図面 (/)

技術 高エネルギー源および熱ワイヤを使用した、パルス加熱信号を用いた付加製造方法および付加製造システム

出願人 リンカーングローバル,インコーポレイテッド
発明者 マシュー,ウィリアム,トーマスデニー,ポール,エドワードペータース,スティーブン,アール.
出願日 2019年8月28日 (1年5ヶ月経過) 出願番号 2019-155362
公開日 2020年5月14日 (9ヶ月経過) 公開番号 2020-073281
状態 特許登録済
技術分野 電子ビームによる溶接、切断 プラスチック等のその他の成形、複合成形(変更なし)
主要キーワード 最高地点 継続時間閾値 溶融電流 閾値制限 分離レベル ユーザ入力パラメータ 溶着プロセス 物理的ユニット
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2020年5月14日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (17)

課題

高速で動作可能で、高い精度を備えた付加製造装置のための方法とシステムを提供する。

解決手段

パドル(A)を生成する高強度エネルギー源と、溶融温度になるまで、または溶融温度付近の温度まで加熱されて、液滴(D)としてパドルの中に溶着された少なくとも1つの抵抗加熱されたワイヤ(140)と、を用いることにより、ワークピース(115)を製造する方法および製造するシステム。

概要

背景

近年様々な方法を使用した、付加製造の使用が増えている。しかしながら、既知の方法には様々な短所がある。例えば、プロセスによっては金属粉を使用するが、金属粉は一般に速度が遅く、相当量粉末を浪費することになる場合がある。他の方法は、アークベースのシステムを用いるが、それらもやはり速度が遅く、高い精度の製品を製造することができない。したがって、高速で動作可能な、高い精度を備えた付加製造のためのプロセスおよびシステムが必要である。

本願の残りの部分に記載の本発明の実施形態と、従来のアプローチ、既存のアプローチおよび提案されているアプローチとを図面を参照しながら比較することにより、それらのアプローチのさらなる限界デメリットが当業者に明らかになる。

概要

高速で動作可能で、高い精度を備えた付加製造装置のための方法とシステムを提供する。パドル(A)を生成する高強度エネルギー源と、溶融温度になるまで、または溶融温度付近の温度まで加熱されて、液滴(D)としてパドルの中に溶着された少なくとも1つの抵抗加熱されたワイヤ(140)と、を用いることにより、ワークピース(115)を製造する方法および製造するシステム。C

目的

本発明の他の特定の実施形態によれば、送給装置サブシステムは、1つ以上のワイヤを同時に提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

付加製造システム(100)であって、高エネルギー放電ワークピース(115)の表面を照射して前記ワークピースの表面上に溶融パドル(A)を生成する高エネルギー装置と、前記パドルにワイヤ(140)を送給するワイヤ送給装置と、前記ワイヤに、第1の部分および第2の部分を含む加熱信号であって、前記第1の部分が、少なくとも1つの電流パルスであって、前記パドルの中に溶着される前記ワイヤの先端部上に溶融した液滴(D)を生成する少なくとも1つの電流パルスを含み、前記第2の部分が、前記ワイヤに加熱電流を供給するとともに、前記第1の部分が第1の電流経路を辿り、前記第2の部分が第2の電流経路を辿る加熱信号を供給する電源ステムと、を備える付加製造システム(100)において、前記ワイヤ送給装置が前記ワイヤの前記先端部を前記パドルに接触させた後に、前記少なくとも1つの電流パルスが、ピーク電流レベルに到達するとともに、前記ワイヤ送給装置(150)が、前記ワイヤの移動を制御することで、後続する電流パルスの後続するピーク電流レベルの間で前記ワイヤの前記先端部が前記パドルと接触しないようにして、前記電源が、前記電流パルスの間に前記ワイヤが液滴から分離することができるレベルにおいて電流が低減するように前記加熱信号を制御することで、前記電流パルスの間、前記ワイヤと前記ワークピースとの間でアークが発生しないようにして、前記電源が、前記第1の部分と前記第2の部分との合間に前記加熱信号を切り換えることを特徴とする付加製造システム(100)。

請求項2

請求項1に記載の付加製造システムにおいて、前記第1の電流経路から前記第2の電流経路に切り換えるスイッチをさらに備えることを特徴とする付加製造システム。

請求項3

請求項1または2に記載の付加製造システムにおいて、前記第2の部分の前記加熱電流が、前記ワイヤの溶融温度の40〜90%の範囲の温度に前記ワイヤを維持することを特徴とする付加製造システム。

請求項4

付加製造方法であって、高エネルギー放電でワークピースの表面を照射して前記ワークピースの表面上に溶融パドルを生成するステップと、前記パドルにワイヤを送給するステップと、前記ワイヤに、加熱信号であって、複数の電流パルスを含むとともに、前記電流パルスのそれぞれが、前記パドルの中に溶着される前記ワイヤの先端部上に溶融した液滴(D)を生成する加熱信号を供給するステップと、を含む方法において、前記ワイヤの前記先端部が前記パドルに接触した後に、前記電流パルスのそれぞれが、ピーク電流レベルに到達するとともに、前記複数の前記電流パルスの合間に、前記ワイヤが液滴から分離することができるレベルにおいて電流が低減し、前記ワイヤの移動が、前記電流パルスの後続するピーク電流レベルの間で前記ワイヤの前記先端部が前記パドルと接触しないような移動であり、前記加熱信号が、前記電流パルスの間、前記ワイヤと前記ワークピースとの間でアークが発生しないように制御され、前記電流パルスのそれぞれの合間に、前記高エネルギー放電をオフにすることを特徴とする方法。

請求項5

請求項4に記載の付加製造方法において、前記ピーク電流レベルが、アーク発生電流閾値未満に維持されることを特徴とする方法。

請求項6

請求項4または5に記載の付加製造方法において、前記ワイヤの前記先端部が前記パドルと接触する前に前記ワイヤに開路電圧が供給されることを特徴とする方法。

請求項7

請求項4乃至6の何れか1項に記載の付加製造方法において、前記ワイヤが前記パドルと接触している時に前記加熱信号の電圧監視するステップと、前記電圧をアーク検出電圧レベルと比較するステップと、をさらに含むことを特徴とする方法。

請求項8

請求項7に記載の付加製造方法において、前記電圧が前記アーク検出電圧レベルを超過していることが検出された後に、前記加熱信号をオフにすることを特徴とする方法。

技術分野

0001

特定の実施形態は、付加製造の用途に関する。より具体的には、特定の実施形態は、付加製造用途のために溶接ワイヤ送給とエネルギー源ステムとの組み合わせを使用する、システムおよび方法に関する。

背景技術

0002

近年様々な方法を使用した、付加製造の使用が増えている。しかしながら、既知の方法には様々な短所がある。例えば、プロセスによっては金属粉を使用するが、金属粉は一般に速度が遅く、相当量粉末を浪費することになる場合がある。他の方法は、アークベースのシステムを用いるが、それらもやはり速度が遅く、高い精度の製品を製造することができない。したがって、高速で動作可能な、高い精度を備えた付加製造のためのプロセスおよびシステムが必要である。

0003

本願の残りの部分に記載の本発明の実施形態と、従来のアプローチ、既存のアプローチおよび提案されているアプローチとを図面を参照しながら比較することにより、それらのアプローチのさらなる限界デメリットが当業者に明らかになる。

0004

動作性能の高い、および/または高い精度を備えた付加製造を行うために、本発明は、請求項1または7に記載の付加製造システム、および請求項10に記載の付加製造方法を提案する。好ましい実施形態は、従属請求項から得ることができる。さらに好ましい実施形態によれば、前記高エネルギー装置は、前記電流パルスのそれぞれの合間に前記高エネルギー放電オフにすることができ、かつ/または前記電源は、アーク発生電圧閾値を使用して、前記アーク発生電流閾値未満に前記ピーク電流レベルを維持することができ、かつ/または前記電源は、前記ワイヤの前記先端部が前記パドルと接触する前に、前記ワイヤに開路電圧を供給することができ、かつ/または前記電源は、前記ワイヤが前記パドルと接触し、前記電圧アーク検出電圧レベルと比較する時に、前記加熱信号の電圧を監視することができ、かつ/または前記電源は、前記電圧が前記アーク検出電圧レベルを超過していることが検出された後に、前記加熱信号をオフにすることができる。本発明の実施形態は、高エネルギー放電で高エネルギー装置がワークピースの表面を照射して、ワークピースの表面上に溶融パドルを生成する付加製造システムおよび付加製造方法を含む。ワイヤ送給装置が、パドルにワイヤを送給し、電源が、加熱信号であって、複数の電流パルスを含むとともに、電流パルスがそれぞれ、パドルの中に溶着されるワイヤの先端部上に溶融した液滴を生成する加熱信号をワイヤに供給する。ワイヤ送給装置がワイヤの先端部を前記パドルに接触させた後に、電流パルスがそれぞれピーク電流レベルに到達し、複数の電流パルスの合間に加熱信号には電流が流れていない。ワイヤ送給装置が、ワイヤの移動を制御することで、電流パルスの後続するピーク電流レベルの間でワイヤの先端部がパドルと接触しないようにして、電源が、加熱電流を制御することで、電流パルスの間にワイヤとワークピースとの間に、アークが発生しないようにする。

図面の簡単な説明

0005

本発明の上記のおよび/または他の態様は、添付の図面を参照して本発明の例示的な実施形態を詳細に記載することによってより明らかであろう。

0006

図1は、本発明の付加製造システムの、例示的な実施形態の概略的なブロック図を図示する。
図2Aは、本発明の例示的な実施形態に従う液滴溶着プロセスを図示する。
図2Bは、本発明の例示的な実施形態に従う液滴溶着プロセスを図示する。
図2Cは、本発明の例示的な実施形態に従う液滴溶着プロセスを図示する。
図2Dは、本発明の例示的な実施形態に従う液滴溶着プロセスを図示する。
図3は、本発明の例示的な実施形態に従う液滴溶着プロセスの別の図を図示する。
図4Aは、本発明の実施形態と共に使用可能な代表的な電流波形を図示する。図4Bは、本発明の実施形態と共に使用可能な代表的な電流波形を図示する。
図5は、本発明の電圧波形および電流波形の代表的な実施形態を図示する。
図6Aは、液滴を溶着し易くするためのレーザの利用を図示する。図6Bは、液滴を溶着し易くするためのレーザの利用を図示する。
図7は、本発明の一態様に従うワイヤ加熱システムの例示的な実施形態を図示する。
図8Aは、図7のシステムと共に使用可能な電流波形の例示的な実施形態を図示する。
図8Bは、本発明の例示的な実施形態についての電流、電圧、ワイヤ送給速度、およびレーザ電源についての波形の例示的な実施形態を図示する。
図9は、本発明のワイヤ加熱システムの別の例示的な実施形態を図示する。
図10は、複数のワイヤを使用した、本発明のさらなる例示的な実施形態を図示する。
図11は、本発明のシステムの別の例示的な実施形態を図示する。
図12は、本発明の一実施形態に従う電源システムを図示する。

実施例

0007

次に、添付の図面を参照して、本発明の例示的な実施形態を以下に記載する。記載する例示的な実施形態は、本発明の理解を助けることを意図しており、決して本発明の範囲を限定することを意図するものではない。全体を通して、同等の参照番号は、同等の素子を指している。

0008

本明細書では「付加製造(additive manufacturing)」という用語を広い意味で用いており、物体または構成要素の構築、組み立てまたは生成を含むあらゆる用途を意味し得る。

