図面 (/)
課題
解決手段
概要
背景
従来、医療用の各種バッグ、自動車のマット類、また文具類その他の業界におけるカードケースや各種包装袋の多くは、絶縁体であるPVC(ポリ塩化ビニル)、PU(ポリウレタン)等の熱可塑性樹脂フィルム製である。この種の製品は、熱風や熱盤による従来の外部加熱方式に代えて高周波、超音波等の物理エネルギを適用して製造されている。すなわち、この種の製品は、積層した2枚のフィルム等の両面を、例えば袋状に溶着する箇所や形状に合わせた高周波金型や超音波金型でプレスして高周波又は超音波を印加することで、接合面に異物を介在させることなく、加熱溶融して溶着させて製造される。そして、溶着部位の厚みが正確に設定寸法となるよう高精度の加圧溶着制御が望まれている。
特許文献1には、設定入力された超音波ホーン振幅、プレス圧力及び発振時間に関する最適溶着条件から、発振時間、ホーンの沈み込み量及び振動子入力エネルギの各最適値とそれらの許容値とを算出しておき、溶着作業終了時に溶着の良否を自動判定する超音波ウェルダ溶着制御装置が記載されている。すなわち、特許文献1は、溶着作業に先立って作業者によって選択された制御方法に対して、適用されなかった他の2つの溶着条件を溶着作業終了時に求め、これらに対応する前記各許容値と比較することで、溶着の良否を自動判定するものである。また、特許文献2には、サーボモータによって変位制御される超音波ホーンが2枚の被溶着物を加圧する力を計測するロードセルを備え、ロードセルの検出信号に基づいて、加圧力を一定に維持するようにサーボモータをフィードバック制御する超音波溶着装置が記載されている。
概要
既設の検出部を適用して溶着対象物の徐圧後の寸法を精度良く成形する。高周波溶着装置1は、対向する電極間に高周波電力を供給する高周波回路部20と、対向する電極間に積層状態の溶着対象物を挟んで高周波回路部を駆動させる制御部100と、電極間の間隔を調整する加圧駆動部30と、電極間の荷重を検出する荷重検出部43とを備える。制御部100は、高周波電力の供給を、電極間の間隔を設定厚みにした状態で、荷重検出部43からの荷重信号に基づいて停止させる。
目的
効果
実績
- 技術文献被引用数
- 0件
- 牽制数
- 0件
この技術が所属する分野
(分野番号表示ON)※整理標準化データをもとに当社作成
請求項1
対向する電極間に高周波電力を供給する高周波回路部と、前記対向する電極間に積層状態の溶着対象物を挟んで前記高周波回路部を駆動させる制御手段と、前記電極間の間隔を調整する変位駆動部と、前記電極間の荷重を検出する荷重検出部とを備え、前記制御手段は、前記高周波電力の供給を、前記電極間の間隔を設定厚みに維持した状態で、前記荷重検出部からの荷重信号に基づいて制御する高周波溶着装置。
請求項2
前記電極間の間隔を検出する変位検出部を備え、前記変位駆動部は、前記変位検出部が前記設定厚みに一致したことを検知した後、前記設定厚みを維持するものである請求項1に記載の高周波溶着装置。
請求項3
前記荷重検出部は、前記電極間の間隔が前記設定厚みに達した後、前記設定荷重の検出を開始する請求項1又は2に記載の高周波溶着装置。
請求項4
前記制御手段は、前記荷重検出部で検出した検出荷重が前記設定荷重に一致すると、前記高周波電力の供給を停止する請求項1〜3のいずれかに記載の高周波溶着装置。
請求項5
請求項6
請求項7
技術分野
背景技術
0002
従来、医療用の各種バッグ、自動車のマット類、また文具類その他の業界におけるカードケースや各種包装袋の多くは、絶縁体であるPVC(ポリ塩化ビニル)、PU(ポリウレタン)等の熱可塑性樹脂フィルム製である。この種の製品は、熱風や熱盤による従来の外部加熱方式に代えて高周波、超音波等の物理エネルギを適用して製造されている。すなわち、この種の製品は、積層した2枚のフィルム等の両面を、例えば袋状に溶着する箇所や形状に合わせた高周波金型や超音波金型でプレスして高周波又は超音波を印加することで、接合面に異物を介在させることなく、加熱溶融して溶着させて製造される。そして、溶着部位の厚みが正確に設定寸法となるよう高精度の加圧溶着制御が望まれている。
