的な結合活性の値、横軸はP238D改変を有するIL6R-F652(配列番号:142)/IL6R-Lに各改変を導入した改変体のFcγRIIbに対する相対的な結合活性の値を示す。なお、各改変体のFcγRIIbに対する結合量の値を、改変導入前の抗体のFcγRIIbに対する結合量の値で割り、さらに100倍した値を相対的な結合活性の値とした。ここで、P238Dを有さないGpH7-B3/GpL16-k0に導入した場合、P238Dを有するIL6R-F652/IL6R-Lに導入した場合共にFcγRIIbに対する結合増強効果を発揮した改変は領域Aに含まれ、P238Dを有さないGpH7-B3/GpL16-k0に導入した場合にはFcγRIIbに対する結合増強効果を発揮するが、P238Dを有するIL6R-F652/IL6R-Lに導入した場合にはFcγRIIbに対する結合増強効果を発揮しない改変は領域Bに含まれる。
Fc (P238D) / FcγRIIb細胞外領域複合体の結晶構造を表す。
Fc (P238D) / FcγRIIb細胞外領域複合体の結晶構造とFc (WT) / FcγRIIb細胞外領域複合体のモデル構造とを、FcγRIIb細胞外領域ならびにFc CH2ドメインAに対しCα原子間距離をもとにした最小二乗法により重ね合わせた図を表す。
Fc (P238D) / FcγRIIb細胞外領域複合体の結晶構造とFc (WT) / FcγRIIb細胞外領域複合体のモデル構造について、Fc CH2ドメインAならびにFc CH2ドメインB単独同士でCα原子間距離をもとにした最小二乗法により重ね合わせをおこない、P238D付近詳細構造を比較した図を表す。
Fc (P238D) / FcγRIIb細胞外領域複合体の結晶構造において、Fc CH2ドメインAのEUナンバリングで表される237位のGlyの主鎖とFcγRIIbの160位のTyrとの間に水素結合が認められることを示す図である。
Fc (P238D) / FcγRIIb細胞外領域複合体の結晶構造において、Fc CH2ドメインBのEUナンバリングで表される270位のAspとFcγRIIbの131番目のArgとの間に静電的な相互作用が認められることを示す図である。
横軸は各2B variantのFcγRIIbに対する相対的な結合活性の値、縦軸は各2B variantのFcγRIIa R型に対する相対的な結合活性の値をそれぞれ示す。各2B variantの各FcγRに対する結合量の値を、コントロールとした改変導入前の抗体(EUナンバリングで表される238位のProをAspに置換した改変Fc)の各FcγRに対する結合量の値で割り、さらに100倍した値を各2B variantの各FcγRに対する相対的な結合活性の値とした。
Fc (P238D) / FcγRIIb細胞外領域複合体の結晶構造においてFc Chain AのEUナンバリングで表される233位のGluとFcγRIIb細胞外領域におけるその周辺残基を表す図である。
Fc (P238D) / FcγRIIb細胞外領域複合体の結晶構造においてFc Chain AのEUナンバリングで表される330位のAlaとFcγRIIb細胞外領域におけるその周辺残基を表す図である。
Fc (P238D) / FcγRIIb細胞外領域複合体および、Fc (WT) / FcγRIIIa細胞外領域複合体の結晶構造を、Fc Chain Bに対しCα原子間距離をもとにした最小二乗法により重ね合わせ、Fc Chain BのEUナンバリングで表される271位のProの構造を示した図である。
X線結晶構造解析によって決定されたFc (P208)/FcγRIIb細胞外領域複合体の図である。Fc部分CH2ドメイン、CH3ドメインのそれぞれについて、向かって左側をドメインA、右側をドメインBとした。
X線結晶構造解析によって決定されたFc (P208)/FcγRIIb細胞外領域複合体の構造とFc (WT)/FcγRIIa細胞外領域複合体の構造(PDB code:3RY6)を、Fc部分CH2ドメインAにおいてCα原子間距離をもとにした最小二乗法により重ね合わせをおこない、比較したものである。図中太線で描画されたものがFc (P208) / FcγRIIb細胞外領域複合体であり、細線で描画されたものがFc (WT) / FcγRIIa細胞外領域複合体の構造である。なお、Fc (WT)/FcγRIIa細胞外領域複合体の構造においては、Fc部分CH2ドメインAのみを描画してある。
Fc (P208)/FcγRIIb細胞外領域複合体のX線結晶構造において、FcγRIIbの160番目Tyrと主鎖部分において水素結合を形成するFc部分CH2ドメインAのEUナンバリングで表わされる237位のAsp付近の構造の詳細を示したものである。
Fc (P208)/FcγRIIb細胞外領域複合体のX線結晶構造において、FcγRIIbの160番目のTyrと主鎖部分で水素結合を形成するFc部分CH2ドメインAのEUナンバリングで表わされる237位のAsp側鎖周囲のアミノ酸残基の構造を示した図である。
実施例10において示されたFc (P238D)/FcγRIIb細胞外領域複合体のX線結晶構造とFc (P208)/FcγRIIb細胞外領域複合体のX線結晶構造を、Fc部分CH2ドメインBにおいてCα原子間距離をもとにした最小二乗法により重ね合わせをおこない、EUナンバリングで表わされる266位から271位のループ周辺で比較した図である。本ループ中、Fc (P208)はFc (P238D)と比較し、EUナンバリングで表わされる268位にH268Dの改変を、EUナンバリングで表わされる271位にP271Gの改変を持つ。
Fc (P208)/FcγRIIb細胞外領域複合体のX線結晶構造において、Fc部分CH2ドメインBのSer239周辺の構造を、X線結晶構造解析によって得られた2Fo-Fc係数とする電子密度とともに示した図である。
X線結晶構造解析によって決定されたFc (P208)/FcγRIIaR細胞外領域複合体の立体構造とFc (P208)/FcγRIIb細胞外領域複合体の立体構造を、Cα原子間距離をもとにした最小二乗法により重ね合わせをおこない、比較した図である。
Fc (P208)/FcγRIIaR細胞外領域複合体のX線結晶構造とFc (P208)/FcγRIIb細胞外領域複合体のX線結晶構造を、Fc部分CH2ドメインAのEUナンバリングで表わされる237位のAsp付近において、X線結晶構造解析によって得られた2Fo-Fc係数とする電子密度とともに比較した図である。
Fc (P208)/FcγRIIaR細胞外領域複合体のX線結晶構造とFc (P208)/FcγRIIb細胞外領域複合体のX線結晶構造を、Fc部分CH2ドメインBのEUナンバリングで表わされる237位のAsp付近において、X線結晶構造解析によって得られた2Fo-Fc係数とする電子密度とともに比較した図である。
G1dとG4dの定常領域の配列を比較した図である。図中、太枠で囲んだアミノ酸は、G1dとG4dで異なるアミノ酸残基となっている部位を示す。
ノーマルマウスにおけるGA2-IgG1およびGA2-F1087の血漿中抗体濃度推移を示した図である。
GA2-IgG1およびGA2-F1087が投与されたノーマルマウスにおける血漿中hIgA濃度推移を示した図である。
C57BL/6Jマウスにおける278-IgG1および278-F1087の血漿中抗体濃度推移を示した図である。
278-IgG1および278-F1087が投与されたC57BL/6Jマウスにおける血漿中hIgE(Asp6)濃度推移を示した図である。
X線結晶構造解析で決定された6RL#9抗体のFabフラグメントの重鎖CDR3の構造を表す図である。(i)カルシウムイオンが存在する結晶化条件で得られた結晶構造の重鎖CDR3を示す。(ii)カルシウムイオンが存在しない結晶化条件で得られた結晶構造の重鎖CDR3を示す。
H54/L28-IgG1抗体、FH4-IgG1抗体、および、6RL#9-IgG1抗体が投与されたノーマルマウスの血漿中の各抗体濃度の推移を示す図である。
H54/L28-IgG1抗体、FH4-IgG1抗体、および、6RL#9-IgG1抗体が投与されたノーマルマウスの血漿中の可溶型ヒトIL-6レセプター(hsIL-6R)の濃度推移を示す図である。
ヒトVk5-2配列を含む抗体と、ヒトVk5-2配列中の糖鎖付加配列が改変されたh Vk5-2_L65配列を含む抗体のイオン交換クロマトグラムを示す図である。実線はヒトVk5-2配列を含む抗体(重鎖:CIM_H、配列番号:67および軽鎖:hVk5-2、配列番号:4)のクロマトグラム、破線はhVk5-2_L65配列をもつ抗体(重鎖:CIM_H(配列番号:67)、軽鎖:hVk5-2_L65(配列番号:70))のクロマトグラムを表す。
LfVk1_Ca配列を含む抗体(重鎖:GC_H、配列番号:51および軽鎖:LfVk1_Ca、配列番号:83)と、LfVk1_Ca配列中のAsp(D)残基がAla(A)残基に改変された配列を含む抗体の5℃保存後(実線)または50℃保存後(点線)のイオン交換クロマトグラムである。それぞれ5℃保存後のイオン交換クロマトグラムのもっとも高いピークメインピークとして、メインピークでy軸ノーマライズした図である。軽鎖としてLfVk1_Ca(配列番号:83)を含む抗体のクロマトグラムを示す図である。
軽鎖としてLfVk1_Ca1(配列番号:85)を含む抗体のクロマトグラムを示す図である。
軽鎖としてLfVk1_Ca2(配列番号:86)を含む抗体のクロマトグラムを示す図である。
軽鎖としてLfVk1_Ca3(配列番号:87)を含む抗体のクロマトグラムを示す図である。
LfVk1_Ca配列を含む抗体(重鎖:GC_H、配列番号:51および軽鎖:LfVk1_Ca、配列番号:83)と、LfVk1_Ca配列中の30位(Kabatナンバリング)のAsp(D)残基がSer(S)残基に改変されたLfVk1_Ca6配列(重鎖:GC_H、配列番号:51および軽鎖:LfVk1_Ca6、配列番号:88)を含む抗体の5℃保存後(実線)または50℃保存後(点線)のイオン交換クロマトグラムである。それぞれ5℃保存後のイオン交換クロマトグラムのもっとも高いピークをメインピークとして、メインピークでy軸ノーマライズした図である。軽鎖としてLfVk1_Ca(配列番号:83)を含む抗体のクロマトグラムを示す図である。
軽鎖としてLfVk1_Ca6(配列番号:88)を含む抗体のクロマトグラムを示す図である。
Ca依存的に抗原に結合する抗体遺伝子ライブラリが導入された大腸菌から単離された290クローン配列情報のアミノ酸の分布(Libraryと表示される)と設計されたアミノ酸分布(Designと表示される)との関係を示す図である。横軸はKabatナンバリングで表されるアミノ酸の部位が表される。縦軸はアミノ酸の分布の比率が表される。
高カルシウムイオン濃度の条件(1.2 mM)下における抗IL-6R抗体トシリズマブ)、6RC1IgG_010抗体、6RC1IgG_012抗体および6RC1IgG_019抗体のセンサーグラムを表す図である。横軸は時間、縦軸はRU値を示す。
低カルシウムイオン濃度の条件(3μM)下における抗IL-6R抗体(トシリズマブ)、6RC1IgG_010抗体、6RC1IgG_012抗体および6RC1IgG_019抗体のセンサーグラムを表す図である。横軸は時間、縦軸はRU値を示す。
pH依存的に抗原に結合する抗体遺伝子ライブラリが導入された大腸菌から単離された132クローンの配列情報のアミノ酸の分布(Libraryと表示される)と設計されたアミノ酸分布(Designと表示される)との関係を示す図である。横軸はKabatナンバリングで表されるアミノ酸の部位が表される。縦軸はアミノ酸の分布の比率が表される。
抗IL-6R抗体(トシリズマブ)、6RpH#01抗体、6RpH#02抗体および6RpH#03抗体のpH7.4におけるセンサーグラムを表す図である。横軸は時間、縦軸はRU値を示す。
抗IL-6R抗体(トシリズマブ)、6RpH#01抗体、6RpH#02抗体および6RpH#03抗体のpH6.0におけるセンサーグラムを表す図である。横軸は時間、縦軸はRU値を示す。
天然型Fcおよび改変Fcに対する、15または30の独立したリウマチ患者から単離された血清ECL反応のグラフ表示を表す図である。グラフ表示は、それぞれ、天然型Fc(図61A)Fv4-YTE(図61B)、Fv4-F1166(=YTE + Q438R/S440E)(図61C)、Fv4-F1167(=YTE+S424N)(図61D)、Fv4-LS(図61E)、Fv4-F1170(=LS + Q438R/S440E)(図61F),Fv4-F1171(=LS + S424N)(図61G)、Fv4-N434H(図61H)、Fv4-F1172(=N434H + Q438R /S440E)(図61I)、Fv4-F1173(=N434H + S424N)(図61J)に対するECL反応のグラフ表示を表す。
図61A続きを示す図である。
図61Bの続きを示す図である。
図61Cの続きを示す図である。
図61Dの続きを示す図である。
図61Eの続きを示す図である。
図61Fの続きを示す図である。
図61Gの続きを示す図である。
図61Hの続きを示す図である。
図61Iの続きを示す図である。
改変Fcに対する、30の独立したリウマチ患者から単離された血清のECL反応のグラフ表示を表す図である。グラフ表示は、それぞれ、Fv4-LS(図62A)、Fv4-F1380(図62B)、Fv4-F1384(図62C)、Fv4-F1385(図62D)、Fv4-F1386(図62E)、Fv4-F1388(図62F)および Fv4-F1389(図62G)に対するECL反応のグラフ表示を表す。
図62Aの続きを示す図である。
図62Bの続きを示す図である。
図62Cの続きを示す図である。
図62Dの続きを示す図である。
図62Eの続きを示す図である。
図62Fの続きを示す図である。

0019

以下の定義および詳細な説明は、本明細書において説明する本発明の理解を容易にするために提供される。

0020

アミノ酸
本明細書においては、たとえば、Ala/A、Leu/L、Arg/R、Lys/K、Asn/N、Met/M、Asp/D、Phe/F、Cys/C、Pro/P、Gln/Q、Ser/S、Glu/E、Thr/T、Gly/G、Trp/W、His/H、Tyr/Y、Ile/I、Val/Vと表されるように、アミノ酸を1文字コードまたは3文字コード、またはその両方で表記する。

0021

アミノ酸の改変
抗原結合分子のアミノ酸配列中のアミノ酸の改変のためには、部位特異的変異誘発法(Kunkelら(Proc. Natl. Acad. Sci. USA (1985) 82, 488-492))やOverlap extensionPCR等の公知の方法が適宜採用され得る。これらの公知の方法によってアミノ酸の付加、欠失、および/または置換が適宜加えられる。アミノ酸残基を置換するとは、別のアミノ酸残基に置換することで、例えば次の(a)〜(c)のような点について改変する事を目的とする。
(a)シート構造、若しくは、らせん構造の領域におけるポリペプチド背骨構造
(b)標的部位における電荷若しくは疎水性、または
(c) 側鎖の大きさ。

