図面 (/)

技術 基板処理装置、半導体装置の製造方法及びプログラム

出願人 株式会社KOKUSAIELECTRIC
発明者 宮下智康上村大義梅川純史
出願日 2019年6月13日 (1年6ヶ月経過) 出願番号 2019-110038
公開日 2020年3月26日 (8ヶ月経過) 公開番号 2020-047911
状態 特許登録済
技術分野 抵抗加熱の制御 CVD 絶縁膜の形成 気相成長(金属層を除く)
主要キーワード 排気管周辺 フレキシブルヒータ 常用温度 ジャケットヒータ 供給バッファ 部品破壊 内側ヒータ 外側ヒータ
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2020年3月26日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (10)

課題

炉口部の温度ムラを小さくして、炉口部への副生成物の付着を抑制することが可能な技術を提供する。

解決手段

所定の間隔で配列された複数の基板を保持する基板保持具と、上端閉塞する天井と、下端を開口する開口部と、を備え、開口部を介して基板保持具を出し入れ可能に収容する、鉛直方向に延びた筒状の反応管と、反応管の下端に接続され、外周面に複数のガス導入ポートを備える筒状のインレットフランジと、インレットフランジの下端開口を、基板保持具を出し入れ可能に塞ぐ蓋部と、インレットフランジに、ガス導入ポートを避けて設けられる複数のヒータ要素と、インレットフランジもしくはヒータ要素のいずれかと熱的に結合され、温度を検出する温度センサと、配設されたヒータ要素を温度センサの数に対応したグループ数グループ化し、対応する温度センサにより検出された検出温度に基づいて、各グループのヒータ要素への供給電力をそれぞれ独立に制御する温度制御器と、を備える。

概要

背景

半導体装置の製造工程に於ける基板処理を行う基板処理装置として、縦型基板処理装置がある。縦型基板処理装置では、複数枚基板多段に積層させて保持した状態で、処理室内に挿入し、複数枚の基板を一括して処理する様になっている。

分解し難い原料ガスを使用する高温プロセスを実行する場合、処理室下部の炉口部も高温となる為、炉口部に設けられたOリング等のシール部材耐熱温度を超える可能性がある。この為、炉口部に冷却水路を設け、冷却水路内冷却水流通させることで、シール部材を耐熱温度範囲内に維持することがある。

一方で、炉口部の温度が低下した場合、ガス反応副生成物が炉口部に付着し、パーティクル発生の原因となる。そのため従来では、炉口部に対する反応副生成物の付着を抑制する為の手段として、炉口部の全周にヒータを設けて炉口部の温度が低下しすぎないようにすることがある(例えば特許文献1参照)。

概要

炉口部の温度ムラを小さくして、炉口部への副生成物の付着を抑制することが可能な技術を提供する。所定の間隔で配列された複数の基板を保持する基板保持具と、上端閉塞する天井と、下端を開口する開口部と、を備え、開口部を介して基板保持具を出し入れ可能に収容する、鉛直方向に延びた筒状の反応管と、反応管の下端に接続され、外周面に複数のガス導入ポートを備える筒状のインレットフランジと、インレットフランジの下端開口を、基板保持具を出し入れ可能に塞ぐ蓋部と、インレットフランジに、ガス導入ポートを避けて設けられる複数のヒータ要素と、インレットフランジもしくはヒータ要素のいずれかと熱的に結合され、温度を検出する温度センサと、配設されたヒータ要素を温度センサの数に対応したグループ数グループ化し、対応する温度センサにより検出された検出温度に基づいて、各グループのヒータ要素への供給電力をそれぞれ独立に制御する温度制御器と、を備える。

目的

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

所定の間隔で配列された複数の基板を保持する基板保持具と、上端閉塞する天井と、下端を開口する開口部と、を備え、前記開口部を介して前記基板保持具を出し入れ可能に収容する、鉛直方向に延びた筒状の反応管と、前記反応管の下端に接続され、外周面に複数のガス導入ポートを備える筒状のインレットフランジと、前記インレットフランジの下端開口を、前記基板保持具を出し入れ可能に塞ぐ蓋部と、前記インレットフランジに、前記ガス導入ポートを避けて設けられる複数のヒータ要素と、前記インレットフランジもしくは前記ヒータ要素のいずれかと熱的に結合され、温度を検出する温度センサと、配設された前記ヒータ要素を前記温度センサの数に対応したグループ数グループ化し、対応する前記温度センサにより検出された検出温度に基づいて、各グループの前記ヒータ要素への供給電力をそれぞれ独立に制御する温度制御器と、を備える基板処理装置

請求項2

前記ヒータ要素は、前記インレットフランジの外周面に沿って配設され、前記ヒータ要素の数は、M(Mは3以上の整数)個であり、前記温度センサの数は、N(Nは2以上かつMより小さい整数)個であり、前記温度制御器は、前記N個の温度センサの検出温度が、所定の設定温度と一致するように前記ヒータ要素への供給電力をそれぞれ制御する請求項1記載の基板処理装置。

請求項3

前記インレットフランジは、上端において前記反応管と気密に接続する上フランジと、下端において前記蓋部と気密に接続する下フランジと、前記上フランジと前記下フランジを接続する筒部と、を有し、前記上フランジ又は前記上フランジに接続され前記反応管の開口部を前記上フランジに固定するクランプは、区分的に全周にわたって埋め込まれた冷却水路を有し、前記筒部の高さは、前記複数のガス導入ポートが有するコネクタの最大の直径と、略等しいかそれよりも低く設定され、前記M個のヒータ要素は、前記グループ毎直列又は並列に接続され、単位長さ当たりの発熱量が等しい、請求項1の基板処理装置。

