図面 (/)

この項目の情報は公開日時点(2020年3月5日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (17)

課題

度差エネルギーの有効利用を実現し、システム全体の性能を高められる淡水化及び温度差発電システムを提供する。

解決手段

作動流体相変化させて発電用動力を得る蒸気動力サイクル部を複数設け、一の蒸気動力サイクル部10の蒸発器11が、海水淡水化装置60の蒸発手段で温海水を蒸発させた蒸気高温流体として供給され、且つ、他の蒸気動力サイクル部20における蒸発器21が、前記蒸発手段で蒸発しなかった残留海水を高温流体として供給され、各々作動流体を蒸発させることから、一の蒸気動力サイクル部10がハイブリッドサイクルをなす一方、他の蒸気動力サイクル部20がクローズドサイクルをなすこととなり、他の蒸気動力サイクル部20で、高温流体側の熱損失を抑えて有効利用可能な熱を確保できることに加え、脱酸素状態の残留海水を用いることで、蒸発器21に生物汚れが生じにくい状態が得られる。

概要

背景

海洋における表層海水深層海水との温度差に基づく熱エネルギーを利用して発電を行う海洋温度差発電は、その実用化を強く期待されており、各国で研究開発が進められている。

この海洋温度差発電の方式としては、オープンサイクルクローズドサイクルハイブリッドサイクル三種類が広く知られている。このうち、ハイブリッドサイクルは、クローズドサイクル同様の低沸点媒体作動流体とする蒸気動力サイクルを採用することで、オープンサイクルの場合のような特殊なタービンを用いずに済む点や、高温熱源として蒸気を用いることで、クローズドサイクルの場合のように、作動流体の蒸発器において、高温熱源としての表層海水と蒸発器伝熱面とが接触することに伴う、伝熱面の生物汚れ海水による腐食の発生を懸念する必要がない点などの特長を有しており、また、蒸発器で作動流体との熱交換に使用された海水由来蒸気の凝縮した水を飲用等に使用できることから、海水淡水化を必要とする地域での実用化が望まれている。

このような海洋温度差発電システムのうち、特に、作動流体による蒸気動力サイクルを用いるクローズドサイクル方式のものは、海水の温度差の熱エネルギーを有効に活用するために、蒸気動力サイクルを複数段化して、表層温海水深層冷海水などの熱源となる流体を段階的に利用する手法が従来から提案されている。

これは、各熱源流体を複数段化した蒸気動力サイクルの作動流体とそれぞれ熱交換させ、熱源流体の有する熱を各蒸気動力サイクルの作動流体で適切に回収して損失分をより小さくすることで、効率向上を図ることを目指すものである。
こうした複数段の蒸気動力サイクルによる従来の海洋温度差発電システムの例としては、特開平5−340342号公報に記載されるものがある。

概要

温度差のエネルギーの有効利用を実現し、システム全体の性能を高められる淡水化及び温度差発電システムを提供する。作動流体を相変化させて発電用動力を得る蒸気動力サイクル部を複数設け、一の蒸気動力サイクル部10の蒸発器11が、海水淡水化装置60の蒸発手段で温海水を蒸発させた蒸気を高温流体として供給され、且つ、他の蒸気動力サイクル部20における蒸発器21が、前記蒸発手段で蒸発しなかった残留海水を高温流体として供給され、各々作動流体を蒸発させることから、一の蒸気動力サイクル部10がハイブリッドサイクルをなす一方、他の蒸気動力サイクル部20がクローズドサイクルをなすこととなり、他の蒸気動力サイクル部20で、高温流体側の熱損失を抑えて有効利用可能な熱を確保できることに加え、脱酸素状態の残留海水を用いることで、蒸発器21に生物汚れが生じにくい状態が得られる。

目的

このうち、ハイブリッドサイクルは、クローズドサイクル同様の低沸点媒体を作動流体とする蒸気動力サイクルを採用することで、オープンサイクルの場合のような特殊なタービンを用いずに済む点や、高温熱源として蒸気を用いることで、クローズドサイクルの場合のように、作動流体の蒸発器において、高温熱源としての表層海水と蒸発器伝熱面とが接触することに伴う、伝熱面の生物汚れや海水による腐食の発生を懸念する必要がない点などの特長を有しており、また、蒸発器で作動流体との熱交換に使用された海水由来蒸気の凝縮した水を飲用等に使用できることから、海水淡水化を必要とする地域での実用化が望まれている

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

液相の作動流体を所定の高温流体熱交換させて作動流体を蒸発させ、得られた気相の作動流体の保有する熱エネルギー動力に変換する一方、前記熱エネルギーを動力に変換した後の気相作動流体を所定の低温流体と熱交換させて凝縮させ、作動流体を液相に戻して再び前記高温流体と熱交換させる過程を繰返し行う複数の蒸気動力サイクル部と、当該蒸気動力サイクル部で熱エネルギーから変換された動力を利用して発電を行う発電装置と、海水の少なくとも一部を蒸発させる一又は複数の蒸発手段、及び、当該蒸発手段で蒸発させた水分を凝縮させる一又は複数の凝縮手段を少なくとも有し、凝縮手段での凝縮で塩分を含まない水を得る海水淡水化装置とを備え、当該海水淡水化装置の蒸発手段が、海洋表層温海水を当該海水の飽和蒸気圧より低い圧力に減圧された所定の減圧空間に導入して蒸発させるフラッシュ蒸発を行わせるものとされ、前記蒸気動力サイクル部のうち、一の蒸気動力サイクル部が、前記海水淡水化装置の蒸発手段で蒸発した蒸気を前記高温流体として供給されて、前記蒸気が凝縮する際の凝縮熱で前記作動流体を蒸発させる、前記海水淡水化装置の凝縮手段を兼ねる蒸発器、及び、海洋深層冷海水を前記低温流体として供給されて、気相作動流体を凝縮させる凝縮器を有してなり、前記蒸気動力サイクル部のうち、他の蒸気動力サイクル部が、前記海水淡水化装置における蒸発手段の減圧空間に導入されても蒸発しなかった残留海水の少なくとも一部を、前記高温流体として供給されて、前記作動流体を蒸発させる蒸発器、及び、海洋深層の冷海水を前記低温流体として供給されて、気相作動流体を凝縮させる凝縮器を有してなることを特徴とする淡水化及び温度差発電システム

請求項2

前記請求項1に記載の淡水化及び温度差発電システムにおいて、前記各蒸気動力サイクル部の作動流体循環流路における液相作動流体液面位置が、各蒸発器より上側に設定され、蒸発器における作動流体側流路全域に液相の作動流体が存在して、蒸発器で蒸気又は残留海水と熱交換可能とされ、各蒸気動力サイクル部の作動流体循環流路における蒸発器の下流側に、気相作動流体と液相作動流体とを分離する気液分離器を設けることを特徴とする淡水化及び温度差発電システム。

請求項3

前記請求項2に記載の淡水化及び温度差発電システムにおいて、前記一の蒸気動力サイクル部における気液分離器で分離された液相の作動流体を、他の蒸気動力サイクル部における気液分離器又は蒸発器から気液分離器までの作動流体流路所定箇所に流入させ、前記他の蒸気動力サイクル部における気液分離器で分離された液相の作動流体を、一の蒸気動力サイクル部における蒸発器又は蒸発器上流側の液相作動流体流路の所定箇所に、必要に応じ加圧して流入させることを特徴とする淡水化及び温度差発電システム。

請求項4

前記請求項1ないし3のいずれかに記載の淡水化及び温度差発電システムにおいて、海水淡水化装置で蒸発させる前の海水を内部の減圧空間に流入させる減圧容器を備え、当該減圧容器の減圧空間下部が、流入して気体成分を分離された海水を一時的に溜める貯溜槽とされ、当該貯溜槽の中央における海水水面近傍の水中に、海水中の異物を流入させて容器外部に排出可能とする排出部を設け、前記貯溜槽に溜まった海水に貯溜槽中央を流れの中心とする渦流れを生じさせ、貯溜槽中央に海水中の浮遊性の異物を集めて、集まった異物を前記排出部から排出することを特徴とする淡水化及び温度差発電システム。

技術分野

0001

本発明は、表層海水深層海水の温度差に基づくエネルギー発電を行う海洋温度差発電システムに関し、特に、作動流体相変化させつつ循環させて発電のための動力を得る蒸気動力サイクル部の蒸発器で、表層海水由来蒸気凝縮して海水淡水化も実行する、淡水化及び温度差発電システムに関する。

背景技術

0002

海洋における表層海水と深層海水との温度差に基づく熱エネルギーを利用して発電を行う海洋温度差発電は、その実用化を強く期待されており、各国で研究開発が進められている。