0022

アミノ酸残基はその構造に含まれる側鎖の特性に基づいて以下のグループ分類される:
(1)疎水性:ノルロイシン、Met、Ala、Val、Leu、Ile;
(2)中性親水性:Cys、Ser、Thr、Asn、Gln;
(3)酸性:Asp、Glu;
(4)塩基性:His、Lys、Arg;
(5) 鎖の配向に影響する残基:Gly、Pro;及び
(6)芳香族性:Trp、Tyr、Phe。

0023

これらの各グループ内でのアミノ酸残基の置換は保存的置換と呼ばれ、一方、他グループ間同士でのアミノ酸残基の置換は非保存的置換と呼ばれる。本発明における置換は、保存的置換であってもよく、非保存的置換であってもよく、また保存的置換と非保存的置換の組合せであってもよい。また、天然のアミノ酸以外のアミノ酸に置換するアミノ酸の改変方法として、複数の公知の方法もまた採用され得る(Annu. Rev. Biophys. Biomol. Struct. (2006) 35, 225-249、Proc. Natl. Acad. Sci. U.S.A. (2003) 100 (11), 6353-6357)。例えば、終止コドンの1つであるUAGコドンアンバーコドン)の相補的アンバーサプレッサーtRNA非天然アミノ酸が結合されたtRNAが含まれる無細胞翻訳系ステム(Clover Direct(Protein Express))等も好適に用いられる。

0024

また、アミノ酸の改変を表す表現として、特定の位置を表す数字の前後に改変前と改変後のアミノ酸の1文字コードを用いた表現が適宜使用され得る。例えば、抗体定常領域に含まれるFc領域にアミノ酸の置換を加える際に用いられるP238Dという改変は、EUナンバリングで表される238位のProのAspへの置換を表す。すなわち、数字はEUナンバリングで表されるアミノ酸の位置を表し、その前に記載されるアミノ酸の一文字コードは置換前のアミノ酸、そのあとに記載されるアミノ酸の1文字コードは置換後のアミノ酸を表す。

0025

および/または
本明細書において、「および/または」の用語の意義は、成句「および/または」の前後の用語の組合せであって、「および」と「または」が適宜組み合わされたあらゆる組合せを含む。具体的には、例えば「326位、328位、および/または428位のアミノ酸が置換されている」とは以下のアミノ酸の改変のバリエーションが含まれる;
(a) 326位、(b) 328位、(c) 428位、(d)326位および328位、(e) 326位および428位、(f) 328位および428位、(g) 326位および328位および428位。

0026

抗原
本明細書において「抗原」は抗原結合ドメインが結合するエピトープを含む限りその構造は特定の構造に限定されない。別の意味では、抗原は無機物でもあり得るし有機物でもあり得るが、本発明の抗原結合分子が結合し得る態様で生体体液中に存在する可溶型抗原が好ましい。抗原としては下記のような分子;17-IA、4-1BB、4Dc、6-ケト-PGF1a、8-イソ-PGF2a、8-オキソ-dG、A1アデノシン受容体、A33、ACE、ACE-2、アクチビン、アクチビンA、アクチビンAB、アクチビンB、アクチビンC、アクチビンRIA、アクチビンRIA ALK-2、アクチビンRIB ALK-4、アクチビンRIIA、アクチビンRIIB、ADAM、ADAM10、ADAM12、ADAM15、ADAM17/TACE、ADAM8、ADAM9、ADAMTS、ADAMTS4、ADAMTS5、アドレシン、aFGF、ALCAM、ALK、ALK-1、ALK-7、アルファ-1-アンチトリプシン、アルファ−V/ベータ-1アンタゴニスト、ANG、Ang、APAF-1、APE、APJ、APP、APRIL、AR、ARC、ARTアルテミン、抗Id、ASPARTIC、心房性ナトリウム利尿因子、av/b3インテグリン、Axl、b2M、B7-1、B7-2、B7-H、B-リンパ球刺激因子(BlyS)、BACE、BACE-1、Bad、BAFF、BAFF-R、Bag-1、BAK、Bax、BCA-1、BCAM、Bcl、BCMA、BDNF、b-ECGF、bFGF、BID、Bik、BIM、BLC、BL-CAM、BLK、BMP、BMP-2 BMP-2a、BMP-3オステオゲニン(Osteogenin)、BMP-4 BMP-2b、BMP-5、BMP-6 Vgr-1、BMP-7(OP-1)、BMP-8(BMP-8a、OP-2)、BMPR、BMPR-IA(ALK-3)、BMPR-IB(ALK-6)、BRK-2、RPK-1、BMPR-II(BRK-3)、BMP、b-NGF、BOK、ボンベシン、骨由来神経栄養因子、BPDE、BPDE-DNA、BTC補体因子3(C3)、C3a、C4、C5、C5a、C10、CA125、CAD-8、カルシトニンcAMP癌胎児性抗原CEA)、癌関連抗原カテプシンA、カテプシンBカテプシンC/DPPI、カテプシンDカテプシンE、カテプシンH、カテプシンL、カテプシンO、カテプシンS、カテプシンV、カテプシンX/Z/P、CBL、CCI、CCK2、CCL、CCL1、CCL11、CCL12、CCL13、CCL14、CCL15、CCL16、CCL17、CCL18、CCL19、CCL2、CCL20、CCL21、CCL22、CCL23、CCL24、CCL25、CCL26、CCL27、CCL28、CCL3、CCL4、CCL5、CCL6、CCL7、CCL8、CCL9/10、CCR、CCR1、CCR10、CCR10、CCR2、CCR3、CCR4、CCR5、CCR6、CCR7、CCR8、CCR9、CD1、CD2、CD3、CD3E、CD4、CD5、CD6、CD7、CD8、CD10、CD11a、CD11b、CD11c、CD13、CD14、CD15、CD16、CD18、CD19、CD20、CD21、CD22、CD23、CD25、CD27L、CD28、CD29、CD30、CD30L、CD32、CD33(p67タンパク質)、CD34、CD38、CD40、CD40L、CD44、CD45、CD46、CD49a、CD52、CD54、CD55、CD56、CD61、CD64、CD66e、CD74、CD80(B7-1)、CD89、CD95、CD123、CD137、CD138、CD140a、CD146、CD147、CD148、CD152、CD164、CEACAM5、CFTR、cGMP、CINCボツリヌス菌毒素ウェルシュ菌毒素、CKb8-1、CLC、CMV、CMV UL、CNTF、CNTN-1、COX、C-Ret、CRG-2、CT-1、CTACK、CTGF、CTLA-4、CX3CL1、CX3CR1、CXCL、CXCL1、CXCL2、CXCL3、CXCL4、CXCL5、CXCL6、CXCL7、CXCL8、CXCL9、CXCL10、CXCL11、CXCL12、CXCL13、CXCL14、CXCL15、CXCL16、CXCR、CXCR1、CXCR2、CXCR3、CXCR4、CXCR5、CXCR6、サイトケラチン腫瘍関連抗原、DAN、DCC、DcR3、DC-SIGN、補体制御因子(Decay accelerating factor)、des(1-3)-IGF-I(脳IGF-1)、Dhh、ジゴキシン、DNAM-1、Dnase、Dpp、DPPIV/CD26、Dtk、ECAD、EDA、EDA-A1、EDA-A2、EDAR、EGF、EGFR(ErbB-1)、EMA、EMMPRIN、ENA、エンドセリン受容体エンケファリナーゼ、eNOS、Eot、エオタキシン1、EpCAM、エフリンB2/EphB4、EPO、ERCC、E-セレクチン、ET-1、ファクターIIa、ファクターVII、ファクターVIIIc、ファクターIX、線維芽細胞活性化タンパク質FAP)、Fas、FcR1、FEN-1、フェリチン、FGF、FGF-19、FGF-2、FGF3、FGF-8、FGFR、FGFR-3、フィブリンFL、FLIP、Flt-3、Flt-4、卵胞刺激ホルモンフラクタルカイン、FZD1、FZD2、FZD3、FZD4、FZD5、FZD6、FZD7、FZD8、FZD9、FZD10、G250、Gas6、GCP-2、GCSFGD2、GD3、GDF、GDF-1、GDF-3(Vgr-2)、GDF-5(BMP-14、CDMP-1)、GDF-6(BMP-13、CDMP-2)、GDF-7(BMP-12、CDMP-3)、GDF-8(ミオスタチン)、GDF-9、GDF-15(MIC-1)、GDNF、GDNF、GFAP、GFRa-1、GFR-アルファ1、GFR-アルファ2、GFR-アルファ3、GITR、グルカゴン、Glut4、糖タンパク質IIb/IIIa(GPIIb/IIIa)、GM-CSF、gp130、gp72、GRO、成長ホルモン放出因子ハプテン(NP-capまたはNIP-cap)、HB-EGF、HCC、HCMV gBエンベロープ糖タンパク質、HCMV gHエンベロープ糖タンパク質、HCMV UL、造血成長因子HGF)、Hep B gp120、ヘパラナーゼ、Her2、Her2/neu(ErbB-2)、Her3(ErbB-3)、Her4(ErbB-4)、単純ヘルペスウイルス(HSV) gB糖タンパク質、HSV gD糖タンパク質、HGFA、高分子量黒色腫関連抗原(HMW-MAA)、HIVgp120、HIV IIIB gp 120 V3ループ、HLA、HLA-DR、HM1.24、HMFG PEM、HRG、Hrk、ヒト心臓ミオシンヒトサイトメガロウイルス(HCMV)、ヒト成長ホルモン(HGH)、HVEM、I-309、IAP、ICAM、ICAM-1、ICAM-3、ICE、ICOS、IFNg、IgIgA受容体、IgE、IGF、IGF結合タンパク質、IGF-1R、IGFBP、IGF-I、IGF-II、IL、IL-1、IL-1R、IL-2、IL-2R、IL-4、IL-4R、IL-5、IL-5R、IL-6、IL-6R、IL-8、IL-9、IL-10、IL-12、IL-13、IL-15、IL-18、IL-18R、IL-23、インターフェロンINF)-アルファ、INF-ベータ、INF-ガンマインヒビン、iNOS、インスリンA鎖、インスリンB鎖インスリン様増殖因子1、インテグリンアルファ2、インテグリンアルファ3、インテグリンアルファ4、インテグリンアルファ4/ベータ1、インテグリンアルファ4/ベータ7、インテグリンアルファ5(アルファV)、インテグリンアルファ5/ベータ1、インテグリンアルファ5/ベータ3、インテグリンアルファ6、インテグリンベータ1、インテグリンベータ2、インターフェロンガンマ、IP-10、I-TAC、JE、カリクレイン2、カリクレイン5、カリクレイン6、カリクレイン11、カリクレイン12、カリクレイン14、カリクレイン15、カリクレインL1、カリクレインL2、カリクレインL3、カリクレインL4、KC、KDR、ケラチノサイト増殖因子(KGF)、ラミニン5、LAMPLAP、LAP(TGF-1)、潜在的TGF-1、潜在的TGF-1 bp1、LBP、LDGF、LECT2、レフティルイス−Y抗原、ルイス−Y関連抗原、LFA-1、LFA-3、Lfo、LIF、LIGHT、リポタンパク質、LIX、LKN、Lptn、L-セレクチン、LT-a、LT-b、LTB4、LTBP-1、表面、黄体形成ホルモンリンホトキシンベータ受容体、Mac-1、MAdCAM、MAG、MAP2、MARC、MCAM、MCAM、MCK-2、MCP、M-CSF、MDC、Mer、METALLOPROTEASES、MGDF受容体、MGMT、MHC(HLA-DR)、MIFMIG、MIP、MIP-1-アルファ、MK、MMAC1、MMP、MMP-1、MMP-10、MMP-11、MMP-12、MMP-13、MMP-14、MMP-15、MMP-2、MMP-24、MMP-3、MMP-7、MMP-8、MMP-9、MPIF、Mpo、MSK、MSP、ムチン(Muc1)、MUC18、ミュラー管抑制物質、Mug、MuSK、NAIP、NAP、NCAD、N-Cアドヘリン、NCA 90、NCAM、NCAM、ネプリライシンニューロトロフィン-3、-4、または-6、ニュールツリン神経成長因子(NGF)、NGFR、NGF−ベータ、nNOS、NO、NOS、Npn、NRG-3、NT、NTN、OB、OGG1、OPG、OPN、OSM、OX40L、OX40R、p150、p95、PADPr、副甲状腺ホルモン、PARC、PARP、PBR、PBSF、PCAD、P-カドヘリン、PCNA、PDGF、PDGF、PDK-1、PECAM、PEM、PF4、PGE、PGF、PGI2、PGJ2、PIN、PLA2、胎盤アルカリホスファターゼ(PLAP)、PlGF、PLP、PP14、プロインスリン、プロレラキシンプロテインC、PS、PSA、PSCA前立腺特異的膜抗原(PSMA)、PTEN、PTHrp、Ptk、PTN、R51、RANK、RANKL、RANTES、RANTES、レラキシンA鎖、レラキシンB鎖レニン呼吸器多核体ウイルス(RSV)F、RSV Fgp、Ret、リウマイド因子、RLIP76、RPA2、RSK、S100、SCF/KL、SDF-1、SERINE、血清アルブミン、sFRP-3、Shh、SIGIRR、SK-1、SLAM、SLPI、SMAC、SMDF、SMOH、SOD、SPARC、Stat、STEAP、STEAP-II、TACE、TACI、TAG-72(腫瘍関連糖タンパク質−72)、TARC、TCA-3、T細胞受容体(例えば、T細胞受容体アルファ/ベータ)、TdT、TECK、TEM1、TEM5、TEM7、TEM8、TERT、睾丸PLAP様アルカリホスファターゼ、TfR、TGF、TGF-アルファ、TGF-ベータ、TGF-ベータ Pan Specific、TGF-ベータRI(ALK-5)、TGF-ベータRII、TGF-ベータRIIb、TGF-ベータRIII、TGF-ベータ1、TGF-ベータ2、TGF-ベータ3、TGF-ベータ4、TGF-ベータ5、トロンビン胸腺Ck-1、甲状腺刺激ホルモン、Tie、TIMP、TIQ組織因子、TMEFF2、Tmpo、TMPRSS2、TNF、TNF-アルファ、TNF-アルファベータ、TNF-ベータ2、TNFc、TNF-RI、TNF-RII、TNFRSF10A(TRAIL R1 Apo-2、DR4)、TNFRSF10B(TRAIL R2 DR5、KILLER、TRICK-2A、TRICK-B)、TNFRSF10C(TRAIL R3 DcR1、LIT、TRID)、TNFRSF10D(TRAIL R4 DcR2、TRUNDD)、TNFRSF11A(RANK ODF R、TRANCE R)、TNFRSF11B(OPG OCIF、TR1)、TNFRSF12(TWEAK R FN14)、TNFRSF13B(TACI)、TNFRSF13C(BAFF R)、TNFRSF14(HVEM ATAR、HveA、LIGHT R、TR2)、TNFRSF16(NGFR p75NTR)、TNFRSF17(BCMA)、TNFRSF18(GITR AITR)、TNFRSF19(TROY TAJ、TRADE)、TNFRSF19L(RELT)、TNFRSF1A(TNF RI CD120a、p55-60)、TNFRSF1B(TNF RII CD120b、p75-80)、TNFRSF26(TNFRH3)、TNFRSF3(LTbR TNF RIII、TNFC R)、TNFRSF4(OX40 ACT35、TXGP1 R)、TNFRSF5(CD40 p50)、TNFRSF6(Fas Apo-1、APT1、CD95)、TNFRSF6B(DcR3 M68、TR6)、TNFRSF7(CD27)、TNFRSF8(CD30)、TNFRSF9(4-1BB CD137、ILA)、TNFRSF21(DR6)、TNFRSF22(DcTRAIL R2 TNFRH2)、TNFRST23(DcTRAIL R1 TNFRH1)、TNFRSF25(DR3 Apo-3、LARD、TR-3、TRAMP、WSL-1)、TNFSF10(TRAIL Apo-2リガンド、TL2)、TNFSF11(TRANCE/RANKリガンド ODF、OPGリガンド)、TNFSF12(TWEAK Apo-3リガンド、DR3リガンド)、TNFSF13(APRIL TALL2)、TNFSF13B(BAFF BLYS、TALL1、THANK、TNFSF20)、TNFSF14(LIGHT HVEMリガンド、LTg)、TNFSF15(TL1A/VEGI)、TNFSF18(GITRリガンド AITRリガンド、TL6)、TNFSF1A(TNF-aコネクチン(Conectin)、DIF、TNFSF2)、TNFSF1B(TNF-b LTa、TNFSF1)、TNFSF3(LTb TNFC、p33)、TNFSF4(OX40リガンド gp34、TXGP1)、TNFSF5(CD40リガンド CD154、gp39、HIGM1、IMD3、TRAP)、TNFSF6(Fasリガンド Apo-1リガンド、APT1リガンド)、TNFSF7(CD27リガンド CD70)、TNFSF8(CD30リガンド CD153)、TNFSF9(4-1BBリガンド CD137リガンド)、TP-1、t-PA、Tpo、TRAIL、TRAIL R、TRAIL-R1、TRAIL-R2、TRANCE、トランスフェリン受容体、TRF、Trk、TROP-2、TSG、TSLP、腫瘍関連抗原CA125、腫瘍関連抗原発現ルイスY関連炭水化物、TWEAK、TXB2、Ung、uPAR、uPAR-1、ウロキナーゼVCAM、VCAM-1、VECAD、VE-Cadherin、VE-cadherin-2、VEFGR-1(flt-1)、VEGF、VEGFR、VEGFR-3(flt-4)、VEGI、VIM、ウイルス抗原、VLA、VLA-1、VLA-4、VNRインテグリン、フォン・ヴィレブランド因子、WIF-1、WNT1、WNT2、WNT2B/13、WNT3、WNT3A、WNT4、WNT5A、WNT5B、WNT6、WNT7A、WNT7B、WNT8A、WNT8B、WNT9A、WNT9A、WNT9B、WNT10A、WNT10B、WNT11、WNT16、XCL1、XCL2、XCR1、XCR1、XEDAR、XIAP、XPD、HMGB1、IgA、Aβ、CD81, CD97, CD98, DDR1, DKK1, EREG、Hsp90, IL-17/IL-17R、IL-20/IL-20R、酸化LDL,PCSK9, prekallikrein , RON, TMEM16F、SOD1, Chromogranin A, Chromogranin B、tau, VAP1、高分子キニノーゲン、IL-31、IL-31R、Nav1.1、Nav1.2、Nav1.3、Nav1.4、Nav1.5、Nav1.6、Nav1.7、Nav1.8、Nav1.9、EPCR、C1, C1q, C1r, C1s, C2, C2a, C2b, C3, C3a, C3b, C4, C4a, C4b, C5, C5a, C5b, C6, C7, C8, C9, factor B, factor D, factor H, properdin、sclerostin、fibrinogen, fibrin, prothrombin, thrombin, 組織因子, factor V, factor Va, factor VII, factor VIIa, factor VIII, factor VIIIa, factor IX, factor IXa, factor X, factor Xa, factor XI, factor XIa, factor XII, factor XIIa, factor XIII, factor XIIIa, TFPI, antithrombin III, EPCR,トロンボモデュリン、TAPI, tPA, plasminogen, plasmin, PAI-1, PAI-2、GPC3、Syndecan-1、Syndecan-2、Syndecan-3、Syndecan-4、LPA、S1P、Acetylcholine receptor、AdipoR1、AdipoR2、ADPribosyl cyclase-1、alpha-4/beta-7 integrin、alpha-5/beta-1 integrin、alpha-v/beta-6 integrin、alphavbeta1 integrin、Angiopoietin ligand-2、Angptl2、Anthrax、Cadh
erin、Carbonic anhydrase-IX、CD105、CD155、CD158a、CD37、CD49b、CD51、CD70、CD72、Claudin 18、Clostridium difficile toxin、CS1、Delta-like protein ligand 4、DHICA oxidase、Dickkopf-1 ligand、Dipeptidyl peptidase IV、EPOR、F protein of RSV、Factor Ia、FasL、Folate receptor alpha、Glucagon receptor、Glucagon-like peptide 1 receptor、Glutamate carboxypeptidase II、GMCSFR、Hepatitis C virus E2 glycoprotein、Hepcidin、IL-17 receptor、IL-22 receptor、IL-23 receptor、IL-3 receptor、Kit tyrosine kinase、Leucine Rich Alpha-2-Glycoprotein 1 (LRG1)、Lysosphingolipid receptor、Membrane glycoprotein OX2、Mesothelin、MET、MICA、MUC-16、Myelin associated glycoprotein、Neuropilin-1、Neuropilin-2、Nogo receptor、PLXNA1、PLXNA2、PLXNA3、PLXNA4A、PLXNA4B 、PLXNB1、PLXNB2、PLXNB3 、PLXNC1 、PLXND1 、Programmed cell death ligand 1、Proprotein convertase PC9、P-selectin glycoprotein ligand-1、RAGE、Reticulon 4、RF、RON-8、SEMA3A、SEMA3B、SEMA3C、SEMA3D、SEMA3E、SEMA3F、SEMA3G、SEMA4A、SEMA4B、SEMA4C、SEMA4D、SEMA4F、SEMA4G、SEMA5A、SEMA5B、SEMA6A、SEMA6B、SEMA6C、SEMA6D、SEMA7A、Shiga like toxin II、Sphingosine-1-phosphate receptor-1、ST2、Staphylococcal lipoteichoic acid、Tenascin、TG2、Thymic stromal lymphoprotein receptor、TNF superfamily receptor 12A、Transmembrane glycoprotein NMB、TREM-1、TREM-2、Trophoblast glycoprotein、TSHreceptor、TTR、Tubulin、ULBP2ならびにホルモンおよび成長因子のための受容体のうち生体の体液中で細胞に係留されずに可溶型で存在する分子が例示され得る。受容体の中には、例えば、細胞表面に発現された受容体等がプロテアーゼによる消化等を含む何らかのメカニズムによって生体の体液中に存在する可溶型抗原も本発明における可溶型抗原として好適に挙げられる。そのような分子の例として本明細書に記載されている可溶型IL-6R分子(J. Immunol. (1994) 152, 4958-4968)やCD20、CD52(Br. J. Haematol. (2003) 123 (5), 850-857)等が例示され得る。また、生体内で固有に発現する分子のみならず、ウイルス等の感染性生物により又はこれらの生物上に提示される抗原や、プリオン等の感染性分子であって生体の体液中に存在する可溶型抗原も、本発明の可溶型抗原として例示され得る。体液としては、血液、血漿、血清、尿、リンパ液だ液涙液等の体液等が好適に挙げられる。