請求項4

前記反応管は、前記開口部付近において、内部のガスを排出する排気管を有し、前記排気管の少なくとも下辺に隣接して前記排気管を冷却する冷却器を更に備えた、請求項3の基板処理装置。

請求項5

筒状の反応管の下端に接続される筒状のインレットフランジに、ガス導入ポートを避けながら設けられた複数のヒータ要素が、前記インレットフランジもしくは前記ヒータ要素のいずれかと熱的に結合されて温度を検出する温度センサの数に対応した数のグループにグループ化されており、前記温度センサにより検出された検出温度に基づいて、グループ毎に独立して、前記ヒータ要素への供給電力をそれぞれ制御する工程と、前記インレットフランジの下端開口から、基板保持具に保持された複数の基板を前記反応管の中に搬入し、前記下端開口を蓋で塞ぐ工程と、所定の温度まで加熱した前記反応管の内部に、前記ガス導入ポートからガスを供給する工程と、を有する半導体装置の製造方法。

請求項6

筒状の反応管の下端に接続される筒状のインレットフランジに、ガス導入ポートを避けながら設けられた複数のヒータ要素を、前記インレットフランジもしくは前記ヒータ要素のいずれかと熱的に結合されて温度を検出する温度センサの数に対応した数のグループにグループ化し、前記温度センサにより検出された検出温度に基づいて、グループ毎に独立して、前記ヒータ要素への供給電力をそれぞれ制御する手順と、前記インレットフランジの下端開口から、基板保持具に保持された複数の基板を前記反応管の中に搬入し、前記下端開口を蓋で塞ぐ手順と、所定の温度まで加熱した前記反応管の内部に、前記ガス導入ポートからガスを供給する手順と、をコンピュータによって基板処理装置に実行させるプログラム

技術分野

0001

本開示は、基板処理装置半導体装置の製造方法及びプログラムに関する。

背景技術

0002

半導体装置の製造工程に於ける基板処理を行う基板処理装置として、縦型基板処理装置がある。縦型基板処理装置では、複数枚基板多段に積層させて保持した状態で、処理室内に挿入し、複数枚の基板を一括して処理する様になっている。

0003

分解し難い原料ガスを使用する高温プロセスを実行する場合、処理室下部の炉口部も高温となる為、炉口部に設けられたOリング等のシール部材耐熱温度を超える可能性がある。この為、炉口部に冷却水路を設け、冷却水路内冷却水流通させることで、シール部材を耐熱温度範囲内に維持することがある。

0004

一方で、炉口部の温度が低下した場合、ガス反応副生成物が炉口部に付着し、パーティクル発生の原因となる。そのため従来では、炉口部に対する反応副生成物の付着を抑制する為の手段として、炉口部の全周にヒータを設けて炉口部の温度が低下しすぎないようにすることがある(例えば特許文献1参照)。

先行技術

0005

特開2010−126784号公報

発明が解決しようとする課題

0006

しかし、炉口部には、排気の熱を受けるガスの排気口が設けられている。そのため、炉口部の全周を均一に加熱したとしても、排気口付近が高温となり、排気口側と排気口の反対側とで温度ムラが生じてしまう。具体的には、排気口付近の温度を検出してヒータを制御した場合、排気口の反対側の温度が低すぎてしまい、排気口の反対側付近の温度を検出してヒータを制御した場合、排気口側の温度が高すぎてしまい、ヒータの破損等の部品破壊が発生する可能性が高くなる。

0007

そして、炉口部の排気口側と排気口の反対側とで温度ムラが生じてしまうと、局所的に加熱されずに低い温度の場所ができてしまい副生成物が付着してしまうことになる。

課題を解決するための手段

0008

本開示の一態様によれば、
所定の間隔で配列された複数の基板を保持する基板保持具と、
上端閉塞する天井と、下端を開口する開口部と、を備え、前記開口部を介して前記基板保持具を出し入れ可能に収容する、鉛直方向に延びた筒状の反応管と、
前記反応管の下端に接続され、外周面に複数のガス導入ポートを備える筒状のインレットフランジと、
前記インレットフランジの下端開口を、前記基板保持具を出し入れ可能に塞ぐ蓋部と、
前記インレットフランジに、前記ガス導入ポートを避けて設けられる複数のヒータ要素と、
前記インレットフランジもしくは前記ヒータ要素のいずれかと熱的に結合され、温度を検出する温度センサと、
配設された前記ヒータ要素を前記温度センサの数に対応したグループ数グループ化し、対応する前記温度センサにより検出された検出温度に基づいて、各グループの前記ヒータ要素への供給電力をそれぞれ独立に制御する温度制御器と、
を備える技術が提供される。

発明の効果

0009

本開示によれば、炉口部の温度ムラを小さくして、炉口部への副生成物の付着を抑制することができる。

図面の簡単な説明

0010

基板処理装置の縦型処理炉の概略を示す縦断面図である。
インレットフランジ周辺を示す縦断面図である。
インレットフランジの筒部における横断面図である。
インレットフランジを加熱するヒータ要素を示す斜視図である。
(A)、(B)は反応管の排気管周辺を示す斜視図であって、(C)は排気管の下部に配置されるシール部材周辺の構成を説明するための図である。
基板処理装置の炉口部への冷却水の供給系を示す図である。
温度制御器の動作を説明するためのブロック図である。
インレットフランジの変形例を示す図である。
ヒータ要素の変形例を示す図である。