0003
特許文献1には、設定入力された超音波ホーン振幅、プレス圧力及び発振時間に関する最適溶着条件から、発振時間、ホーンの沈み込み量及び振動子入力エネルギの各最適値とそれらの許容値とを算出しておき、溶着作業終了時に溶着の良否を自動判定する超音波ウェルダ溶着制御装置が記載されている。すなわち、特許文献1は、溶着作業に先立って作業者によって選択された制御方法に対して、適用されなかった他の2つの溶着条件を溶着作業終了時に求め、これらに対応する前記各許容値と比較することで、溶着の良否を自動判定するものである。また、特許文献2には、サーボモータによって変位制御される超音波ホーンが2枚の被溶着物を加圧する力を計測するロードセルを備え、ロードセルの検出信号に基づいて、加圧力を一定に維持するようにサーボモータをフィードバック制御する超音波溶着装置が記載されている。
先行技術
0004
特開平10−113992号公報
特開2006−231698号公報
発明が解決しようとする課題
0005
ところで、積層された樹脂材の加熱溶着は加圧下で行われるため、加熱処理が終了して徐圧した後に厚み方向の寸法が復元等により変形する場合がある。従って、製造段階では徐圧後の変形を考慮した作業が望まれる。
0006
特許文献1に記載の超音波溶着制御装置は、ホーンの沈み込み量、発振時間及び振動子入力エネルギの3種類の最適溶着条件とそれらの許容値との比較から溶着の良否を作業終了時に判定するものであり、溶着後の復元による変形は考慮されていない。特許文献2に記載の超音波溶着装置は、ロードセルの検出信号を、加圧力を一定に維持するためにサーボモータへのフィードバック用としたものであり、溶着時間や溶着エネルギに対する制御を考慮したものではない。
課題を解決するための手段
0008
本発明に係る高周波溶着装置は、対向する電極間に高周波電力を供給する高周波回路部と、前記対向する電極間に積層状態の溶着対象物を挟んで前記高周波回路部を駆動させる制御手段と、前記電極間の間隔を調整する変位駆動部と、前記電極間の荷重を検出する荷重検出部とを備え、前記制御手段は、前記高周波電力の供給を、前記電極間の間隔を設定厚みに維持した状態で、前記荷重検出部からの荷重信号に基づいて制御するものである。
0009
また、本発明に係る高周波溶着方法は、対向する電極間に高周波電力を供給し、前記電極間に積層された溶着対象物を加圧しつつ設定厚みに到達するまで溶融して溶着させる工程と、前記電極間の荷重を検出し、検出荷重に基づいて前記高周波電力の供給を制御する工程とを備えたものである。
0010
かかる発明によれば、対向する電極間に積層状態の溶着対象物が挟まれて高周波電力が供給され、溶融が行われる。電極間に積層された溶着対象物は加圧された状態で設定厚みに到達するまで溶融して溶着される、次いで電極間の荷重の検出が行われ、検出荷重に基づいて、例えば検出荷重が設定荷重に到達すると、高周波電力の供給が制御、例えば停止されて、溶着工程が終了する。あるいは、検出荷重を用いて算出された荷重変化量が設定荷重変化値に一致すると高周波電力の供給を制御するような態様を含めてよい。
0011
従って、本発明では、既設の荷重検出部を適用すれば済む。また、溶着進行中の荷重に基づいて高周波電力の供給を制御するので、溶着後の製品厚みを規定寸法に合わせることが可能となる。例えば同じ設定厚みであっても、溶融不足により反発力が大きい場合には復元力は大きくなり、仕上がり寸法はばらばらとなるが、荷重に基づく制御で解決することが可能となる。特に、軟質の樹脂材の場合、圧力を掛けて加熱溶融されることで、溶融後に復元力が作用して設定厚みが変化する場合があるが、加熱溶融を樹脂材からの反発力すなわち検出荷重に基づいて制御するようにしたので、検出厚みで制御する態様に比べて、復元誤差を可及的に低減することが可能となる。従って、加圧溶融中の荷重の大小に基づく軟質樹脂の硬化段階での復元寸法の大小の差の影響を受けることなく、成形寸法精度の高い溶着技術が提供できる。軟質樹脂材に対する溶着に特有の課題として、超音波振動は減衰して溶融ができず、高周波電力が好適であり、さらに軟質樹脂材の溶着後の復元現象に起因する寸法精度の問題があるが、本発明が適用されることで、かかる課題が解決される。