0009

図1は、付加製造を行うための、溶接ワイヤ送給装置とエネルギー源とを組み合わせたシステム100の例示的な実施形態の概略的な機能ブロック図を示す。システム100は、ワークピース115にレーザビーム110を集束させてワークピース115を加熱することが可能なレーザサブシステムを含む。レーザサブシステムは、高強度エネルギー源である。レーザサブシステムは、二酸化炭素、Nd:YAG、Ybディスク、YBファイバー、ファイバー伝送、またはダイレクトダイオードレーザシステムを含むが、これらに限定されない、任意の種類の高エネルギーレーザ源とすることができる。本システムの他の実施形態は、高強度エネルギー源としての役割を果たす電子ビームプラズマアーク溶接サブシステム、ガスタングステンアーク溶接サブシステム、ガス金属アーク溶接サブシステム、フラックスコアドアー溶接サブシステムおよびサブマージアーク溶接サブシステムのうちの少なくとも1つを含み得る。以下、本明細書では、レーザシステムビームおよび電源について繰り返し言及するが、このような言及は、任意の高強度エネルギー源が使用され得るものとして例示的なものであることを理解されたい。例えば、高強度エネルギー源は少なくとも500W/cm2を提供できる。レーザサブシステムは、互いに動作可能に接続されたレーザ装置120およびレーザ電源130を含む。レーザ電源130は、電力を供給してレーザ装置120を動作させる。

0010

システム100は、少なくとも1つの抵抗溶接ワイヤ140を提供して、レーザビーム110の近傍でワークピース115と接触させることが可能な熱溶接ワイヤ送給装置サブシステムもまた含む。当然ながら、本明細書においてワークピース115と言う場合、溶融パドルはワークピース115の一部であると考えられるため、ワークピース115と接触と言う場合には、パドルとの接触を含むことを理解されたい。ワイヤ送給装置サブシステムは、溶接ワイヤ送給装置150、コンタクトチップ160および電源170を含む。作業中、溶接ワイヤ140は、コンタクトチップ160とワークピース115との間に動作可能に接続された電源170からの電流により抵抗加熱される。本発明の一実施形態によれば、電源170はパルス直流(DC)電源であるが、交流(AC)または他の種類の電源も同様に可能である。ワイヤ140は、溶接ワイヤ送給装置150からコンタクトチップ160を介してワークピース115の方に供給され、コンタクトチップ160を越えて延伸する。ワイヤ140の延伸部分は、ワークピース上のパドルに接触する前にこの延伸部分が融点に近づくか、または達するように抵抗加熱される。レーザビーム110は、ワークピース115の母材の一部を溶融してパドルを形成する役割を果たし、ワークピース115上でワイヤ140を溶融するのに使用することもまた可能である。電源170は、溶接ワイヤ140を抵抗溶融するのに必要なエネルギーを供給する。以下でさらに説明するように、いくつかの実施形態では、電源170が必要なエネルギーをすべて供給するのに対して、他の実施形態では、レーザまたは他の高エネルギー熱源が、エネルギーの一部を供給することができる。本発明の他の特定の実施形態によれば、送給装置サブシステムは、1つ以上のワイヤを同時に提供することができる場合もある。これについては、以下でより詳細に論じる。

0011

システム100は、レーザビーム110および抵抗溶接ワイヤ140が、互いに固定された関係を維持するように、レーザビーム110(エネルギー源)および抵抗溶接ワイヤ140を、ワークピース115に沿って(少なくとも相対的な意味で)同じ方向125に移動させることが可能な動作制御サブシステムをさらに含む。様々な実施形態によれば、ワークピース115とレーザ/ワイヤの組み合せとの間の相対的な移動は、ワークピース115を実際に動かすことによるか、または、レーザ装置120およびワイヤ送給装置サブシステムを動かすことにより実現され得る。図1では、動作制御サブシステムは、ロボット190に動作可能に接続された動作制御部180を含む。動作制御部180は、ロボット190の動作を制御する。ロボット190は、ワークピース115に動作可能に接続されており(例えば、機械的に固定されている)、レーザビーム110およびワイヤ140がワークピース115に沿って有効に移動するように、ワークピース115を方向125に動かす。本発明の代替的な実施形態によれば、レーザ装置110およびコンタクトチップ160は、1つのヘッドに組み込まれてもよい。ヘッドは、該ヘッドに動作可能に接続された動作制御サブシステムを介してワークピース115に沿って動かすことができる。

0012

一般に、高強度エネルギー源/ワイヤをワークピースに対して動かし得るいくつかの方法がある。例えば、ワークピースが円形であれば、高強度エネルギー源/ワイヤを固定して、高強度エネルギー源/ワイヤの下でワークピースを回転させてもよい。あるいは、ロボットアームまたはリニアトラクタ円形ワークピースに対して平行に動かし、ワークピースが回転するにつれて、高強度エネルギー源/ワイヤを連続的に動かすか、または回転毎に一度割り送りさせて、例えば、円形ワークピースの表面を肉盛りしてもよい。ワークピースが平坦であるか、または少なくとも円形ではない場合には、図1に示されるようにワークピースを高強度エネルギー源/ワイヤの下で動かしてもよい。しかしながら、ロボットアームもしくはリニアトラクタ、またさらにはビーム搭載キャリッジを用いて、ワークピースに対して高強度エネルギー源/ワイヤのヘッドを動かしてもよい。

0013

システム100は、感知および電流制御サブシステム195をさらに含む。感知および電流制御サブシステム195は、ワークピース115およびコンタクトチップ160に動作可能に接続され(すなわち、電源170の出力に有効に接続され)、ワークピース115とワイヤ140との間の電位差(すなわち、電圧V)、ならびワークピース115およびワイヤ140を通る電流(I)を測定することができる。感知および電流制御サブシステム195はさらに、測定した電圧および電流から抵抗値(R=V/I)および/または電力値(P=V×I)を算出できる場合がある。一般に、ワイヤ140がワークピース115と接触している場合には、ワイヤ140とワークピース115との間の電位差は、ゼロボルト、またはゼロボルトに極めて近い。その結果、感知および電流制御サブシステム195は、抵抗溶接ワイヤ140がワークピース115と接触している時に感知することができる。また、本明細書においてさらに詳細に後述するように、感知および電流制御サブシステム195は、電源170に動作可能に接続されていることにより、感知に応じて、抵抗溶接ワイヤ140を通る電流の通電を制御することがさらに可能である。本発明の別の実施形態によれば、感知および電流制御部195は、電源170の一体化された部分とすることができる。

0014

本発明の一実施形態によれば、動作制御部180はさらに、レーザ電源130および/または、感知および電流制御部195に動作可能に接続することができる。このように、動作制御部180およびレーザ電源130は、互いに通信することができることにより、レーザ電源130は、いつワークピース115が移動しているかが分かり、動作制御部180は、レーザ装置120が作動しているかどうかが分かる。同様に、このように、動作制御部180および、感知および電流制御部195は、互いに通信することができることにより、感知および電流制御部195は、ワークピース115がいつ移動しているかが分かり、動作制御部180は、溶接ワイヤ送給装置サブシステムが作動しているかどうかが分かる。このような通信を用いて、システム100の様々なサブシステム間の作動を調整することができる。

0015

一般に知られているように、付加製造は、ワークピース上に材料を溶着して所望の製品を作り出すプロセスである。用途によっては、製造する物品はかなり複雑である場合がある。しかしながら、付加製造に使用される既知の方法およびシステムは、速度が遅く、かつ、性能が制限される傾向がある。本発明の実施形態は、高速、かつ非常に高い精度の付加製造方法および付加製造システムを提供することにより、それらの領域に対処する。

0016

図1に図示されたシステム100は、ワイヤ140が繰り返し液滴で溶融され、ワークピース上に溶着されて、所望の形状を生成するような例示なシステムである。このプロセスは、図2A図2Dに例示的に図示されている。これらの図に示される通りである。図2Aに示されるように、ワークピースの表面は、ワイヤ140がワークピースと接触していない間に、レーザビーム110(またはその他の熱源)によって照射される。ビーム110は、ワークピースの表面上で溶融パドルAを生成する。ほとんどの用途では、パドルAの面積は小さく、溶け込みのレベルは、溶接または接合などの他の作業が必要になるほどのものではない。むしろ、パドルAは、ワイヤ140から十分に液滴を受け、それが十分に接着されるようにワークピースの表面を下処理するために生成される。このため、ビーム110のビーム密度は、ワークピースに過度入熱が生じたり、過度に大きなパドルを生成したりせずに、ワークピース上で小さなパドルだけが生成されるような密度である。パドルの生成時に、パドルAと接触するようにワイヤがパドルAへと進むにつれて、ワイヤ140の先端部に液滴Dが形成される。図2Bを参照されたい。接触後、液滴Dは、パドルAおよびワークピース上に溶着させる(図2Cを参照されたい)。このプロセスを繰り返して、所望のワークピースを生成する。図2Dには、省略可能なステップが示されている。ここでは、液滴Dがワイヤ140から分離された後に、溶着された液滴Dにビーム110が向けられる。このような実施形態では、ビーム110を用いて、ワークピースの表面を平滑化することができ、かつ/または、液滴Dがワークピースに完全に一体化されるように加熱することができる。さらに、ビームを用いて、ワークピースの追加的な造形を行うことができる。

0017

図3は、ワイヤ140から液滴Dを溶着する例示的なプロセスを図示する。図3の左端の画像は、ワークピースと接触しているワイヤ140を図示する。この接触は、電源170によって検出され、電源はこの時ワイヤ140に加熱電流を供給し、ワイヤ140の溶融温度になるまで、または溶融温度近くの温度までワイヤを加熱する。ワークピースとワイヤ140との間の接触の検出に使用される検出回路は、溶接電源で使用される既知の検出回路のように構築し、動作することができる。したがって、本明細書でこの回路の動作および構造を詳細に説明するまでもない。電源170からの加熱電流は、非常に急速にランプアップしていき、ワイヤ140の端部から液滴Dを溶かすのに必要なエネルギーを供給する。しかしながら、ワイヤ140とワークピースとの間でアークが生じないように、電流は慎重に制御される。アークが発生すれば、ワークピースを破壊するおそれであり、したがって望ましくない。このため、(以下でさらに説明するように)アークの形成を防ぐような方法で、電流が制御される。

0018

図3に戻って、ワイヤ140はワークピースと接触しており、電源170は溶融電流を供給する(1)。いくつかの例示的な実施形態では、開路電圧OCVは、接触に先立ってワイヤ140に印加することができる。接触後、電流は、急速にランプアップしていき、その結果、ワイヤ140の端部が溶融して、溶着させる液滴Dを生成する(2)。さらに電流により、液滴Dの真上でワイヤ140が細くなり、液滴Dをワイヤ140から分離させることが可能になる(3)。しかしながら、ワイヤ140が細くなっている間に電流をオフにするか、または大幅に低減させることにより、ワイヤ140が液滴Dから分離する際にワイヤ140とワークピースとの間でアークが発生しないように、電流が制御される(4)。いくつかの例示的な実施形態では、液滴Dとワイヤ140との間の結合部が分断される時に、および分断される直前にワイヤ140を後退送給してワークピースから離すことができる。液滴Dがパドルと接触しているために、パドルの表面張力によって液滴をワイヤ140から切り離し易くする。液滴がワイヤ140から分離されると、ワイヤ140は、別の液滴を溶着するプロセスの繰り返しへと進む。ワイヤ140は、同じ場所に配置された液滴で進行するか、もしくは任意の所望の場所で次の液滴を溶着するか、またはその両方を行うことができる。