実施例

0011

以下、本開示の一実施形態について、図1〜8を参照しながら説明する。基板処理装置1は半導体装置の製造工程において使用される装置の一例として構成されている。

0012

基板処理装置1は、上端を閉塞する天井を備えた鉛直方向に延びた円筒状の反応管2と、反応管2の外周に設置された加熱手段としてのヒータ(電気炉)3とを備える。反応管2は、例えば石英(SiO)やシリコンカーバイド(SiC)等により形成される。温度検出器4は、反応管2の内壁に沿って立設される。

0013

反応管2の下端開口部には、後述するインレットフランジ(マニホールド)5が、Oリング等のシール部材6を介して連結され、反応管2の下端を支持している。インレットフランジ5は、例えばステンレス等の金属により形成される。反応管2とインレットフランジ5とで処理容器7が形成される。処理容器7の内部には、基板としてのウエハWを処理する処理室8が形成される。

0014

また、反応管2は、外周方向半径方向)に突出する様に、供給バッファ室2Aと排気バッファ室2Bとがそれぞれ対向して形成されている。供給バッファ室2Aは、上下に延びる隔壁によって複数の空間に区画されている。供給バッファ室2Aの各区画には、ノズル23a、ノズル23b、ノズル23c(後述)がそれぞれ設置される。供給バッファ室2A及び排気バッファ室2Bと処理室8との境界壁は、供給バッファ室2A等が設けられていない箇所に於ける反応管2の内径と同じ内径に形成され、それによりウエハWの周囲がウエハWと同心の壁によって囲まれる。境界壁には、その両側を連通させる複数のスリットが設けられる。供給バッファ室2Aの下方には、ノズル23a、ノズル23b、ノズル23cを挿脱する為の開口部2Eが形成されている。開口部2Eは、供給バッファ室2Aと略同じ幅に形成されている。なお開口部2Eをどのような形状にしたとしても、開口部2Eとノズル23a、ノズル23b、ノズル23cの基部との間の間隙をなくすことは難しい為、該間隙を通じて供給バッファ室2Aの内外をガスが流通しうる。

0015

処理室8は、所定の間隔で配列された複数枚、例えば25〜150枚のウエハWを垂直に状に保持する基板保持具としてのボート14を内部に収納する。ボート14は例えば石英やSiC等により形成され、ボート14は断熱構造体15の上方に支持される。ボート14と断熱構造体15とにより基板保持体が構成される。

0016

断熱構造体15の外形円柱状となっており、蓋部9を貫通する回転軸13によって支持される。回転軸13は、蓋部9の下方に設置された回転機構16に接続される。回転軸13の蓋部9を貫通した部分には、例えば磁性流体シールが設けられており、回転軸13は反応管2の内部を気密にシールした状態で回転可能に構成されている。回転軸13が回転されることにより、断熱構造体15とボート14が一体に回転される。蓋部9は昇降機としてのボートエレベータ17により上下方向に駆動される。ボートエレベータ17により、基板保持体及び蓋部9が一体に昇降され、反応管2の開口部を介してボート14が搬入出される。すなわち、反応管2は、開口部を介してボート14を出し入れ可能に収容し、蓋部9は、インレットフランジ5の下端開口を、ボート14を出し入れ可能に密封するように構成されている。

0017

基板処理装置1は、基板処理に使用される処理ガスとして原料ガス、反応ガス不活性ガスを処理室8内に供給するガス供給機構18を有している。ガス供給機構18が供給する処理ガスは、成膜される膜の種類に応じて選択される。本実施形態では、ガス供給機構18は、原料ガス供給部、反応ガス供給部、不活性ガス供給部、第1パージガス供給部、第2パージガス供給部を含む。

0018

原料ガス供給部は、ガス供給管19aを具備している。ガス供給管19aには、上流方向から順に、流量制御器流量制御部)であるマスフローコントローラMFC)21a及び開閉弁であるバルブ22aが設けられている。ガス供給管19aの下流端は、インレットフランジ5の筒部(側壁)を貫通するノズル23aに接続されている。ノズル23aは、反応管2内に反応管2の内壁に沿って上下方向に立設し、ボート14に保持されるウエハWに向って開口する複数の供給孔が形成されている。ノズル23aの供給孔を介して、ウエハWに対して原料ガスが供給される。

0019

以下、同様の構成にて、反応ガス供給部からは、ガス供給管19b、MFC21b、バルブ22b、ノズル23bを介して反応ガスがウエハWに対して供給される。不活性ガス供給部からは、ガス供給管19c,19d,19e、MFC21c,21d,21e、バルブ22c,22d,22e、ノズル23a,23b,23cを介してウエハWに対して不活性ガスが供給される。

0020

第1パージガス供給部は、ガス供給管19fを具備している。ガス供給管19fには、上流方向から順にMFC21f及びバルブ22fが設けられている。ガス供給管19fの下流端は、回転軸13の周囲に形成された中空部24に接続されている。中空部24は、磁性流体シールにより軸受けの手前でシールされ、上端、即ち反応管2の内部に開放されている。又、中空部24から保護プレート12の上面まで連通した空間が形成され、該空間は断熱構造体15と保護プレート12との間に形成された間隙41と連続しており、第1パージガス流路を形成している。こうして第1パージガス供給部から供給された第1パージガス28は、間隙41をパージしながら、炉口部である処理容器7下方に対して供給される。つまり、第1パージガス28は、上流に於いて回転軸13の周囲をパージし、下流では炉口部のノズル23a〜23c付近をパージした後、最終的に反応管2の下端に形成された排気口26より排出される。尚、パージガスとしては、原料ガスや反応ガスと反応しないガスであればよい。