0012
また、本高周波溶着装置は、前記電極間の間隔を検出する変位検出部を備え、前記変位駆動部は、前記変位検出部が前記設定厚みに一致したことを検知した後、前記設定厚みを維持するものである。この構成によれば、設定厚みを維持することで、この設定厚みに対する荷重が検出されて、厚み制御が可能となる。
0013
また、前記荷重検出部は、前記電極間の間隔が前記設定厚みに達した後、前記設定荷重の検出を開始するものである。この構成によれば、設定厚みに達した後は、荷重が低下する方向に変化するので、荷重が上昇を示す等の期間での誤検出が防止できる。
0014
また、前記制御手段は、前記荷重検出部で検出した検出荷重が前記設定荷重に一致すると、前記高周波電力の供給を停止するものである。この構成によれば、設定荷重で溶着動作を停止することで、設計厚みと対応付けられているため、成形後に規定厚みとなる製品が得られる。なお、検出荷重を利用して荷重変化量を算出し、かかる荷重変化量から検出加重が設定荷重に一致する時点を予測し、予測時点で高周波電力の供給を停止する態様を含めてよい。
0015
また、前記制御手段は、前記荷重検出部で検出した検出荷重から荷重変化量を求め、前記荷重変化量が設定荷重変化値に一致すると、前記高周波電力の供給を停止するものである。この構成によれば、設定荷重変化値で溶着動作を停止することで、設計厚みと対応付けられているため、成形後に規定厚みとなる製品が得られる。なお、検出荷重を利用して荷重変化量を算出し、かかる荷重変化量が設定荷重変化値に一致する時点を予測し、予測時点で高周波電力の供給を停止する態様を含めてよい。
発明の効果
0017
本発明によれば、既設の検出部を適用して溶着対象物の徐圧後の寸法を精度良く成形することができる。
図面の簡単な説明
0018
本発明に係る高周波溶着装置の第1実施形態を示す概略構成図である。
図1に示す高周波溶着装置の第1実施形態を示す機能構成図である。
判定荷重の大きさに対応する、溶着時の判定厚みと復元後の実測厚みとの関連を説明するための実験結果の一例を示す図表である。
設定荷重と、溶着工程終了時及び冷却工程終了時の実測厚みとの関係を説明するための実験結果の一例を示す図表である。
各工程に対応する各部の動作を説明するタイムチャートの一例である。
図5に示す成形処理の実験例を示すタイムチャートの一例である。
図5に示す溶着処理Iの手順を説明するフローチャートである。
本発明に係る高周波溶着装置の第2実施形態を示す概略構成図である。
各工程に対応する各部の動作を説明する他の例のタイムチャートである。
図9に示す成形処理の実験例を示すタイムチャートである。
図9に示す溶着処理IIの手順を説明するフローチャートである。
設定荷重の他の適用方法を説明する図表である。
実施例
0019
図1は、本発明に係る高周波溶着装置1の第1実施形態を示す、側面視の概略構成図である。高周波溶着装置1は、箱状、例えば直方体形状の筐体10を備え、その内部に高周波回路部20、加圧駆動部30及び検出部40を備えている。筐体10の側部あるいは外部適所には、高周波回路部20、加圧駆動部30及び検出部40と電気的に接続された制御部100を構成する基板回路部(図略)を備えている。
0020