0003

この海洋温度差発電の方式としては、オープンサイクルクローズドサイクルハイブリッドサイクル三種類が広く知られている。このうち、ハイブリッドサイクルは、クローズドサイクル同様の低沸点媒体を作動流体とする蒸気動力サイクルを採用することで、オープンサイクルの場合のような特殊なタービンを用いずに済む点や、高温熱源として蒸気を用いることで、クローズドサイクルの場合のように、作動流体の蒸発器において、高温熱源としての表層海水と蒸発器伝熱面とが接触することに伴う、伝熱面の生物汚れ海水による腐食の発生を懸念する必要がない点などの特長を有しており、また、蒸発器で作動流体との熱交換に使用された海水由来蒸気の凝縮した水を飲用等に使用できることから、海水淡水化を必要とする地域での実用化が望まれている。

0004

このような海洋温度差発電システムのうち、特に、作動流体による蒸気動力サイクルを用いるクローズドサイクル方式のものは、海水の温度差の熱エネルギーを有効に活用するために、蒸気動力サイクルを複数段化して、表層温海水深層冷海水などの熱源となる流体を段階的に利用する手法が従来から提案されている。

0005

これは、各熱源流体を複数段化した蒸気動力サイクルの作動流体とそれぞれ熱交換させ、熱源流体の有する熱を各蒸気動力サイクルの作動流体で適切に回収して損失分をより小さくすることで、効率向上を図ることを目指すものである。
こうした複数段の蒸気動力サイクルによる従来の海洋温度差発電システムの例としては、特開平5−340342号公報に記載されるものがある。

先行技術

0006

特開平5−340342号公報

発明が解決しようとする課題

0007

従来の海洋温度差発電システムは、前記特許文献に示されるような構成となっており、蒸気動力サイクルを複数段化することで、熱源である温海水と冷海水の温度変化適合する複数段階蒸発温度及び凝縮温度を各蒸気動力サイクルの作動流体に設定でき、システム全体の効率改善が図れるとされている。

0008

ただし、このようなクローズドサイクルによる海洋温度差発電システムにおける蒸気動力サイクルでは、蒸発器に高温熱源としての表層海水を導入して作動流体と熱交換させることから、蒸発器の伝熱面における生物汚れや海水による腐食への対策を講じる必要があった。従来から、蒸発器の伝熱面に海水による腐食を生じにくいチタン等の高価な材質を用いたり、伝熱面上の汚れの除去等のメンテナンスを一定の頻度で行うなどの対策がなされてきたが、蒸気動力サイクルを複数段化した場合、蒸発器のコストやメンテナンスの手間も増大することとなり、費用対効果の観点から、蒸気動力サイクルの複数段化は容易には採用できないという課題を有していた。

0009

一方、前記特許文献に示されるような従来のクローズドサイクル方式の海洋温度差発電システムにおける、蒸気動力サイクルを複数段化した構成を、海洋温度差発電の作動流体を用いる他の方式、すなわち、ハイブリッドサイクル方式のシステムに適用して、海水の温度差の熱エネルギーを有効に活用できるようにすることも考えられる。

0010

ハイブリッドサイクルによる海洋温度差発電システムにおいて、蒸気動力サイクルの作動流体を蒸発させる蒸発器は、海水を蒸発させた蒸気と作動流体を熱交換させることで作動流体を蒸発させると同時に、蒸気を凝縮させて凝縮液としての真水を得ており、海水淡水化装置凝縮器を兼ねるものとなっている。

0011

こうしたハイブリッドサイクル方式のシステムで蒸気動力サイクルを複数段化する場合、高温熱源である海水由来蒸気を複数段の蒸気動力サイクルごとに蒸発器で作動流体と熱交換させることになるため、海水の蒸発、具体的にはフラッシュ蒸発を複数段階で行う必要がある。この場合、蒸気が通過するデミスタ配管等における熱損失が、蒸気動力サイクルが一段の場合と比べて大きくなり、高温熱源が液相の海水であるクローズドサイクル方式の場合よりもシステムで利用できる温度差のエネルギーが小さくなることから、蒸気動力サイクルを複数段化するメリットはほとんど得られないという課題を有していた。

0012

本発明は前記課題を解消するためになされたもので、ハイブリッドサイクル方式とクローズドサイクル方式とを組み合わせる形で温度差発電用の蒸気動力サイクルを複数段化して、温度差のエネルギーの有効利用を無理なく実現し、システム全体の性能を高められる淡水化及び温度差発電システムを提供することを目的とする。

課題を解決するための手段

0013

本発明に係る淡水化及び温度差発電システムは、液相の作動流体を所定の高温流体と熱交換させて作動流体を蒸発させ、得られた気相の作動流体の保有する熱エネルギーを動力に変換する一方、前記熱エネルギーを動力に変換した後の気相作動流体を所定の低温流体と熱交換させて凝縮させ、作動流体を液相に戻して再び前記高温流体と熱交換させる過程を繰返し行う複数の蒸気動力サイクル部と、当該蒸気動力サイクル部で熱エネルギーから変換された動力を利用して発電を行う発電装置と、海水の少なくとも一部を蒸発させる一又は複数の蒸発手段、及び、当該蒸発手段で蒸発させた水分を凝縮させる一又は複数の凝縮手段を少なくとも有し、凝縮手段での凝縮で塩分を含まない水を得る海水淡水化装置とを備え、当該海水淡水化装置の蒸発手段が、海洋表層の温海水を当該海水の飽和蒸気圧より低い圧力に減圧された所定の減圧空間に導入して蒸発させるフラッシュ蒸発を行わせるものとされ、前記蒸気動力サイクル部のうち、一の蒸気動力サイクル部が、前記海水淡水化装置の蒸発手段で蒸発した蒸気を前記高温流体として供給されて、前記蒸気が凝縮する際の凝縮熱で前記作動流体を蒸発させる、前記海水淡水化装置の凝縮手段を兼ねる蒸発器、及び、海洋深層の冷海水を前記低温流体として供給されて、気相作動流体を凝縮させる凝縮器を有してなり、前記蒸気動力サイクル部のうち、他の蒸気動力サイクル部が、前記海水淡水化装置における蒸発手段の減圧空間に導入されても蒸発しなかった残留海水の少なくとも一部を、前記高温流体として供給されて、前記作動流体を蒸発させる蒸発器、及び、海洋深層の冷海水を前記低温流体として供給されて、気相作動流体を凝縮させる凝縮器を有してなるものである。

0014

このように本発明によれば、高温流体や低温流体との熱交換で作動流体を相変化させて発電のための動力を得る蒸気動力サイクル部を複数設け、一の蒸気動力サイクル部における蒸発器が、海水淡水化装置の蒸発手段で温海水を蒸発させた蒸気を高温流体として供給され、且つ、他の蒸気動力サイクル部における蒸発器が、海水淡水化装置の蒸発手段で蒸発しなかった残留海水を高温流体として供給され、それぞれ作動流体を蒸発させると共に、各蒸気動力サイクル部における凝縮器が冷海水を低温流体として供給されて、作動流体を凝縮させ、各蒸気動力サイクル部でそれぞれ動力を生じさせるようにすることにより、一の蒸気動力サイクル部が蒸発器で作動流体を蒸発させると共に蒸気を凝縮させるハイブリッドサイクルをなす一方、他の蒸気動力サイクル部が蒸発器で作動流体と熱交換させる高温流体として海水を用いるクローズドサイクルをなすこととなり、他の蒸気動力サイクル部で、高温流体側の熱損失を抑えて有効に利用可能な熱を確保できることに加え、高温流体としての蒸発手段で蒸発しなかった残留海水は、減圧空間に晒されて脱酸素状態となるのに伴い、その海水中の微生物不活性状態として、生物汚れが生じにくい状態となっており、蒸発器の伝熱面の汚れに対するメンテナンス頻度下げられ、また、一の蒸気動力サイクル部の蒸発器では、蒸気を流通させることで海水への腐食耐性を考慮せずに済み、一般的な耐水性を有する材質、例えば、ステンレス材等を用いることができ、各蒸気動力サイクル部に係るコストを抑えつつ、蒸気動力サイクルの複数段化による温度差のエネルギーの有効利用を無理なく実現でき、システムの性能を高められる。

0015

また、本発明に係る淡水化及び温度差発電システムは必要に応じて、前記各蒸気動力サイクル部の作動流体循環流路における液相作動流体液面位置が、各蒸発器より上側に設定され、蒸発器における作動流体側流路全域に液相の作動流体が存在して、蒸発器で蒸気又は残留海水と熱交換可能とされ、各蒸気動力サイクル部の作動流体循環流路における蒸発器の下流側に、気相作動流体と液相作動流体とを分離する気液分離器を設けるものである。