0019

前述したように、液滴Dがワークピース上に溶着された後に、レーザビーム110を利用してワークピースを平滑化するか、あるいは溶着後にワークピースを造形することもまた可能である。さらに、溶着プロセスの間にビーム110を利用することがさらに可能である。すなわち、いくつかの例示的な実施形態では、ビーム110を用いてワイヤ140に熱を加えて液滴を形成させ易くしたり、もしくは液滴Dをワイヤ140から分離し易くしたり、またはその両方を行うことができる。これについては、以下でさらに説明する。

0020

次に図4Aおよび図4Bを参照する。これらはそれぞれ、本発明の例示的な実施形態と共に利用可能な例示的な電流波形を図示する。図4Aでは、図に見えるように、波形400は複数のパルス401を有し、それぞれのパルスは、ワイヤ140からの液滴Dの移行を表す。電流パルス401は、ワイヤ140が接触した時に開始される。次に、電流は、ランプアップ部分402を用いて、ワイヤ140と液滴Dとの間が分離する直前に生じるピーク電流レベル401まで増加する。この実施形態では、ランプアップ部分402の間、電流は絶えず増加して液滴を形成させ、分離の前にワイヤが細くなるようにする。液滴Dの分離の前に、ランプダウン部分404の間に電流が急速に減少し、分離が生じる際にアークが発生しないようにする。図4Aの波形400では、電流が遮断され、ゼロまで低減する。しかしながら、本発明の他の例示的な実施形態では、さらに低い分離レベルまで電流を低減させることができるので、分離が生じるまで完全に遮断する必要がない。このような実施形態では、このさらに低い分離電流レベルでワイヤ140を加熱し続けることにより、液滴Dから離れ易くする。

0021

図4Bは、電流波形410の別の例示的な実施形態を図示する。しかしながら、この実施形態では、パルス411は、図示されるように、複数の異なるランプレート区分を利用するランプアップ部分402を有する。図示される実施形態では、ランプアップ部分402は、液滴Dの分離に先立って3つの異なるランプレート402A、402Bおよび402Cを利用する。第1のランプレート402Aは、非常に急勾配で電流が急上昇することによりワイヤ140を急速に加熱し、可及的速やかに溶融プロセスを開始するようにする。電流が第1のレベル405に達した後、電流のランプレートが、第1のランプレートよりも小さい第2のランプレート402Bに変化する。いくつかの例示的な実施形態では、第1の電流レベルは、パルスのピーク電流レベル413の35〜60%の範囲にある。ランプレート402Bが初期ランプレート402Aよりも小さいことにより、電流を制御し易くして、アーク、またはマイクロアークの形成を防ぐようにする。示されている実施形態では、第2のランプレートは、液滴Dがワイヤ140の先端部で形成を開始するまで維持される。示されている実施形態では、液滴Dが形成を開始すると、電流のランプレートが、第2のランプレート402Bよりも小さい第3のランプレート402Cに再び変化する。ここでもまた、ランプレートが減少することにより、電流をさらに制御してアークが誤って発生するのを防ぐことが可能になる。電流があまりにも急速に増加しているのであれば、分離が検出された時に、(システムインダクタンスなどの様々な問題が原因で)電流を急速に減少させ、アークの発生を防ぐことが困難な場合がある。いくつかの例示的な実施形態では、第2のランプレートと第3のランプレートとの間の転移点407は、パルス411のピーク電流レベル413の50〜80%の範囲にある。図4Aのパルスと同様に、液滴の分離が検出された時に、電流は大幅に低減する。これについては、以下でより詳細に説明する。なお、本発明の他の実施形態は、本発明の範囲または趣旨から逸脱せずに、異なるランプレートプロファイルを使用し得ることにもまた留意されたい。例えば、パルスは、2つの異なるランプレート区分を有する場合もあれば、4つ以上を有する場合もあり得る。さらに、パルスは、時々刻々と変化するランプアップを利用することができる。例えば、電流は、ピーク電流レベルに対して逆放物曲線を辿る場合もあれば、種々の構成の組み合わせを利用する場合もある。この場合、ワイヤの接触から第1の電流レベル405まで不変のランプレートが使用され、次に、その地点から逆放物曲線が使用される場合もある。

0022

本明細書に説明するように、パルス401/411のピーク電流レベルは、アーク発生レベルを下回っているが、それぞれのパルスの間に液滴Dを溶融させるのに十分なレベルになっている。本発明の例示的な実施形態は、種々のピーク電流レベル制御法を利用することができる。いくつかの例示的な実施形態では、ピーク電流レベルは、添加作業に先立って入力される様々なユーザ入力パラメータによって決定されるピーク電流閾値とすることができる。このようなパラメータには、ワイヤ材の種類、ワイヤの直径、ワイヤの種類(有芯ワイヤ対ソリッドワイヤ)、および1インチ当たりの液滴数DPI:droplets−per−inch)が含まれる。当然ながら、他のパラメータを利用することもまた可能である。この入力情報を得た後、電源170および/または制御部195は、ルックアップテーブルなどの様々な制御法を利用して、この作業のためのピーク電流値を決定することができる。あるいは、電源170は、出力電流、電圧および/または電源170からの電力を監視して、いつ分離が生じるのかを決定し、それに応じて電流を制御することができる。例えば、(予知回路などを使用して)dv/dt、di/dtおよび/またはdp/dtを監視して、分離が起こっていることが検出されると、電流をオフにするかまたは低減させることができる。これについては、以下でさらに詳細に説明する。

0023

以下に、本発明の例示的な実施形態の使用および動作について説明する。付加製造プロセスの開始時に電源170は、電源170を介してワイヤ140とワークピース115との間に感知電圧を印加することができる。感知電圧は、感知および電流制御部195の命令の下で電源170により印加され得る。いくつかの実施形態では、印加される感知電圧は、ワイヤ140を有意に加熱するのに十分なエネルギーを供給しない。感知電圧を印加しながら、ワークピース115に向かってワイヤ140の先端部を前進させる。次に、レーザ120がビーム110を放射して、ワークピース115の表面を加熱し、ワイヤ140を受けるパドルを生成する。この前進は、ワイヤ送給装置150によって実行され、ワイヤ140の先端部がワークピース115と最初に接触した時に、ワークピースとの接触が感知される。例えば、制御部195は、非常に小さいレベルの電流(例えば、3〜5アンペア)を、ワイヤ140を介して供給するように電源170に命令することができる。感知は、感知および電流制御部195がワイヤ140(例えばコンタクトチップ160を介して)とワークピース115との間の約ゼロボルト(例えば0.4V)の電位差を測定することにより、実現することができる。溶接ワイヤ140の先端部がワークピース115に短絡されている(すなわち、ワークピースと接触している)と、溶接ワイヤ140とワークピース115との間に(ゼロボルトを超える)有意な電圧レベルが存在しない場合がある。

0024

接触後、感知に応じて、所定の時間間隔にわたって(例えば数ミリ秒)電源170をオフにすることができる。次に、所定の時間間隔の終了時に再び電源170をオンにして、ワイヤ140を介して加熱電流の通電を印加することができる。また、接触の感知後に、ビーム110をオフにして、パドルまたはワークピース115に過度に熱を加えないようにすることができる。いくつかの実施形態では、レーザビーム110をオンのままにして、液滴Dを加熱および分離し易くすることができる。これについては、以下でさらに詳細に説明する。

0025

本発明のいくつかの例示的な実施形態では、プロセスは、感知に応じて、ワイヤ140の前進を止めることと、所定の時間間隔の終了時にワイヤ140の前進を再開すること(すなわち再び前進させること)と、加熱電流の通電を印加する前に、または、加熱電流が印加されて液滴Dが形成された後に、溶接ワイヤ140の先端部が依然としてワークピース115と接触していることを確認することと、を含むことができる。感知および電流制御部195は、送給を停止するようにワイヤ送給装置150に命令し、(例えば数ミリ秒)待つようにシステム100に命令することができる。このような実施形態では、ワイヤ送給装置150に開始および停止を命令するために、感知および電流制御部195は、ワイヤ送給装置150に動作可能に接続されている。感知および電流制部195は、加熱電流パルスを印加するように電源170に命令して、上述したようにワイヤ140を加熱することができる。また、このプロセスを繰り返して、ワークピース上に複数の液滴を溶着することができる。

0026

作業時に、必要に応じて高強度エネルギー源(例えばレーザ装置120)およびワイヤ140をワークピース115に沿って移動させ、液滴を供給することができる。動作制御部180は、レーザビーム110およびワイヤ140に対してワークピース115を動かすようロボット190に命令する。レーザ電源130は、レーザ装置120を動作させる電力を供給して、レーザビーム110を形成する。さらなる実施形態では、レーザ装置120は、ワークピースの衝突面上のレーザビーム110の形状を調節して変更することが可能な光学系を含む。複数の実施形態は、ビーム形状を使用して、溶着プロセスの形状を制御することができる。すなわち、長方形楕円形または卵形の形状を有するビームを使用することにより、比較的幅が狭い溶着が可能になることで、薄肉構造を作ることができる。さらに、このビーム形状を使用して、液滴が消耗部品から分離した後に溶着を造形することができる。

0027

上述したように、ワイヤ140と液滴Dとの間に切断がまさに起ころうとしていることが判定されると、パルス電流がオフにされるか、または大幅に低減される。これは多くの異なる方法で実現することができる。例えば、このような感知は、感知および電流制御部195内の予知回路が、ワイヤ140とワークピース115との間の電位差の変化率(dv/dt)、ワイヤ140およびワークピース115を通る電流の変化率(di/dt)、ワイヤ140とワークピース115との間の抵抗の変化率(dr/dt)、または、ワイヤ140およびワークピース115を通る電力の変化率(dp/dt)のうちの1つを測定することにより実現することができる。この変化率が所定の値を超過すると、感知および電流制御部195が、接触がまもなく失われようとしていることを正式に予測する。このような予知回路は、アーク溶接の技術分野においてよく知られており、本明細書でこれらの構造および機能を詳細に説明するまでもない。

0028

ワイヤ140の先端部が加熱により高度に溶融すると、先端部はワイヤ140からワークピース115上にピンチオフし始める。例えば、その時、電位差または電圧は、先端部がピンチオフするにつれて、ワイヤの先端部の断面が急速に減少するため増加する。したがって、このような変化率を測定することで、システム100は、いつ先端部がピンチオフされてワークピース115との接触が失われようとするのかを予測することができる。

0029

上記で説明したように、液滴の分離を感知すると、電流をオフにするか、または電源170によって大幅に電源を低減させることができる。例えば、いくつかの例示的な実施形態では、電流は、パルスのピーク電流値の95〜85%の範囲にあるように低減される。例示的な実施形態では、この電流の低減は、ワイヤとパドルとの間が分離される前に生じる。

0030

例えば、図5は、本願の付加製造プロセスに関連する一対の電圧波形510および電流波形520の例示的な実施形態を図示する。電圧波形510は、コンタクトチップ160とワークピース115との間で感知および電流制御部195によって測定される。電流波形520は、ワイヤ140およびワークピース115を介して、感知および電流制御部195によって測定される。