高周波回路部20は、数〜数百MHz帯の所定周波数、例えば40.68MHzの高周波回路を構成している。高周波回路部20は、所定の高周波電力を出力する発振器21、負荷インピーダンに対して自動的に整合を取って高周波エネルギを効率的に負荷に供給するための整合器22、及び金属製のプラス電極23とマイナス電極24を備えている。プラス電極23とマイナス電極24とは、筐体10の正面側(図1の左側)の開放された作業空間10aに臨んで配置されている。すなわち、マイナス電極24は、作業空間10aの下部である筐体10の水平台上に配設されている。プラス電極23は、後述するように加圧駆動部30の下端に、継板231を介して取り付けられ、加圧駆動部30によって昇降されて、マイナス電極24との間隔が調整可能にされている。
0021
プラス電極23とマイナス電極24とは互いに対向する電極面を有し、電極間に溶着対象物としての、例えば2枚の樹脂製フィルム(以下、ワークw1,w2という。)が積層状態にしてマニュアルで又は移送ロボット(不図示)等によって出退される。なお、プラス電極23は、図では見えていないが、溶着する箇所や形状に合わせた凸状に形成されている。また、公知のように、発振器21と整合器22との間には進行波・反射波電力センサ、マッチングセンサ、及びこれらのセンサに基づいて出力調整や整合条件の調整を行う回路部を有している。なお、溶着に使われる熱可塑性樹脂材として、主にポリエチレン、ポロプロピレン、ポリアミド、ポリ塩化ビニル、ポリウレタンなどである。
0022
加圧駆動部30は、種々の機構が採用可能であるが、この例では油圧アクチュエータで構成され、筐体10の適所に立設されたシリンダ31と、シリンダ31内を上下方向に貫通するロッド32とを備えている。なお、図1では、ロッド32を昇降させるための構成であるコンプレッサや昇降調整用の電磁弁は見えていない。
0023
電磁弁が駆動されることで、ロッド32が上下方向に移動する。ロッド32の下端には、図略の絶縁体を介してプラス電極23が取り付けられている。ロッド32が昇降することで、対向するプラス電極23とマイナス電極24との間隔(電極間隔)が調整される。なお、ロッド32の長手方向の途中には、後述する荷重検出部43が介設されている。加圧駆動部30は、公知のように電磁弁の開閉を調整制御することで、所要の圧力で、ロッド32を往復方向(ここでは上下方向)に適宜移動させる。
0024
検出部40は、所定厚み検出用スイッチ部41と、電極間隔を検出する変位検出部42と、電極間に生じる荷重を検出する荷重検出部43とを備えている。なお、所定厚み検出用スイッチ部41は、筐体10に取り付けられた機械式のマイクロスイッチ411と、ロッド32に取り付けられたストッパ412とを備える。ロッド32が上方から下降して、ストッパ412がマイクロスイッチ411の検出片に当接することで、検出信号が出力される。ストッパ412は、電極間隔が設定厚みに達した時点で検出信号が出力される位置に取り付けられている。なお、マイクロスイッチ411とストッパ412との一方の取り付け位置を相対的に上下方向に調整することで、設定厚みを変更調整することが可能となる。加圧駆動部30は、この検出信号を受けてロッド32の下降動作を停止させる。ロッド32が停止することにより、電極間隔が設定厚みに維持される。
0025
変位検出部42は、ロッド32に取り付けられて、ロッド32と一体で昇降するラックと、ラックに噛合したピニオンとを備えたロータリーエンコーダを構成している。ピニオンの回転量を回転方向に対応させて計測することでロッド32の昇降位置が検出できる。変位検出部42としてリニアスケールを採用してもよい。なお、本実施形態では、安価な所定厚み検出用スイッチ部41と、電極間隔を検出する変位検出部42とのいずれか一方を備えておれば足りる。
0026
荷重検出部43は、圧電素子、磁歪素子等の感圧素子を利用したロードセルが適用可能である。ロッド32の途中に荷重検出部43を介設することで、ワークw1,w2を当接した状態の電極間に生じる荷重を検出することができる。
0027
図2は、図1に示す高周波溶着装置の第1実施形態を示す機能構成図である。高周波溶着装置1は、例えばプロセッサを有する制御部100を備え、溶着制御プログラム及び後述する溶着条件等、制御に必要なテーブルデータ類を記憶した記憶部1001と接続されている。