0016

このように本発明によれば、各蒸気動力サイクル部の蒸発器で蒸発させる液相作動流体の作動流体循環流路における液面位置を蒸発器より上側として、蒸発器の作動流体側流路全域に液相作動流体が流通するようにする一方、蒸発器の下流側に気液分離器を設けて、この気液分離器で気相作動流体と液相作動流体とを分離し、気相作動流体のみが作動流体循環流路をさらに進行可能とすることにより、作動流体を高温流体との熱交換により蒸発させると、発生する気相作動流体が気泡として上方に進みながら、蒸発していない液相作動流体と共に流路出口側へ進み、蒸発器の外に流出することにより、気相作動流体が蒸発器内の流路を上昇する動きが続いても気相作動流体が流路の上部に滞留せず、溜まった気相作動流体が液相作動流体と伝熱面との接触を妨げて液相作動流体と高温流体との熱交換及び作動流体の蒸発がスムーズに行われない状態となるのを確実に防ぐことができ、蒸発器で効率よく作動流体の蒸発を行わせることができる。

0017

また、本発明に係る淡水化及び温度差発電システムは必要に応じて、前記一の蒸気動力サイクル部における気液分離器で分離された液相の作動流体を、他の蒸気動力サイクル部における気液分離器又は蒸発器から気液分離器までの作動流体流路所定箇所に流入させ、前記他の蒸気動力サイクル部における気液分離器で分離された液相の作動流体を、一の蒸気動力サイクル部における蒸発器又は蒸発器上流側の液相作動流体流路の所定箇所に、必要に応じ加圧して流入させるものである。

0018

このように本発明によれば、一の蒸気動力サイクル部の気液分離器で分離された液相作動流体を、他の蒸気動力サイクル部における気液分離器又は蒸発器から気液分離器までの作動流体流路の所定箇所に流入させるようにして、圧力の低い流路に液相作動流体が流入しつつ一部蒸発するのに伴って、気液分離器で気相の作動流体を増加させることができる一方、他の蒸気動力サイクル部の気液分離器で分離された液相の作動流体は、一の蒸気動力サイクル部における蒸発器又は蒸発器上流側の液相作動流体流路の所定箇所に流入させて戻すことにより、一の蒸気動力サイクル部で得られる動力を維持しつつ、他の蒸気動力サイクル部で気相の作動流体の仕事によって得られる動力を増やして発電出力を増大させることができ、温度差のエネルギーをさらに有効利用できる。

0019

また、本発明に係る淡水化及び温度差発電システムは必要に応じて、海水淡水化装置で蒸発させる前の海水を内部の減圧空間に流入させる減圧容器を備え、当該減圧容器の減圧空間下部が、流入して気体成分を分離された海水を一時的に溜める貯溜槽とされ、当該貯溜槽の中央における海水水面近傍の水中に、海水中の異物を流入させて容器外部に排出可能とする排出部を設け、前記貯溜槽に溜まった海水に貯溜槽中央を流れの中心とする渦流れを生じさせ、貯溜槽中央に海水中の浮遊性の異物を集めて、集まった異物を前記排出部から排出するものである。

0020

このように本発明によれば、海水淡水化装置で蒸発を行わせる前の海水を減圧容器内に一時的に貯溜すると共に、この貯溜した海水に渦流れを生じさせて、海水中の浮遊性の異物が渦流れの中央に集まるようにし、この異物の集まる箇所に対応させて設けた排出部を通じて異物を容器外に排出することにより、処理する海水の量が多くなる場合でも、海水中に混入した異物を適切に継続して分離でき、海水淡水化装置に異物による悪影響が加わらないようにすることができる上、異物の除去に一般的なスクリーン等を用いる場合のように目詰まり解消等のメンテナンスを高頻度で行う必要がなく、効率よく異物を除去して海水を利用でき、無理なく海水から温度差のエネルギーを取得してシステムを運用できる。

図面の簡単な説明

0021

本発明の第1の実施形態に係る淡水化及び海洋温度差発電システムの概略説明図である。
本発明の第1の実施形態に係る淡水化及び海洋温度差発電システムで用いる一の蒸気動力サイクル部における蒸発器の正面図である。
本発明の第1の実施形態に係る淡水化及び海洋温度差発電システムで用いる一の蒸気動力サイクル部における蒸発器熱交換部の概略構成説明図である。
本発明の第1の実施形態に係る淡水化及び海洋温度差発電システムで用いる一の蒸気動力サイクル部における蒸発器の縦断面図である。
本発明の第1の実施形態に係る淡水化及び海洋温度差発電システムで用いる他の蒸気動力サイクル部における蒸発器の概略正面図である。
本発明の第1の実施形態に係る淡水化及び海洋温度差発電システムで用いる他の蒸気動力サイクル部における蒸発器熱交換部の概略構成説明図である。
本発明の第1の実施形態に係る淡水化及び海洋温度差発電システムで用いる脱気装置横断面図及び縦断面図である。
本発明の第2の実施形態に係る淡水化及び海洋温度差発電システムの概略説明図である。
本発明の第2の実施形態に係る淡水化及び海洋温度差発電システムで用いる一の蒸気動力サイクル部における他の蒸発器の正面図である。
本発明の第3の実施形態に係る淡水化及び海洋温度差発電システムで用いる一の蒸気動力サイクル部における蒸発器の縦断面図である。
本発明の第4の実施形態に係る淡水化及び海洋温度差発電システムで用いる一の蒸気動力サイクル部における蒸発器の正面図である。
本発明の第4の実施形態に係る淡水化及び海洋温度差発電システムで用いる一の蒸気動力サイクル部の蒸発器における熱交換部及び不凝縮ガス収集部の概略斜視図である。
本発明の第4の実施形態に係る淡水化及び海洋温度差発電システムで用いる一の蒸気動力サイクル部の蒸発器における他の熱交換部及び不凝縮ガス収集部の概略斜視図である。
本発明の第5の実施形態に係る淡水化及び海洋温度差発電システムで用いる一の蒸気動力サイクル部の蒸発器における熱交換部及び不凝縮ガス収集部の概略正面図である。
本発明の第5の実施形態に係る淡水化及び海洋温度差発電システムで用いる一の蒸気動力サイクル部の蒸発器における不凝縮ガス収集部の一部切欠斜視図である。
本発明の第5の実施形態に係る淡水化及び海洋温度差発電システムで用いる一の蒸気動力サイクル部の蒸発器における不凝縮ガス収集部の熱交換用プレートへの取付状態説明図である。

実施例

0022

(本発明の第1の実施形態)
以下、本発明の第1の実施形態を前記図1ないし図7に基づいて説明する。
前記各図において本実施形態に係る淡水化及び温度差発電システム1は、作動流体の得た熱エネルギーを動力に変換する二つの蒸気動力サイクル部10、20と、各蒸気動力サイクル部で熱エネルギーから変換された動力を利用して発電を行う発電装置51、52と、海水から蒸発した水蒸気を凝縮させて真水を得る海水淡水化装置60と、海水淡水化装置60の前段に配設され、海水から溶存気体成分を分離除去する脱気装置70とを備える構成である。

0023

前記蒸気動力サイクル部10、20は、例えばアンモニア等の低沸点媒体からなる作動流体と高温流体とを熱交換させ、作動流体を蒸発させて気相の作動流体を得る蒸発器11、21と、気相の作動流体を導入されて作動し、作動流体の保有する熱エネルギーを動力に変換するタービン12、22と、このタービン12、22を出た気相の作動流体を低温流体と熱交換させることで凝縮させて液相とする凝縮器13、23と、凝縮器13、23から取出された液相作動流体を蒸発器11、21に送込むポンプ14、24とを備える構成である。このうち、タービン12、22、凝縮器13、23、及びポンプ14、24については、一般的な蒸気動力サイクルで用いられるのと同様の公知の装置であり、説明を省略する。

0024

これら蒸気動力サイクル部10、20における作動流体の流路同士は、互いに独立したものとなっており、各蒸気動力サイクル部10、20ごとに各々の作動流体の得た熱エネルギーを動力に変換することとなる。

0025

前記蒸気動力サイクル部10、20のうち、一の蒸気動力サイクル部10は、前記海水淡水化装置60で生じさせた表層海水由来の水蒸気を前記高温流体として蒸発器11に供給されると共に、深層海水を前記低温流体として凝縮器13に供給されることとなる。

0026

一方、他の蒸気動力サイクル部20は、海水淡水化装置60で蒸発しなかった残留海水を前記高温流体として蒸発器21に供給されると共に、深層海水を前記低温流体として凝縮器23に供給されることとなる。

0027

このうち、低温流体としての深層海水については、第二の蒸気動力サイクル部20の凝縮器23を経てから第一の蒸気動力サイクル部10の凝縮器13へ向う順となるように、凝縮器13、23における深層海水の流路同士が直列相互接続されて、各蒸気動力サイクル部10、20で、深層海水をそれぞれ共通に利用するようにされる。