0027

エピトープ
抗原中に存在する抗原決定基を意味するエピトープは、本明細書において開示される抗原結合分子中の抗原結合ドメインが結合する抗原上の部位を意味する。よって、例えば、エピトープは、その構造によって定義され得る。また、当該エピトープを認識する抗原結合分子中の抗原に対する結合活性によっても当該エピトープが定義され得る。抗原がペプチド又はポリペプチドである場合には、エピトープを構成するアミノ酸残基によってエピトープを特定することも可能である。また、エピトープが糖鎖である場合には、特定の糖鎖構造によってエピトープを特定することも可能である。

0028

直線状エピトープは、アミノ酸一次配列が認識されたエピトープを含むエピトープである。直線状エピトープは、典型的には、少なくとも3つ、および最も普通には少なくとも5つ、例えば約8ないし約10個、6ないし20個のアミノ酸が固有の配列において含まれる。

0029

立体構造エピトープは、直線状エピトープとは対照的に、エピトープを含むアミノ酸の一次配列が、認識されたエピトープの単一の規定成分ではないエピトープ(例えば、アミノ酸の一次配列が、必ずしもエピトープを規定する抗体により認識されないエピトープ)である。立体構造エピトープは、直線状エピトープに対して増大した数のアミノ酸を包含するかもしれない。立体構造エピトープの認識に関して、抗体は、ペプチドまたはタンパク質の三次元構造を認識する。例えば、タンパク質分子が折り畳まれて三次元構造を形成する場合には、立体構造エピトープを形成するあるアミノ酸および/またはポリペプチド主鎖は、並列となり、抗体がエピトープを認識するのを可能にする。エピトープの立体構造を決定する方法には、例えばX線結晶学、二次元核磁気共鳴分光学並びに部位特異的なスピン標識および電磁常磁性共鳴分光学が含まれるが、これらには限定されない。例えば、Epitope MappingProtocols in Methodsin Molecular Biology (1996)、第66巻、Morris(編)を参照。

0030

結合活性
下記にIL-6Rに対する抗原結合ドメインを含む被験抗原結合分子によるエピトープに対する結合の確認方法が例示されるが、IL-6R以外の抗原に対する抗原結合ドメインを含む被験抗原結合分子によるエピトープに対する結合の確認方法も下記の例示に準じて適宜実施され得る。

0031

例えば、IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子が、IL-6R分子中に存在する線状エピトープを認識することは、たとえば次のようにして確認することができる。上記の目的のためにIL-6Rの細胞外ドメインを構成するアミノ酸配列からなる線状のペプチドが合成される。当該ペプチドは、化学的に合成され得る。あるいは、IL-6RのcDNA中の、細胞外ドメインに相当するアミノ酸配列をコードする領域を利用して、遺伝子工学的手法により得られる。次に、細胞外ドメインを構成するアミノ酸配列からなる線状ペプチドと、IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子との結合活性が評価される。たとえば、固定化された線状ペプチドを抗原とするELISAによって、当該ペプチドに対する当該抗原結合分子の結合活性が評価され得る。あるいは、IL-6R発現細胞に対する当該抗原結合分子の結合における、線状ペプチドによる阻害のレベルに基づいて、線状ペプチドに対する結合活性が明らかにされ得る。これらの試験によって、線状ペプチドに対する当該抗原結合分子の結合活性が明らかにされ得る。

0032

また、IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子が立体構造エピトープを認識することは、次のようにして確認され得る。上記の目的のために、IL-6Rを発現する細胞が調製される。IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子がIL-6R発現細胞に接触した際に当該細胞に強く結合する一方で、当該抗原結合分子が固定化されたIL-6Rの細胞外ドメインを構成するアミノ酸配列からなる線状ペプチドに対して実質的に結合しないとき等が挙げられる。ここで、実質的に結合しないとは、ヒトIL-6R発現細胞に対する結合活性の80%以下、通常50%以下、好ましくは30%以下、特に好ましくは15%以下の結合活性をいう。

0033

IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子のIL-6R発現細胞に対する結合活性を測定する方法としては、例えば、Antibodies A Laboratory Manual記載の方法(Ed Harlow, David Lane, Cold Spring Harbor Laboratory (1988) 359-420)が挙げられる。即ちIL-6R発現細胞を抗原とするELISAやFACS(fluorescence activated cell sorting)の原理によって評価され得る。

0034

ELISAフォーマットにおいて、IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子のIL-6R発現細胞に対する結合活性は、酵素反応によって生成するシグナルレベルを比較することによって定量的に評価される。すなわち、IL-6R発現細胞を固定化したELISAプレートに被験抗原結合分子を加え、細胞に結合した被験抗原結合分子が、被験抗原結合分子を認識する酵素標識抗体を利用して検出される。あるいはFACSにおいては、被験抗原結合分子の希釈系列を作成し、IL-6R発現細胞に対する抗体結合力価(titer)を決定することにより、IL-6R発現細胞に対する被験抗原結合分子の結合活性が比較され得る。

0035

緩衝液等に懸濁した細胞表面上に発現している抗原に対する被験抗原結合分子の結合は、フローサイトメーターによって検出することができる。フローサイトメーターとしては、例えば、次のような装置が知られている。
FACSCantoTM II
FACSAriaTM
FACSArrayTM
FACSVantageTM SE
FACSCaliburTM (いずれもBD Biosciences社の商品名)
EPICSALTRA HyPerSort
Cytomics FC 500
EPICS XL-MCLADCEPICS XL ADC
Cell Lab Quanta / Cell Lab Quanta SC(いずれもBeckman Coulter社の商品名)

0036

例えば、IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子の抗原に対する結合活性の好適な測定方法の一例として、次の方法が挙げられる。まず、IL-6Rを発現する細胞と反応させた被験抗原結合分子を認識するFITC標識した二次抗体で染色する。被験抗原結合分子を適宜好適な緩衝液によって希釈することによって、当該抗原結合分子が所望の濃度に調製して用いられる。例えば、10μg/mlから10 ng/mlまでの間のいずれかの濃度で使用され得る。次に、FACSCalibur(BD社)により蛍光強度細胞数が測定される。当該細胞に対する抗体の結合量は、CELLQUEST Software(BD社)を用いて解析することにより得られた蛍光強度、すなわちGeometric Meanの値に反映される。すなわち、当該Geometric Meanの値を得ることにより、被験抗原結合分子の結合量によって表される被験抗原結合分子の結合活性が測定され得る。

0037

IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子が、ある抗原結合分子とエピトープを共有することは、両者の同じエピトープに対する競合によって確認され得る。抗原結合分子間の競合は、交叉ブロッキングアッセイなどによって検出される。例えば競合ELISAアッセイは、好ましい交叉ブロッキングアッセイである。

0038

具体的には、交叉ブロッキングアッセイにおいては、マイクロタイタープレートウェル上にコートしたIL-6Rタンパク質が、候補となる競合抗原結合分子の存在下、または非存在下でプレインキュベートされた後に、被験抗原結合分子が添加される。ウェル中のIL-6Rタンパク質に結合した被験抗原結合分子の量は、同じエピトープに対する結合に対して競合する候補となる競合抗原結合分子の結合能間接的に相関している。すなわち同一エピトープに対する競合抗原結合分子の親和性が大きくなればなる程、被験抗原結合分子のIL-6Rタンパク質をコートしたウェルへの結合活性は低下する。