0031

ワイヤ140の先端部が、ワークピース115との接触をまもなく失おうとする時には常に、電圧波形510の変化率(すなわち、dv/dt)は、所定の閾値を超過し、ピンチオフがまもなく起ころうとしていることを示す(波形510の地点511における傾斜を参照されたい)。あるいは、溶接ワイヤ140およびワークピース115を通る電流の変化率(di/dt)、溶接ワイヤ140とワークピース115との間の抵抗の変化率(dr/dt)、または、溶接ワイヤ140およびワークピース115を通る電力の変化率(dp/dt)を代わりに用いて、ピンチオフがまもなく起ころうとしていることを表示することができる。このような変化率予測技法は、当技術分野ではよく知られている。その時点で、感知および電流制御部195は、ワイヤ140を通る電流の通電をオフにする(または少なくとも大幅に低減させる)ように電源170に命令することになる。

0032

ある時間間隔530の後に溶接ワイヤ140の先端部がワークピース115と再度良好に接触している(例えば、地点512で電圧レベルが再び約ゼロボルトに低下する)ことを感知および電流制御部195が感知すると、感知および電流制御部195は、抵抗溶接ワイヤ140を通る電流の通電を所定の出力電流レベル550の方に向けてランプアップ(ランプ525参照)させるように電源170に命令する。この時間間隔530は、所定の時間間隔とすることができる。本発明の一実施形態によれば、ランプアップは設定値540から始まっている。エネルギー源120およびワイヤ140がワークピース115に対して移動し、ワイヤ送給装置150によりワイヤ140がワークピース115の方に前進するのに伴って、このプロセスを繰り返して液滴を所望の場所で溶着させる。このようにして、ワイヤ140の先端部とワークピース115との間にアークが発生するのを防止する。加熱電流のランピングは、ピンチオフ状態またはアーク状態が存在していないのにそのような状態であるとして電圧の変化率が誤って解釈されるのを防止するのに役立つ。電流の大きな変化は、加熱回路内のインダクタンスが原因で誤った電圧の読み取りを起こしてしまう場合がある。電流が徐々にランプアップしている時には、インダクタンスの影響は低減される。

0033

前述したように、電源170は、溶接ワイヤ140に加熱電流を供給する。電流は、コンタクトチップ160からワイヤ140を通過し、次にワークピースへと流れる。この抵抗加熱電流によって、コンタクトチップ160とワークピースとの間のワイヤ140の温度は、使用されている溶接ワイヤ140の溶融温度になるまで、または溶融温度近くまで到達する。当然ながら、溶接ワイヤ140の溶融温度に到達するために必要な熱は、ワイヤ140のサイズおよび化学的構造に応じて変わる。したがって、製造中にワイヤの所望の温度に到達するための熱は、ワイヤ140に応じて変わる。以下でさらに説明するように、溶接ワイヤの所望の作業温度は、所望のワイヤ温度が製造中に維持されるようにシステムに入力されるデータとすることができる。いずれにせよ、ワイヤの温度は、ワイヤ140が液滴をパドルに溶着させることができるような温度でなければならない。

0034

本発明の例示的な実施形態では、電源170は、ワイヤ140の先端部の少なくとも一部をその溶融温度の90%以上の温度にさせる電流を供給する。例えば、溶融温度が華氏2,000度前後である溶接ワイヤ140を用いる場合、接触時のワイヤの温度は、華氏約1,800度である。当然ながら、それぞれの溶融温度および所望の作業温度は、少なくとも溶接ワイヤ140の合金組成、直径および送給速度によって変わってくることが分かる。さらなる例示的な実施形態では、ワイヤの一部がその溶融温度の95%以上のワイヤの温度で維持される。当然ながら、いくつかの実施形態では、ワイヤの先端部は、加熱電流によって、その溶融温度の少なくとも99%まで加熱される。このため、加熱された液滴が、レーザによって生成された溶融パドルと接触していると、パドルからの熱がワイヤ140に熱を加えることにより、ワイヤ140の端部で溶融した液滴を十分に生成することが可能になり、その結果液滴はパドルに密着し、ワイヤ140が引き抜かれる時にパドルとともに留まることができる。溶接ワイヤ140をその溶融温度近くの温度で、またはその溶融温度で維持することで、ワイヤ140は熱源/レーザ120により生成されるパドルの中に容易に溶融するか、または消費される。すなわち、ワイヤ140の温度は、ワイヤ140がパドルと接触する際にパドルの著しい急冷が生じない温度である。ワイヤ140が高温であるため、パドルと接触するとワイヤは急速に溶融する。他の例示的な実施形態では、その溶融温度の75%以上の温度までワイヤを加熱することができる。しかしながら、75%近くの温度まで加熱すると、液滴を十分に溶融させて移行させるために追加の加熱が必要になる可能性が高い。これについては、以下でさらに説明する。

0035

前述したように、いくつかの例示的な実施形態では、ワイヤ140をパドルの中に入れるだけで、ワイヤ140が十分に溶融し易くすることができる。しかしながら、他の例示的な実施形態では、加熱電流と、パドルと、ワイヤ140の一部に衝突するレーザビーム110と、を組み合わせることにより、ワイヤ140を完全に溶融することができる。すなわち、レーザビーム110によってワイヤ140を加熱/溶融し易くすることで、ビーム110がワイヤ140の加熱に寄与することが可能になる。しかしながら、溶接ワイヤ140の多くは、反射性を有し得る材料で構成されているため、反射型レーザを用いる場合には、表面の反射性が低下するような温度までワイヤ140を加熱して、ビーム110がワイヤ140の加熱/溶融に寄与できるようにするのがよい。この構成の例示的な実施形態では、ワイヤ140およびビーム110は、ワイヤ140がパドルに入る点で交差する。これは図6Aおよび図6Bに示されている。

0036

図6Aに示されるように、いくつかの例示的な実施形態では、ビーム110を用いて、ワークピース115上に液滴Dを溶着し易くすることができる。すなわち、ビーム110を用いて、ワイヤ140の先端部に熱を加えて溶融した液滴を生成することができる。このような実施形態では、電源からの加熱電流は、アーク発生レベルをかなり下回るレベルで保つことができることにより、アークが発生することがなく、しかも適切な溶滴移行を確実に実現することができる。このような実施形態では、ビームが液滴Dだけに衝突するように、ビームを向けることができる。あるいは、他の実施形態では、ビーム110は、ビームが少なくとも液滴の一部分および少なくともパドルの一部に衝突して、液滴Dを受けるパドルに熱を加え続けするように十分な大きさ、形状に形成、またはラスタされる。例示的な実施形態では、プロセスのこの段階の間のビーム110のエネルギー密度は通常、ビームがワークピース115上でパドルの生成に使用される場合のビームのエネルギー密度未満である。

0037

図6Bは、本発明の他の例示的な実施形態を図示し、ワイヤからの液滴の分離を支援するために、ビーム110がワイヤ140の液滴の真上にある。このような実施形態では、ワイヤ140が液滴の上方で細くなっていることが感知されるか、または判定されると、液滴Dとワイヤ140との間の結合部でビーム110がワイヤに向けられることにより、ビーム110がこの2つを分離し易くする。このような実施形態は、加熱電流を用いて分離を制御する必要がないので、アークの発生を予防する一助となる。いくつかの例示的な実施形態では、ビーム110は、最初にパドルを生成するのに用いられるものと同じレーザ120から得ることができる。しかしながら、他の実施形態では、やはり制御部195によって制御される第2の別個のレーザから図6Bのビームを放射することもまた可能である。このため、このような実施形態では、制御部および/または電源が液滴の形成または液滴Dの分離が今にも迫っていることを検出すると、ワイヤ140にレーザビームが向けられている間、電源170の出力電流を低減させて所望の分離を生じさせることができる。

0038

次に図7を参照すると、加熱システム700およびコンタクトチップアセンブリ707の例示的な実施形態が示されている。概して、本発明の実施形態は、本発明の趣旨または範囲から逸脱せずに、熱ワイヤ溶接システムまたは何らかの溶接システムに関して知られているコンタクトチップ160および抵抗加熱システムを利用することが可能であることに留意されたい。しかしながら、他の例示的な実施形態では、図7に示されるようなシステム700を利用することができる。このシステム700では、コンタクトチップアセンブリは、2つの導電部分701および703から構成される。これらの導電部分は互いに絶縁部分705によって電気的に絶縁され、絶縁部分は任意の誘電材料から作ることができる。当然ながら、他の実施形態では、チップ部分701および703が互いに電気的に絶縁されている限り、絶縁部分は存在しなくてもよい。システム700は、電源170とコンタクトチップ部701との間、電源170とワークピース115との間を行き来する電流経路切り換えスイッチング回路710もまた含む。いくつかの実施形態では、製造プロセス時にワイヤ140がワークピース115と接触していない間は、閾値温度でワイヤ140を維持することが望ましい場合がある。ワイヤ140が、(例えば、再度位置調整する間)ワークピース115と接触していなければ、電流がワイヤ140を通って流れないため、抵抗加熱は停止する。当然ながら、残留熱は依然存在することになるが、すぐに弱まる。本実施形態により、たとえワイヤ140がワークピース115と接触していなくても、ワイヤ140を連続的に加熱することが可能になる。図に示されるように、電源からの1つのリード線が、コンタクトチップアセンブリ707の上方部703に結合されている。作業中、ワイヤ140がワークピースと接触している時に、電流経路が上方部703からワイヤ140およびワークピースを通って電源170に戻るように(スイッチ710内の破線)スイッチ710が配置される。しかしながら、液滴Dがワイヤ140から分離して、ワークピース115との接触が分断されると、電流経路がコンタクトチップ部分703からコンタクトチップ部分701へ、そして電源170へと戻るようにスイッチ710が切り換えられる。これにより、少なくとも一部の加熱電流がワイヤを通過して、ある程度のバックグラウンド加熱レベルでワイヤを抵抗加熱し続けることが可能になる。このような構成であることにより、さらに急速に所望の溶着レベルにワイヤを加熱することができる。各液滴溶着の間に長い時間があり、その間にワイヤが冷えてしまうおそれがある場合には、とりわけこのケースに当てはまる。このため、例示的な実施形態では、電源170は、電流パルスまたは(本明細書で概して記載されるような)パルスを供給して、スイッチ710が、ワークピースを通る電流を方向付ける第1の位置(第1の電流経路)にある場合に、液滴を溶着する。次に、電源170は、バックグランド電流または加熱電流(例えば、定電流とすることができる)を供給して、スイッチが、コンタクトチップの両方の部分701/703を通る電流を方向付ける第2の位置(第2の電流経路)にある場合に、各溶滴移行の間もワイヤを加熱し続けるようにする。いくつかの実施形態では、それぞれの溶滴移行パルスの間でスイッチが切り換わることができる。一方、他の実施形態では、複数の溶滴移行パルスの後にスイッチが切り換わることができる。例示的な実施形態では、ワイヤを所望の、溶融温度でない、温度に保つレベルであるように、バックグラウンド/加熱電流レベルが選択される。温度が高すぎると、ワイヤをパドルに押し出すことが困難になるおそれがある。いくつかの例示的な実施形態では、バックグラウンド/加熱電流は、溶滴移行パルスの間に達したピーク電流レベルの10〜70%の範囲にある。

0039

なお、図7では、スイッチ710が電源170の外部に示されていることに留意されたい。しかしながら、単にわかり易くするためにこのように図示されており、スイッチは電源170の内部にあってもよい。あるいは、スイッチは、コンタクトチップアセンブリ707の内部にあってもまたよい。絶縁部分705は、任意の絶縁型材料から作ることができる。あるいは単に構成部分701と703との間を隔離する空隙とすることができる。スイッチは、(示されるように)制御部195によって制御するか、または所望の構成に応じて直接電源170によって制御することができる。