0028
制御部100は、溶着制御プログラムを実行することで、高周波駆動制御部101、プレス駆動制御部102、接触判定部103、良否判定部104、及び内蔵のタイマ105として機能する。また、入力部11は、外部からの入力操作を受け付けるもので、必要に応じて、高周波出力値、設定厚み、及び設定荷重等の溶着条件を入力するものである。なお、油圧アクチュエータにあっては、それ自体に溶着条件を初期設定することが可能であり、その場合には、入力部11からの入力は必ずしも必要ではない。制御部100は、油圧アクチュエータが溶着条件に達した状態を、例えば信号で検知するようになっている。
0029
高周波駆動制御部101は、入力された溶着条件に従った高周波出力をプラス電極23とマイナス電極24との間に供給し、誘電加熱によってワークw1,w2を溶融させて溶着する。例えばワークw1,w2の周縁に沿って互いを規定された厚さで溶着することで、全体として袋体を製造する。
0030
プレス駆動制御部102は、ワークw1,w2を所要の圧力で押圧しながら設定厚みに到達するまでプラス電極23を下降させる。すなわち、プレス駆動制御部102は、溶着工程においてワークw1,w2の溶融が進行してワークw1,w2からの反発力(すなわち荷重)が低下することを荷重検出部43で検出すると、ロッド32を下降させ、一方、この下降によって荷重が元の所定の圧力に戻ったことを荷重検出部43で検出すると、下降を一時停止させる動作を繰り返すことで、電極間隔を設定厚みに向けて徐々に狭めるようにしている。また、プレス駆動制御部102は、所定厚み検出用スイッチ部41が検出信号を出力し、あるいは変位検出部42が設定厚みに到達したことを検出する検出信号を出力すると、ロッド32の下降を停止し、その位置を維持する。さらに、プレス駆動制御部102は、溶着工程が終了すると、続く冷却工程で所定の冷却時間だけ、その位置を保持した後、プラス電極23を上昇させてワークw1,w2を開放する。
0031
接触判定部103は、ロッド32の下降開始後に、プラス電極23が、マイナス電極24上に載置された積層状態のワークw1,w2に到達乃至接触したことを、例えば荷重検出部43での検出荷重の立ち上がり変化を、接触有りとして判定するものである。接触判定は、この例では、高周波の出力開始タイミング用とされる。なお、接触判定は、ロッド32の下降長を計測し、あるいは下降時間をタイマで計時することで判定する態様でもよいし、接触位置に相当する高さでストッパ412を検知して、あるいはそれ自体から信号が出力される態様を含めてよい。
0032
良否判定部104は、溶着工程終了時点あるいは冷却工程終了時点での検出荷重に基づいてワークw1,w2の溶着の良否判定を行う。
0033
図3は、判定荷重の大きさに対応する、溶着時の判定厚みと復元後の実測厚みとの関連を説明するための実験結果の一例を示す図表である。図3の例は、ワークw1,w2として、厚み0.3mmのPVC(ポリ塩化ビニル)を2枚重ねて溶着した後の復元状況を示したものである。ここでは、溶着後の厚みとして、0.40mmを設定厚みとされ、溶着時間完了時(あるいは冷却時間完了時)後の荷重(すなわち残圧)が0.6kN(キロニュートン)の場合、復元寸法がほぼ0mmであり、そして、荷重がそれより大きい程、比例して復元寸法も大きくなることが分かる。例えば、荷重が1.4kNでは、復元寸法は0.45mm、すなわち、0.40mmに対して0.05mmも復元膨張することが分かる。この場合、溶着あるいは冷却工程が終了した時点から0.05mm余分に厚さが増すことを意味している。
0034