0039

IL-6Rタンパク質を介してウェルに結合した被験抗原結合分子の量は、予め抗原結合分子を標識しておくことによって、容易に測定され得る。たとえば、ビオチン標識された抗原結合分子は、アビジンペルオキシダーゼコンジュゲートと適切な基質を使用することにより測定される。ペルオキシダーゼなどの酵素標識を利用した交叉ブロッキングアッセイは、特に競合ELISAアッセイといわれる。抗原結合分子は、検出あるいは測定が可能な他の標識物質で標識され得る。具体的には、放射標識あるいは蛍光標識などが公知である。

0040

候補の競合抗原結合分子の非存在下で実施されるコントロール試験において得られる結合活性と比較して、競合抗原結合分子が、IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子の結合を少なくとも20%、好ましくは少なくとも20-50%、さらに好ましくは少なくとも50%ブロックできるならば、当該被験抗原結合分子は競合抗原結合分子と実質的に同じエピトープに結合するか、又は同じエピトープに対する結合に対して競合する抗原結合分子である。

0041

IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子が結合するエピトープの構造が同定されている場合には、被験抗原結合分子と対照抗原結合分子とがエピトープを共有することは、当該エピトープを構成するペプチドにアミノ酸変異を導入したペプチドに対する両者の抗原結合分子の結合活性を比較することによって評価され得る。

0042

こうした結合活性を測定する方法としては、例えば、前記のELISAフォーマットにおいて変異を導入した線状のペプチドに対する被験抗原結合分子及び対照抗原結合分子の結合活性を比較することによって測定され得る。ELISA以外の方法としては、カラムに結合した当該変異ペプチドに対する結合活性を、当該カラムに被検抗原結合分子と対照抗原結合分子を流下させた後に溶出液中に溶出される抗原結合分子を定量することによっても測定され得る。変異ペプチドを例えばGSTとの融合ペプチドとしてカラムに吸着させる方法は公知である。

0043

また、同定されたエピトープが立体エピトープの場合には、被験抗原結合分子と対照抗原結合分子とがエピトープを共有することは、次の方法で評価され得る。まず、IL-6Rを発現する細胞とエピトープに変異が導入されたIL-6Rを発現する細胞が調製される。これらの細胞がPBS等の適切な緩衝液に懸濁された細胞懸濁液に対して被験抗原結合分子と対照抗原結合分子が添加される。次いで、適宜緩衝液で洗浄された細胞懸濁液に対して、被験抗原結合分子と対照抗原結合分子を認識することができるFITC標識された抗体が添加される。標識抗体によって染色された細胞の蛍光強度と細胞数がFACSCalibur(BD社)によって測定される。被験抗原結合分子と対照抗原結合分子の濃度は好適な緩衝液によって適宜希釈することによって所望の濃度に調製して用いられる。例えば、10μg/mlから10 ng/mlまでの間のいずれかの濃度で使用される。当該細胞に対する標識抗体の結合量は、CELLQUEST Software(BD社)を用いて解析することにより得られた蛍光強度、すなわちGeometric Meanの値に反映される。すなわち、当該Geometric Meanの値を得ることにより、標識抗体の結合量によって表される被験抗原結合分子と対照抗原結合分子の結合活性を測定することができる。

0044

本方法において、例えば「変異IL-6R発現細胞に実質的に結合しない」ことは、以下の方法によって判断することができる。まず、変異IL-6Rを発現する細胞に対して結合した被験抗原結合分子と対照抗原結合分子が、標識抗体で染色される。次いで細胞の蛍光強度が検出される。蛍光検出フローサイトメトリーとしてFACSCaliburを用いた場合、得られた蛍光強度はCELLQUEST Softwareを用いて解析され得る。抗原結合分子の存在下および非存在下でのGeometric Meanの値から、この比較値(ΔGeo-Mean)を下記の計算式に基づいて算出することにより、抗原結合分子の結合による蛍光強度の増加割合を求めることができる。
ΔGeo-Mean=Geo-Mean(抗原結合分子存在下)/Geo-Mean(抗原結合分子非存在下)

0045

解析によって得られる被験抗原結合分子の変異IL-6R発現細胞に対する結合量が反映されたGeometric Mean比較値(変異IL-6R分子ΔGeo-Mean値)を、被験抗原結合分子のIL-6R発現細胞に対する結合量が反映されたΔGeo-Mean比較値と比較する。この場合において、変異IL-6R発現細胞及びIL-6R発現細胞に対するΔGeo-Mean比較値を求める際に使用する被験抗原結合分子の濃度は互いに同一又は実質的に同一の濃度で調製されることが特に好ましい。予めIL-6R中のエピトープを認識していることが確認された抗原結合分子が、対照抗原結合分子として利用される。

0046

被験抗原結合分子の変異IL-6R発現細胞に対するΔGeo-Mean比較値が、被験抗原結合分子のIL-6R発現細胞に対するΔGeo-Mean比較値の、少なくとも80%、好ましくは50%、更に好ましくは30%、特に好ましくは15%より小さければ、「変異IL-6R発現細胞に実質的に結合しない」ものとする。Geo-Mean値(Geometric Mean)を求める計算式は、CELLQUEST Software User's Guide(BD biosciences社)に記載されている。比較値を比較することによってそれが実質的に同視し得る程度であれば、被験抗原結合分子と対照抗原結合分子のエピトープは同一であると評価され得る。

0047

抗原結合ドメイン
本明細書において、「抗原結合ドメイン」は目的とする抗原に結合するかぎりどのような構造のドメインも使用され得る。そのようなドメインの例として、例えば、抗体の重鎖および軽鎖の可変領域、生体内に存在する細胞膜タンパクであるAvimerに含まれる35アミノ酸程度のAドメインと呼ばれるモジュール(WO2004/044011、WO2005/040229)、細胞膜に発現する糖たんぱく質であるfibronectin中のタンパク質に結合するドメインである10Fn3ドメインを含むAdnectin(WO2002/032925)、ProteinAの58アミノ酸からなる3つのヘリックスの束(bundle)を構成するIgG結合ドメインをscaffoldとするAffibody(WO1995/001937)、33アミノ酸残基を含むターンと2つの逆並行ヘリックスおよびループのサブユニットが繰り返し積み重なった構造を有するアンキリン反復(ankyrin repeat:AR)の分子表面に露出する領域であるDARPins(Designed Ankyrin Repeat proteins)(WO2002/020565)、好中球ゲラチナーゼ結合リポカリン(neutrophil gelatinase-associated lipocalin(NGAL))等のリポカリン分子において高度に保存された8つの逆並行ストランドが中央方向にねじれバレル構造の片側を支える4つのループ領域であるAnticalin等(WO2003/029462)、ヤツメウナギヌタウナギなど無顎類の獲得免疫システムとしてイムノグロブリンの構造を有さない可変性リンパ球受容体(variable lymphocyte receptor(VLR))のロイシン残基に富んだリピート(leucine-rich-repeat(LRR))モジュールが繰り返し積み重なったてい形の構造の内部の並行型シート構造のくぼんだ領域(WO2008/016854)が好適に挙げられる。本発明の抗原結合ドメインの好適な例として、抗体の重鎖および軽鎖の可変領域を含む抗原結合ドメインが挙げられる。こうした抗原結合ドメインの例としては、「scFv(single chain Fv)」、「単鎖抗体(single chain antibody)」、「Fv」、「scFv2(single chain Fv 2)」、「Fab」または「F(ab')2」等が好適に挙げられる。

0048

本発明の抗原結合分子における抗原結合ドメインは、同一のエピトープに結合することができる。ここで同一のエピトープは、例えば、配列番号:1に記載のアミノ酸配列からなるタンパク質中に存在することができる。また、配列番号:1に記載のアミノ酸配列の20番目から365番目のアミノ酸からなるタンパク質中に存在することができる。あるいは、本発明の抗原結合分子における抗原結合ドメインは、互いに異なるエピトープに結合することができる。ここで異なるエピトープは、例えば、配列番号:1に記載のアミノ酸配列からなるタンパク質中に存在することができる。また、配列番号:1に記載のアミノ酸配列の20番目から365番目のアミノ酸からなるタンパク質中に存在することができる。

0049

特異的
特異的とは、特異的に結合する分子の一方の分子がその一または複数の結合する相手方の分子以外の分子に対しては何ら有意な結合を示さない状態をいう。また、抗原結合ドメインが、ある抗原中に含まれる複数のエピトープのうち特定のエピトープに対して特異的である場合にも用いられる。また、抗原結合ドメインが結合するエピトープが複数の異なる抗原に含まれる場合には、当該抗原結合ドメインを有する抗原結合分子は当該エピトープを含む様々な抗原と結合することができる。

0050

抗体
本明細書において、抗体とは、天然のものであるかまたは部分的もしくは完全合成により製造された免疫グロブリンをいう。抗体はそれが天然に存在する血漿や血清等の天然資源や抗体を産生するハイブリドーマ細胞培養上清から単離され得るし、または遺伝子組換え等の手法を用いることによって部分的にもしくは完全に合成され得る。抗体の例としては免疫グロブリンのアイソタイプおよびそれらのアイソタイプのサブクラスが好適に挙げられる。ヒトの免疫グロブリンとして、IgG1、IgG2、IgG3、IgG4、IgA1、IgA2、IgD、IgE、IgMの9種類のクラス(アイソタイプ)が知られている。本発明の抗体には、これらのアイソタイプのうちIgG1、IgG2、IgG3、IgG4が含まれ得る。IgGの定常領域にはそれから自然に生じる変異体等も含まれる。ヒトIgG1、ヒトIgG2、ヒトIgG3、ヒトIgG4抗体の定常領域としては、遺伝子多型による複数のアロタイプ配列がSequences of proteins of immunological interest, NIH Publication No.91-3242に記載されているが、本発明においてはそのいずれであっても良い。特にヒトIgG1の配列としては、EUナンバリング356−358番目のアミノ酸配列がDELであってもEEMであってもよい。

0051

所望の結合活性を有する抗体を作製する方法は当業者において公知である。以下に、IL-6Rに結合する抗体(抗IL-6R抗体)を作製する方法が例示される。IL-6R以外の抗原に結合する抗体も下記の例示に準じて適宜作製され得る。

0052

抗IL-6R抗体は、公知の手段を用いてポリクローナルまたはモノクローナル抗体として取得され得る。抗IL-6R抗体としては、哺乳動物由来のモノクローナル抗体が好適に作製され得る。哺乳動物由来のモノクローナル抗体には、ハイブリドーマにより産生されるもの、および遺伝子工学的手法により抗体遺伝子を含む発現ベクター形質転換した宿主細胞によって産生されるもの等が含まれる。なお本願発明のモノクローナル抗体には、「ヒト化抗体」や「キメラ抗体」が含まれる。

0053

モノクローナル抗体産生ハイブリドーマは、公知技術を使用することによって、例えば以下のように作製され得る。すなわち、IL-6Rタンパク質を感作抗原として使用して、通常の免疫方法にしたがって哺乳動物が免疫される。得られる免疫細胞が通常の細胞融合法によって公知の親細胞と融合される。次に、通常のスクリーニング法によって、モノクローナル抗体産生細胞スクリーニングすることによって抗IL-6R抗体を産生するハイブリドーマが選択され得る。

0054

具体的には、モノクローナル抗体の作製は例えば以下に示すように行われる。まず、配列番号:2にそのヌクレオチド配列が開示されたIL-6R遺伝子を発現することによって、抗体取得の感作抗原として使用される配列番号:1で表されるIL-6Rタンパク質が取得され得る。すなわち、IL-6Rをコードする遺伝子配列を公知の発現ベクターに挿入することによって適当な宿主細胞が形質転換される。当該宿主細胞中または培養上清中から所望のヒトIL-6Rタンパク質が公知の方法で精製される。培養上清中から可溶型のIL-6Rを取得するためには、例えば、Mullbergら(J. Immunol. (1994) 152 (10), 4958-4968)によって記載されているような可溶型IL-6Rである、配列番号:1で表されるIL-6Rポリペプチド配列のうち、1から357番目のアミノ酸からなるタンパク質が、配列番号:1で表されるIL-6Rタンパク質の代わりに発現される。また、精製した天然のIL-6Rタンパク質もまた同様に感作抗原として使用され得る。

0055

哺乳動物に対する免疫に使用する感作抗原として当該精製IL-6Rタンパク質が使用できる。IL-6Rの部分ペプチドもまた感作抗原として使用できる。この際、当該部分ペプチドはヒトIL-6Rのアミノ酸配列より化学合成によっても取得され得る。また、IL-6R遺伝子の一部を発現ベクターに組込んで発現させることによっても取得され得る。さらにはタンパク質分解酵素を用いてIL-6Rタンパク質を分解することによっても取得され得るが、部分ペプチドとして用いるIL-6Rペプチドの領域および大きさは特に特別の態様に限定されない。好ましい領域は配列番号:1のアミノ酸配列において20-357番目のアミノ酸に相当するアミノ酸配列から任意の配列が選択され得る。感作抗原とするペプチドを構成するアミノ酸の数は少なくとも5以上、例えば6以上、或いは7以上であることが好ましい。より具体的には8〜50、好ましくは10〜30残基のペプチドが感作抗原として使用され得る。

0056

また、IL-6Rタンパク質の所望の部分ポリペプチドやペプチドを異なるポリペプチドと融合した融合タンパク質が感作抗原として利用され得る。感作抗原として使用される融合タンパク質を製造するために、例えば、抗体のFc断片ペプチドタグなどが好適に利用され得る。融合タンパク質を発現するベクターは、所望の二種類又はそれ以上のポリペプチド断片をコードする遺伝子がインフレームで融合され、当該融合遺伝子が前記のように発現ベクターに挿入されることにより作製され得る。融合タンパク質の作製方法はMolecular Cloning 2nd ed. (Sambrook,J et al., Molecular Cloning 2nd ed., 9.47-9.58(1989)Cold Spring Harbor Lab. press)に記載されている。感作抗原として用いられるIL-6Rの取得方法及びそれを用いた免疫方法は、WO2003/000883、WO2004/022754、WO2006/006693等にも具体的に記載されている。

0057

当該感作抗原で免疫される哺乳動物としては、特定の動物に限定されるものではないが、細胞融合に使用する親細胞との適合性を考慮して選択するのが好ましい。一般的にはげ歯類の動物、例えば、マウス、ラットハムスター、あるいはウサギサル等が好適に使用される。

0058

公知の方法にしたがって上記の動物が感作抗原により免疫される。例えば、一般的な方法として、感作抗原が哺乳動物の腹腔内または皮下注射によって投与されることにより免疫が実施される。具体的には、PBS(Phosphate-Buffered Saline)や生理食塩水等で適当な希釈倍率で希釈された感作抗原が、所望により通常のアジュバント、例えばフロイント完全アジュバントと混合され、乳化された後に、該感作抗原が哺乳動物に4から21日毎に数回投与される。また、感作抗原の免疫時には適当な担体が使用され得る。特に分子量の小さい部分ペプチドが感作抗原として用いられる場合には、アルブミンキーホールリンペットヘモシアニン等の担体タンパク質と結合した該感作抗原ペプチドを免疫することが望ましい場合もある。

