図面 (/)

この項目の情報は公開日時点(2020年2月27日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (6)

課題

本発明は、コストを抑えてラジアル方向とスラスト方向の両方向に空気軸受を採用することができるガルバノモータを提供する。

解決手段

回転軸1の材質とは異なった円筒部材11であって径方向に延びた二つの平面部を有するフランジ13が形成されたものが前記回転軸1に挿入され、前記円筒部材11に対面する前記固定子側構造体4の第1の対抗面には空気の噴出部5、6が形成され、また前記フランジ13の前記平面部のうちの前記回転軸1の軸方向で見てガルバノモータの外部側となる方の第1の平面部に対面する前記固定子側構造体4の第2の対抗面には空気の噴出部7、8が形成され、前記外周面と前記第1の対抗面とでラジアル方向の空気軸受が形成され、前記第1の平面部と前記第2の対抗面とでスラスト方向の空気軸受が形成されていることを特徴とする。

概要

背景

従来の一般的なガルバノモータは、例えば特許文献1に開示されているように、ガルバノミラーが固定される回転軸と、回転軸の周りに配置された永久磁石と、回転軸の両端を支持する玉軸受と、永久磁石の周りに配置されたコイル等を含む構造となっている。
上記の如く回転軸を玉軸受で指示するガルバノモータにおいては、ラジアル剛性は高くできるが、決まった角度範囲で連続して回転揺動動作を行なうと、軸受内で局所的な油膜切れが発生して軸受が損傷しやすいため、給油機構や定期的な給油などが必要となり、装置が大型化したりメンテナンスが必要となってしまう。

このような欠点を解決するために、機械的軸受の代わりに空気軸受を用いる構造が一般的に知られているが、ガルバノモータにおいて空気軸受を採用するためには、回転軸の加工精度を上げなければならない。
一方、最近のガルバノモータにおいては、加工スループット向上のために高速動作が必要で、高速になるほど駆動機構に用いられる永久磁石とコイルでの発熱が大きくなり、回転軸の温度が上昇する。回転軸はねじれに対する剛性が要求され、回転軸の材料は温度上昇によって剛性が低下しにくい材質のもの、例えば炭化珪素が選ばれる。
しかしながら、このような材料は一般的に加工性が悪く、加工精度を上げるためには加工費が高くなる欠点をもっている。さらには、スラスト方向の動きを抑えるために回転軸に薄肉形状の部分を形成したりすると、そこが脆く破損しやすい性質もあり、スラスト方向の軸受の強度を確保できない欠点がある。

概要

本発明は、コストを抑えてラジアル方向とスラスト方向の両方向に空気軸受を採用することができるガルバノモータを提供する。回転軸1の材質とは異なった円筒部材11であって径方向に延びた二つの平面部を有するフランジ13が形成されたものが前記回転軸1に挿入され、前記円筒部材11に対面する前記固定子側構造体4の第1の対抗面には空気の噴出部5、6が形成され、また前記フランジ13の前記平面部のうちの前記回転軸1の軸方向で見てガルバノモータの外部側となる方の第1の平面部に対面する前記固定子側構造体4の第2の対抗面には空気の噴出部7、8が形成され、前記外周面と前記第1の対抗面とでラジアル方向の空気軸受が形成され、前記第1の平面部と前記第2の対抗面とでスラスト方向の空気軸受が形成されていることを特徴とする。

目的

本発明は、コストを抑えてラジアル方向の空気軸受を採用することができ、またスラスト方向の軸受の強度を確保できるガルバノモータを提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

固定子側構造体の内部でガルバノミラーが固定された回転軸が回転するガルバノモータにおいて、前記回転軸の材質とは異なった円筒部材であって径方向に延びた二つの平面部を有するフランジが形成されたものが前記回転軸に挿入され、前記円筒部材に対面する前記固定子側構造体の第1の対抗面には空気の噴出部が形成され、また前記フランジの前記平面部のうちの前記回転軸の軸方向で見てガルバノモータの外部側となる方の第1の平面部に対面する前記固定子側構造体の第2の対抗面には空気の噴出部が形成され、前記外周面と前記第1の対抗面とでラジアル方向の空気軸受が形成され、前記第1の平面部と前記第2の対抗面とでスラスト方向の空気軸受が形成されていることを特徴とするガルバノモータ。