以上より、この例によれば、溶着条件として、設定厚みを0.40mmに設定した場合、設定荷重を0.6kNにすればよいことがわかる。あるいは、設定荷重を0.6kNより少し大きめに設定し、一方、設定厚みを0.40mmより薄めに設定して、復元後の厚みが0.40mmに一致するようにしてもよい。なお、設定荷重が小なめの場合、復元後の実測厚みが設定厚みより薄くなる(収縮する)復元もあることから、かかる復元現象を利用して、設定厚みをより厚めに設定するようにしてもよい。
0035
図4は、設定荷重と、溶着工程終了時及び冷却工程終了時の実測厚みとの関係を説明するための実験結果の一例を示す図表である。図4の例は、ワークw1,w2として、厚み0.3mmのPVC(ポリ塩化ビニル)を2枚重ねて溶着した後の復元寸法、すなわち仕上厚みを荷重判定値に対応させて示したものである。仕上げ厚みは、溶着工程終了直後のもの(黒丸で示す)と冷却工程終了直後のもの(白三角で示す)とを示している。いずれの場合も荷重判定値と仕上厚みとは相関性が高く(比例しており)、各回帰直線に示すように、荷重判定値が大きい程、仕上厚みが厚いことが分かる。なお、分散状況から、相関性は、冷却工程終了直後の方が溶着工程終了直後の方より高いことが分かる。また、同じ荷重判定値であれば、冷却工程終了直後の方の仕上厚みが厚いことが分かる。
0036
図5は、制御部100によって実行される、各工程(溶着、冷却)に対応する各部の動作を説明するタイムチャートの一例である。図5は、横軸に時間軸を取り、縦方向の上側に高周波動作の状況、すなわち工程を示し、下側にプレス動作の状況を示している。
0037
まず、マイナス電極24上に、積層されたワークw1,w2が載置された状態で、t0時点において加圧駆動部30の電磁弁が起動されてロッド32、すなわちプラス電極23が下降を始める。電極間隔(ギャップ)が狭くなって、t1時点で、プラス電極23がワークw1の上面に接触すると、接触に伴う荷重変化が荷重検出部43で検出される。この接触検出を受けて、高周波回路部20が起動し、ワークw1,w2に対して溶着動作が開始される。加圧駆動部30は、プラス電極23を徐々に下降させる。
0038
一方、溶着の開始によってワークw1,w2の溶融を生じ、t2時点で、プラス電極23が所定厚みまで下降すると、加圧駆動部30の電磁弁の制御によってロッド32の下降が停止され、かつ現在位置が維持される。このt2時点で、検出荷重はピーク点を超えて減少方向に遷移する(切り替る)ため、荷重判定を有効にする切り換えが行われて、検出荷重に対する判定動作が開始される。次いで、ワークw1,w2に対する溶融が進行することで、ワークw1,w2からプラス電極23への反発力が低下し、t3時点で、検出荷重が設定荷重まで低下したことが判定されると、高周波回路部20の動作が停止されて溶着工程が完了する。溶着工程が完了すると、続いて冷却工程が開始される。冷却工程は、電極間隔を設定厚みに維持した状態で所定時間だけ行われる。t4時点で所定時間が終了すると、加圧駆動部30は、ロッド32を上方に移動させ、電極間を開放する。かかる一連の動作を経て、一工程が終了する。
0039
図6は、図5に示す成形処理の実験例を示すタイムチャートの一例である。ワークw1,w2として、厚み0.3mmのPVC(ポリ塩化ビニル)を2枚重ねて溶着して厚み0.40mmを得るものである。溶着条件として、高周波電力の出力、設定厚み、設定荷重が採用される。図6では、t1時点で接触が検出された後、高周波電力(800w)が供給される。t2時点で、電極間隔が設定厚みに達すると、荷重判定が有効にされる。高周波加熱が継続されると、ワークw1,w2の溶融に伴ってプラス電極23との反発力を示す荷重値が低下し、その現象は後半では著しく変化することを示している。そして、t3時点で検出荷重が設定荷重に達したと判定されると、高周波電力の供給が停止され、溶着工程が終了する。次いで、t3〜t4期間で冷却工程が行われた後、電極間が開放される。なお、加熱を停止し、冷却工程に移っても継続して荷重値の低下がみられる。検出荷重を利用してワークw1,w2の状態に応じた加熱時間と冷却時間の自動制御を行うことができるため、高周波出力と設定荷重と設定厚みの設定とを設定すればよく、設定作業が簡素化される。