0021

第2パージガス供給部は、ガス供給管19gを具備している。ガス供給管19gには、上流方向から順にMFC21g及びバルブ22gが設けられている。ガス供給管19gの下流端は、蓋部9を貫通し、蓋部9の上面に第2パージガス供給口が形成される。従って、第2パージガス供給口は、蓋部9の上面に形成され、第2パージガス流路27に開口する。第2パージガス供給口の開口位置は、ノズル23a,23b,23cの近傍である。バルブ22gから第2パージガス供給口の間のガス供給管19aには、ベローズ管の様なフレキシブル配管が用いられる。第2パージガス流路27は環状又は略環状ループ状)であり、保護プレート12の下面に同心に形成されている。第2パージガス流路27内に供給された第2パージガス49は、全周に亘った第2パージガス流路27内を流通する。この時、第2パージガス流路27の外周側では、保護プレート12と蓋部9との間に隙間46が形成されている(図2参照)。従って、第2パージガス49は、第2パージガス流路27を流通する過程で、蓋部9の上面をパージしつつ隙間46より水平方向に流出する。

0022

排気バッファ室2Bの外壁に形成された排気口26には、排気管32が取付けられている。排気管32には、処理室8内の圧力を検出する圧力検出器圧力検出部)としての圧力センサ33、及び圧力調整器圧力調整部)としてのAPC(Auto Pressure Controller)バルブ34を介して、真空排気装置としての真空ポンプ35が接続されている。この様な構成により、処理室8内の圧力を処理に応じた処理圧力とすることができる。排気管32は、ノズル23a,23b,23cと対向する位置に設置される。

0023

回転機構16、ボートエレベータ17、ガス供給機構18のMFC21a〜21g、バルブ22a〜22g及びAPCバルブ34には、これらを制御するコントローラ36が接続される。コントローラ36は、例えばCPUを備えたマイクロプロセッサコンピュータ)を有し、基板処理装置1の動作を制御する様に構成される。コントローラ36には、例えばタッチパネル等として構成された入出力装置37が接続されている。

0024

コントローラ36には、記憶媒体としての記憶部38が接続されている。記憶部38には、基板処理装置1の動作を制御する制御プログラムや、処理条件に応じて基板処理装置1の各構成部に処理を実行させるプログラム(レシピとも言う)が、読出し可能に格納される。

0025

記憶部38は、コントローラ36に内蔵された記憶装置ハードディスクフラッシュメモリ)であってもよいし、可搬性外部記録装置磁気テープフレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスクUSBメモリメモリカード等の半導体メモリ)であってもよい。又、コンピュータへのプログラムの提供は、インターネット専用回線等の通信手段を用いて行ってもよい。プログラムは、必要に応じて入出力装置37からの指示等にて記憶部38から読出され、読出されたレシピに従った処理をコントローラ36が実行することで、基板処理装置1はコントローラ36の制御のもと、所望の処理を実行する。

0026

また、コントローラ36には、インレットフランジ5の外周面に設置された加熱手段(加熱機構)としてのヒータ50を制御する温度制御器60が接続されている。温度制御器60は、コントローラ36からレシピに応じた目標温度補償値(後述)が設定される。例えば、一連の基板処理の中で少なくとも、問題となる副生成物を発生させうるガスが供給され、或いは、処理室8に充満している間、その副生成物がインレットフランジ5に付着することを抑制しうる温度に設定される。

0027

次に、インレットフランジ5及びその周辺部の構成について、図2図6に基づいて説明する。

0028

インレットフランジ5は、筒状に形成され、反応管2の下端に接続される。また、インレットフランジ5の下端開口であって、インレットフランジ5の反応管2に接続される側の反対側の開口は、ボート14を出し入れ可能に蓋部9が塞ぐよう構成されている。

0029

また、インレットフランジ5は、上端において反応管2と気密に接続する上フランジ5aと、下端において蓋部9と気密に接続する下フランジ5bと、上フランジ5aと下フランジ5bを接続する筒部5cと、で構成されている。

0030

上フランジ5aは、外周方向に突出する外フランジ5a−1と、内周方向に突出する内フランジ5a−2とで構成されている。外フランジ5a−1は外部管としての反応管2(供給バッファ室2A及び排気バッファ室2Bの外壁を含む)を支持する。内フランジ5a−2は内部管(の一部分)としての供給バッファ室2A及び排気バッファ室2Bの内壁を支持する。内フランジ5a−2には、排気バッファ室2Bに連通する孔5a−3が形成されている。内フランジ5a−2は、後述の熱伝導を高めるため、インレットフランジ5に溶接されうる。また、外フランジ5a−1の上面には、Oリング等のシール部材6が設置され、シール部材6により反応管2と外気とが気密にシールされる。

0031

また、インレットフランジ5の下端開口部(処理容器7の下端開口部)は、円盤状の蓋部9によって開閉される。蓋部9の上面には、Oリング等のシール部材11が設置され、シール部材11により反応管2と外気とが気密にシールされる。

0032

上フランジ5aには、反応管2の下端フランジ(lip)を、上フランジ5aに押さえつける金属製のクランプ25が、ボルトで取り付けられる。クランプ25は全体として周状となるよう分割して構成されうる。薄い耐熱樹脂製弾性部材58は、上フランジ5aとクランプ25の間にクッションとして設けられうる。クランプ25の内部は、区分的に全周にわたって埋め込まれた冷却水路25aが形成されている。冷却水路25aは、反応管2の開口部を冷却することで、シール部材6の温度上昇を抑制し、シール部材6の温度を耐熱温度内に維持する。クランプ25は実際には、2乃至3個の円弧状部材から構成され、設置後に冷却水路25aが連結されうる。尚、冷却水路25aは、外フランジ5a−1内に設けてもよい。