0059

また、所望の抗体を産生するハイブリドーマは、DNA免疫を使用し、以下のようにしても作製され得る。DNA免疫とは、免疫動物中で抗原タンパク質をコードする遺伝子が発現され得るような態様で構築されたベクターDNAが投与された当該免疫動物中で、感作抗原が当該免疫動物の生体内で発現されることによって、免疫刺激が与えられる免疫方法である。蛋白質抗原が免疫動物に投与される一般的な免疫方法と比べて、DNA免疫には、次のような優位性が期待される。
−IL-6Rのような膜蛋白質の構造を維持して免疫刺激が与えられ得る
免疫抗原を精製する必要が無い

0060

DNA免疫によって本発明のモノクローナル抗体を得るために、まず、IL-6Rタンパク質を発現するDNAが免疫動物に投与される。IL-6RをコードするDNAは、PCRなどの公知の方法によって合成され得る。得られたDNAが適当な発現ベクターに挿入され、免疫動物に投与される。発現ベクターとしては、たとえばpcDNA3.1などの市販の発現ベクターが好適に利用され得る。ベクターを生体に投与する方法として、一般的に用いられている方法が利用され得る。たとえば、発現ベクターが吸着した金粒子が、gene gunで免疫動物個体の細胞内に導入されることによってDNA免疫が行われる。さらに、IL-6Rを認識する抗体の作製は国際公開WO2003/104453に記載された方法を用いても作製され得る。

0061

このように哺乳動物が免疫され、血清中におけるIL-6Rに結合する抗体力価の上昇が確認された後に、哺乳動物から免疫細胞が採取され、細胞融合に供される。好ましい免疫細胞としては、特に脾細胞が使用され得る。

0062

前記免疫細胞と融合される細胞として、哺乳動物のミエローマ細胞が用いられる。ミエローマ細胞は、スクリーニングのための適当な選択マーカーを備えていることが好ましい。選択マーカーとは、特定の培養条件の下で生存できる(あるいはできない)形質を指す。選択マーカーには、ヒポキサンチングアニンホスホリボシルトランスフェラーゼ欠損(以下HGPRT欠損と省略する)、あるいはチミジンキナーゼ欠損(以下TK欠損と省略する)などが公知である。HGPRTやTKの欠損を有する細胞は、ヒポキサンチン−アミノプテリンチミジン感受性(以下HAT感受性と省略する)を有する。HAT感受性の細胞はHAT選択培地中でDNA合成を行うことができず死滅するが、正常な細胞と融合すると正常細胞のサルベージ回路を利用してDNAの合成を継続することができるためHAT選択培地中でも増殖するようになる。

0063

HGPRT欠損やTK欠損の細胞は、それぞれ6チオグアニン、8アザグアニン(以下8AGと省略する)、あるいは5'ブロモデオキシウリジンを含む培地で選択され得る。これらのピリミジンアナログをDNA中に取り込む正常な細胞は死滅する。他方、これらのピリミジンアナログを取り込めないこれらの酵素を欠損した細胞は、選択培地の中で生存することができる。この他G418耐性と呼ばれる選択マーカーは、ネオマイシン耐性遺伝子によって2-デオキシストレプタミン系抗生物質ゲンタマイシン類似体)に対する耐性を与える。細胞融合に好適な種々のミエローマ細胞が公知である。

0064

このようなミエローマ細胞として、例えば、P3(P3x63Ag8.653)(J. Immunol.(1979)123 (4), 1548-1550)、P3x63Ag8U.1(Current Topics in Microbiology and Immunology(1978)81, 1-7)、NS-1(C. Eur. J. Immunol.(1976)6 (7), 511-519)、MPC-11(Cell(1976)8 (3), 405-415)、SP2/0(Nature(1978)276 (5685), 269-270)、FO(J. Immunol. Methods(1980)35 (1-2), 1-21)、S194/5.XX0.BU.1(J. Exp. Med.(1978)148 (1), 313-323)、R210(Nature(1979)277 (5692), 131-133)等が好適に使用され得る。

0065

基本的には公知の方法、たとえば、ケーラーミルステインらの方法(MethodsEnzymol.(1981)73, 3-46)等に準じて、前記免疫細胞とミエローマ細胞との細胞融合が行われる。

0066

より具体的には、例えば細胞融合促進剤の存在下で通常の栄養培養液中で、前記細胞融合が実施され得る。融合促進剤としては、例えばポリエチレングリコール(PEG)、センダイウイルスHVJ)等が使用され、更に融合効率を高めるために所望によりジメチルスルホキシド等の補助剤が添加されて使用される。

0067

免疫細胞とミエローマ細胞との使用割合は任意に設定され得る。例えば、ミエローマ細胞に対して免疫細胞を1から10倍とするのが好ましい。前記細胞融合に用いる培養液としては、例えば、前記ミエローマ細胞株の増殖に好適なRPMI1640培養液、MEM培養液、その他、この種の細胞培養に用いられる通常の培養液が使用され、さらに、牛胎児血清FCS)等の血清補液が好適に添加され得る。

0068

細胞融合は、前記免疫細胞とミエローマ細胞との所定量を前記培養液中でよく混合し、予め37℃程度に加温されたPEG溶液(例えば平均分子量1000から6000程度)が通常30から60%(w/v)の濃度で添加される。混合液が緩やかに混合されることによって所望の融合細胞(ハイブリドーマ)が形成される。次いで、上記に挙げた適当な培養液が逐次添加され、遠心して上清を除去する操作を繰り返すことによりハイブリドーマの生育に好ましくない細胞融合剤等が除去され得る。

0069

このようにして得られたハイブリドーマは、通常の選択培養液、例えばHAT培養液(ヒポキサンチン、アミノプテリンおよびチミジンを含む培養液)で培養することにより選択され得る。所望のハイブリドーマ以外の細胞(非融合細胞)が死滅するのに十分な時間(通常、係る十分な時間は数日から数週間である)上記HAT培養液を用いた培養が継続され得る。次いで、通常の限界希釈法によって、所望の抗体を産生するハイブリドーマのスクリーニングおよび単一クローニングが実施される。

0070

このようにして得られたハイブリドーマは、細胞融合に用いられたミエローマが有する選択マーカーに応じた選択培養液を利用することによって選択され得る。例えばHGPRTやTKの欠損を有する細胞は、HAT培養液(ヒポキサンチン、アミノプテリンおよびチミジンを含む培養液)で培養することにより選択され得る。すなわち、HAT感受性のミエローマ細胞を細胞融合に用いた場合、HAT培養液中で、正常細胞との細胞融合に成功した細胞が選択的に増殖し得る。所望のハイブリドーマ以外の細胞(非融合細胞)が死滅するのに十分な時間、上記HAT培養液を用いた培養が継続される。具体的には、一般に、数日から数週間の培養によって、所望のハイブリドーマが選択され得る。次いで、通常の限界希釈法によって、所望の抗体を産生するハイブリドーマのスクリーニングおよび単一クローニングが実施され得る。

0071

所望の抗体のスクリーニングおよび単一クローニングが、公知の抗原抗体反応に基づくスクリーニング方法によって好適に実施され得る。例えば、IL-6Rに結合するモノクローナル抗体は、細胞表面に発現したIL-6Rに結合することができる。このようなモノクローナル抗体は、たとえば、FACS(fluorescence activated cell sorting)によってスクリーニングされ得る。FACSは、蛍光抗体と接触させた細胞をレーザー光で解析し、個々の細胞が発する蛍光を測定することによって細胞表面に対する抗体の結合を測定することを可能にするシステムである。

0072

FACSによって本発明のモノクローナル抗体を産生するハイブリドーマをスクリーニングするためには、まずIL-6Rを発現する細胞を調製する。スクリーニングのための好ましい細胞は、IL-6Rを強制発現させた哺乳動物細胞である。宿主細胞として使用した形質転換されていない哺乳動物細胞を対照として用いることによって、細胞表面のIL-6Rに対する抗体の結合活性が選択的に検出され得る。すなわち、宿主細胞に結合せず、IL-6R強制発現細胞に結合する抗体を産生するハイブリドーマを選択することによって、IL-6Rモノクローナル抗体を産生するハイブリドーマが取得され得る。

0073

あるいは固定化したIL-6R発現細胞に対する抗体の結合活性がELISAの原理に基づいて評価され得る。たとえば、ELISAプレートのウェルにIL-6R発現細胞が固定化される。ハイブリドーマの培養上清をウェル内の固定化細胞に接触させ、固定化細胞に結合する抗体が検出される。モノクローナル抗体がマウス由来の場合、細胞に結合した抗体は、抗マウスイムノグロブリン抗体によって検出され得る。これらのスクリーニングによって選択された、抗原に対する結合能を有する所望の抗体を産生するハイブリドーマは、限界希釈法等によりクローニングされ得る。

0074

このようにして作製されるモノクローナル抗体を産生するハイブリドーマは通常の培養液中で継代培養され得る。また、該ハイブリドーマは液体窒素中で長期にわたって保存され得る。

0075

当該ハイブリドーマを通常の方法に従い培養し、その培養上清から所望のモノクローナル抗体が取得され得る。あるいはハイブリドーマをこれと適合性がある哺乳動物に投与して増殖せしめ、その腹水からモノクローナル抗体が取得され得る。前者の方法は、高純度の抗体を得るのに好適なものである。

0076

当該ハイブリドーマ等の抗体産生細胞からクローニングされる抗体遺伝子によってコードされる抗体も好適に利用され得る。クローニングした抗体遺伝子を適当なベクターに組み込んで宿主に導入することによって、当該遺伝子によってコードされる抗体が発現する。抗体遺伝子の単離と、ベクターへの導入、そして宿主細胞の形質転換のための方法は例えば、Vandammeらによって既に確立されている(Eur.J. Biochem.(1990)192 (3), 767-775)。下記に述べるように組換え抗体の製造方法もまた公知である。

0077

たとえば、抗IL-6R抗体を産生するハイブリドーマ細胞から、抗IL-6R抗体の可変領域(V領域)をコードするcDNAが取得される。そのために、通常、まずハイブリドーマから全RNAが抽出される。細胞からmRNAを抽出するための方法として、たとえば次のような方法を利用することができる。
グアニジン超遠心法(Biochemistry (1979) 18 (24), 5294-5299)
−AGPC法(Anal. Biochem. (1987) 162 (1), 156-159)

0078

抽出されたmRNAは、mRNA Purification Kit (GEヘルスケアバイオサイエンス製)等を使用して精製され得る。あるいは、QuickPrep mRNA Purification Kit (GEヘルスケアバイオサイエンス製)などのように、細胞から直接全mRNAを抽出するためのキットも市販されている。このようなキットを用いて、ハイブリドーマからmRNAが取得され得る。得られたmRNAから逆転写酵素を用いて抗体V領域をコードするcDNAが合成され得る。cDNAは、AMV Reverse Transcriptase First-strand cDNA Synthesis Kit(生化学工業社製)等によって合成され得る。また、cDNAの合成および増幅のために、SMARTRACE cDNA増幅キット(Clontech製)およびPCRを用いた5'-RACE法(Proc. Natl. Acad. Sci. USA (1988) 85 (23), 8998-9002、Nucleic AcidsRes. (1989) 17 (8), 2919-2932)が適宜利用され得る。更にこうしたcDNAの合成の過程においてcDNAの両末端に後述する適切な制限酵素サイトが導入され得る。

0079

得られたPCR産物から目的とするcDNA断片が精製され、次いでベクターDNAと連結される。このように組換えベクターが作製され、大腸菌等に導入されコロニーが選択された後に、該コロニーを形成した大腸菌から所望の組換えベクターが調製され得る。そして、該組換えベクターが目的とするcDNAの塩基配列を有しているか否かについて、公知の方法、例えば、ジデオキシヌクレオチドチェインターミネーション法等により確認される。

0080

可変領域をコードする遺伝子を取得するためには、可変領域遺伝子増幅用のプライマーを使った5'-RACE法を利用するのが簡便である。まずハイブリドーマ細胞より抽出されたRNAを鋳型としてcDNAが合成され、5'-RACE cDNAライブラリが得られる。5'-RACE cDNAライブラリの合成にはSMARTRACE cDNA増幅キットなど市販のキットが適宜用いられる。

0081

得られた5'-RACEcDNAライブラリを鋳型として、PCR法によって抗体遺伝子が増幅される。公知の抗体遺伝子配列をもとにマウス抗体遺伝子増幅用のプライマーがデザインされ得る。これらのプライマーは、イムノグロブリンのサブクラスごとに異なる塩基配列である。したがって、サブクラスは予めIso Stripマウスモノクローナル抗体アイタイピングキット(ロシュダイアグスティックス)などの市販キットを用いて決定しておくことが望ましい。

0082

具体的には、たとえばマウスIgGをコードする遺伝子の取得を目的とするときには、重鎖としてγ1、γ2a、γ2b、γ3、軽鎖としてκ鎖λ鎖をコードする遺伝子の増幅が可能なプライマーが利用され得る。IgGの可変領域遺伝子を増幅するためには、一般に3'側のプライマーには可変領域に近い定常領域に相当する部分にアニールするプライマーが利用される。一方5'側のプライマーには、5' RACEcDNAライブラリ作製キット付属するプライマーが利用される。

0083

こうして増幅されたPCR産物を利用して、重鎖と軽鎖の組み合せからなるイムノグロブリンが再構成され得る。再構成されたイムノグロブリンの、IL-6Rに対する結合活性を指標として、所望の抗体がスクリーニングされ得る。たとえばIL-6Rに対する抗体の取得を目的とするとき、抗体のIL-6Rに対する結合は、特異的であることがさらに好ましい。IL-6Rに結合する抗体は、たとえば次のようにしてスクリーニングされ得る;
(1)ハイブリドーマから得られたcDNAによってコードされるV領域を含む抗体をIL-6R発現細胞に接触させる工程、
(2)IL-6R発現細胞と抗体との結合を検出する工程、および
(3)IL-6R発現細胞に結合する抗体を選択する工程。

0084

抗体とIL-6R発現細胞との結合を検出する方法は公知である。具体的には、先に述べたFACSなどの手法によって、抗体とIL-6R発現細胞との結合が検出され得る。抗体の結合活性を評価するためにIL-6R発現細胞の固定標本が適宜利用され得る。

0085

結合活性を指標とする抗体のスクリーニング方法として、ファージベクターを利用したパニング法も好適に用いられる。ポリクローナルな抗体発現細胞群より抗体遺伝子を重鎖と軽鎖のサブクラスのライブラリとして取得した場合には、ファージベクターを利用したスクリーニング方法が有利である。重鎖と軽鎖の可変領域をコードする遺伝子は、適当なリンカー配列で連結することによってシングルチェインFv(scFv)を形成することができる。scFvをコードする遺伝子をファージベクターに挿入することにより、scFvを表面に発現するファージが取得され得る。このファージと所望の抗原との接触の後に、抗原に結合したファージを回収することによって、目的の結合活性を有するscFvをコードするDNAが回収され得る。この操作を必要に応じて繰り返すことにより、所望の結合活性を有するscFvが濃縮され得る。