0040
図7は、図5に示す溶着処理Iの手順を説明するフローチャートである。まず、入力部11から入力された、あるいは記憶部1001に予め設定登録されている溶着条件の読込み処理が行われる(ステップS1)。次いで、加圧駆動部30が起動されて、プレス下降が開始され(ステップS3)、その途中で、接触判定が行われる(ステップS5)。所定時間に亘って接触と判定されなければ、ワーク無しとして処理、例えば警告等を行い(ステップS7)、一方、接触と判定されると、プレスの開始及び高周波加熱の開始が行われる(ステップS9)。次いで、電極間隔が設定厚みに達した、あるいは、例えば接触判定時点から所定時間が経過したなどの条件のいずれか一方がクリアされて、荷重判定が有効にされる(ステップS11)。なお、電極間隔が設定厚みに達した場合には、その時点でプレス下降は停止され、その位置を維持する制御が行われる。
0041
この後、検出荷重が設定荷重に達したか否かの判定処理が継続され、検出荷重が設定荷重に達したと判定されると(ステップS13)、その時点で高周波加熱が終了され、冷却が開始される(ステップS15)。次いで、冷却期間中に荷重判定が実行され、検出荷重が充分低下したと判定されると(ステップS17)、冷却が終了され、プレスの上昇(電極間の開放)が行われる(ステップS19)。これによって、一工程が終了する。なお、一工程終了毎に、高周波電力の出力である進行波と反射波、また、位相、電力量、供給時間が表示部25にモニタ用として表示され、さらに、溶着工程、冷却工程終了時の電極間隔、荷重も表示部25に表示されると共に記憶部1001に記憶されるようにしてもよい。
0042
図8は、本発明に係る高周波溶着装置の第2実施形態を示す概略構成図である。図1と異なる部分は、加圧駆動部30Bと検出部40Bである。加圧駆動部30Bは、サーボモータ310Bを適用したもので、サーボモータ310Bを内装する本体31Bと、サーボモータ310Bによる回転位置制御によって本体31Bに対して上下方向に位置制御される絶縁製のロッド32Bとを備えている。検出部40Bは、例えば本体31Bに隣接して配置されている。検出部40Bは、変位検出部42B及び荷重検出部43Bを備える一方、図1の所定厚み検出用スイッチ部41に対応する検出部は備えていない。変位検出部42Bは、サーボモータ310Bの制御位置信号からロッド32Bの昇降位置、すなわち電極間隔を算出し、荷重検出部43Bは、ロードセルが内蔵されたものである。なお、荷重検出部43Bとしてサーボモータ310Bを流れるトルク電流値から荷重を算出する態様を採用してもよい。
0043
図9は、図8の装置における、各工程に対応する各部の動作を説明する他の例のタイムチャートである。第1実施形態の図5と相違する点は、サーボモータ310Bで電極間隔を調整している点である。電極間隔の調整は、以下のようにして行われる。まず、プレス駆動、すなわちサーボモータ310Bに所定の速度でプラス電極23を下降させる位置信号を順次出力して、プラス電極23を定速で下降させつつ、プラス電極23がワークw1の上面と接触したことを検出する(t11時点)。続いて高周波加熱動作と並行して、プレス駆動によって加圧を継続(ON)し、検出荷重がプレス駆動用の所定の荷重に達した時点で加圧を一時的に停止(OFF)し、次いでワークw1,w2の溶融に応じて反発力が低下すると、加圧による下降を開始する。以後、かかる下降動作と停止動作とを繰り返し行う。かかる継続動作により、電極間隔が徐々に小さくなって、設定厚みに達すると(t12時点)、加圧を停止し、冷却工程が終了して電極間が開放されるt14時点まで、その位置を維持する。なお、検出荷重が設定荷重に達すると(t13時点)、溶着工程が完了する。
0044