0028

一の蒸気動力サイクル部10の蒸発器11は、複数の略矩形金属薄板製各熱交換用プレート15を並列状態一体化して形成され、外部から流入する気相の高温流体と作動流体とを熱交換させる熱交換部11aと、隔壁で外部から隔離された内部空間を有し、この内部空間に熱交換部11aを収める状態で配設される中空容器状のシェル11bとを備える構成である。

0029

前記熱交換部11aは、シェル11bの内部空間に配設され、外部から流入する高温流体としての水蒸気と液相の作動流体とを熱交換させ、水蒸気を凝縮させて凝縮液を得ると共に、液相の作動流体の少なくとも一部を蒸発させて気相作動流体を得るものである。

0030

この熱交換部11aは、複数並列状態とされた略矩形状金属薄板製の各熱交換用プレート15を、所定の略平行をなす二端辺部位で隣合う一の熱交換用プレートと水密状態として溶接される一方、隣合う他の熱交換用プレートと前記二端辺と略直交する他の略平行な二端辺部位で水密状態として溶接されて、全て一体化されて形成される構成である(図3参照)。

0031

そして、熱交換部11aは、各熱交換用プレート15間に、前記水蒸気及びこの水蒸気の凝縮した凝縮液の通る第一流路15bと、前記作動流体の通る第二流路15cとをそれぞれ一つおきに生じさせ、且つ水蒸気及び凝縮液が流入出可能な前記第一流路15bの開口部分と、作動流体が流入出可能な前記第二流路15cの開口部分とが、直角をなす配置とされる構成である。すなわち、熱交換部11aは、前記各第一流路15bを通る水蒸気と前記各第二流路15cを通る作動流体とが直交流をなす、いわゆるクロスフロー型熱交換器の構造を採ることとなる。

0032

加えて、熱交換部11aは、シェル11bの内部空間に、第二流路15cにおける作動流体流出側の開口部分が作動流体流入側の開口部分に対し上側となるように熱交換部全体を傾けて配設される。

0033

なお、熱交換部11aを傾けて配設するにあたっては、シェル11bに対し熱交換部11aを傾けた状態で取り付ける態様(図2参照)に限られるものではなく、熱交換部を内部に配設したシェルを傾けて設置することで、シェルと一体の熱交換部が傾いた状態を得るようにしてもかまわない。

0034

前記シェル11bは、外部から隔離された内部空間を有する中空容器状に形成され、内部空間に外部から水蒸気を導入可能且つ内部空間から外部へ凝縮液を取出し可能とされると共に、隔壁を貫通する作動流体の流入出用流路を設けられる構成である。

0035

このシェル11b内に傾けて収められる熱交換部11aが、作動流体の流入出用流路と第二流路15cの開口部分とを接続されると共に、この第二流路15cの開口部分以外でシェル隔壁内面との間に所定の隙間を介在させ、且つ第一流路15bの開口部分を上下に向けるように配置され、流入出用流路を通じて各第二流路15cに流入する作動流体と、シェル内部空間から各第一流路15bに流入する蒸気とを熱交換させることとなる。

0036

この他、シェル11bの内部空間には、傾けて配設される熱交換部11aから凝縮液が偏って流下するのに対応して、凝縮液を受ける水回収部11cがシェル11bの側面寄りに設けられる。

0037

また、シェル11bの外側には、熱交換部11aの各第二流路15cに前記流入出用流路を通じて作動流体を流入出させる、蒸気動力サイクルの作動流体循環流路をなす管路11dが接続される構成である。さらに、このシェル11bの外側には、熱交換部11aから流下してシェル11b内部空間に達し、最終的にシェル外に排出される凝縮液を回収する貯留部40も接続される。

0038

他の蒸気動力サイクル部20の蒸発器21は、複数の略矩形状金属薄板製の各熱交換用プレート15を並列状態で一体化して形成され、外部から流入する高温流体と作動流体とを熱交換させる熱交換部21aと、隔壁で外部から隔離された内部空間を有し、この内部空間に熱交換部21aを収める状態で配設される中空容器状のシェル21bとを備える構成である。

0039

前記熱交換部21aは、シェル21bの内部空間に配設され、外部から流入する高温流体としての残留海水と液相の作動流体とを熱交換させ、液相の作動流体の少なくとも一部を蒸発させて気相作動流体を得るものである。

0040

この熱交換部21aは、複数並列状態とされた略矩形状金属薄板製の各熱交換用プレート15を、所定の略平行をなす二端辺部位で隣合う一の熱交換用プレートと水密状態として溶接される一方、隣合う他の熱交換用プレートと前記二端辺と略直交する他の略平行な二端辺部位で水密状態として溶接されて、全て一体化されて形成される構成である(図6参照)。

0041

そして、熱交換部21aは、各熱交換用プレート15間に、前記作動流体の通る第一流路15dと、前記残留海水の通る第二流路15eとをそれぞれ一つおきに生じさせ、且つ作動流体が流入出可能な前記第一流路15dの開口部分と、残留海水が流入出可能な前記第二流路15eの開口部分とが、直角をなす配置とされる構成である。すなわち、熱交換部21aは、前記各第一流路15dを通る作動流体と前記各第二流路15eを通る残留海水とが直交流をなす、いわゆるクロスフロー型熱交換器の構造を採ることとなる。

0042

前記シェル21bは、外部から隔離された内部空間を有する中空容器状に形成され、隔壁を貫通する作動流体及び残留海水の各流入出用流路を設けられる構成である。
このシェル21b内に収められる熱交換部21aが、作動流体の流入出用流路と第一流路15dの開口部分とを接続されると共に、残留海水の流入出用流路と第二流路15eの開口部分とを接続され、且つ、第一流路15dの開口部分を上下に向けるように配置される。各第一流路15dの下側の開口部分から流入した液相作動流体を、各第二流路15eに流通する残留海水と熱交換させて蒸発させ、生じた気相作動流体を各第一流路15dの上側の開口部分から取り出す仕組みである。

0043

また、シェル21bの外側には、熱交換部21aの各第一流路15dに前記流入出用流路を通じて作動流体を流入出させる、蒸気動力サイクルの作動流体循環流路をなす管路21cが接続されると共に、熱交換部21aの各第二流路15eに前記流入出用流路を通じて残留海水を流入出させる管路21dが接続される構成である。

0044

前記発電装置51、52は、各蒸気動力サイクル部で熱エネルギーから変換された動力を利用して発電を行う、具体的には、タービン12、22により駆動されて発電を行うものである。これら発電装置51、52は、公知のタービンを駆動源とする発電に用いられるのと同様のものであり、詳細な説明を省略する。
これら蒸気動力サイクル部10、20と発電装置51、52とで、複数段の蒸気動力サイクルで発電を行う温度差発電システムが構成される。

0045

前記海水淡水化装置60は、海水の少なくとも一部を蒸発させる蒸発手段、及び、この蒸発手段で蒸発させた水分を凝縮させる一又は複数の凝縮手段を有し、凝縮手段での凝縮で塩分を含まない真水を得るものである。

0046

このうち、蒸発手段は、表層海水をこの海水の飽和蒸気圧より低い圧力に減圧された所定の蒸発用空間に導入して蒸発させるフラッシュ蒸発を行わせる蒸発部61とされる。
この蒸発部61は、一の蒸気動力サイクル部10の蒸発器11に通じる蒸発用空間を内部に有し、この蒸発用空間を大気圧より低い減圧状態とされる中空の減圧容器61aと、この減圧容器61a内に配設され、減圧容器61aの蒸発用空間に外部から導入された海水を霧状、水滴状水膜状、又は、水柱状、等となるようにして噴射する噴射部61bとを備え、噴射部61bから噴射された海水を減圧容器61a内の蒸発用空間でフラッシュ蒸発させて水蒸気を得る構成である。

0047

この蒸発部61の減圧容器61aが、一の蒸気動力サイクル部10の蒸発器11のシェル11bと連通することで、蒸発部61で生じた水蒸気をシェル11bの内部空間に導入可能とされる。

0048

また、蒸発部61の減圧容器61aには、減圧排気装置64が管路や蒸発器11のシェル11b等を通じて接続され、減圧容器61aにおける蒸発用空間を、これに連通する蒸発器11のシェル11bと共に、減圧容器61a内で蒸発させようとする海水と同温度における水の飽和蒸気圧より低い圧力に調整し、減圧容器61a内で海水中の水分が液相から気相に変化する(蒸発する)温度、及び、シェル11b内の熱交換部11aで蒸気の気相から液相に変化する(凝縮する)温度をそれぞれ大気圧における各温度に比べて低くなるよう維持する仕組みとされる。
これにより減圧容器61a内に導入された海水の一部が液相から気相に変化すると共に、液相で残った海水の温度が低下する仕組みである。