0033

また、図3に示されているように、インレットフランジ5の外周面であって、筒部5cの外周面に3つのガス導入ポート51a,51b,51cを備える。筒部5cの高さは、ガス導入ポート51a,51b,51cが有するコネクタの最大の直径と、略等しいかそれよりも低く設定される。つまり、インレットフランジ5は、製作もしくは組立可能な限界付近まで薄型化されている。ガス導入ポート51a,51b,51cには、それぞれガス供給管19a,19b,19eが装着される。また、ガス導入ポート51a,51b,51cのインレットフランジ5の内周面側には、それぞれノズル23a,23b,23cが装着される。各ノズル23の両脇には、それらを支えブラケット部材がフランジ内周面から中心に向かって突出して設けられる。

0034

また、インレットフランジ5の外周面であって、筒部5cの外周面(側面)には、インレットフランジ5を外側から電気加熱するヒータ50が設けられている。ヒータ50は、ストラット(突っ張り棒)53によって、インレットフランジ5の外周面に押し当てられている。図4は、ヒータ50を構成するヒータ要素50a〜50fをインレットフランジ5から取外した状態を示している。

0035

ヒータ50は、全体としては略円筒状に形成され、ガス導入ポート51a〜51cを避けながら配設される。ヒータ50は、6つのヒータ要素50a,50b,50c,50d,50e,50fで構成され、各ヒータ要素50a〜50fの断面が円弧状に形成されている。つまり、各ヒータ要素50a〜50fは、配管類等のガス導入ポート51a,51b,51c等を避けて、インレットフランジ5の外周面に沿って、インレットフランジ全周を複数に分割して配設されている。各ヒータ要素は、2〜3個のストラット53によって、断熱性の押し当て板を介して押し当てられうる。なお、本実施形態においては、ヒータ要素50dとヒータ要素50eの間にガス導入ポート51a〜51cが配置されるよう構成されている。また、各ヒータ要素50a,50b,50c,50d,50e,50fそれぞれの間には、空隙50gが設けられる。

0036

各ヒータ要素50a〜50fとして、例えば抵抗線を、2枚のポリイミド絶縁板で挟み込んだ構造のフレキシブルヒータや、円弧状金属ブロックに棒状カートリッジヒータを埋め込んだものが用いられる。また、その一部または全部が、筒部5cに直接埋め込まれてもよい。なお、ガス導入ポート51a〜51cの周辺には、ジャケットヒータリボンヒータ等(不図示)およびその温度調整用の温度センサが別途設けられうる。ヒータ要素は、インレットフランジ5の外周面からの熱放散を補うものと考えることができ、通常、ヒータ3から熱を受け取るインレットフランジ5の内周面の方が高温である。フレキシブルヒータの常用温度の上限は280℃程度であるが、内周面を、副生成物付着下限温度(300〜350℃)より高く保つのには十分である。

0037

また、排気管32が上部に配置される排気口側であるヒータ要素50b周辺のインレットフランジ5の外周面には、温度センサ52aが設けられている。温度センサ52aは、排気口下方に設けられたヒータ要素50b付近で、インレットフランジ5の外周面に接触させて設けられる。また、ガス導入ポート51a〜51c側であるヒータ要素50e周辺のインレットフランジ5の外周面には、温度センサ52bが設けられている。温度センサ52bは、ヒータ要素50e周辺であって、ガス導入ポート51a〜51c周辺の温度を検出する。

0038

なお、温度センサ52aと温度センサ52bは、排気口下方付近以外の場所でそれぞれインレットフランジ5もしくはヒータ要素50bを除くヒータ要素のいずれかと熱的に結合されていればよい。

0039

図5(A)〜図5(C)は、排気管32周辺の構成を示す模式図である。

0040

排気管32の排気口26の根元には、反応管2との接続を容易にし、強度を高めるための肉盛り部54が形成されている。排気管32をなるべく低温の位置で反応管2と接続するため、肉盛り部54の下端は、反応管2の下端フランジと接続するほど、下端に接近している。従って、図2に示した構造とは異なる構造が用いられうる。本例では、排気口26付近に、専用の冷却ブロック56を設ける。肉盛り部54は、排気管32の直下の両端では下端フランジと分離するように強度的に問題ない程度の切欠き部55を設ける。そして、この切欠き部55に、冷却水が循環可能な冷却ブロック56から伸びる、ステンレス鋼などの金属で構成した舌部57が部分的に入り込む形状としている。この舌部57により、排気管32からの熱がシール部材6へ伝わることを抑制する。なお切欠き部55と舌部57の間にも、弾性部材が設けられうる。この弾性部材は、熱伝達を高めるように構成されうる。

0041

つまり、本実施形態においては、排気管32の下辺に隣接して設けられた冷却ブロック56や舌部57や上述した冷却水路25a等の冷却器によって、ヒータ3からの加熱や排気ガスからの伝熱による、反応管2の排気口下部分のシール部材6の温度上昇を効率よく抑えることができる。

0042

図6に示されるように、基板処理装置1には、付帯設備として、冷却水路25aや冷却ブロック56等の冷却器に冷却水を供給する供給系が備えられている。供給系には、水源として、市水又は所定の温度に冷却された循環冷却水が接続されている。バルブ41及びバルブ42は、レシピに基づいたコントローラ36からの指令に従って、冷却水路25a及び冷却ブロック56への冷却水の供給量を制御する。通常、ほぼ一定の水圧又は流量の水が供給系に供給されており、バルブ41及びバルブ42は単に開閉することで、略一定の冷却水が冷却器に流通するように構成されている。レシピは、一連の基板処理の中で、排気管32が過熱するときだけ、冷却ブロック56の冷却水の流量が大きくなるように定義されうる。