0086

目的とする抗IL-6R抗体のV領域をコードするcDNAが得られた後に、当該cDNAの両末端に挿入した制限酵素サイトを認識する制限酵素によって該cDNAが消化される。好ましい制限酵素は、抗体遺伝子を構成する塩基配列に出現する頻度が低い塩基配列を認識して消化する。更に1コピー消化断片をベクターに正しい方向で挿入するためには、付着末端を与える制限酵素の挿入が好ましい。上記のように消化された抗IL-6R抗体のV領域をコードするcDNAを適当な発現ベクターに挿入することによって、抗体発現ベクターが取得され得る。このとき、抗体定常領域(C領域)をコードする遺伝子と、前記V領域をコードする遺伝子とがインフレームで融合されれば、キメラ抗体が取得される。ここで、キメラ抗体とは、定常領域と可変領域の由来が異なることをいう。したがって、マウス−ヒトなどの異種キメラ抗体に加え、ヒト−ヒト同種キメラ抗体も、本発明におけるキメラ抗体に含まれる。予め定常領域を有する発現ベクターに、前記V領域遺伝子を挿入することによって、キメラ抗体発現ベクターが構築され得る。具体的には、たとえば、所望の抗体定常領域(C領域)をコードするDNAを保持した発現ベクターの5'側に、前記V領域遺伝子を消化する制限酵素の制限酵素認識配列が適宜配置され得る。同じ組み合わせの制限酵素で消化された両者がインフレームで融合されることによって、キメラ抗体発現ベクターが構築される。

0087

抗IL-6Rモノクローナル抗体を製造するために、抗体遺伝子が発現制御領域による制御の下で発現するように発現ベクターに組み込まれる。抗体を発現するための発現制御領域とは、例えば、エンハンサープロモーターを含む。また、発現した抗体が細胞外に分泌されるように、適切なシグナル配列アミノ末端に付加され得る。後に記載される実施例ではシグナル配列として、アミノ酸配列MGWSCIILFLVATATGVHS(配列番号:3)を有するペプチドが使用されているが、これ以外にも適したシグナル配列が付加される。発現されたポリペプチドは上記配列のカルボキシル末端部分で切断され、切断されたポリペプチドが成熟ポリペプチドとして細胞外に分泌され得る。次いで、この発現ベクターによって適当な宿主細胞が形質転換されることによって、抗IL-6R抗体をコードするDNAを発現する組換え細胞が取得され得る。

0088

抗体遺伝子の発現のために、抗体重鎖(H鎖)および軽鎖(L鎖)をコードするDNAは、それぞれ別の発現ベクターに組み込まれる。H鎖とL鎖が組み込まれたベクターによって、同じ宿主細胞に同時に形質転換(co-transfect)されることによって、H鎖とL鎖を備えた抗体分子が発現され得る。あるいはH鎖およびL鎖をコードするDNAが単一の発現ベクターに組み込まれることによって宿主細胞が形質転換され得る(国際公開WO 1994/011523を参照のこと)。

0089

単離された抗体遺伝子を適当な宿主に導入することによって抗体を作製するための宿主細胞と発現ベクターの多くの組み合わせが公知である。これらの発現系は、いずれも本発明の抗原結合ドメインを単離するのに応用され得る。真核細胞が宿主細胞として使用される場合、動物細胞植物細胞、あるいは真菌細胞が適宜使用され得る。具体的には、動物細胞としては、次のような細胞が例示され得る。
(1)哺乳類細胞、:CHO、COS、ミエローマ、BHK(baby hamster kidney )、Hela、Vero、HEK(human embryonic kidney)293、FreestyleTM293 など
(2)両生類細胞:アフリカツメガエル卵母細胞など
(3)昆虫細胞:sf9、sf21、Tn5など

0090

あるいは植物細胞としては、ニコティアナ・タバカム(Nicotiana tabacum)などのニコティアナ(Nicotiana)属由来の細胞による抗体遺伝子の発現系が公知である。植物細胞の形質転換には、カルス培養した細胞が適宜利用され得る。

0091

更に真菌細胞としては、次のような細胞を利用することができる。
酵母サッカロミセスセレビシエ(Saccharomyces serevisiae)などのサッカロミセス(Saccharomyces )属、メタノール資化酵母(Pichia pastoris)などのPichia属
糸状菌アススギルス・ニガー(Aspergillus niger)などのアスペルギルス(Aspergillus )属

0092

また、原核細胞を利用した抗体遺伝子の発現系も公知である。たとえば、細菌細胞を用いる場合、大腸菌(E. coli )、枯草菌などの細菌細胞が適宜利用され得る。これらの細胞中に、目的とする抗体遺伝子を含む発現ベクターが形質転換によって導入される。形質転換された細胞をin vitroで培養することにより、当該形質転換細胞培養物から所望の抗体が取得され得る。

0093

組換え抗体の産生には、上記宿主細胞に加えて、トランスジェニック動物も利用され得る。すなわち所望の抗体をコードする遺伝子が導入された動物から、当該抗体を得ることができる。例えば、抗体遺伝子は、乳汁中に固有に産生されるタンパク質をコードする遺伝子の内部にインフレームで挿入することによって融合遺伝子として構築され得る。乳汁中に分泌されるタンパク質として、たとえば、ヤギβカゼインなどを利用され得る。抗体遺伝子が挿入された融合遺伝子を含むDNA断片はヤギの注入され、当該注入された胚が雌のヤギへ導入される。胚を受容したヤギから生まれるトランスジェニックヤギ(またはその子孫)が産生する乳汁からは、所望の抗体が乳汁タンパク質との融合タンパク質として取得され得る。また、トランスジェニックヤギから産生される所望の抗体を含む乳汁量を増加させるために、ホルモンがトランスジェニックヤギに対して投与され得る(Bio/Technology (1994), 12 (7), 699-702)。

0094

本明細書において記載される抗原結合分子がヒトに投与される場合、当該分子における抗原結合ドメインとして、ヒトに対する異種抗原性を低下させること等を目的として人為的に改変した遺伝子組換え型抗体由来の抗原結合ドメインが適宜採用され得る。遺伝子組換え型抗体には、例えば、ヒト化(Humanized)抗体等が含まれる。これらの改変抗体は、公知の方法を用いて適宜製造される。

0095

本明細書において記載される抗原結合分子における抗原結合ドメインを作製するために用いられる抗体の可変領域は、通常、4つのフレームワーク領域(FR)にはさまれた3つの相補性決定領域(complementarity-determining region ;CDR)で構成されている。CDRは、実質的に、抗体の結合特異性を決定している領域である。CDRのアミノ酸配列は多様性富む。一方FRを構成するアミノ酸配列は、異なる結合特異性を有する抗体の間でも、高い同一性を示すことが多い。そのため、一般に、CDRの移植によって、ある抗体の結合特異性を、他の抗体に移植することができるとされている。

0096

ヒト化抗体は、再構成(reshaped)ヒト抗体とも称される。具体的には、ヒト以外の動物、たとえばマウス抗体のCDRをヒト抗体に移植したヒト化抗体などが公知である。ヒト化抗体を得るための一般的な遺伝子組換え手法も知られている。具体的には、マウスの抗体のCDRをヒトのFRに移植するための方法として、たとえばOverlap ExtensionPCRが公知である。Overlap Extension PCRにおいては、ヒト抗体のFRを合成するためのプライマーに、移植すべきマウス抗体のCDRをコードする塩基配列が付加される。プライマーは4つのFRのそれぞれについて用意される。一般に、マウスCDRのヒトFRへの移植においては、マウスのFRと同一性の高いヒトFRを選択するのが、CDRの機能の維持において有利であるとされている。すなわち、一般に、移植すべきマウスCDRに隣接しているFRのアミノ酸配列と同一性の高いアミノ酸配列からなるヒトFRを利用するのが好ましい。

0097

また連結される塩基配列は、互いにインフレームで接続されるようにデザインされる。それぞれのプライマーによってヒトFRが個別に合成される。その結果、各FRにマウスCDRをコードするDNAが付加された産物が得られる。各産物のマウスCDRをコードする塩基配列は、互いにオーバーラップするようにデザインされている。続いて、ヒト抗体遺伝子を鋳型として合成された産物のオーバーラップしたCDR部分を互いにアニールさせて相補鎖合成反応が行われる。この反応によって、ヒトFRがマウスCDRの配列を介して連結される。

0098

最終的に3つのCDRと4つのFRが連結されたV領域遺伝子は、その5'末端と3'末端にアニールし適当な制限酵素認識配列を付加されたプライマーによってその全長が増幅される。上記のように得られたDNAとヒト抗体C領域をコードするDNAとをインフレームで融合するように発現ベクター中に挿入することによって、ヒト型抗体発現用ベクターが作成できる。当該組込みベクターを宿主に導入して組換え細胞を樹立した後に、当該組換え細胞を培養し、当該ヒト化抗体をコードするDNAを発現させることによって、当該ヒト化抗体が当該培養細胞の培養物中に産生される(欧州特許公開EP239400、国際公開WO1996/002576参照)。

0099

上記のように作製されたヒト化抗体の抗原に対する結合活性を定性的又は定量的に測定し、評価することによって、CDRを介して連結されたときに該CDRが良好な抗原結合部位を形成するようなヒト抗体のFRが好適に選択できる。必要に応じ、再構成ヒト抗体のCDRが適切な抗原結合部位を形成するようにFRのアミノ酸残基を置換することもできる。たとえば、マウスCDRのヒトFRへの移植に用いたPCR法を応用して、FRにアミノ酸配列の変異を導入することができる。具体的には、FRにアニーリングするプライマーに部分的な塩基配列の変異を導入することができる。このようなプライマーによって合成されたFRには、塩基配列の変異が導入される。アミノ酸を置換した変異型抗体の抗原に対する結合活性を上記の方法で測定し評価することによって所望の性質を有する変異FR配列が選択され得る(Cancer Res., (1993) 53, 851-856)。

0100

また、ヒト抗体遺伝子の全てのレパートリーを有するトランスジェニック動物(国際公開WO1993/012227、WO1992/003918、WO1994/002602、WO1994/025585、WO1996/034096、WO1996/033735参照)を免疫動物とし、DNA免疫により所望のヒト抗体が取得され得る。

0101

さらに、ヒト抗体ライブラリを用いて、パンニングによりヒト抗体を取得する技術も知られている。例えば、ヒト抗体のV領域が一本鎖抗体(scFv)としてファージディスプレイ法によりファージの表面に発現される。抗原に結合するscFvを発現するファージが選択され得る。選択されたファージの遺伝子を解析することにより、抗原に結合するヒト抗体のV領域をコードするDNA配列が決定できる。抗原に結合するscFvのDNA配列を決定した後、当該V領域配列を所望のヒト抗体C領域の配列とインフレームで融合させた後に適当な発現ベクターに挿入することによって発現ベクターが作製され得る。当該発現ベクターを上記に挙げたような好適な発現細胞中に導入し、該ヒト抗体をコードする遺伝子を発現させることにより当該ヒト抗体が取得される。これらの方法は既に公知である(国際公開WO1992/001047、WO1992/020791、WO1993/006213、WO1993/011236、WO1993/019172、WO1995/001438、WO1995/015388参照)。

0102

また、抗体遺伝子を取得する方法としてBernasconiら(Science (2002) 298, 2199-2202)またはWO2008/081008に記載のようなB細胞クローニング(それぞれの抗体のコード配列の同定およびクローニング、その単離、およびそれぞれの抗体(特に、IgG1、IgG2、IgG3またはIgG4)の作製のための発現ベクター構築のための使用等)の手法が、上記のほか適宜使用され得る。

0103

EUナンバリングおよびKabatナンバリング
本発明で使用されている方法によると、抗体のCDRとFRに割り当てられるアミノ酸位置はKabatにしたがって規定される(Sequences of Proteins of Immunological Interest(National Institute of Health, Bethesda, Md., 1987年および1991年)。本明細書において、抗原結合分子が抗体または抗原結合断片である場合、可変領域のアミノ酸はKabatナンバリングにしたがい、定常領域のアミノ酸はKabatのアミノ酸位置に準じたEUナンバリングにしたがって表される。

0104

イオン濃度の条件
金属イオン濃度の条件
本発明の一つの態様では、イオン濃度とは金属イオン濃度のことをいう。「金属イオン」とは、水素を除くアルカリ金属および銅族等の第I族、アルカリ土類金属および亜鉛族等の第II族ホウ素を除く第III族炭素ケイ素を除く第IV族鉄族および白金族等の第VIII族、V、VIおよびVII族の各A亜族に属する元素と、アンチモンビスマスポロニウム等の金属元素イオンをいう。金属原子原子価電子を放出して陽イオンになる性質を有しており、これをイオン化傾向という。イオン化傾向の大きい金属は、化学的に活性に富むとされる。

0105

本発明で好適な金属イオンの例としてカルシウムイオンが挙げられる。カルシウムイオンは多くの生命現象の調節に関与しており、骨格筋平滑筋および心筋等の筋肉収縮白血球運動および貪食等の活性化、血小板の変形および分泌等の活性化、リンパ球の活性化、ヒスタミンの分泌等の肥満細胞の活性化、カテコールアミンα受容体アセチルコリン受容体を介する細胞の応答エキソサイトーシスニューロン終末からの伝達物質の放出、ニューロンの軸策流等にカルシウムイオンが関与している。細胞内のカルシウムイオン受容体として、複数個のカルシウムイオン結合部位を有し、分子進化上共通の起源から由来したと考えられるトロポニンC、カルモジュリンパルブアルブミンミオシン軽鎖等が知られており、その結合モチーフも数多く知られている。例えば 、カドヘリンドメイン、カルモジュリンに含まれるEFハンド、Protein kinase Cに含まれるC2ドメイン、血液凝固タンパク質FactorIXに含まれるGlaドメイン、アシアログライプロテインレセプターやマンノース結合レセプターに含まれるC型レクチンLDL受容体に含まれるAドメイン、アネキシントロンボスポンジン3型ドメインおよびEGF様ドメインがよく知られている。

0106

本発明においては、金属イオンがカルシウムイオンの場合には、カルシウムイオン濃度の条件として低カルシウムイオン濃度の条件と高カルシウムイオン濃度の条件が挙げられる。カルシウムイオン濃度の条件によって結合活性が変化するとは、低カルシウムイオン濃度と高カルシウムイオン濃度の条件の違いによって抗原に対する抗原結合分子の結合活性が変化することをいう。例えば、低カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性よりも高カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性の方が高い場合が挙げられる。また、高カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性よりも低カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性の方が高い場合もまた挙げられる。