0049

蒸発部61に導入して蒸発させる海水は、例えば海洋表層の温海水とされ、海から取水した海水をいったん脱気装置70に導いて、海水中の空気を除去した後、蒸発部61に導くようにされる。

0050

このような蒸発部61で蒸発した水蒸気を前記高温流体として供給される、第一の蒸気動力サイクル部10の蒸発器11は、水蒸気と作動流体とを熱交換させ、作動流体を蒸発させる一方で水蒸気を凝縮させるものであり、海水淡水化装置60の凝縮手段を兼ねることとなる。

0051

そして、海水淡水化装置60における蒸発部61の減圧容器61a内に導入されても蒸発しなかった残留海水の一部は、他の蒸気動力サイクル部20の蒸発器21に高温流体として供給されて、熱交換で作動流体を蒸発させる仕組みである。

0052

前記脱気装置70は、海水淡水化装置60の蒸発部61の前段にこの蒸発部61に海水を供給可能として配設され、海水を減圧容器内の減圧空間に流入させて、海水に溶存する気体成分を海水から分離除去するものである。

0053

この脱気装置70の減圧空間下部は、複数の海水噴出部71から流入して気体成分を分離された海水を一時的に溜める貯溜槽72とされる。この貯溜槽72の中央における海水水面近傍の水中に、海水中の異物を流入させて脱気装置外部に排出可能とする排出部73が設けられる。

0054

脱気装置70では、貯溜槽72に溜まった海水に貯溜槽中央を流れの中心とする渦流れを生じさせ、貯溜槽中央に海水中の浮遊性の異物を集めて、集まった異物を前記排出部73から排出することとなる。

0055

なお、この脱気装置70における排出部73等の機構を用いた異物の排出については、異物が含まれる海水を減圧容器内に一時的に貯溜可能な装置であれば、脱気装置以外の、例えばフラッシュ蒸発器の減圧容器等で、前記同様の機構を採用して実行するようにしてもかまわない。

0056

次に、前記構成に基づく淡水化及び海洋温度差発電システムの作動状態について説明する。前提として、海水淡水化装置60で継続的に蒸気を発生させると共に、各蒸気動力サイクル部10、20においては、高温流体としての蒸気や残留海水を蒸発器11、21に、また、低温流体としての深層海水を凝縮器13、23に、それぞれ熱交換を行うのに十分な流量で導入して、蒸発器11、21や凝縮器13、23では、それぞれ熱交換を同じ条件で継続できる状態にあるものとする。

0057

まず、海から取水された表層海水が、脱気装置70に導入され、海水を脱気装置70の減圧空間に流入させて、海水に溶存する気体成分を海水から分離除去することとなる。
この時、脱気装置70の減圧空間下部の貯溜槽72では、複数の海水噴出部71から減圧空間に流入して気体成分を分離された海水が一時的に貯溜され、この貯溜槽72に溜まった海水には、貯溜槽中央を流れの中心とする渦流れが生じる状態とされる。この渦流れの影響で、貯溜槽中央に海水中の浮遊性の異物が集まることとなり、集まった異物は貯溜槽72の中央における海水水面近傍に開口部が位置するように設けられた排出部73によって脱気装置外部に排出される。

0058

この脱気装置70において、貯溜槽72の中央における排出部73を通じて海水から異物を除去できることで、処理する海水の量が多くなる場合でも、海水中に混入した異物を適切に継続して分離でき、後段側の海水淡水化装置に異物による悪影響が加わらないようにすることができる上、異物の除去に一般的なスクリーン等を用いる場合のように目詰まり解消等のメンテナンスを高頻度で行う必要がなく、効率よく異物を除去して海水を蒸発工程に供給できる。
脱気装置70で気体成分や異物を除去された海水は、海水淡水化装置60に導入される。

0059

海水淡水化装置60では、脱気装置70を出た海水が、蒸発部61の減圧容器61a内に導かれ、この蒸発部61の減圧容器61a内で、噴射部61bから、霧状、水滴状、水膜状、又は、水柱状、等となるように減圧容器61a内の蒸発用空間に噴射される。約10〜60mmHg程度まで圧力を低くされた減圧容器61a内で、海水中の水分の大部分がフラッシュ蒸発により不純物を含まない気相の水、すなわち水蒸気に相変化し、同時に海水の温度は降下する。
水分の蒸発により得られた水蒸気は、周囲のガスと共に減圧容器61a内を進み、液分(ミスト)と分離された状態で、一の蒸気動力サイクル部10の蒸発器11に到達する。

0060

蒸発器11では、水蒸気がシェル11bの上部の開口から内部空間に進入する。そして、水蒸気は、シェル11bの内部空間を進んで熱交換部11aの第一流路15bにおける上下の開口部分から流入する。すなわち、水蒸気は、シェル11bの内部空間から熱交換部11aにおける第一流路15bの上側の開口部分から第一流路15bに流入して、第一流路15bを下向きに進みながら、熱交換用プレート15を介して作動流体と熱交換して、第一流路15bに面する熱交換用プレート15表面で凝縮し、液相の水となる。また、水蒸気は、シェル11bの内部空間を下方に進んで熱交換部11aの横を通り、熱交換部11aの下に達した後、上向きに転じて熱交換部11aにおける第一流路15bの下側の開口部分からも第一流路15bに流入し、第一流路15bを上向きに進みながら、熱交換用プレート15を介して作動流体と熱交換して、第一流路15bに面する熱交換用プレート15表面で凝縮し、液相の水となる。

0061

こうして上下の開口部分から第一流路15bに流入した水蒸気が、熱交換部11a内部を進みながら、熱交換用プレート15を介して作動流体と熱交換して凝縮する中、特に下側の開口部分から流入した水蒸気が速やかに熱交換用プレート15の下部に接触できることで、水蒸気の熱交換用プレート15各部との接触に伴う熱交換がスムーズに進んで、熱交換器内部へ向って流れる未凝縮の水蒸気を順次凝縮させられる。

0062

熱交換用プレート15表面で凝縮した水分は、流下して熱交換部11aにおける第一流路15bの下側の開口部分に向かうが、熱交換部11aを傾けて配設していることで、第一流路15bで水蒸気の凝縮した水が、下側となった熱交換部11aにおける第二流路15cの流入側開口部分の側に熱交換用プレート15表面を流れて寄り集まり、第一流路15bの下側開口部分の最も下寄りとなった一部範囲から熱交換部11a外へ流下することとなる。

0063

これにより、シェル11bの内部空間に凝縮した水を受けて外部に導く水回収部11cを設ける場合、こうした水回収部11cを第一流路15bの下側開口部分における凝縮液の流下しうる一部範囲に対応する程度に小さくすることができ、熱交換器のコンパクト化が図れる。
熱交換部11aから流下した水は、シェル11bの外に出て貯溜部40内に集められ、まとまった量の水として外部に送出される。

0064

また、海水淡水化装置60の蒸発部61で蒸発しなかった海水は、残留海水として減圧容器61a下部に一時的に溜ることとなるが、その大部分は減圧容器61aの外に取出され、他の蒸気動力サイクル部20の蒸発器21に供給される。

0065

この残留海水は、減圧された蒸発用空間への噴射を経ていることで、元の海水に溶存していた酸素をほとんど除去された脱酸素状態となっており、海水中に微生物が存在する場合でも、それらを不活性化することができる。

0066

一方、各蒸気動力サイクル部10、20においては、蒸発器11、21で、高温流体と液相の作動流体とを熱交換させ、作動流体を昇温、蒸発させて気相の作動流体を得る。この気相の作動流体は、蒸発器11、21外へ出て、タービン12、22に向う。

0067

気相の作動流体がタービン12、22に達すると、膨張してこれらタービン12、22を作動させ、各タービン12、22により発電装置51、52がそれぞれ駆動され、熱エネルギーが使用可能なエネルギーとしての電力に変換される。
こうしてタービン12、22で膨張して仕事を行った気相作動流体は、圧力及び温度を低減させた状態となり、タービン12、22を出た後、凝縮器13、23に導入される。

0068

凝縮器13、23では、導入された気相の作動流体が、低温流体としての深層海水と熱交換し、冷却されて凝縮し、液相に変化することとなる。
凝縮により得られた液相の作動流体は、凝縮器13、23を出て、ポンプ14、24を経由して加圧された上で、蒸発器11、21へ向け進むこととなる。
この後、液相の作動流体は作動流体流路を経て蒸発器11、21内に戻り、前記同様に蒸発器11、21での熱交換以降の各過程を繰返すこととなる。

0069

こうした各蒸気動力サイクル部10、20での作動流体の一連の相変化のうち、各蒸発器11、21における作動流体の蒸発を具体的に説明する。
一の蒸気動力サイクル部10の蒸発器11では、液相の作動流体が、作動流体流路をなす管路11dからシェル11bの流入出用流路を通じて熱交換部11aの各第二流路15cに流入する。この液相の作動流体は、熱交換部11aにおける第一流路15bに流通する高温流体としての水蒸気と熱交換用プレート15を介して熱交換し、一部が蒸発する。