0043

ここで、インレットフランジ5を均一に加熱すると、ガスを供給するガス導入ポート51a〜51c付近に比べて、排気の熱を受けるガスの排気口付近は高温となり、反応管2の炉口部の円周方向において温度ムラが生じてしまう。つまり、舌部57は、シール部材6の保護が目的であり、排気の熱の影響を完全に取り去るものではなく、それだけでインレットフランジ5の温度ムラを無くすことはできない。

0044

また、上述したヒータ要素50a〜50fのそれぞれに温度センサを設けて温度調整した場合には、制御構成が複雑になってしまう。また、このようにした場合には、本実施形態に比べて、温度センサの数を増やさなければならない。

0045

本実施形態では、上述した図4に示したように、インレットフランジ5の外周面に配設するヒータ50を6個のヒータ要素50a〜50fに周方向に分割し、ヒータ要素50a〜50fを2個のグループにグループ化する。そして、温度制御器60が、各グループに設置された温度センサ52a,52bにより検出された検出温度に基づいて、2個のグループ毎に独立して、ヒータ要素50a〜50fへの供給電力を制御することにより、必要な箇所に必要な加熱が可能となり、反応管2の炉口部の円周方向の温度ムラが低減され、加熱されにくい領域を積極的に加熱させることが可能となる。

0046

そして、円周方向全体に適正な温度に加熱することで、副生成物の付着を防止することが可能となる。なお、ヒータ要素50a〜50fに、温度に応じて抵抗値発熱量)が変化する自己制御ヒータオートトレースヒータ)を用いた場合、グループ内の温度ムラの低減も期待できる。

0047

次に、本実施形態における各ヒータ要素50a〜50fを制御する温度制御器60の動作について図7に基づいて説明する。

0048

各ヒータ要素50a〜50fは、温度が高くなりやすい排気管32付近のヒータ要素50a、50bのグループ1と、グループ1以外のヒータ要素50c、50d、50e、50fのグループ2の2つのグループにグループ化されている。

0049

グループ1のヒータ要素50aとヒータ要素50bは、電気的に直列又は並列に接続され、インレットフランジ5の外周面における単位長さ当たりの発熱量が等しくなるよう構成されている。また、グループ2のヒータ要素50c〜50fは、電気的に直列又は並列に接続され、同様に単位長さ当たりの発熱量が等しくなるよう構成されている。なお、この外周面における長さは、ヒータ要素50a等のそのものの長さではなく、ヒータ要素50a等が分担すべきインレットフランジ5の外周面の長さであり、その端は、例えば両隣のヒータ要素との間隙の中央まで及ぶ。また、各グループにおいて並列接続させる場合には、各ヒータ要素の抵抗値を、長さに反比例させるようにする。

0050

温度制御器60は、グループ1の領域に設置された温度センサ52aにより検出された検出温度に基づいて、グループ1のヒータ要素50a、50bへの供給電力を制御する。また、温度制御器60は、グループ2の領域に設置された温度センサ52bにより検出された検出温度(制御量)に基づいて、グループ2のヒータ要素50c〜50fへの供給電力(操作量)を制御する。すなわち、温度制御器60は、グループ毎に独立して、各グループへの供給電力をそれぞれフィードバック制御するように構成されている。ここで、独立した制御とは、少なくともグループ毎に制御量と操作量が存在することであり、制御中にグループ間でそれらが互いに影響されないことを意味するものではない。

0051

具体的には、温度制御器60は、温度センサ52aで検出した温度(制御量)と第1設定温度目標値)Tp1とが一致するようにPID制御を行い、グループ1のヒータ要素50a、50bへの供給電力を制御する。また、温度制御器60は、温度センサ52bで検出した温度と第2設定温度Tp2とが一致するようにPID制御を行い、グループ2のヒータ要素50c〜50fへの供給電力を制御する。

0052

つまり、インレットフランジ5に配設される6個のヒータ要素を、排気口付近のグループとそれ以外のグループの2個のグループにグループ化して、それぞれのグループの領域に設けた2個の温度センサによりそれぞれ検出された検出温度に基づいて、グループ毎に独立して、各ヒータ要素への供給電力をそれぞれフィードバック制御するように構成されている。なお、温度センサ52a、52bは、それぞれのグループのヒータ要素が配置されている領域であればよく、好ましくは各グループの中央付近等に、インレットフランジ5に熱的に結合するように設ける。

0053

また、外乱として、排気による加熱、冷却水路25aや冷却ブロック56等の冷却器等の冷却水の流量等が含まれる。従来の問題の1つは、温度センサ52aや温度センサ52bが測定する温度が、副生成物が付着するインレットフランジ5の内側の温度ではなく、外側の温度であるために、インレットフランジ5の内外の温度差偏差)が外乱によって変動しても、それをキャンセルできない点である。ここで本実施形態の温度制御器60は更に、これらの外乱に基づいて、各グループへの供給電力をそれぞれフィードフォワード制御するように構成されている。つまり、排気管32からの排気の状態や冷却水路25a等の冷却の状態に基づいて、各グループの所定の設定温度をそれぞれ補償し、各温度センサ52a,52bによる検出温度が、補償された設定温度と一致するように、グループ毎に独立して、各ヒータ要素への供給電力をそれぞれ制御する。具体的には、排気による加熱に応じてグループ1の設定温度を低くしたり、さらに冷却水の流量が多い場合には、設定温度を低くしすぎないようにする。