0107

本明細書において、高カルシウムイオン濃度とはとくに一義的な数値に限定されるわけではないが、好適には100μMから10 mMの間から選択される濃度であり得る。また、別の態様では、200μMから5 mMの間から選択される濃度でもあり得る。また、異なる態様では500μMから2.5 mMの間から選択される濃度でもあり得るし、ほかの態様では200μMから2 mMの間から選択される濃度でもあり得る。さらに400μMから1.5 mMの間から選択される濃度でもあり得る。特に生体内の血漿中(血中)でのカルシウムイオン濃度に近い500μMから2.5 mMの間から選択される濃度が好適に挙げられる。

0108

本明細書において、低カルシウムイオン濃度とはとくに一義的な数値に限定されるわけではないが、好適には0.1μMから30μMの間から選択される濃度であり得る。また、別の態様では、0.2μMから20μMの間から選択される濃度でもあり得る。また、異なる態様では0.5μMから10μMの間から選択される濃度でもあり得るし、ほかの態様では1μMから5μMの間から選択される濃度でもあり得る。さらに2μMから4μMの間から選択される濃度でもあり得る。特に生体内の早期エンドソーム内でのイオン化カルシウム濃度に近い1μMから5μMの間から選択される濃度が好適に挙げられる。

0109

本発明において、低カルシウムイオン濃度の条件における抗原に対する結合活性が高カルシウムイオン濃度の条件における抗原に対する結合活性より低いとは、抗原結合分子の0.1μMから30μMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性が、100μMから10 mMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性より弱いことを意味する。好ましくは、抗原結合分子の0.5μMから10μMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性が、200μMから5 mMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性より弱いことを意味し、特に好ましくは、生体内の早期エンドソーム内のカルシウムイオン濃度における抗原結合活性が、生体内の血漿中のカルシウムイオン濃度における抗原結合活性より弱いことを意味し、具体的には、抗原結合分子の1μMから5μMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性が、500μMから2.5 mMの間から選択されるカルシウムイオン濃度での抗原に対する結合活性より弱いことを意味する。

0110

金属イオン濃度の条件によって抗原に対する抗原結合分子の結合活性が変化しているか否かは、例えば前記の結合活性の項で記載されたような公知の測定方法を使用することによって決定され得る。例えば、低カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性よりも高カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性の方が高く変化することを確認するためには、低カルシウムイオン濃度および高カルシウムイオン濃度の条件下における抗原に対する抗原結合分子の結合活性が比較される。

0111

さらに本発明において、「低カルシウムイオン濃度の条件における抗原に対する結合活性が高カルシウムイオン濃度の条件における抗原に対する結合活性より低い」という表現は、抗原結合分子の高カルシウムイオン濃度条件下における抗原に対する結合活性が低カルシウムイオン濃度条件下における抗原に対する結合活性よりも高いと表現することもできる。なお本発明においては、「低カルシウムイオン濃度の条件における抗原に対する結合活性が高カルシウムイオン濃度の条件における抗原に対する結合活性より低い」を「低カルシウムイオン濃度条件下における抗原結合能が高カルシウムイオン濃度条件下における抗原に対する結合能よりも弱い」と記載する場合もあり、また、「低カルシウムイオン濃度の条件における抗原結合活性を高カルシウムイオン濃度の条件における抗原に対する結合活性より低下させる」を「低カルシウムイオン濃度条件下における抗原結合能を高カルシウムイオン濃度条件下における抗原に対する結合能よりも弱くする」と記載する場合もある。

0112

抗原に対する結合活性を測定する際のカルシウムイオン濃度以外の条件は、当業者が適宜選択することが可能であり、特に限定されない。例えば、HEPESバッファー、37℃の条件において測定することが可能である。例えば、Biacore(GE Healthcare)などを用いて測定することが可能である。抗原結合分子と抗原との結合活性の測定は、抗原が可溶型抗原である場合は、抗原結合分子を固定化したチップへ、抗原をアナライトとして流すことで可溶型抗原に対する結合活性を評価することが可能であり、抗原が膜型抗原である場合は、抗原を固定化したチップへ、抗原結合分子をアナライトとして流すことで膜型抗原に対する結合活性を評価することが可能である。

0113

本発明の抗原結合分子において、低カルシウムイオン濃度の条件における抗原に対する結合活性が高カルシウムイオン濃度の条件における抗原に対する結合活性よりも弱い限り、低カルシウムイオン濃度条件下における抗原に対する結合活性と高カルシウムイオン濃度条件下における抗原に対する結合活性の比は特に限定されないが、好ましくは抗原に対する低カルシウムイオン濃度の条件におけるKD(Dissociation constant:解離定数)と高カルシウムイオン濃度の条件におけるKDの比であるKD (Ca 3μM)/KD (Ca 2 mM)の値が2以上であり、さらに好ましくはKD (Ca 3μM)/KD (Ca 2 mM)の値が10以上であり、さらに好ましくはKD (Ca 3μM)/KD (Ca 2 mM)の値が40以上である。KD (Ca 3μM)/KD (Ca 2 mM)の値の上限は特に限定されず、当業者の技術において作製可能な限り、400、1000、10000等、いかなる値でもよい。また、KD (Ca3μM)/KD (Ca 1.2 mM)の値でも特定され得る。すなわち、KD (Ca 3μM)/KD (Ca 1.2 mM)の値が2以上であり、さらに好ましくはKD (Ca 3μM)/KD (Ca 1.2 mM)の値が10以上であり、さらに好ましくはKD (Ca 3μM)/KD (Ca 1.2 mM)の値が40以上である。KD (Ca 3μM)/KD (Ca 1.2 mM)の値の上限は特に限定されず、当業者の技術において作製可能な限り、400、1000、10000等、いかなる値でもよい。

0114

抗原に対する結合活性の値として、抗原が可溶型抗原の場合はKD(解離定数)を用いることが可能であるが、抗原が膜型抗原の場合は見かけのKD(Apparent dissociation constant:見かけの解離定数)を用いることが可能である。KD(解離定数)、および、見かけのKD(見かけの解離定数)は、当業者公知の方法で測定することが可能であり、例えばBiacore(GE healthcare)、スキャッチャードプロット、フローサイトメーター等を用いることが可能である。

0115

また、本発明の抗原結合分子の低カルシウム濃度の条件における抗原に対する結合活性と高カルシウム濃度の条件における抗原に対する結合活性の比を示す他の指標として、例えば、解離速度定数であるkd(Dissociation rate constant:解離速度定数)もまた好適に用いられ得る。結合活性の比を示す指標としてKD(解離定数)の代わりにkd(解離速度定数)を用いる場合、抗原に対する低カルシウム濃度の条件におけるkd(解離速度定数)と高カルシウム濃度の条件におけるkd(解離速度定数)の比であるkd(低カルシウム濃度の条件)/kd(高カルシウム濃度の条件)の値は、好ましくは2以上であり、さらに好ましくは5以上であり、さらに好ましくは10以上であり、より好ましくは30以上である。Kd(低カルシウム濃度の条件)/kd(高カルシウム濃度の条件)の値の上限は特に限定されず、当業者の技術常識において作製可能な限り、50、100、200等、いかなる値でもよい。

0116

抗原結合活性の値として、抗原が可溶型抗原の場合はkd(解離速度定数)を用いることが可能であり、抗原が膜型抗原の場合は見かけのkd(Apparent dissociation rate constant:見かけの解離速度定数)を用いることが可能である。kd(解離速度定数)、および、見かけのkd(見かけの解離速度定数)は、当業者公知の方法で測定することが可能であり、例えばBiacore(GE healthcare)、フローサイトメーター等を用いることが可能である。なお本発明において、異なるカルシウムイオン濃度における抗原結合分子の抗原に対する結合活性を測定する際は、カルシウム濃度以外の条件は同一とすることが好ましい。

0117

例えば、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗体は、以下の工程(a)〜(c)を含む抗原結合ドメインまたは抗体のスクリーニングによって取得され得る。
(a) 低カルシウム濃度の条件における抗原結合ドメインまたは抗体の抗原結合活性を得る工程、
(b) 高カルシウム濃度の条件における抗原結合ドメインまたは抗体の抗原結合活性を得る工程、および
(c) 低カルシウム濃度の条件における抗原結合活性が、高カルシウム濃度の条件における抗原結合活性より低い抗原結合ドメインまたは抗体を選択する工程。

0118

さらに、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗体は、以下の工程(a)〜(c)を含む抗原結合ドメインまたは抗体もしくはそれらのライブラリのスクリーニングによって取得され得る。
(a) 高カルシウム濃度の条件における抗原結合ドメインまたは抗体もしくはそれらのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメインまたは抗体を低カルシウム濃度条件下に置く工程、および
(c) 前記工程(b)で解離した抗原結合ドメインまたは抗体を単離する工程。

0119

また、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗体は、以下の工程(a)〜(d)を含む抗原結合ドメインまたは抗体若しくはそれらのライブラリのスクリーニングによって取得され得る。
(a) 低カルシウム濃度条件下で抗原結合ドメイン又は抗体のライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合しない抗原結合ドメイン又は抗体を選択する工程、
(c) 前記工程(b)で選択された抗原結合ドメイン又は抗体を高カルシウム濃度条件下で抗原に結合させる工程、および
(d) 前記工程(c)で抗原に結合した抗原結合ドメイン又は抗体を単離する工程。

0120

さらに、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗体は、以下の工程(a)〜(c)を含むスクリーニング方法によって取得され得る。
(a) 抗原を固定したカラムに高カルシウム濃度条件下で抗原結合ドメイン又は抗体のライブラリを接触させる工程、
(b) 前記工程(a)でカラムに結合した抗原結合ドメイン又は抗体を低カルシウム濃度条件下でカラムから溶出する工程、および
(c) 前記工程(b)で溶出された抗原結合ドメイン又は抗体を単離する工程。

0121

さらに、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗体は、以下の工程(a)〜(d)を含むスクリーニング方法によって取得され得る。
(a) 抗原を固定したカラムに低カルシウム濃度条件下で抗原結合ドメイン又は抗体のライブラリを通過させる工程、
(b) 前記工程(a)でカラムに結合せずに溶出した抗原結合ドメイン又は抗体を回収する工程、
(c) 前記工程(b)で回収された抗原結合ドメイン又は抗体を高カルシウム濃度条件下で抗原に結合させる工程、および
(d) 前記工程(c)で抗原に結合した抗原結合ドメイン又は抗体を単離する工程。

0122

さらに、本発明が提供する一つの態様である低カルシウムイオン濃度の条件における抗原に対する結合活性が、高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗体は、以下の工程(a)〜(d)を含むスクリーニング方法によって取得され得る。
(a) 高カルシウム濃度条件下で抗原結合ドメイン又は抗体のライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメイン又は抗体を取得する工程、
(c) 前記工程(b)で取得した抗原結合ドメイン又は抗体を低カルシウム濃度条件下に置く工程、および
(d) 前記工程(c)で抗原結合活性が、前記工程(b)で選択した基準より弱い抗原結合ドメイン又は抗体を単離する工程。

0123

なお、前記の工程は2回以上繰り返されてもよい。従って、本発明によって、上述のスクリーニング方法において、(a)〜(c)あるいは(a)〜(d)の工程を2回以上繰り返す工程をさらに含むスクリーニング方法によって取得された低カルシウムイオン濃度の条件における抗原に対する結合活性が高カルシウムイオン濃度の条件における抗原に対する結合活性より低い抗原結合ドメインまたは抗体が提供される。(a)〜(c)あるいは(a)〜(d)の工程が繰り返される回数は特に限定されないが、通常10回以内である。

0124

本発明のスクリーニング方法において、低カルシウム濃度条件下における抗原結合ドメイン又は抗体の抗原結合活性は、イオン化カルシウム濃度が0.1μM〜30μMの間の抗原結合活性であれば特に限定されないが、好ましいイオン化カルシウム濃度として、0.5μM〜10μMの間の抗原結合活性を挙げることができる。より好ましいイオン化カルシウム濃度として、生体内の早期エンドソーム内のイオン化カルシウム濃度が挙げられ、具体的には1μM〜5μMにおける抗原結合活性を挙げることができる。また、高カルシウム濃度条件下における抗原結合ドメイン又は抗体の抗原結合活性は、イオン化カルシウム濃度が100μM〜10 mMの間の抗原結合活性であれば特に限定されないが、好ましいイオン化カルシウム濃度として200μM〜5 mMの間の抗原結合活性を挙げることができる。より好ましいイオン化カルシウム濃度として、生体内の血漿中でのイオン化カルシウム濃度を挙げることができ、具体的には0.5 mM〜2.5 mMにおける抗原結合活性を挙げることができる。

0125

抗原結合ドメイン又は抗体の抗原結合活性は当業者に公知の方法により測定することが可能であり、イオン化カルシウム濃度以外の条件については当業者が適宜決定することが可能である。抗原結合ドメイン又は抗体の抗原結合活性は、KD(Dissociation constant:解離定数)、見かけのKD(Apparent dissociation constant:見かけの解離定数)、解離速度であるkd(Dissociation rate:解離速度定数)、又は見かけのkd(Apparent dissociation:見かけの解離速度定数)等として評価することが可能である。これらは当業者公知の方法で測定することが可能であり、例えばBiacore(GE healthcare)、スキャッチャードプロット、FACS等を用いることが可能である。

0126

本発明において、高カルシウム濃度条件下における抗原結合活性が低カルシウム濃度条件下における抗原結合活性より高い抗原結合ドメイン又は抗体を選択する工程は、低カルシウム濃度条件下における抗原結合活性が高カルシウム濃度条件下における抗原結合活性より低い抗原結合ドメイン又は抗体を選択する工程と同じ意味である。

0127

高カルシウム濃度条件下における抗原結合活性が低カルシウム濃度条件下における抗原結合活性より高い限り、高カルシウム濃度条件下における抗原結合活性と低カルシウム濃度条件下における抗原結合活性の差は特に限定されないが、好ましくは高カルシウム濃度条件下における抗原結合活性が低カルシウム濃度条件下における抗原結合活性の2倍以上であり、さらに好ましくは10倍以上であり、より好ましくは40倍以上である。

0128

前記のスクリーニング方法によりスクリーニングされる本発明の抗原結合ドメイン又は抗体はいかなる抗原結合ドメイン又は抗体でもよく、例えば上述の抗原結合ドメイン又は抗体をスクリーニングすることが可能である。例えば、天然の配列を有する抗原結合ドメイン又は抗体をスクリーニングしてもよいし、アミノ酸配列が置換された抗原結合ドメイン又は抗体をスクリーニングしてもよい。

0129

ライブラリ
ある一態様によれば、本発明の抗原結合ドメイン又は抗体は、イオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基が抗原結合ドメインに含まれている互いに配列の異なる複数の抗原結合分子から主としてなるライブラリから取得され得る。イオン濃度の例としては金属イオン濃度や水素イオン濃度が好適に挙げられる。