0070

作動流体が第二流路15cで蒸発すると、気泡として発生する気相作動流体は、液相作動流体中でその上方に進もうとする性質に伴い、傾けて設置した熱交換部11aの第二流路15c上部に向かうと共に、上寄りに位置する第二流路15cの流出側の開口部分の方へ進むこととなる。

0071

このように、第二流路15cにおける作動流体流出側の開口部分が上部に位置するように熱交換部11aを傾けて配設していることで、蒸発の進行で気相作動流体が第二流路15cを上昇する状況が続いても、気相作動流体は第二流路15cの開口部分上部から第二流路15cの外に抜け出すことができ、気相作動流体が第二流路15cの上部に滞留するようなことはない。

0072

このため、従来の蒸発器をその作動流体流路を単に横向きとして設けた場合のように、熱交換で液相の作動流体が蒸発すると、蒸発後の気相の作動流体が流路の外に出ずに流路上部に滞留し、滞留した気相作動流体が液相の作動流体と熱交換用プレート表面との接触を妨げることで、作動流体と水蒸気との熱交換の効率が低下する、といった状態となるのを防止できる。

0073

こうして、蒸発器11で液相の作動流体を水蒸気と熱交換させ、作動流体を昇温、蒸発させると、蒸発して気相となった作動流体が、蒸発器11を出てタービン12に向かうこととなる。

0074

また、他の蒸気動力サイクル部20の蒸発器21では、液相の作動流体が、作動流体流路をなす管路21cからシェル21bの流入出用流路を通じて熱交換部21aの各第一流路15dに流入する。同時に、蒸発部61で蒸発しなかった残留海水が、管路21dからシェル21bの流入出用流路を通じて熱交換部21aの各第二流路15eに流入する。
これにより、第一流路15dの液相の作動流体は、第二流路15eに流通する高温流体としての残留海水と熱交換用プレート15を介して熱交換し、一部が蒸発する。

0075

熱交換部21aでの熱交換で作動流体を蒸発させる中、第二流路15eに面する熱交換用プレート15表面は、第二流路15eに流通する残留海水と接触するが、この残留海水は脱酸素状態となっており、海水中の微生物を不活性化させていることから、生物性の汚れが付きにくく、この熱交換用プレート15表面に対する汚れ除去等のメンテナンスを頻繁に行わずに済み、蒸発器21の保守コストを抑えられる。

0076

作動流体が第一流路15dで蒸発すると、気泡として発生する気相作動流体は、その上方に進もうとする性質に伴い、熱交換部21aの上下方向に連続する第一流路15dをそのまま上昇し、第一流路15dの上側の開口部分へ達し、この開口部分から第一流路15dの外に流出する。

0077

こうして、蒸発器21で液相の作動流体を残留海水と熱交換させ、作動流体を昇温、蒸発させると、蒸発して気相となった作動流体が、蒸発器21を出てタービン22に向かうこととなる。

0078

この作動流体に対し、蒸発器21での熱交換に使用された残留海水は、作動流体に熱を移動させることでその温度を低下させている。この残留海水は、蒸発器21の外へ排出された後、最終的にシステム外部の海中へ放出される。

0079

このように、本実施形態に係る淡水化及び海洋温度差発電システムにおいては、高温流体や低温流体との熱交換で作動流体を相変化させて発電のための動力を得る蒸気動力サイクル部10、20を複数設け、一の蒸気動力サイクル部10における蒸発器11が、海水淡水化装置60の蒸発部61で表層海水を蒸発させた水蒸気を高温流体として供給され、且つ、他の蒸気動力サイクル部20における蒸発器21が、海水淡水化装置60の蒸発部61で蒸発しなかった残留海水を高温流体として供給され、それぞれ作動流体を蒸発させると共に、各蒸気動力サイクル部10、20における凝縮器13、23が深層海水を低温流体として供給されて、作動流体を凝縮させ、各蒸気動力サイクル部10、20でそれぞれ発電用の動力を生じさせるようにすることから、一の蒸気動力サイクル部10が蒸発器11で作動流体を蒸発させると共に水蒸気を凝縮させるハイブリッドサイクルをなす一方、他の蒸気動力サイクル部20が蒸発器21で作動流体と熱交換させる高温流体として海水を用いるクローズドサイクルをなすこととなり、他の蒸気動力サイクル部20で、高温流体側の熱損失を抑えて有効に利用可能な熱を確保できることに加え、高温流体としての残留海水は、減圧空間に晒されて脱酸素状態となるのに伴い、その海水中の微生物を不活性状態として、生物汚れが生じにくい状態となっており、蒸発器21の伝熱面の汚れに対するメンテナンス頻度を下げられ、また、一の蒸気動力サイクル部10の蒸発器11では、蒸気を流通させることで海水への腐食耐性を考慮せずに済み、一般的な耐水性を有する材質、例えば、ステンレス材等を用いることができ、各蒸気動力サイクル部10、20に係るコストを抑えつつ、蒸気動力サイクルの複数段化による温度差のエネルギーの有効利用を無理なく実現でき、システムの性能を高められる。

0080

なお、前記実施形態に係る淡水化及び海洋温度差発電システムにおいては、蒸気動力サイクル部10、20を二つ組合せ、低温流体を共通に用いる二段構成としているが、これに限らず、三段、四段など他の複数段構成とすることもできる。その場合も、前記実施形態と同様、海水淡水化装置60で生じさせた蒸気を、一の蒸気動力サイクル部における蒸発器に供給して作動流体と熱交換させ、作動流体を蒸発させると共に蒸気を凝縮させる一方、他の蒸気動力サイクル部の蒸発器には海水淡水化装置60で蒸発しなかった残留海水を供給して作動流体と熱交換させ、作動流体を蒸発させつつ残留海水の温度を低下させることとなる。蒸気動力サイクル部の段数を増やすことで、各蒸発器で作動流体の温度を熱交換する高温流体の温度に近付けられると共に、各凝縮器でも作動流体の温度を熱交換する低温流体の温度に近付けられ、さらに温度差のエネルギーを有効に利用でき、システム全体の熱効率の一層の向上が図れる。

0081

(本発明の第2の実施形態)
本発明の第2の実施形態を図8に基づいて説明する。
前記図8において本実施形態に係る淡水化及び海洋温度差発電システム2は、前記第1の実施形態同様、複数の蒸気動力サイクル部10、20と、発電装置51、52と、海水淡水化装置60と、脱気装置70とを備える一方、異なる点として、前記各蒸気動力サイクル部10、20が、前記蒸発器11、21とタービン12、22との間の作動流体流路に、蒸発器11、21を出た作動流体を気相分液相分とに分離し、気相の作動流体をタービン12、22に向わせる一方、液相の作動流体を異なる蒸気動力サイクル部の作動流体流路所定箇所に向わせる気液分離器16、26を設けられ、作動流体循環流路における液相作動流体の液面位置を各蒸発器11、21より上側に設定される構成を有するものである。

0082

この本実施形態の淡水化及び海洋温度差発電システム2での、各蒸気動力サイクル部10、20における気液分離器16、26以外の、蒸発器11、21、タービン12、22、凝縮器13、23、及び、ポンプ14、24と、発電装置51、52と、海水淡水化装置60と、脱気装置70とについては、前記第1の実施形態同様の構成であり、説明を省略する。

0083

前記気液分離器16、26は、各蒸発器11、21での液相作動流体の蒸発により気液二相状態となった作動流体を、各蒸発器11、21を出た後で気相分と液相分とに分ける装置であり、気液分離の仕組み自体は蒸気動力サイクルに用いられる公知の気液分離器と同様のものであり、詳細な説明を省略する。

0084

一の蒸気動力サイクル部10における気液分離器16は、蒸発器11で水蒸気との熱交換を経て、蒸発により気液二相状態となった作動流体を、気相分と液相分とに分けるものである。作動流体は、この気液分離器16内で気相分と液相分に分れ、気相の作動流体がタービン12入口側と連通する作動流体循環流路を通じてタービン12へ向う。

0085

一方、液相の作動流体の一部は、気液分離器16の液相作動流体出口と、他の蒸気動力サイクル部20における気液分離器26とを連通させる流路を経て、気液分離器26へ流入し、蒸発器21からこの気液分離器26に流入する作動流体と合流する。

0086

こうして一の蒸気動力サイクル部10における気液分離器16から他の蒸気動力サイクル部20における気液分離器26に流入した液相作動流体の一部は、一の蒸気動力サイクル部10と他の蒸気動力サイクル部20とにおける作動流体の圧力差により蒸発し、気相作動流体となり、気液分離器26内の他の気相作動流体と共に、タービン22へ向うこととなる。