図10は、図9に示す成形処理の実験例を示すタイムチャートである。ワークw1,w2として、厚み0.3mmのPVC(ポリ塩化ビニル)を2枚重ねて溶着して厚み0.40mmを得るものである。溶着条件として、高周波電力の出力、設定厚み、設定荷重が採用される。図10では、t11時点で接触が検出された後、高周波電力(800w)が供給される。t12時点で、設定厚みに達すると、荷重判定が有効にされる。そして、t13時点で検出荷重が設定荷重に達したと判定されると、高周波電力の供給が停止され、溶着工程が終了する。次いで、t13〜t14期間で冷却工程が行われた後、電極間が開放される。
0045
図11は、図9に示す溶着処理IIの手順を説明するフローチャートである。図11では、図7のフローチャートと比較して、主に冷却工程終了後における加工評価処理が追加されている点で相違している。ステップS31〜ステップS39については実質的に同一であるため、説明を省略する。電極間隔が設定厚みに達した状態(ステップS45でYes、ステップS49)において、ステップS51で、高周波加熱、冷却時間が完了すると(ステップS51,図10のt14時点)、プレス上昇動作が行われる(ステップS53)と共に、荷重の検出が行われて、開放直前の荷重値の良否が判定される(ステップS55)。そして、開放直前の荷重値が良好なレベル(判定閾値以下)まで低下していると、OK判定が表示部25等に出力され(ステップS57)、一方、開放直前の荷重値が適正レベルまで低下していなければ、復元寸法が大きいとして、NG判定が表示部25等に出力される(ステップS59)。溶着終了の設定荷重、冷却工程完了時の閾値は、図4の溶着工程終了時点と冷却工程終了時点における設定荷重と実測厚みとの関係を予め求め、それを適用すればよい。これにより、溶着処理に対する高精度での良否判定ができる。
0046
図12は、設定荷重の他の適用方法を説明する図表である。図12の図表は、溶着工程時間を自動制御するものである。すなわち、ワークw1,w2に対して、熔解進行中の荷重の低下は過渡特性を示すことが知られている。そこで、溶融開始後の異なる2時点(間隔T)で、同一時間幅ΔTにおける検出荷重の変化分をP1,P2として検出する。そして、間隔T、検出荷重P1,P2、及び過渡特性曲線から、設定荷重に達するまでの経過時間が予測演算できる。そこで、タイマ105を用いて予測時間を計測することで溶着工程の終了を管理して、常時荷重を検出する作業を要することなく、常に良好な製品の加工を可能にする。なお、溶着時間の予測設定に代えて高周波電力の出力を途中で変更するようにすることもできる。
0047
また、溶着工程終了時点の設定を、荷重値に代えて、図12と同様にして算出した荷重値の変化分(荷重変化量)を適用して行ってもよい。この場合、予め設定された設定荷重変化値と、順次検出する検出荷重算から算出する荷重変化量との比較によって溶着工程終了時点を決めることができる。なお、図12の間隔T、検出荷重P1,P2、及び過渡特性曲線から、設定荷重変化量に達するまでの経過時間を予測演算し、タイマ105を用いて予測時間を計測することで溶着工程の終了を管理することができる。また、冷却工程終了時点の設定方法に対しても、図12と同様に、変化分を適用することが可能である。
0048
本実施形態では、溶着対象物の種類毎に高周波電力の出力、設定厚み、設定荷重を予め登録しておき、作業に際して、入力部11を介して溶着対象物を適宜選択可能にして、種々の溶着対象物に対応できる態様としてもよい。
0050
なお、第1実施形態では加圧駆動部30として油圧アクチュエータを採用したが、これに代えて空圧アクチュエータを採用してもよい。
0051
1,1B高周波溶着装置
20高周波回路部
23プラス電極(電極)
24マイナス電極(電極)
30,30B加圧駆動部(変位駆動部)
32,32Bロッド
40,40B 検出部
41 所定厚み検出用スイッチ部(ストッパ)
42,42B変位検出部
43,43B荷重検出部
100 制御部
101高周波駆動制御部
102プレス駆動制御部
w1,w2 ワーク(溶着対象物)