請求項2

請求項1に記載のガルバノモータにおいて、前記フランジの前記平面部のうちの前記回転軸の軸方向で見てガルバノモータの内部側となる方の第2の平面部には永久磁石取付けられ、前記第2の平面部に対面する前記固定子側構造体の第3の対抗面には永久磁石が取付けられ、前記第2の平面部と前記第3の対抗面とでスラスト方向の磁気軸受が形成されていることを特徴とするガルバノモータ。

請求項3

請求項2に記載のガルバノモータにおいて、前記第2の平面部に取付けられる永久磁石は前記第3の対抗面に取付けられる永久磁石より軽量であることを特徴とするガルバノモータ。

請求項4

請求項1〜3のいずれか1項に記載のガルバノモータにおいて、前記回転軸の材質は炭化珪素、前記円筒部材の材質はアルミニウム合金であることを特徴とするガルバノモータ。

技術分野

0001

例えばレーザ加工装置においては、被加工物上の複数の位置にレーザ照射するために、レーザ発振器から出射されたレーザを反射するためのガルバノミラーが設けられるが、本発明はこのガルバノミラーを回転させるためのガルバノモータに関する。

背景技術

0002

従来の一般的なガルバノモータは、例えば特許文献1に開示されているように、ガルバノミラーが固定される回転軸と、回転軸の周りに配置された永久磁石と、回転軸の両端を支持する玉軸受と、永久磁石の周りに配置されたコイル等を含む構造となっている。
上記の如く回転軸を玉軸受で指示するガルバノモータにおいては、ラジアル剛性は高くできるが、決まった角度範囲で連続して回転揺動動作を行なうと、軸受内で局所的な油膜切れが発生して軸受が損傷しやすいため、給油機構や定期的な給油などが必要となり、装置が大型化したりメンテナンスが必要となってしまう。

0003

このような欠点を解決するために、機械的軸受の代わりに空気軸受を用いる構造が一般的に知られているが、ガルバノモータにおいて空気軸受を採用するためには、回転軸の加工精度を上げなければならない。
一方、最近のガルバノモータにおいては、加工スループット向上のために高速動作が必要で、高速になるほど駆動機構に用いられる永久磁石とコイルでの発熱が大きくなり、回転軸の温度が上昇する。回転軸はねじれに対する剛性が要求され、回転軸の材料は温度上昇によって剛性が低下しにくい材質のもの、例えば炭化珪素が選ばれる。
しかしながら、このような材料は一般的に加工性が悪く、加工精度を上げるためには加工費が高くなる欠点をもっている。さらには、スラスト方向の動きを抑えるために回転軸に薄肉形状の部分を形成したりすると、そこが脆く破損しやすい性質もあり、スラスト方向の軸受の強度を確保できない欠点がある。

先行技術

0004

特許第5943669号

発明が解決しようとする課題

0005

そこで本発明は、コストを抑えてラジアル方向の空気軸受を採用することができ、またスラスト方向の軸受の強度を確保できるガルバノモータを提供することを目的とするものである。

課題を解決するための手段

0006

上記課題を解決するため、本願において開示される発明のうち、代表的なガルバノモータは、固定子側構造体の内部でガルバノミラーが固定された回転軸が回転するガルバノモータにおいて、前記回転軸の材質とは異なった円筒部材であって径方向に延びた二つの平面部を有するフランジが形成されたものが前記回転軸に挿入され、前記円筒部材に対面する前記固定子側構造体の第1の対抗面には空気の噴出部が形成され、また前記フランジの前記平面部のうちの前記回転軸の軸方向で見てガルバノモータの外部側となる方の第1の平面部に対面する前記固定子側構造体の第2の対抗面には空気の噴出部が形成され、前記外周面と前記第1の対抗面とでラジアル方向の空気軸受が形成され、前記第1の平面部と前記第2の対抗面とでスラスト方向の空気軸受が形成されていることを特徴とする。

0007

なお、本願において開示される発明の代表的な特徴は以上の通りであるが、ここで説明していない特徴については、以下に説明する実施例に適用されており、また特許請求の範囲にも示した通りである。

発明の効果

0008

本発明によれば、コストを抑えてラジアル方向の空気軸受を採用することができ、またスラスト方向の軸受の強度を向上することができるガルバノモータを得ることが可能となる。

図面の簡単な説明

0009

本発明の実施例1となるガルバノモータの概略断面図である。
図1における回転軸を中心にした組立体を説明するための概略斜視図である。
本発明の実施例2となるガルバノモータの図1と同様の概略断面図である。
図3における固定子側構造体側取付けた永久磁石の例を示す概略側面図である。
図3におけるフランジ側に取付けた永久磁石の例を示す概略側面図である。