0040

他の例示的な実施形態では、先端707を入れる前にワイヤ140をあらかじめ加熱する、ワイヤ予備加熱装置をアセンブリ707の上流に配置することができる。例えば、予備加熱装置は、ワイヤ140を加熱するためにワイヤ140に電流が通電している必要のない誘導加熱装置とすることができる。当然ながら、抵抗加熱システムを使用することもまた可能である。この予備加熱装置を使用して、上述したような温度でワイヤを維持することができる。さらに、予備加熱を使用して、ワイヤ140を溶着させる前に、ワイヤからあらゆる望ましくない湿気を取り除くこともまた可能である(Tiを使用する場合には、これは特に重要である)。このような予備加熱システムは一般に知られており、詳細に説明するまでもない。予備加熱装置は、ワイヤがチップアセンブリ707に入る前に、所定の温度にワイヤ140を加熱するように設定することが可能であり、これにより、電源170からの電流を使用して、溶着プロセスを完了するのに十分な電流を送ることが可能になる。なお、予備加熱装置は、ワイヤ140を脆弱化させて、チップ707を介して適切にワイヤ140を押し出すことができるようなレベルまでワイヤ140を加熱しなければならないことに留意されたい。すなわち、ワイヤ140が熱すぎると、ワイヤは過度に可撓性になる場合があり、押し出された時にワイヤ140の反応性が損なわれる場合がある。

0041

図8Aは、図7のシステム700と共に使用することが可能な、例示的な製造電流波形800を図示する。図8Aでは、基本的な電流波形800が示され、基本的な電流波形は、2つの構成部分、すなわちパルス部分801と、バックグラウンド部分803と、を備える。パルス部分は、本明細書に記載されるような液滴を溶着するために使用される電流パルスから構成される。これらのパルスの間、電流はチップ部分703からワークピース115を通るように方向付けられている。しかしながら、バックグラウンド部分の間、電流は、チップ部分703から部分701に向けられて、ワイヤ140がワークピース115と接触していない時に、ワイヤ140を加熱する。当然ながら、図7に示されるように、コンタクトチップ部分701/703が正負電源端子端に接続されているのは、例示であり、所望のシステム設定および性能に基づいて、接続を逆にしてもよいことに留意されたい。前述したように、パルス801間のバックグラウンド電流レベル803を用いて、各液滴溶着の間にワイヤを持続した温度に保つ。本発明のいくつかの例示的な実施形態では、バックグラウンド電流は、ワイヤ140を、ワイヤ140の溶融温度の40〜90%の範囲の温度に保つ。他の例示的な実施形態では、電流803は、ワイヤ140を、ワイヤ140の溶融温度の50〜80%の範囲の温度に保つ。

0042

各パルス801間で常時バックグラウンド電流に切り換わることが好ましくないか、または必要でない場合があることにさらに留意されたい。液滴溶着の速度が速い間は、このことが特にあてはまる。すなわち、液滴溶着の速度が速い間、各液滴間でワイヤ140は高レベルの温度で維持されることになる。このため、いくつかの例示的な実施形態では、期間が終了した後にだけ、または各液滴パルス間の期間が閾値時間を超過する場合にだけ、(上述したような)バックグラウンド加熱電流への切り換えが起こる。例えば、いくつかの実施形態では、パルス間の時間が1秒を超過すれば、システム700は、上述したような切り換えおよびバックグラウンド加熱電流を使用することになる。すなわち、用いられた製作方法パルス周波数が、決定された閾値周波数を上回っていれば、上記切り換えを使用することになる。本発明の例示的な実施形態では、この閾値は、パルス間で0.5〜2.5秒の範囲にある。他の実施形態では、システム700は、(制御部195および/または電源170内部の)タイマを利用することができ、タイマは、パルス間の時間を監視し、この時間が閾値量を超過する場合には、上述した切り換えおよびバックグラウンド加熱電流を利用することになる。例えば、システム700が、パルス間の待ち時間閾値制限時間(例えば1秒)を超過していると判定する場合には、バックグラウンド加熱電流を利用して、ワイヤ140が所望の温度で保たれるようにする。このような実施形態は、設定閾値時間が終了した実施形態−すなわち、システム700がリアルタイムで制限時間が終了したと判定する実施形態において利用することができるか、または、制限時間の終了前に次のパルスが生じないとシステム700が予測する場合に、使用することができる。例えば、(ワークピース115および/またはワイヤ140の移動などの原因で)制限時間の終了前に次のパルスが生じないとシステム700(例えば制御部195)が判定すれば、システム700は、上述した切り換えおよびバックグラウンド加熱電流を直ちに開始することができる。本発明の例示的な実施形態では、この継続時間閾値は、0.5〜2.5秒の範囲にある。

0043

図8Bは、本発明の例示的な実施形態と共に使用して、本明細書に記載されるような液滴を溶着することができる例示的な波形を図示する。例示的な波形は、本発明の実施形態による液滴一滴の移行についてのものである。示されている各波形は、レーザ電源810、ワイヤ送給速度820、添加ワイヤ加熱電流830および電圧840についてのものである。なお、図示された波形は、例示的であることを意図しており、本発明の他の実施形態が、本明細書に図示、または説明された特徴とは異なる特徴を有する他の波形を使用することが可能であることを理解されたい。図に示されるように、溶滴移行サイクルは811から始まる。ここでレーザ電源がワークピースの方に向けられ、増加812を経てピークレーザ電源レベル813に到る。継続時間Tpの後に、レーザは、地点814でワークピース上にパドルを生成する。この地点で、ワイヤ送給装置は、パドルに向けて添加ワイヤを送り始める。地点814でパドルが生成された後に、ワイヤ送給速度は、増加821を経てピークワイヤ送給速度822に到る。本発明の例示的な実施形態では、ワイヤ送給速度は、ワイヤの先端部がパドル821’と接触するのとほぼ同時にそのピークレベル822に達する。しかしながら、他の例示的な実施形態では、ワイヤ送給速度は、ワイヤが接触する前にそのピークレベル822に達する場合がある。図に示されるように、ワイヤ送給プロセスが始まると同時に、開路電圧がワイヤ841に印加され、その結果、開路電圧は、ワイヤがパドルと接触する前のある地点でピーク電圧レベル842に達する。さらに、ワイヤがパドルと接触すると、加熱電流830が(地点831で)通電を開始し、電圧840は降下843を始める。電圧は、アーク検出電圧848未満であるレベル844まで降下する。このアーク検出電圧848を上回ると、おそらくアークが発生すると判定される。

0044

ワイヤがパドルと接触した後に、レーザ電源810、ワイヤ送給速度820および電流830は、期間Taの間それぞれのピークレベルで維持され、その間に、ワイヤの液滴がパドルの中に溶着される。溶着期間Taは、(例えば、タイマ回路を使用する)加熱電源によって制御された所定の期間の間とすることができるが、(地点815における)この溶着期間Taの終了後に、ワイヤ送給速度823と共にレーザ電源がランプダウン816する。加熱電流830は、期間Taの終了後の期間の間そのピークレベル833で維持される(最高地点834)一方で、レーザ電源およびワイヤ送給速度は減少している。これにより、ワイヤからの液滴の分離が促進される。液滴添加期間Taの後に、ワイヤ後退送給期間Trが始まる。電流830が、(地点834から始まる)そのランプダウン835を開始した後に、ワイヤ送給速度が(地点827で)ゼロまで減少し、ワイヤ送給装置が制御されて、ピーク後退送給速度825でワイヤの後退送給824を行う。また、後退送給期間中に、電流830は、ワイヤがパドルから引き抜かれる際にワイヤのバーンバック(burnback)を発生させるために使用されるバーンバック電流レベル836まで減少する。ワイヤ後退送給期間Trの間、電流830は、電圧が地点845でアーク検出電圧レベル848に達するか、または通過するまでバーンバック電流レベル836で維持される。これは、ワイヤがパドルから分離することにより(電流が低下し、電圧が上昇することが原因で)起こる。電圧レベル848に到達すると、アーク抑制ルーチン847が開始され、アークの発生を防止する。この間に、電圧はピークレベル846まで上昇する。

0045

アーク検出電圧レベル848は、後退送給するワイヤとワークピースとの間にアークが発生することがすることがないようにするために電源および/またはシステム制御部によって使用される、所定のレベルである。アーク検出電圧レベル848は、様々なユーザ入力に基づいて、電源および/またはシステム制御部によって設定される。様々なユーザ入力には、ワイヤの種類、ワイヤの直径、ワークピース材料の種類、1インチ当たりの液滴流入、1分当たりの液滴流入などを含むが、これらに限定されない。

0046

アーク検出電圧レベル848に(地点845で)到達すると、電流830が、電源(837)によって遮断され、ワイヤの後退送給が停止され(826)、溶滴移行サイクルは地点817で終了する。この時、電流830およびワイヤ送給速度820は、それぞれ0に到達する。図示された実施形態では、レーザ電源810が地点817でのサイクルの終了時に遮断されていることもまた示されている。他の例示的な実施形態では、レーザ電源810は、(地点845で)アーク電圧閾値848に到達した時に遮断される。その後、このサイクルが複数の液滴溶着に対して繰り返される。

0047

いくつかの例示的な実施形態では、(図8Bに示されたような)溶滴移行サイクル間で、(図示しない)レーザ電源パルスを開始して、溶滴移行の合間にワークピースの平滑化、あるいは、ワークピースへのエネルギーの追加を促進することができる。例えば、レーザ電源パルスは、各溶滴移行サイクルの合間に開始することができる。あるいは他の実施形態では、n回の溶滴移行サイクルの後に、必要に応じてレーザ電源パルスを開始することができる。

0048

図9は、本発明の別の例示的なシステム900を図示する。システム900は、バックグラウンド電源170’およびパルス電源170を備える。このシステムは、バックグラウンド加熱電流が別個の電源170’によって給電される以外は、上述の動作に極めて類似した動作を行う。このため、いくつかの実施形態では、バックグラウンド電源170’は、製造時に一定の加熱電流を供給することが可能であり、上述の切り換えを行う必要はない。追加の加熱/電流が電源170’によって供給されているために、パルス電源170がそのピーク出力電流を低減させることが可能である以外は、本明細書の他の箇所で説明したように動作する。このような実施形態では、パルス電源170の制御または精度のレベルを向上させることができる。すなわち、電源170に対する電流の需要が少なくなるので、パルス電源170は、より急速にそのピークパルスレベルに達することができる。当然ながら、電流の減少において同じことがあてはまる。電源170/170’はそれぞれ、制御部195によって制御することができるか、または、一般に知られている主従関係に構成することができる。さらに、わかり易くするためにこれらの電源は別々に示されているが、本発明の趣旨または範囲から逸脱せずに、それらを単一ユニット内に収容することができる。

0049

図9には、導電部分901および905、ならびに絶縁部分903を有する、別のコンタクトチップアセンブリ900もまた示されている。本実施形態では、導電部分905は、加熱電流が可能な限りワイヤ140の露出した先端部の近くに送られるように構成されている。このような構成は、ワイヤの加熱が可能な限り先端部の近くで維持されること確実にし、バックグラウンド加熱の効果を最適化するのに役立つ。さらなる実施形態では、ワイヤ140の先端部の、コンタクトチップ910からの突出しXが、最小距離に保たれる。突出しXが過度に長く維持されていると、バックグラウンド加熱電流からの加熱効果に悪影響を及ぼす場合がある。このため、いくつかの例示的な実施形態では、突出しXは、0.1〜0.5インチの範囲に維持される。他の例示的な実施形態では、突出しは、0.2〜0.4インチの範囲に維持される。さらに、追加の例示的な実施形態では、液滴パルス間で、バックグラウンド加熱からさらなる利点を得るために、ワイヤ140を完全に、またはほぼ完全にコンタクトチップ900の中に後退送給させて、突出しXが0〜0.15インチの範囲にあるようにする。このような実施形態は、先端部付近ではないワイヤ140の他の部分を加熱し過ぎずに、ワイヤ140の先端部を所望のバックグラウンド加熱温度で保つことができる。他の例示的な実施形態では、特に直径が大きい消耗部品を使用する場合には、突出し距離を大きくすることができる。例えば、いくつかの例示的な実施形態では、突出し距離は、0.75〜2インチの範囲とすることができる。当然ながら、他のいくつかの実施形態では、さらに長い突出しを用いることができる。