0054

例えば、本実施形態では、冷却水路25aによる水冷の流量Fchn及び冷却ブロック56による水冷の流量Fblkや、見込まれる排気からの加熱量に比例して、排気口側のグループ1の設定温度を下げることができる。或いは、水冷流量に比例してグループ1及びグループ2の設定温度を上げることができる。排気からの加熱量は、処理温度(ウエハWが配置される領域の温度)、単位時間当たりに供給される反応性ガスモル量及び反応発熱(吸熱)量から算出される、排気温度排気流量(モル量)に基づいて見積もられる。コントローラ36は、このような加熱量を計算を行うか、或いは所定の処理レシピに対して予め計算或いは実測により求めた補償量を保持し、処理の際に、温度制御器60に補償量として設定する。温度制御器60は与えられた加熱量と設定温度から設定補償量を算出するか、単に与えられた補償量を用いて、設定温度を補償する。

0055

一例として、温度制御器60は、補償量が含められた第1設定温度及び第2設定温度として、以下を用いることができる。
Tp1=Tprv−a1×Tfun+b1×Fchn
Tp2=Tprv−a2×Tfun+b2×Fblk−c×Fexh
ここで、Tprvは、副生成物の付着等を予防できるインレットフランジ5の内面温度、Tfunは、処理室8内(ウエハW)の温度、Fexhは、排気の流量であり、a1、a2、b1、b2、cは正の比例定数である。

0056

また、温度センサのいずれか一方が断線した場合には、断線していない温度センサを用いてヒータ要素50a〜50fへの供給電力を制御するように切り替えるよう構成されている。

0057

次に、上述の基板処理装置1を用い、ウエハW上に膜を形成する処理(成膜処理)について説明する。ここでは、ウエハWに対して、原料ガスとしてDCS(SiH2Cl2:ジクロロシラン)ガスと、反応ガスとしてNH3(アンモニア)ガスとを供給することで、ウエハW上にシリコン窒化(SiN)膜を形成する例について説明する。尚、以下の説明に於いて、基板処理装置1を構成する各部の動作は、コントローラ36により制御される。

0058

(ウエハチャージ及びボートロード
複数枚のウエハWがボート14に装填(ウエハチャージ)されると、ボート14はボートエレベータ17によって処理室8内に搬入(ボートロード)され、反応管2の下部以降は蓋部9によって気密に閉塞(シール)された状態となる。この時、第1パージガス供給部から、第1パージガス28としてN2ガスを間隙41を介してノズル23a〜23cの基部に供給する。又、第2パージガス供給部から、第2パージガス49としてN2ガスを、第2パージガス流路27を介して隙間46に供給する。更に、第1パージガス28から分岐された第3パージガス29が、筒体39の内周面内に供給される。第1パージガス28、第2パージガス49の供給は、少なくとも成膜処理が完了する迄継続される。また、蓋部9がインレットフランジ5に当接する前に、バルブ41、42が開いていない場合には、開とされる。

0059

(圧力調整及び温度調整)
処理室8内が所定の圧力(真空度)となる様に、真空ポンプ35によって真空排気減圧排気)される。処理室8内の圧力は、圧力センサ33で測定され、測定された圧力情報に基づきAPCバルブ34がフィードバック制御される。又、処理室8内のウエハWが所定の処理温度となる様に、ヒータ3によって加熱される。この際、処理室8が所定の温度分布となる様に、温度検出器4が検出した温度情報に基づきヒータ3への通電具合がフィードバック制御される。又、回転機構16によるボート14及びウエハWの回転を開始する。

0060

又この時、各ヒータ要素50a〜50fにより、インレットフランジ5は、例えば設定温度である270℃に加熱される。この際、インレットフランジ5の各領域に配置したヒータ要素が設定温度となる様に、温度制御器60によって各グループのヒータ要素50a〜50fへの通電具合がフィードバック制御される。設定温度は、例えば副生成物の分圧が、設定温度における飽和蒸気圧を超えないように、より好ましくは飽和蒸気圧よりも所定量だけ低くなるように設定されうる。副生成物は1つとは限らず、塩化アンモニウムクロロシランポリマー等が含まれうる。なお、この各ヒータ要素50a〜50fへの加熱は、少なくとも成膜処理が完了する迄継続される。

0061

(成膜処理)
[原料ガス供給工程]
処理室8内の温度が予め設定された処理温度に安定すると、処理室8内のウエハWに対してDCSガスを供給する。DCSガスは、MFC21aにて所望の流量となる様に制御され、ガス供給管19a及びノズル23aを介して処理室8内に供給される。この時、第1パージガス供給部、第2パージガス供給部から炉口部に対してN2ガスが供給されている。これにより、ノズル23a〜23cの基部と周辺部を第1パージガス28で集中的にパージできると共に、それ以外の部分を第2パージガス49でパージし、炉口部の原料ガス濃度希釈できる。尚、この工程に於いて、第1パージガス供給部、第2パージガス供給部によるN2ガスの供給を一時的に増加させてもよい。

0062

[原料ガス排気工程]
次に、DCSガスの供給を停止し、真空ポンプ35により処理室8内を真空排気する。この時、不活性ガス供給部から、不活性ガスとしてN2ガスを処理室8内に供給してもよい(不活性ガスパージ)。この排気工程では、APCバルブ34が一時的に全開となり、排気口26には大流量で高温の排気が流れうる。この間、コントローラ36は、冷却ブロック56へ十分な冷却水が供給されるようにバルブ42を制御するとともに、設定温度を下げるような補償値を温度制御器60に与えることができる。