0130

本明細書において「ライブラリ」とは複数の抗原結合分子または抗原結合分子を含む複数の融合ポリペプチド、もしくはこれらの配列をコードする核酸、ポリヌクレオチドをいう。ライブラリ中に含まれる複数の抗原結合分子または抗原結合分子を含む複数の融合ポリペプチドの配列は単一の配列ではなく、互いに配列の異なる抗原結合分子または抗原結合分子を含む融合ポリペプチドである。

0131

本明細書においては、互いに配列の異なる複数の抗原結合分子という記載における「互いに配列の異なる」との用語は、ライブラリ中の個々の抗原結合分子の配列が相互に異なることを意味する。すなわち、ライブラリ中における互いに異なる配列の数は、ライブラリ中の配列の異なる独立クローンの数が反映され、「ライブラリサイズ」と指称される場合もある。通常のファージディスプレイライブラリでは106から1012であり、リボゾームディスプレイ法等の公知の技術を適用することによってライブラリサイズを1014まで拡大することが可能である。しかしながら、ファージライブラリのパンニング選択時に使用されるファージ粒子の実際の数は、通常、ライブラリサイズよりも10ないし10,000倍大きい。この過剰倍数は、「ライブラリ当量数」とも呼ばれるが、同じアミノ酸配列を有する個々のクローンが10ないし10,000存在し得ることを表す。よって本発明における「互いに配列の異なる」との用語はライブラリ当量数が除外されたライブラリ中の個々の抗原結合分子の配列が相互に異なること、より具体的には互いに配列の異なる抗原結合分子が106から1014分子、好ましくは107から1012分子、さらに好ましくは108から1011分子、特に好ましくは108から1012存在することを意味する。

0132

また、本発明の、複数の抗原結合分子から主としてなるライブラリという記載における「複数の」との用語は、例えば本発明の抗原結合分子、融合ポリペプチド、ポリヌクレオチド分子、ベクターまたはウイルスは、通常、その物質の2つ以上の種類の集合を指す。例えば、ある2つ以上の物質が特定の形質に関して互いに異なるならば、その物質には2種類以上が存在することを表す。例としては、アミノ酸配列中の特定のアミノ酸位置で観察される変異体アミノ酸が挙げられ得る。例えば、フレキシブル残基以外、または表面に露出した非常に多様なアミノ酸位置の特定の変異体アミノ酸以外は実質的に同じ、好ましくは同一の配列である本発明の2つ以上の抗原結合分子がある場合、本発明の抗原結合分子は複数個存在する。他の実施例では、フレキシブル残基をコードする塩基以外、または表面に露出した非常に多様なアミノ酸位置の特定の変異体アミノ酸をコードする塩基以外は実質的に同じ、好ましくは同一の配列である本発明の2つ以上のポリヌクレオチド分子があるならば、本発明のポリヌクレオチド分子は複数個存在する。

0133

さらに、本発明の、複数の抗原結合分子から主としてなるライブラリという記載における「から主としてなる」との用語は、ライブラリ中の配列の異なる独立クローンの数のうち、イオン濃度の条件によって抗原に対する抗原結合分子の結合活性が 異なっている抗原結合分子の数が反映される。具体的には、そのような結合活性を示す抗原結合分子がライブラリ中に少なくとも104分子存在することが好ましい。また、より好ましくは、本発明の抗原結合ドメインはそのような結合活性を示す抗原結合分子が少なくとも105分子存在するライブラリから取得され得る。さらに好ましくは、本発明の抗原結合ドメインはそのような結合活性を示す抗原結合分子が少なくとも106分子存在するライブラリから取得され得る。特に好ましくは、本発明の抗原結合ドメインはそのような結合活性を示す抗原結合分子が少なくとも107分子存在するライブラリから取得され得る。また、好ましくは、本発明の抗原結合ドメインはそのような結合活性を示す抗原結合分子が少なくとも108分子存在するライブラリから取得され得る。別の表現では、ライブラリ中の配列の異なる独立クローンの数のうち、イオン濃度の条件によって抗原に対する抗原結合分子の結合活性が異なっている抗原結合分子の割合としても好適に表現され得る。具体的には、本発明の抗原結合ドメインは、そのような結合活性を示す抗原結合分子がライブラリ中の配列の異なる独立クローンの数の0.1%から80%、好ましくは0.5%から60%、より好ましくは1%から40%、さらに好ましくは2%から20%、特に好ましくは4%から10% 含まれる ライブラリから取得され得る。融合ポリペプチド、ポリヌクレオチド分子またはベクターの場合も、上記と同様、分子の数や分子全体における割合で表現され得る。また、ウイルスの場合も、上記と同様、ウイルス個体の数や個体全体における割合で表現され得る。

0134

カルシウムイオン濃度の条件によって抗原に対する抗原結合ドメインの結合活性が変化するアミノ酸

0135

前記のスクリーニング方法によってスクリーニングされる本発明の抗原結合ドメイン又は抗体はどのように調製されてもよく、例えば、金属イオンがカルシウムイオン濃度である場合には、あらかじめ存在している抗体、あらかじめ存在しているライブラリ(ファージライブラリ等)、動物への免疫から得られたハイブリドーマや免疫動物からのB細胞から作製された抗体又はライブラリ、これらの抗体やライブラリにカルシウムキレート可能なアミノ酸(例えばアスパラギン酸グルタミン酸)や非天然アミノ酸変異を導入した抗体又はライブラリ(カルシウムをキレート可能なアミノ酸(例えばアスパラギン酸やグルタミン酸)又は非天然アミノ酸の含有率を高くしたライブラリや特定箇所にカルシウムをキレート可能なアミノ酸(例えばアスパラギン酸やグルタミン酸)又は非天然アミノ酸変異を導入したライブラリ等)などを用いることが可能である 。

0136

前記のようにイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸の例として、例えば、金属イオンがカルシウムイオンである場合には、カルシウム結合モチーフを形成するアミノ酸であれば、その種類は問わない。カルシウム結合モチーフは、当業者に周知であり、詳細に記載されている(例えばSpringerら(Cell (2000) 102, 275-277)、KawasakiおよびKretsinger(Protein Prof. (1995) 2, 305-490)、Moncriefら(J. Mol. Evol. (1990) 30, 522-562)、Chauvauxら(Biochem. J. (1990) 265, 261-265)、BairochおよびCox(FEBSLett. (1990) 269, 454-456)、Davis(New Biol. (1990) 2, 410-419)、Schaeferら(Genomics (1995) 25, 638〜643)、Economouら(EMBO J. (1990) 9, 349-354)、Wurzburgら(Structure. (2006) 14, 6, 1049-1058))。すなわち、ASGPR, CD23、MBR、DC-SIGN等のC型レクチン等の任意の公知のカルシウム結合モチーフが、本発明の抗原結合分子に含まれ得る。このようなカルシウム結合モチーフの好適な例として、上記のほかには配列番号:62に記載される抗原結合ドメインに含まれるカルシウム結合モチーフも挙げられ得る。

0137

また、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性が変化するアミノ酸の例として、金属キレート作用を有するアミノ酸も好適に用いられる得る。金属キレート作用を有するアミノ酸の例として、例えばセリン(Ser(S))、スレオニン(Thr(T))、アスパラギン(Asn(N))、グルタミン(Gln(Q))、アスパラギン酸(Asp(D))およびグルタミン酸(Glu(E))等が好適に挙げられる。

0138

前記のアミノ酸が含まれる抗原結合ドメインの位置は特定の位置に限定されず、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる限り、抗原結合ドメインを形成する重鎖可変領域または軽鎖可変領域中のいずれの位置でもあり得る。すなわち、本発明の抗原結合ドメインは、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸が重鎖の抗原結合ドメインに含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。また、別の非限定の態様では、本発明の抗原結合ドメインは、当該アミノ酸が重鎖のCDR3に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。そのほかの非限定の態様では、本発明の抗原結合ドメインは、当該アミノ酸が重鎖のCDR3のKabatナンバリングで表される95位、96位、100a位および/または101位に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。

0139

また、本発明の非限定の一態様では、本発明の抗原結合ドメインは、カルシウムイオン濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸が軽鎖の抗原結合ドメインに含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。また、別の態様では、本発明の抗原結合ドメインは、当該アミノ酸が軽鎖のCDR1に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。そのほかの態様では、本発明の抗原結合ドメインは、当該アミノ酸が軽鎖のCDR1のKabatナンバリングで表される30位、31位および/または32位に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。

0140

また、別の非限定の態様では、本発明の抗原結合ドメインは、当該アミノ酸残基が軽鎖のCDR2に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。そのほかの態様では、当該アミノ酸残基が軽鎖のCDR2のKabatナンバリングで表される50位に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリが提供される。

0141

さらに別の非限定の態様では、本発明の抗原結合ドメインは、当該アミノ酸残基が軽鎖のCDR3に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。そのほかの態様では、本発明の抗原結合ドメインは、当該アミノ酸残基が軽鎖のCDR3のKabatナンバリングで表される92位に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。

0142

また、本発明の抗原結合ドメインは、当該アミノ酸残基が、前記に記載された軽鎖のCDR1、CDR2およびCDR3から選択される2つまたは3つのCDRに含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから本発明の異なる態様として取得され得る。さらに、本発明の抗原結合ドメインは、当該アミノ酸残基が軽鎖のKabatナンバリングで表される30位、31位、32位、50位および/または92位のいずれかひとつ以上に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。

0143

特に好適な実施形態では、抗原結合分子の軽鎖および/または重鎖可変領域のフレームワーク配列は、ヒトの生殖細胞系フレームワーク配列を有していることが望ましい。したがって、本発明の一態様においてフレームワーク配列が完全にヒトの配列であるならば、ヒトに投与(例えば疾病治療)された場合、本発明の抗原結合分子は免疫原性反応を殆どあるいは全く引き起こさないと考えられる。上記の意味から、本発明の「生殖細胞系列の配列を含む 」とは、本発明のフレームワーク配列の一部が、いずれかのヒトの生殖細胞系フレームワーク配列の一部と同一であることを意味する。例えば、本発明の抗原結合分子の重鎖FR2の配列が複数の異なるヒトの生殖細胞系フレームワーク配列の重鎖FR2配列が組み合わされた配列である場合も、本発明の「生殖細胞系列の配列を含む 」抗原結合分子である。

0144

フレームワークの例としては、例えばV-Base(http://vbase.mrc-cpe.cam.ac.uk/)等のウェブサイトに含まれている、現在知られている完全にヒト型のフレームワーク領域の配列が好適に挙げられる。 これらのフレームワーク領域の配列が本発明の抗原結合分子に含まれる生殖細胞系列の配列として適宜使用され得る。生殖細胞系列の配列はその類似性にもとづいて分類され得る(Tomlinsonら(J. Mol. Biol. (1992) 227, 776-798)WilliamsおよびWinter(Eur. J. Immunol. (1993) 23, 1456-1461)およびCoxら(Nat. Genetics (1994) 7, 162-168))。 7つのサブグループに分類されるVκ、10のサブグループに分類されるVλ、7つのサブグループに分類されるVHから好適な生殖細胞系列の配列が適宜選択され得る。

0145

完全にヒト型のVH配列は、下記のみに限定されるものではないが、例えばVH1サブグループ(例えば、VH1-2、VH1-3、VH1-8、VH1-18、VH1-24、VH1-45、VH1-46、VH1-58、VH1-69)、VH2サブグループ(例えば、VH2-5、VH2-26、VH2-70)、VH3サブグループ(VH3-7、VH3-9、VH3-11、VH3-13、VH3-15、VH3-16、VH3-20、VH3-21、VH3-23、VH3-30、VH3-33、VH3-35、VH3-38、VH3-43、VH3-48、VH3-49、VH3-53、VH3-64、VH3-66、VH3-72、VH3-73、VH3-74)、VH4サブグループ(VH4-4、VH4-28、VH4-31、VH4-34、VH4-39、VH4-59、VH4-61)、VH5サブグループ(VH5-51)、VH6サブグループ(VH6-1)、VH7サブグループ(VH7-4、VH7-81)のVH配列等が好適に挙げられる。これらは公知文献(Matsudaら(J. Exp. Med. (1998) 188, 1973-1975))等にも記載されており、当業者はこれらの配列情報をもとに本発明の抗原結合分子を適宜設計することが可能である。これら以外の完全にヒト型のフレームワークまたはフレームワークの準領域も好適に使用され得る。

0146

完全にヒト型のVK配列は、下記のみに限定されるものではないが、例えばVk1サブグループに分類されるA20、A30、L1、L4、L5、L8、L9、L11、L12、L14、L15、L18、L19、L22、L23、L24、O2、O4、O8、O12、O14、O18、Vk2サブグループに分類されるA1、A2、A3、A5、A7、A17、A18、A19、A23、O1、O11、Vk3サブグループに分類されるA11、A27、L2、L6、L10、L16、L20、L25、Vk4サブグループに分類されるB3、Vk5サブグループに分類されるB2(本明細書においてはVk5-2とも指称される))、VK6サブグループに分類されるA10、A14、A26等(Kawasakiら(Eur. J. Immunol. (2001) 31, 1017-1028)、SchableおよびZachau(Biol. Chem. Hoppe Seyler (1993) 374, 1001-1022)およびBrensing-Kuppersら(Gene (1997) 191, 173-181))が好適に挙げられる。

0147

完全にヒト型のVL配列は、下記のみに限定されるものではないが、例えばVL1サブグループに分類されるV1-2、V1-3、V1-4、V1-5、V1-7、V1-9、V1-11、V1-13、V1-16、V1-17、V1-18、V1-19、V1-20、V1-22、VL1サブグループに分類されるV2-1、V2-6、V2-7、V2-8、V2-11、V2-13、V2-14、V2-15、V2-17、V2-19、VL3サブグループに分類されるV3-2、V3-3、V3-4、VL4サブグループに分類されるV4-1、V4-2、V4-3、V4-4、V4-6、VL5サブグループに分類されるV5-1、V5-2、V5-4、V5-6等(Kawasakiら(Genome Res. (1997) 7, 250-261))が好適に挙げられる。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 小林製薬株式会社の「 皮膚外用組成物」が 公開されました。( 2020/07/02)

    【課題】本発明の目的は、鎮痒効果がより一層高められた皮膚外用組成物を提供することである。【解決手段】ジフェンヒドラミン及び/又はその塩とレチノール及び/又はその誘導体とを含む皮膚外用組成物において、ア... 詳細

  • 小林製薬株式会社の「 皮膚外用組成物」が 公開されました。( 2020/07/02)

    【課題】本発明の目的は、鎮痒効果がより一層高められた皮膚外用組成物を提供することである。【解決手段】ジフェンヒドラミン及び/又はその塩とトコフェロール及び/又はその誘導体とを含む皮膚外用組成物において... 詳細

  • 学校法人北里研究所の「 胃組織試料が前癌状態であるか否かを判定する方法及びキット」が 公開されました。( 2020/07/02)

    【課題】胃組織試料が前癌状態であるか否かを判定する技術を提供する。【解決手段】萎縮性胃炎患者由来の胃組織試料が前癌状態であるか否かを判定する方法であって、前記胃組織試料におけるTumor Necro... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