0050

次に図10を参照すると、別の例示的なシステム1000が図示されており、ここでは、コンタクトチップアセンブリ1010は、2つ以上のワイヤ140/140’をワークピース115に送ることができる。付加製造作業によっては、製造部分が異なれば、異なるワイヤを利用することが望ましい場合がある。システム1000により、何が製造に所望されるのかに応じて、異なるワイヤ間で切り換えが可能になる。示されていないが、各ワイヤ140/140’は、各自のワイヤ送給装置に結合されて、製造時に必要に応じて、それぞれのワイヤ140/140’を前進、後退させることができる。このため、製造時、制御部195は、適切なワイヤが製造に使用されるように、コンタクトチップアセンブリ1010を位置調整することができる。例えば、第1の特性を有する第1の消耗部品140を用いて基部を構築し、次に、こうした基部に、異なる特性を有するワイヤ140’を用いて作られた層を追加して、所望の製造結果を実現することが望ましい場合がある。例えば、ワイヤ140/140’は、所望の製造パラメータに基づいて、異なるサイズ、形状、および/または組成を有することができる。コンタクトチップアセンブリは、2つのワイヤ140/140’だけを有して示されているが、本発明の実施形態は、1つのコンタクトチップアセンブリ、または、可変の任意の数の消耗部品を供給する別個のコンタクトチップを利用することが可能であることにもまた留意されたい。本発明の実施形態は、この点に関して限定されていない。

0051

さらに、図10のコンタクトチップアセンブリ1010は、ワイヤ140/140’が互いに絶縁されていないように示されている。このような実施形態では、溶着のために、適切なワイヤをワークピース115の方に前進させ、その結果、電源170からの電流がそのワイヤを通って方向付けられることになり、溶着が生じる。ワイヤを変更する時は、もう一方のワイヤを後退送給しながら別のワイヤを前進させ、電流経路が次に、この別のワイヤを通るようにする。他の例示的な実施形態では、ワイヤ140/140’が互いに電気的に絶縁されるように、コンタクトチップアセンブリ1010を構築することができる。このような実施形態では、図7に関して説明した実施形態と同様に、切り換えを利用することができる。いくつかの例示的な実施形態では、(図10には示されていない)レーザビームは、2つのワイヤ間で走査されることにより、ワイヤ140と140’との間のパドルのエネルギー分布に作用するか、またはエネルギー分布を変えることができる。

0052

ワークピース115に対するコンタクトチップアセンブリ1010の位置調整および移動は、様々な手段によって達成することができる。具体的には、本発明の趣旨または範囲から逸脱せずに、任意の既知のロボットシステムまたは動作制御システムを使用することができる。すなわち、適切なワイヤ140/140’は、ロボットシステムを含む任意の既知の手段または方法を用いて、位置調整することができ、制御部195によって制御することができる。例えば、コンタクトチップアセンブリ1010は、3つ以上の異なるワイヤを含むことができ、回転、位置調整して適切な工具が利用可能な、既知のコンピュータ数値制御CNC:computer numerical control)加工ヘッドと同様に構築、利用することができる。本発明の実施形態では、このようなシステムおよび制御論理を用いて、所望のワイヤの所望の位置調整を提供することができる。

0053

本発明の実施形態と共に使用されるワイヤ(または消耗部品)は、個々の製造作業の必要に応じたサイズおよびを化学的構造有するものとする。ワイヤは、典型的には円形断面を有するが、他の実施形態によっては、このように限定されない。他の例示的な実施形態は、製造方法および製造プロセスに基づいて非円形断面を有するワイヤを利用することができる。例えば、ワイヤは、多角形状、卵形状、または楕円形状を有することが可能であり、所望の製造基準を実現することができる。円形断面のワイヤは、0.010〜0.045インチの範囲の直径を有することができる。当然ながら、必要があれば、より大きな範囲(例えば、最大5mmまで)を使用することが可能であるが、直径が大きくなるほど、液滴制御が困難になる場合がある。本明細書に記載のレーザおよび加熱制御法を使用しているため、本発明の実施形態は、極めて精密な製造を提供することができる。このことは、例えば0.010〜0.020インチの範囲といったような小径のワイヤを用いる実施形態に特にあてはまる。このような小径を使用することによって、1インチ当たりの液滴数(DPI)比を大きくすることができ、これにより、精度が高く、かつ緻密な製造を提供することができる。ワイヤの化学的構造は、製造される構成要素に対して望まれる特性を提供するために選択されるものとする。さらに、用いられるワイヤ(複数可)は、ソリッドワイヤ構成または金属芯ワイヤ構成のいずれかを有することができる。有芯ワイヤを使用して、複合材料構造を生成することができる。例えば、アルミニウムシースおよび酸化アルミニウム磁心を有する有芯ワイヤを使用することができる。

0054

アークが、本明細書に記載のプロセスと共に使用されないので、本発明の用途のほとんどは、いかなる種類のシールドガスも必要としないことにさらに留意されたい。しかしながら、用途によっては、酸化防止、またはその他の目的で、シールドガスを使用することが望ましい場合がある。

0055

図11は、本発明のさらに別の例示的な実施形態を図示する。図11は、図1に示された実施形態と同様の一実施形態を示す。しかしながら、わかり易くするために、ある特定の構成要素および接続が図示されていない。図1は、熱センサ1110を用いてワイヤ140の温度を監視するシステム1100を図示する。熱センサ1110は、ワイヤ140の温度を検出することが可能な任意の既知の種類のものとすることができる。センサ1110は、ワイヤ140と接触するか、またはチップ160に結合されることにより、ワイヤの温度を検出することができる。本発明のさらなる例示的な実施形態では、センサ1110は、レーザまたは赤外線ビームを用いる種類のものであり、ワイヤ140に接触せずに溶接ワイヤの直径などの小型対象物の温度を検出することができる。このような実施形態では、ワイヤ140の温度がワイヤ140の突出しのどこかの地点、すなわちチップ160の端部とパドルとの間のどこかの地点で検出可能であるように、センサ1110が配置されている。また、ワイヤ140用のセンサ1110がパドルの温度を感知しないようにセンサ1110を配置するのがよい。

0056

センサ1110は、(図1に関連して説明した)感知および制御ユニット195に結合されることで、温度フィードバック情報を電源170および/またはレーザ電源130に提供することができ、これにより、システム1100の制御を最適化することができる。例えば、少なくともセンサ1110からのフィードバックに基づいて、電源170の電力または電流出力を調節することができる。すなわち、本発明の一実施形態では、ユーザが(所与の製造作業および/またはワイヤ140に対する)所望の温度設定を入力するか、または、感知および制御ユニット195が、他のユーザ入力データ電極の種類など)に基づいて所望の温度を設定することができる。それから、感知および制御ユニット195が、少なくとも電源170を制御して、こうした所望の温度を維持することになる。

0057

このような実施形態では、ワイヤがパドルに入る前にレーザビーム110がワイヤ140に衝突することによって起こり得るワイヤ140の加熱の原因を説明することが可能である。本発明の実施形態では、ワイヤ140の温度は、電源170を介してワイヤ140内の電流を制御することによってのみ制御することできる。しかしながら、上述したように、他の実施形態では、ワイヤ140の加熱の少なくとも一部は、ワイヤ140の少なくとも一部に当たるレーザビーム110から得ることができる。そのため、電源170からの電流または電力だけでは、ワイヤ140の温度を表さない場合がある。そのため、センサ1110を利用することで、電源170および/またはレーザ電源130の制御を通じたワイヤ140の温度を調整し易くすることができる。

0058

図11にも示されている)さらなる例示的な実施形態では、温度センサ1120は、パドルの温度を感知するように方向付けされている。この実施形態では、パドルの温度もまた、感知および制御ユニット195に結びつけられる。しかしながら、別の例示的な実施形態では、センサ1120をレーザ電源130に直接結合することができる。センサ1120からのフィードバックを用いて、レーザ電源130/レーザ120からの出力を制御する。すなわち、レーザビーム110のエネルギー密度を変更して、所望のパドル温度が確実に得られるようにすることができる。

0059

本発明のさらなる例示的な実施形態では、センサ1120は、パドルの方に向けるのではなく、パドルに隣接するワークピース115の領域の方に向けることができる。具体的には、溶着箇所に隣接するワークピース115への入熱を確実に最小限に抑えるようにすることが望ましい場合がある。この温度感応領域を監視するようにセンサ1120を設置することにより、溶着箇所付近で閾値温度を超過しないようにすることができる。例えば、センサ1120は、ワークピース温度を監視し、感知した温度に基づいてビーム110のエネルギー密度を低減することができる。このような構成にすれば、溶着箇所付近の入熱が所望の閾値を確実に超過しないようになる。このような実施形態は、ワークピースへの入熱が重要である精密製造作業において用いることができる。

0060

本発明の別の例示的な実施形態では、感知および制御ユニット195を、ワイヤ送給機構(図示していないが、図1の150参照)に結合された送給力(feed force)検出ユニット(図示せず)に結合することができる。送給力検出ユニットは既知であり、ワイヤ140がワークピース115に送給される時にワイヤ140に加えられる送給力を検出する。例えば、このような検出ユニットは、ワイヤ送給装置150のワイヤ送給モータによって加えられるトルクを、したがってワイヤ140の先端部とワークピース115との間の接触に関連するパラメータを監視することができる。このように、電流および/または電圧の監視と結合させて用いて、パドルとの接触後に、ワイヤの送給を停止して、液滴Dの分離を可能にすることができる。当然ながら、すでに示されたように、制御部195は、電圧および/または電流の感知だけを用いて、ワイヤ140とパドルとの間の接触を検出することが可能であり、接触時に必要があれば、この情報だけを用いてワイヤの送給を停止することができる。

0061

さらに例示的な実施形態では、センサ1120を使用して、ワークピース上のパドル領域のサイズを検出することができる。このような実施形態では、センサ1120は、熱センサまたは視覚センサのいずれかとすることができ、センサ1120を使用してパドルの縁端を監視し、パドルのサイズおよび/または位置を監視することができる。次に、制御部195は、検出されたパドルの情報を用いて、上述したようなシステムの動作を制御する。