0087

他の蒸気動力サイクル部20における気液分離器26は、蒸発器21で残留海水との熱交換を経て、蒸発により気液二相状態となった作動流体を、気相分と液相分とに分けるものである。作動流体は、この気液分離器26内で気相分と液相分に分れ、気相の作動流体がタービン22入口側と連通する作動流体循環流路を通じてタービン22へ向う。

0088

一方、液相の作動流体の一部は、気液分離器26の液相作動流体出口と、一の蒸気動力サイクル部10における蒸発器上流側の液相作動流体流路の所定箇所とを連通させる流路を経て、この流路途中で補助ポンプ27による加圧を受けつつ、一の蒸気動力サイクル部10の作動流体流路へ流入し、ポンプ14から蒸発器11に向かう液相作動流体と合流する。

0089

こうして他の蒸気動力サイクル部20における気液分離器26から一の蒸気動力サイクル部10の作動流体流路に流入した液相作動流体の一部は、合流した他の液相作動流体と共に、蒸発器11へ向うこととなる。

0090

この他、各蒸気動力サイクル部10、20においては、蒸発器11、21とタービン12、22との間の作動流体流路に気液分離器16、26を設けるのに合わせて、作動流体の流量を調整する等により、各蒸気動力サイクル部10、20の作動流体循環流路での液相作動流体の液面位置を、各蒸発器11、21より上側に設定するようにしている。

0091

これにより、一の蒸気動力サイクル部10の蒸発器11では、作動流体の流通する第二流路15cの流路全域に液相の作動流体が存在する状態としつつ、蒸発器11で蒸気と作動流体とを熱交換させることができる。

0092

また、他の蒸気動力サイクル部20の蒸発器21では、作動流体の流通する第一流路15dの流路全域に液相の作動流体が存在する状態としつつ、蒸発器21で残留海水と作動流体とを熱交換させることができる。

0093

このように、各蒸気動力サイクル部10、20で液相作動流体の作動流体循環流路における液面位置を蒸発器11、21より上側として、蒸発器11、21の作動流体側流路全域に液相作動流体が流通するようにする一方、蒸発器11、21の後段側に気液分離器16、26を設けて、気液分離器16、26で気相作動流体と液相作動流体とを分離し、気相作動流体のみが作動流体循環流路をさらにタービン12、22側へ進行可能とすることで、各蒸発器11、21で作動流体を高温流体との熱交換により蒸発させると、発生する気相作動流体が気泡として上方に進みながら、蒸発していない液相作動流体中を流路の出口側へ進み、蒸発器11、21の外に流出できることとなり、気相作動流体が蒸発器内の流路を上昇する動きが続いても気相作動流体が流路の上部に滞留することはない。よって、気相作動流体が流路上部に溜まって液相作動流体と熱交換用プレート表面との接触を妨げ、液相作動流体と高温流体との熱交換、及びこれに伴う作動流体の蒸発がスムーズに行われない状態となるのを確実に防ぐことができる。

0094

また、蒸発器11、21では、作動流体側の流路に面する熱交換用プレート表面全体を液相作動流体で濡らす状態が確保でき、蒸発器11、21における熱交換用プレート15の伝熱面積を有効に利用した熱交換が行え、蒸発器11、21で効率よく作動流体の蒸発を行わせることができる。そして、気相作動流体と液相作動流体の分離は蒸発器後段側の気液分離器16、26で確実に行えるため、タービン側へ誤って液相作動流体が向かうなどの、タービン等への悪影響はない。

0095

そして、このように液相作動流体の液面位置を蒸発器11、21より上側とする場合は、前記第1の実施形態における蒸発器11のようにシェル11bの内部空間に熱交換部11aを傾けて配設する必要はなく、図9に示すように、蒸発器11のシェル11b内において、熱交換部11aの第二流路15cにおける作動流体流出側の開口部分と作動流体流入側の開口部分との上下方向における位置を同じにして、熱交換部11aを傾けない構成としてもかまわない。

0096

さらに、一の蒸気動力サイクル部10の気液分離器16で分離された液相作動流体を、他の蒸気動力サイクル部20における気液分離器26に流入させるようにして、圧力の低い流路に液相作動流体が流入しつつ一部蒸発するのに伴って、気液分離器26で気相の作動流体を増加させることができる一方、他の蒸気動力サイクル部20の気液分離器26で分離された液相の作動流体は、一の蒸気動力サイクル部10における蒸発器11の上流側の液相作動流体流路の所定箇所に流入させて戻すことで、一の蒸気動力サイクル部10における気相作動流体の流量を確保して、一の蒸気動力サイクル部10で得られる動力をほぼ維持しつつ、他の蒸気動力サイクル部20で気相作動流体の流量を増加させ、気相作動流体の仕事によって得られる動力を増やして発電出力を増大させることができ、温度差のエネルギーをさらに有効利用できることとなる。

0097

なお、一の蒸気動力サイクル部10における気液分離器16の液相作動流体出口と、他の蒸気動力サイクル部20における気液分離器26とを連通させる流路に流量調整弁28を設けて、気液分離器16で分離された液相作動流体の、気液分離器26に流入する量を調整するようにしてもよく、各蒸気動力サイクル部10、20における気相作動流体の流通量を変化させて、一の蒸気動力サイクル部10で得られる動力を増やす一方で他の蒸気動力サイクル部20で得られる動力を減らすようにしたり、逆に、一の蒸気動力サイクル部10で得られる動力を減らす一方で他の蒸気動力サイクル部20で得られる動力を増やすようにすることができ、蒸発部61から供給される蒸気や残留海水の温度、凝縮器13、23に流通させる深層海水の温度など、周囲環境条件の変化に対応して各蒸気動力サイクル部10、20で得られる動力を最適化して、システム全体として適切な発電出力を得ることができる。

0098

この場合、流量調整弁28の調整度合い開度)を、一の蒸気動力サイクル部10における気液分離器16での液相作動流体の流量変化に対応させて変化させる構成とすることもでき、自動的に各蒸気動力サイクル部10、20で得られる動力の最適化が図れる。また、これに合わせて、気液分離器16での液相作動流体の流量変化に対応させて一の蒸気動力サイクル部10におけるポンプ14での作動流体送給量を変化させたり、気液分離器26での液相作動流体の流量変化に対応させて、補助ポンプ27による気液分離器26から一の蒸気動力サイクル部10における作動流体流路への液相作動流体の帰還流量や、他の蒸気動力サイクル部20におけるポンプ24での作動流体送給量を変化させる構成としてもよく、作動流体の循環も調整して各蒸気動力サイクル部10、20の作動状態を柔軟に設定でき、周囲の状況に適切に対応させることができる。

0099

この他、前記実施形態に係るシステムにおいては、一の蒸気動力サイクル部10の気液分離器16で分離された液相作動流体を、他の蒸気動力サイクル部20における気液分離器26に流入させるようにしているが、これに限らず、この気液分離器16で分離された液相作動流体を、他の蒸気動力サイクル部20における蒸発器21から気液分離器26までの作動流体流路の所定箇所に流入させる構成とすることもできる。

0100

また、前記実施形態に係るシステムにおいて、他の蒸気動力サイクル部20の気液分離器26で分離された液相の作動流体は、一の蒸気動力サイクル部10における蒸発器11の上流側の液相作動流体流路の所定箇所に流入させる構成としているが、これに限られるものではなく、気液分離器26で分離された液相の作動流体を、一の蒸気動力サイクル部10における蒸発器11に流入させる構成としてもかまわない。

0101

(本発明の第3の実施形態)
前記第1の実施形態に係る淡水化及び海洋温度差発電システムにおいては、一の蒸気動力サイクル部10の蒸発器11を蒸発部61と組み合わせて海水淡水化装置60をなすようにし、シェル11bの内部空間を蒸発部61の減圧容器61aと連通させる構成としているが、これに限らず、第3の実施形態として、図10に示すように、一の蒸気動力サイクル部10における蒸発器19のシェル19bが所定の大きさとされて、シェル19bが蒸発部の減圧容器を兼ねて蒸発部65の噴射部65bや海水の導入流路等を熱交換部19aと共に収容して、海水淡水化装置の蒸発部分と凝縮部分が共通のシェル内に一まとめに配設される構成とすることもできる。

0102

この場合、蒸発部65は、内部空間を大気圧以下に減圧される減圧容器を兼ねる蒸発器19のシェル19bと、このシェル19b内に配設される海水噴射用の噴射部65bと、シェル19b内を熱交換部19aへ向う蒸気流の中に混じった海水の微細水滴(ミスト)を捕捉して取除くミスト除去部65cとを備えるものとなる。この蒸発部65では、海水が噴射部65bに導かれ、シェル19bの下側の内部空間へ上向きに噴射される。シェル19b内は、前記実施形態同様、噴射部65bから噴射される海水と同温度における水の飽和蒸気圧以下の圧力に減圧排気装置64により減圧されている。