0063

[反応ガス供給工程]
次に、処理室8内のウエハWに対してNH3ガスを供給する。NH3ガスは、MFC21bにて所望の流量となる様に制御され、ガス供給管19b及びノズル23bを介して処理室8内に供給される。この時、第1パージガス供給部、第2パージガス供給部から炉口部に対してN2ガスが供給されている。これにより、ノズル23a〜23cの基部と周辺領域を集中的にパージできると共に、その他の部分についてもパージでき、炉口部に於ける反応ガス濃度を希釈することができる。

0064

[反応ガス排気工程]
次に、NH3ガスの供給を停止し、真空ポンプ35により処理室8内を真空排気する。この時、不活性ガス供給部からN2ガスを処理室8内に供給してもよい(不活性ガスパージ)。また、原料ガス排気工程と同様に、冷却水や設定温度が制御されうる。

0065

上述した4つの工程を行うサイクル所定回数(1回以上)行うことにより、ウエハW上に、所定組成及び所定膜厚SiN膜を形成することができる。

0066

(ボートアンロード及びウエハディスチャージ
所定膜厚の膜を形成した後、不活性ガス供給部からN2ガスが供給され、処理室8内がN2ガスに置換されると共に、処理室8の圧力が常圧に復帰される。その後、ボートエレベータ17により蓋部9が降下され、ボート14が反応管2から搬出(ボートアンロード)される。その後、処理済ウエハWは、ボート14より取出される(ウエハディスチャージ)。

0067

ウエハWにSiN膜を形成する際の処理条件としては、例えば下記が例示される。
処理温度(ウェーハ温度):300℃〜700℃、
処理圧力(処理室内圧力):1Pa〜4000Pa、
DCSガス:100sccm〜10000sccm、
NH3ガス:100sccm〜10000sccm、
N2ガス:100sccm〜10000sccm、
それぞれの処理条件を、それぞれの範囲内の値に設定することで、成膜処理を適正に進行させることができる。なお成膜処理は、ウエハW上にSiN膜を形成するものに限定されず、例えば、ウエハW上にSiO2膜、SiON膜等を形成する場合にも好適に適用できる。

0068

<他の実施形態>
以上、本開示の実施形態を具体的に説明した。しかしながら、本開示は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。

0069

例えば、上記実施形態では、6個のヒータ要素を2個のグループにグループ化し、グループ毎に独立して、各ヒータ要素への供給電力を制御する構成について説明したが、これに限らず、6個のヒータ要素を2以上の例えば3個のグループにグループ化し、グループ毎に独立して、各ヒータ要素への供給電力を制御する場合にも適用できる。具体的には、図8に示すように、温度が高くなりやすい排気管32付近のヒータ要素50a,50bのグループ1と、グループ1以外のヒータ要素50c,50d,50e,50fをヒータ要素50c,50dのグループ2と、ヒータ要素50e,50fのグループ3に分けて、3個のグループの領域にそれぞれ温度センサ52a,52b,52cを配設する。そして、3個の温度センサにより検出された検出温度に基づいて、各グループのヒータ要素への供給電力を制御するようにしてもよい。

0070

すなわち、排気ガスの不均一(非対称)な流れや、インレットフランジ5に設けられた配管類等からの熱逃げ、冷却水路25aや冷却ブロック56等の詰まり等のその他の温度ムラの原因に応じて、複数のグループにグループ化して、制御をすることができる。この場合、温度センサやヒータ要素の一部が断線したり、故障した場合であっても、他の温度センサやヒータ要素を用いて制御することが可能となる。

0071

また、図9に示すように、ヒータ50は、周方向だけでなく高さ方向にも分割されうる。そして複数のヒータ要素を独立に制御することにより、インレットフランジ5の内周面を、高さ方向においても均一に、或いは所望の温度分布となるよう、加熱することができる。

0072

また、ヒータ50は、半径方向にも分割されうる。例えば、筒部5cの外周面に密着させて設けられる内側ヒータ要素と、内側ヒータ要素の外側に断熱層を介して設けられる外側ヒータ要素とによる、2重構成を用いることができる。外側ヒータ要素は、断熱層内温度勾配を低減し、断熱層を通って放散される熱量を減少させる。内側ヒータ要素に求められる発熱量は小さいため、安価に構成することができる。

0073

また、ヒータ50は、インレットフランジ5の内周面を均一な温度に加熱するものに限定されない。例えば、設定温度は、各グループに対応するインレットフランジ5の内周面における副生成物の分圧が、飽和蒸気圧を超えないように決定することができる。つまり開口部2Eからの距離や、第1パージガス28、第2パージガス49の流量に依存して、副生成物の分圧は変化しうるため、分圧が高い位置では温度も高くなるように、設定することができる。分圧は、副生成物の付着の状況から経験的に推定できる。
また、補償値や冷却水量の制御は、成膜等の基板処理中に行うものに限らず、反応管2内のガスクリーニングを行う際にも、好適に実施されうる。この時の設定温度は、エッチング反応が満遍なく起こるように、均一に与えられうる。或いは、除去すべき堆積物膜厚が大きい位置では温度も高くなるように、設定することができる。

0074

なお、上記実施形態では、コントローラ36が予め取得した補償量を用いる例を述べたが、レシピの中で副生成物の付着に決定的な補償量が1つのみである場合、この補償量に相当するような単位発熱量の違いをヒータ50に付与することによっても、温度ムラを効果的に抑制しうる。つまり、排気口26の発熱量が他よりも低くなるような発熱量分布を有するヒータ50を構成すればよい。自己制御ヒータは、この目的に使用できる。

0075

1基板処理装置
2反応管
5インレットフランジ
8処理室
14ボート(基板保持具)
26排気口
32排気管
36コントローラ
60 温度制御器

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