0062

以下では、本発明の様々な実施形態と共に使用することが可能な加熱パルス電流の制御に関してさらに説明する。前述したように、ワイヤ140の先端部が、パドル/ワークピース115と接触している時、これら2つの間の電圧は、0ボルト、または0ボルト付近にある場合がある。しかしながら、本発明の他の例示的な実施形態では、アークを発生することなく0ボルトを上回る電圧レベルが得られるようなレベルで電流を供給することが可能である。より高い電流値を利用することで、より速い速度で、ワイヤ140を高温に、すなわち電極の溶融温度に近い温度に到達させることが可能である。これにより、製造プロセスをより速く進めることができる。本発明の例示的な実施形態では、電源170は、電圧を監視し、電圧が0ボルトを多少上回る電圧値に達するか、または近づいたときに、電源170は、アークが発生することがないようにワイヤ140への電流の通電を停止する。電圧の閾値レベルは、少なくとも部分的に、使用するワイヤ140の種類により通常変化する。例えば、本発明のいくつかの例示的な実施形態では、閾値電圧レベルは6ボルト以下である。別の例示的な実施形態では、閾値レベルは9ボルト以下である。さらなる例示的な実施形態では、閾値レベルは14ボルト以下であり、追加の例示的な実施形態では、閾値レベルは16ボルト以下である。例えば、軟鋼のワイヤを用いる場合、電圧の閾値レベルは低いタイプのものになる一方、ステンレス鋼製造用のワイヤは、アークが発生する前に高い電圧を処理することができる。このため、このようなシステムは電圧を監視し、電圧を電圧設定値と比較することにより加熱電流を制御することで、電圧が電圧設定値を超過しているか、または超過すると予測される場合に、電流を遮断するか、または低減させることができる。

0063

さらなる例示的な実施形態では、上述のように電圧レベルを閾値よりも低く維持するのではなく、電圧を作業範囲で維持する。そのような実施形態では、ワイヤをその溶融温度で、またはその溶融温度近くで維持するのに十分な高電流を確保する最小量を上回るが、電圧レベル未満で電圧を維持することにより、アークが発生しないようにすることが望ましい。例えば、電圧を1〜16ボルトの範囲に維持することができる。さらなる例示的な実施形態では、電圧が6〜9ボルトの範囲に維持される。別の例では、電圧は12〜16ボルトの間で維持することができる。当然ながら、所望の作業範囲は、製造作業に用いるワイヤ140の影響を受け、その結果、少なくとも部分的に、使用するワイヤまたは使用するワイヤの特徴に基づいて、作業に用いられる範囲(または閾値)が選択される場合がある。そのような範囲を用いる際に、範囲の下限は、ワイヤがパドル内で十分に溶着し得る電圧に設定され、範囲の上限はアークの発生が回避されるような電圧に設定される。

0064

前述したように、電圧が所望の閾値電圧を超過すると、電源170により加熱電流が遮断され、アークが発生しないようにする。このため、このような実施形態では、電圧閾値に達して、次にアークの発生を防ぐために電流が遮断または低減されるまで、所定の、または選択されたランプレート(または複数のランプレート)に基づいて電流を駆動することができる。

0065

上述した多くの実施形態では、電源170は、上述したように電圧を監視し、維持するために用いられる回路を含む。そのような種類の回路の構築は、当業者には既知である。しかしながら、従来、そのような回路は、アーク溶接に対するある特定の閾値を上回る電圧を維持するために使用されてきた。

0066

前述したように、電源170によって加熱電流を監視および/または調整することもまた可能である。代替的な選択肢として、電圧、電力または電圧特性/アンペア特性の何らかのレベルを監視することに加えて、これを行うことができる。すなわち、パドル内で適切に溶着されるのに適した温度でワイヤ140が確実に維持されるレベルであるが、それでもアーク発生電流レベル未満である所望のレベルで、電流を駆動するか、または維持することができる。例えば、そのような実施形態では、電圧および/または電流は、いずれか一方または両方が確実に、特定の範囲内にあるか、または所望の閾値未満であるように監視される。次に、電源170は、アークは発生しないが、所望の作業パラメータが確実に維持されるように、供給される電流を調整する。

0067

本発明のさらなる例示的な実施形態では、電源170によって加熱電力(V×I)を監視および調整することもまた可能である。具体的には、このような実施形態では、加熱電力のための電圧および電流が、所望のレベルで、または所望の範囲内に維持されるように監視される。このため、電源はワイヤに対する電圧または電流を調整するだけではなく電流および電圧の両方を調整することもできる。このような実施形態では、ワイヤに対する加熱電力は、上限閾値レベル、または最適な作業範囲内に設定できることにより、(電圧に関して上述した実施形態と同様に)電力が閾値レベル未満か、または所望の範囲内に維持されることになる。ここでも、閾値または範囲設定は、ワイヤの特徴および遂行中の製造に基づくことになり、少なくも部分的に、選択された溶接ワイヤに基づく場合がある。例えば、直径が0.045”の軟鋼電極に対する最適な電力設定は、1950〜2,050ワットの範囲であると決定することができる。電源は、電力がこの作業範囲内で駆動するように、電圧および電流を調整することになる。同様に、電力閾値が2,000ワットに設定されている場合、電源は、電力レベルがこの閾値を超過しないが、この閾値近くにあるように、電圧および電流を調整することになる。

0068

本発明のさらなる例示的な実施形態では、電源170は、加熱電圧の変化率(dv/dt)、電流の変化率(di/dv)、および/または電力の変化率(dp/dt)を監視する回路を含む。このような回路は、予知回路と呼ばれることが多く、その全体的な構造は既知である。このような実施形態では、電圧、電流および/または電力の変化率は、変化率がある特定の閾値を超過すれば、ワイヤ140への加熱電流をオフにするように監視される。

0069

本発明の他の例示的な実施形態では、抵抗の変化(dr/dt)もまた監視される。このような実施形態では、ワイヤにおけるコンタクトチップとパドルとの間の抵抗が監視される。前述したように、ワイヤが加熱されるにつれて、ワイヤは細くなり、これにより、アークが発生し易くなり、その期間中は、ワイヤの抵抗が急激に増加する。この増加が検出されると、本明細書に記載したように、電源の出力をオフにしてアークが発生しないようにする。実施形態では、電圧、電流またはその両方が調整され、ワイヤの抵抗が確実に所望のレベルで維持されるようにする。

0070

図12は、ワイヤ140に加熱電流を供給するために使用可能な、例示的なシステム1200を図示する。(わかり易くするために、レーザシステムが示されていないことに留意されたい)。電源1210(図1に170として示された電源と同様の種類とすることができる)を有するシステム1200が図示されている。電源1210は、インバータ型電源などの、既知の溶接/加熱電源構造とすることができる。このような電源のデザイン、動作および構造は既知であるため、本明細書ではそれらについて詳述しない。電源1210はユーザ入力部1220を含む。ユーザ入力部1220は、限定されないが、ワイヤの種類、ワイヤの直径、所望の電力レベル、所望のワイヤ温度、電圧および/または電流レベルを含むデータをユーザが入力できるようにする。当然ながら、必要に応じて他の入力パラメータを用いることができる。ユーザインタフェース1220は、CPU/制御部1230に結合されている。CPU/制御部1230は、ユーザ入力データを受信し、この情報を用いて電力モジュール1250に必要な動作設定値または範囲を生成する。電力モジュール1250は、インバータまたはトランス型モジュールを含む任意の既知の種類または構造のものとすることができる。ユーザ入力部1220などのこれらの構成要素のいくつかは、制御部195上に見ることができることに留意されたい。

0071

CPU/制御部1230は、ルックアップテーブルの使用を含む様々な方法で所望の作業パラメータを決定することができる。このような実施形態では、CPU/制御部1230は、入力データ、例えば、ワイヤの直径およびワイヤの種類を用いて、(ワイヤ140を適切に加熱するための)出力に対する所望の電流レベル、および、閾値電圧または電力レベル(または電圧もしくは電力の許容可能な動作範囲)を決定する。これは、ワイヤ140を適切な温度に加熱するために必要な電流が、少なくとも入力パラメータに基づくことになるからである。すなわち、アルミニウムワイヤ140は、軟鋼電極よりも溶融温度が低いため、ワイヤ140を溶融するために必要な電流/電力が少ない場合がある。加えて、直径が小さいワイヤ140は、直径が大きいワイヤよりも必要な電流/電力が少なくなる。また、製造速度が(したがって溶着速度もまた)上昇するにつれて、ワイヤの溶融に必要な電流/電力レベルが高くなる場合がある。

0072

同様に、CPU/制御部1230によって入力データを使用して、作業の電圧/電力閾値および/または範囲(例えば、電力、電流および/または電圧)を決定することにより、アークの発生が回避されるようになる。例えば、直径が0.045インチの軟鋼電極の電圧範囲設定は6〜9ボルトとすることができ、この場合電力モジュール1250は、6〜9ボルトの間の電圧を維持するように駆動される。このような実施形態では、電流、電圧および/または電力は、電極を適切に加熱するのに電流/電力が十分に高いことを保証する最低値である6ボルトを維持し、アークが発生せず、かつ、ワイヤ140の溶融温度を超過しないことを保証する9ボルト以下で電圧を保つように駆動される。当然ながら、必要に応じて、CPU/制御部1230により電圧、電流、電力または抵抗率変化などの他の設定値パラメータを設定してもまたよい。

0073

図に示されるように、電源1210の正極端子1221は、システムのコンタクトチップ160に結合され、電源の負極端子は、ワークピースWに結合されている。このため、加熱電流は、正極端子1221を介してワイヤ140に供給され、負極端子1222を介して戻る。このような構成は、一般に知られている。

0074

フィードバック感知リード線1223もまた電源1210に結合されている。このフィードバック感知リード線は、電圧を監視し、検出された電圧を電圧検出回路1240に送ることができる。電圧検出回路1240は、検出された電圧および/または検出された電圧の変化率をCPU/制御部1230に通信し、CPU/制御部1230は、それに応じてモジュール1250の動作を制御する。例えば、検出された電圧が所望の作業範囲よりも低い場合、CPU/制御部1230は、モジュール1250に、検出された電圧が所望の作業範囲内になるまで、その出力(電流、電圧および/または電力)を高めるように指示する。同様に、検出された電圧が所望の閾値以上である場合には、CPU/制御部1230は、モジュール1250にチップ160への電流の通電を遮断するように指示することにより、アークが発生しないようにする。電圧が所望の閾値未満に低下している場合には、CPU/制御部1230は、モジュール1250に電流もしくは電圧、またはその両方を供給するように指示して、製造プロセスを継続するようにする。当然ながら、CPU/制御部1230は、モジュール1250に所望の電力レベルを維持、または供給するように指示することもまた可能である。当然ながら、同様の電流検出回路を利用することができるが、わかり易くするために図示していない。このような検出回路は、一般に知られている。

0075

なお、検出回路1240およびCPU/制御部1230は、図1に示される制御部195と同様の構造および動作を有する場合があることに留意されたい。本発明の例示的な実施形態では、サンプリング検出速度は少なくとも10KHzである。他の例示的な実施形態では、検出/サンプリング速度は、100〜200KHzの範囲にある。

0076

図1および図11のそれぞれにおいては、わかり易くするために、レーザ電源130、電源170、および、感知および制御ユニット195を別々に示している。しかしながら、本発明の実施形態では、これらの構成要素を単一のシステムに組み込むことができる。本発明の態様では、上記で個別に説明した構成要素が、別個の物理的ユニットまたはスタンドアローン構造として維持されている必要はない。

0077

上述したいくつかの例示的な実施形態では、クラッド法と上述したような液滴溶着とを組み合わせるようなやり方で、本システムを使用することができる。すなわち、ワークピースを構築する間、例えば、支持基板作製時などでは必ずしも精度の高い構造は必要ではない。この構築段階の間、熱ワイヤクラッドプロセスを使用することができる。このようなプロセス(およびシステム)が、米国特許出願第13/212,025号明細書に記載されており、この特許出願の内容は、参照により本明細書に全体的に組み込まれる。より具体的には、この特許出願は、クラッド法またはその他の種類の肉盛り作業において熱ワイヤシステムを用いて材料を溶着するために使用されるシステム、使用方法、制御法などについて該特許出願明細書に記載された程度まで完全に本明細書に組込まれる。その後、ワークピースを構築するために、より精密な溶着法が所望される時に、制御部195が、上述したような液滴溶着方法に切り換える。制御部195は、本明細書に記載されたシステムを制御して、必要に応じて液滴溶着およびクラッド法溶着プロセスを利用して所望の構造を実現することができる。