0103

海水は、シェル19b内に配置された多数の噴射部65bから上向きに霧状、水滴状、水膜状、又は、水柱状、等となるように噴射され、水分の一部はフラッシュ蒸発により蒸気に相変化し、同時に海水の温度は降下する。水分の蒸発により得られた蒸気はミスト除去部65cを通り、同じシェル19b内の熱交換部19aに流入する。シェル19b内に蒸発部分と凝縮部分が一体に収容されていることで、蒸発側から凝縮側へ向う水蒸気の流れにおける圧力損失を小さくできる。

0104

このように、本実施形態における一の蒸気動力サイクル部10の蒸発器19においては、シェル19b内に蒸発部65をなす各部と熱交換部19aが収容されて蒸発部と凝縮部とが一体に配設され、蒸発部65で得られた水蒸気がそのまま熱交換部19aに進入可能となることから、減圧した圧力を維持しやすく確実に蒸気を気相で熱交換部19aに到達させて凝縮させられることとなり、シェル19b内でスムーズに蒸発から凝縮までの一連の過程を進ませられ、凝縮に係る効率を高められると共に、シェル19b内からの排気をそのまま減圧排気装置に導いて排出できるなど、装置全体シンプル且つコンパクトな構造として低コスト化も図れる。

0105

(本発明の第4の実施形態)
本発明の第4の実施形態を図11及び図12に基づいて説明する。
前記各図において本実施形態に係る淡水化及び海洋温度差発電システムは、前記第1の実施形態同様、複数の蒸気動力サイクル部10、20と、発電装置51、52と、海水淡水化装置60と、脱気装置70とを備える一方、異なる点として、一の蒸気動力サイクル部10の蒸発器11において、蒸発器11の熱交換部11aにおける第一流路15bの開口部分における所定範囲部分を覆って配設される略箱状の不凝縮ガス収集部17と、この不凝縮ガス収集部17の内側領域に連通して、不凝縮ガスをシェル11b外に排出可能とする略管状の不凝縮ガス排出部18とをさらに備える構成を有するものである。

0106

前記不凝縮ガス収集部17は、一部開放状態とした略箱状体で形成され、熱交換部11aにおける第一流路15bの上側又は下側の少なくとも一方の開口部分のうち、第二流路15cにおける作動流体流入側の開口部分に近い所定範囲部分を覆って配設される構成である。

0107

前記不凝縮ガス排出部18は、略管状に形成され、前記不凝縮ガス収集部17の内側領域に一方の開口端部を連通させると共に、前記シェル11bの外側に他方の開口端部を位置させて配設される構成であり、この他方の開口端部に減圧装置(図示を省略)を接続されて、不凝縮ガス収集部17に集まった不凝縮ガスをシェル11b外に排出可能とするものである。

0108

次に、前記構成に基づく蒸発器における不凝縮ガスの除去動作について説明する。前提として、前記第1の実施形態同様、海から取水された海水が、いったん脱気装置70に導かれ、海水中の空気を除去された後、蒸発部61に導入され、減圧された蒸発部61の減圧容器61a内の空間に噴射された海水中の水分の大部分がフラッシュ蒸発により蒸気となって、この蒸気が蒸発器11に流入するものとする。

0109

蒸発器11では、前記第1の実施形態同様、蒸気がシェル11bの上部の開口から内部空間に進入する。そして、蒸気は、シェル11bの内部空間を進んで熱交換部11aの第一流路15bにおける上下の開口部分から流入する。

0110

蒸気のうち、上側の開口部分から第一流路15bに流入した蒸気は、第一流路15bを下向きに進みながら、熱交換用プレート15を介して作動流体と熱交換して、第一流路15bに面する熱交換用プレート15表面で凝縮し、液相の水となる。また、下側の開口部分から第一流路15bに流入した蒸気は、第一流路15bを上向きに進みながら、熱交換用プレート15を介して作動流体と熱交換して、第一流路15bに面する熱交換用プレート15表面で凝縮し、液相の水となる。

0111

蒸気が凝縮すると、蒸気と共に第一流路15bに流入していた不凝縮ガスが、凝縮し液相となった水と分離する。この不凝縮ガスは、通常は第一流路15bの外に自然に出て、シェル11bの内部空間を経て減圧排気装置64でシェル11b外に排出される。しかし、熱交換部11aの第一流路15bのうち、熱交換用プレートを隔てた第二流路15cにおける作動流体流入側の開口部分に近い部分では、第二流路15c側の作動流体の温度が他部より低いことで、蒸気の凝縮が進みやすく、分離する不凝縮ガスの量も多くなる。こうして不凝縮ガスが多くなることで、この部分では不凝縮ガスの排出が滞って滞留状態になりやすく、そのままでは、溜まった不凝縮ガスが蒸気と熱交換用プレート15との接触を妨げて蒸気の凝縮が進まない状態となりかねない。

0112

これに対し、熱交換部11aにおける第一流路15bの上側の開口部分のうち、第二流路15cにおける作動流体流入側の開口部分に近い所定範囲部分を覆うように不凝縮ガス収集部17を配設して、この不凝縮ガス収集部17と不凝縮ガス排出部18を通じて不凝縮ガスを第一流路15bから吸引して、滞留した不凝縮ガスを除去でき、第一流路15bにおける蒸気と熱交換用プレート表面との接触、熱交換による蒸気の凝縮を、不凝縮ガスに妨げられることなく継続させられる。

0113

このように、蒸気を凝縮する蒸発器11において、熱交換部11aの第一流路15bにおける第二流路入口近くの低温で凝縮が進行しやすく、蒸気に含まれていた不凝縮ガスが滞留しやすい領域に沿って、不凝縮ガス収集部17を設けると共に、この不凝縮ガス収集部17に不凝縮ガス排出部18を接続し、これら不凝縮ガス収集部17と不凝縮ガス排出部18を通じて不凝縮ガスを第一流路15bからシェル外部に排出可能とすることから、第一流路15bの一部に滞留した不凝縮ガスを不凝縮ガス収集部17に引き寄せて除去でき、第一流路15bに溜まった不凝縮ガスが蒸気と熱交換用プレート15との接触を妨げて蒸気の凝縮が進まない状態となるのを適切に防いで、効率よく凝縮を行わせることができる。

0114

なお、前記蒸発器においては、不凝縮ガス収集部を上側の開口部分に設けるようにしているが、熱交換部11aの第一流路15bのうち、第二流路15cにおける作動流体流入側の開口部分に近い所定範囲部分に対応する開口部分であれば、図13に示すように、不凝縮ガス収集部17を下側に設けるようにしてもかまわない。

0115

(本発明の第5の実施形態)
また、前記第4の実施形態における一の蒸気動力サイクル部10の蒸発器11においては、不凝縮ガス収集部17を箱状に形成して第一流路15bの開口部分の一部を覆うように配設する構成としているが、この他、図14ないし図16に示すように、不凝縮ガス収集部17の端部を、突出する凸部17bが歯型状に複数並ぶ形状とし、この端部の凸部17bを熱交換部11aの第一流路15bに所定深さまで挿入すると共に、第一流路15bを挟む各熱交換用プレート15に固定して、第一流路15bの開口部分寄り部位をシェル11bの内部空間に通じる部分と前記不凝縮ガス収集部17に通じる部分とに分ける隔壁として機能させる構成とすることもできる。

0116

この場合、不凝縮ガス収集部17の端部が隔壁として第一流路15bを区画し、仮に蒸気が第一流路開口部分における不凝縮ガス収集部17に近い位置に流入しても、隔壁部分で不凝縮ガス収集部17の方へ進むのを阻止されることから、開口部分に流入した蒸気が不凝縮ガス収集部17へ向かわずにそのまま第一流路15bを奥まで進む状態として、蒸気の不凝縮ガス収集部17への流入を抑制できることとなり、不凝縮ガス収集部17を通じて誤って蒸気が排出されるのを防いで、蒸気をもれなく確実に凝縮させることができる。

0117

1、2淡水化及び海洋温度差発電システム
10、20蒸気動力サイクル部
11、21蒸発器
11a、21a熱交換部
11b、21bシェル
11c 水回収部
11d、21c、21d管路
12、22タービン
13、23凝縮器
14、24ポンプ
15熱交換用プレート
15b、15d第一流路
15c、15e 第二流路
16、26気液分離器
17不凝縮ガス収集部
17b 凸部
18 不凝縮ガス排出部
19 蒸発器
19a 熱交換部
19b シェル
27補助ポンプ
28流量調整弁
40貯溜部
51、52発電装置
61、65蒸発部
61a減圧容器
61b、65b噴射部
64減圧排気装置
65cミスト除去部
70脱気装置
71海水噴出部
72貯溜槽
73 排出部

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