0078

上述した実施形態は、高速液滴溶着を実現することができる。例えば、本発明の実施形態は、10〜200Hzの範囲の液滴溶着を実現することができる。当然ながら、作業パラメータに応じて他の範囲を実現することができる。いくつかの実施形態では、液滴溶着周波数は、一部の作業パラメータによっては、200Hzを超える場合がある。例えば、直径が大きいワイヤは、通常200Hz未満の溶着周波数を使用するが、一方、0.010〜0.020インチの範囲にあるような、直径が小さいワイヤは、より速い周波数を実現することができる。液滴溶着周波数に影響を及ぼす他の要因には、レーザ電源、ワークピースのサイズおよび形状、ワイヤのサイズ、ワイヤの種類、移動速度などが含まれる。

0079

コンピュータに結合されたユーザインタフェースは、制御部195を含む本明細書に記載されるシステムおよび方法、または、本明細書に記載されるシステムを制御するため、および/または動作させるために使用される同様のシステムを支援する1つの可能なハードウェア構成を説明する。本発明の様々な態様についての追加的な状況を提供するために、以下の記述は、本発明の様々な態様が実装され得る適切なコンピュータ環境簡潔な、一般的な説明を提供することを意図するものである。当業者であれば、他のプログラムモジュールと組み合わせて、および/またはハードウェアソフトウェアとの組み合わせとして、本発明を実装することもまた可能であることがわかる。概して、プログラムモジュールは、特定のタスクを実行するか、または特定の抽象データ型を実装するルーチン、プログラムコンポーネントデータ構造などを含む。

0080

さらに、当業者は、本発明の方法が、シングルプロセッサまたはマルチプロセッサコンピュータシステムミニコンピュータメインフレームコンピュータだけでなく、パーソナルコンピュータハンドヘルドコンピュータ装置マイクロプロセッサベースの、またはプログラム可能家庭用電化製品などを含む他のコンピュータシステム構成と共に実践できることを理解するであろう。各コンピュータは、1つ以上の関連装置に動作可能に結合することができる。本発明の説明された態様は、分散コンピュータ環境で実践することもまた可能である。そこでは、ある特定のタスクが、通信ネットワークを介してリンクされたリモート処理装置によって実行される。分散コンピュータ環境では、プログラムモジュールは、ローカルメモリ記憶装置およびリモートメモリ記憶装置のいずれにも配置することができる。

0081

制御部195は、コンピュータを含む本発明の様々な態様を実装するための例示的な環境を利用することができ、コンピュータは、処理装置システムメモリおよびシステムバスを含む。システムバスは、システムメモリを含むがこれに限定されないシステムコンポーネントを処理装置に結合する。処理装置は、市販の様々なプロセッサのいずれであってよい。デュアルマイクロプロセッサおよび他のマルチプロセッサアーキテクチャを処理装置として用いることもまた可能である。

0082

システムバスは、メモリバスまたはメモリ制御部、周辺バス、および市販の様々なバスアーキテクチャのいずれかを使用するローカルバスを含めた、複数の種類のバス構造のいずれかとすることができる。システムメモリは、読み取り専用メモリ(ROM)およびランダムアクセスメモリ(RAM)を含むことができる。起動中などにコンピュータ内の要素同士の間で情報を転送するのに役立つ基本ルーチンを含む基本入力/出力システム(BIOS)が、ROMに格納されている。

0083

制御部195は、例えばリムーバブルディスクからの読み取り、またはリムーバブルディスクへの書き込みのためのハードディスクドライブや、磁気ディスクドライブ、例えばCD−ROMディスクの読み取り、または他の光媒体からの読み取り、もしくは他の光媒体への書き込みための光ディスクドライブをさらに含むことができる。制御部195は、少なくとも何らかの形態のコンピュータ可読媒体を含むことができる。コンピュータ可読媒体は、コンピュータによってアクセスできる任意の利用可能な媒体とすることができる。例として、制限するものではないが、コンピュータ可読媒体は、コンピュータ記憶媒体および通信媒体を備えてもよい。コンピュータ記憶媒体は、コンピュータ可読命令、データ構造、プログラムモジュールまたは他のデータなどの情報を格納するための任意の方法または技術で実装された、揮発性および不揮発性の、リムーバブルおよび非リムーバブル媒体を含む。コンピュータ記憶媒体は、RAM、ROM、EEPROMフラッシュメモリまたは他のメモリ技術、CD−ROM、デジタル多用途ディスク(DVD)もしくは他の磁気記憶装置、または所望の情報を格納するために使用され、かつ、制御部195に結合されたユーザインタフェースによってアクセスできる他の任意の媒体を含むが、これらに限定されるものではない。

0084

通信媒体は、典型的には、コンピュータ可読命令、データ構造、プログラムモジュール、または搬送波もしくは他の送信機構などの変調されたデータ信号内の他のデータを具現化し、任意の情報配信媒体を含む。用語「変調されたデータ信号」は、1つ以上のその特徴のセットを有する信号や、信号内の情報を符号化するようなやり方で変更された信号を意味する。例として、限定するものないが、通信媒体は、有線ネットワークなどの有線媒体、または直接的な有線接続や、音響、RF、赤外線および他の無線媒体などの無線媒体を含む。上記媒体の任意の組み合わせもまた、コンピュータ可読媒体の範囲内に含まれるべきである。

0085

複数のプログラムモジュールが、オペレーティングシステム、1つ以上のアプリケーションプログラム、他のプログラムモジュール、およびプログラムデータを含むような、ドライブおよびRAMに格納されてもよい。コンピュータのオペレーティングシステム、またはユーザインタフェース300は、市販の多数のオペレーティングシステムのいずれかとすることができる。

0086

さらに、ユーザは、キーボードや、マウスなどのポインティングデバイスを介してコンピュータにコマンドおよび情報を入力することができる。他の入力装置は、マイクロフォン、IRリモートコントロールトラックボールペン入力装置ジョイスティックゲームパッドデジタル化タブレット衛星放送受信アンテナスキャナなどを含んでもよい。これらの入力装置および他の入力装置は、大抵の場合、シリアルポートインタフェースを介して処理装置に接続される。シリアルポートインタフェースは、システムバスに結合されるが、パラレルポート、ゲームポートユニバーサルシリアルバス(USB)、IRインタフェース、および/または様々な無線技術などの他のインタフェースによって接続することができる。モニタまたは他の種類のディスプレイ装置は、ビデオアダプタなどのインタフェースを介してシステムバスに接続してもよい。視覚的出力は、リモートデスクトッププロトコル、VNC、X−Windowシステムなどのようなリモートディスプレイネットワークプロトコルを介して達成することもまた可能である。視覚的出力に加えて、コンピュータは、通常、スピーカプリンタなどのような他の周辺出力装置を含む。

0087

ディスプレイは、制御部195に結合されて処理装置から電子的に受信したデータを提示する、ユーザインタフェースと共に用いることができる。例えば、ディスプレイは、LCD、プラズマ、CRTなどの、データを電子的に提示するモニタとすることができる。代替的にまたは追加的に、ディスプレイは、プリンタ、ファクシミリプロッタなどのようなハードコピー形式で受信したデータを提示することができる。ディスプレイは、任意のカラーでデータを提示することができ、かつ、任意の無線またはハードワイヤ(有線接続)プロトコルおよび/または規格を介してユーザインタフェースからデータを受信することができる。

0088

コンピュータは、リモートコンピュータ(複数可)などの1つ以上のリモートコンピュータへの論理接続および/または物理接続を用いてネットワーク環境で動作することができる。リモートコンピュータ(複数可)は、ワークステーションサーバコンピュータルータ、パーソナルコンピュータ、マイクロプロセッサベースの娯楽機器ピアデバイス(peer device)または他の共通ネットワークノードとすることができ、通常コンピュータに関して説明した多くの、またはすべての要素を含む。図示される論理接続は、ローカルエリアネットワーク(LAN)およびワイドエリアネットワークWAN)を含む。このようなネットワーク環境は、オフィス、企業規模コンピュータネットワークイントラネットおよびインタネットでは一般的である。

0089

LANネットワーク環境で使用する場合に、コンピュータは、ネットワークインタフェースまたはアダプタを介してローカルネットワークに接続される。WANネットワーク環境で使用する場合に、コンピュータは通常、モデムを含むか、LAN上の通信サーバに接続されるか、またはインタネットなどのWAN上で通信を確立するための他の手段を有する。ネットワーク環境では、コンピュータまたはその一部に関連して図示されるプログラムモジュールは、リモートメモリ記憶装置に格納してもよい。本明細書で説明するネットワーク接続は例示的なものであり、コンピュータ間の通信リンクを確立する他の手段を用いてもよいことが理解される。

0090

ある特定の実施形態を参照して本発明を説明してきたが、当業者であれば、本発明の範囲から逸脱することなく、様々な変更を行い得ること、ならびに均等物に置き換え得ることがわかる。加えて、本発明の範囲から逸脱することなく、多くの変更を行なって、特定の状況または材料を、本発明の教示に適合させることができる。したがって、本発明は、開示した特定の実施形態に限定されることを意図するのではなく、本発明は、添付の請求項の範囲内に含まれるすべての実施形態を含むことを意図している。

0091

100 システム
110レーザビーム
115ワークピース
120レーザ装置
125 方向
130電源
140ワイヤ
140’ ワイヤ
150ワイヤ送給装置
160コンタクトチップ
170 電源
170’バックグラウンド電源
180動作制御部
190ロボット
195 サブシステム
400波形
401パルス
402ランプアップ部分
402Aランプレート
402B ランプレート
402C ランプレート
405 第1のレベル
410 波形
411 パルス
413電流レベル
510 波形
512地点
520 波形
525ランプ
530時間間隔
540 値
550 レベル
700 システム
701 部分
703 部分
705絶縁部分
707チップアセンブリ
710スイッチング回路
801 パルス
803 電流レベル
810レーザ電源
811 ステップ
812 ステップ
813ピークレーザ電源レベル
814 地点
815 ステップ
816 ステップ
817 地点
820 ワイヤ送給速度
821 ステップ
821’パドル
822 ピークワイヤ送給速度
823 ワイヤ送給速度
824 ワイヤ
825ピーク後退送給速度
826 ステップ
827 地点
830加熱電流
831 地点
833ピークレベル
834最高地点
835 ステップ
837 電源
840電圧
841 ワイヤ
842ピーク電圧レベル
843 降下
844 レベル
845アーク検出電圧レベル
847アーク抑制ルーチン
848 アーク検出電圧レベル
900 例示的なシステム
901導電部分
903 絶縁部分
905 導電部分
910 コンタクトチップ
1000 例示的なシステム
1010 コンタクトチップアセンブリ
1100 システム
1110熱センサ
1120温度センサ
1200 例示的なシステム
1210 電源
1220ユーザ入力部
1221正極端子
1222負極端子
1223感知リード線
1230 CPU/制御部
1240電圧検出回路
1250電力モジュール
A パドル
D 液滴
OCV開路電圧
Ta 液滴添加期間
Tr ワイヤ後退送給期間
X 突出し

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