0010

以下、本発明の実施の形態について図面を用いて説明する。
実施例1
図1は本発明の実施例1となるガルバノモータの概略断面図である。ここでは、主に本実施例を説明するために必要と考えられるものを示してあり、ガルバノモータとして必要な全てを示している訳ではない。
図1において、1は図示していないガルバノミラーが固定される回転軸であり、この材質は温度上昇によって剛性が低下しにくい炭化珪素とする。2は回転軸1の周りに配置された永久磁石、3は永久磁石2に対向する配置で固定子側構造体に取付けられたコイル、4はコイル3や図示していない磁気回路構成用のヨーク等を保持する固定子側構造体であり、固定子側構造体4自身がヨークの機能を持つ構造になっていてもよい。この固定子側構造体4の内部で回転軸1は回転するように構成されている。

0011

回転軸1には永久磁石2の他にも部品が取付けられている。すなわち、回転軸1の左右には、他の部分より若干径が大きいストッパ部9、10が形成されている。このような回転軸2の形状は、ストッパ部9、10以外を切削することにより実現される。
図2は回転軸1を中心にした組立体を説明するための概略斜視図であるが、回転軸1には、図2に示すように、空気軸受用円筒部材11がストッパ部9に当接するまで、また空気軸受用円筒部材12がストッパ部10に当接するまで回転軸2の端部から挿入され、それぞれ焼嵌めにより固定されている。一方の空気軸受用円筒部材11の外径は一様であるが、他方の空気軸受用円筒部材12には外径の大きなフランジ13が形成してある。
図2では省略して示してあるが永久磁石2は周方向(回転方向)に4分割されており、それぞれ回転軸1のストッパ部9と10の間に取付けられている。
なお、ここでの空気軸受用円筒部材11、12の材質は、精密加工がしやすいアルミニウム合金である。

0012

図1において、空気軸受用円筒部材11の水平方向に延びた外周面11aに対面する固定子側構造体4の内周面11b及び空気軸受用円筒部材12の水平方向に延びた外周面12aに対面する固定子側構造体4の内周面12bには、それぞれ空気吹き出し口5、6が周方向(回転方向)に複数個形成されている。
また、同様にして、フランジ13の平面131aに対面する固定子側構造体4の対抗面131b及びフランジ13の平面132aに対面する固定子側構造体4の対抗面132bには、それぞれ空気吹き出し口7、8が周方向(回転方向)に複数個形成されている。
これらの空気吹き出し口5〜8には、固定子側構造体4内に形成された図示していない通路を介して圧縮空気が導かれるようになっている。

0013

空気軸受用円筒部材11の外周面11a、12aは空気軸受用円筒部材11、12を回転軸1に挿入した後に精密加工が施され、固定子側構造体4の内周面11b、12b、対抗面131b、132bは回転軸1を固定子側構造体4の内部に挿入する前に精密加工が施される。
このような構造により、空気軸受用円筒部材11の外周面11aと固定子側構造体4の内周面11bとで、また空気軸受用円筒部材11の外周面12aと固定子側構造体4の内周面12bとで、それぞれラジアル方向の空気軸受が形成される。さらに、フランジ13の平面131aと固定子側構造体4の対抗面131bとで、またフランジ13の平面132aと固定子側構造体4の対抗面132bとで、それぞれスラスト方向の空気軸受が形成される。

0014

以上の実施例1によれば、回転軸1における空気軸受の箇所は精密加工が容易なアルミニウム合金の空気軸受用円筒部材11、12で覆うようにしているので、高精度加工が困難な炭化珪素を空気軸受の作用面とすることを避けることができる。
また、フランジ13は慣性2次モーメントを小さくするために薄肉形状にする必要があるが、ここもアルミニウム合金なので炭化珪素よりは強靭性があり、薄肉形状にしても破損しにくくなり、スラスト方向の軸受の強度を確保できる。
さらに、スラスト方向の空気軸受を実現するために、回転軸1自身に径の大きいフランジを形成せず回転軸1を覆う空気軸受用円筒部材12に形成しているので、アルミニウム合金と比較して高価な炭化珪素の削りしろはストッパ部9、10の高さだけとなり、最終加工形状に近い素材の炭化珪素を加工するため、加工費を抑えることができる。

0015

なお、実施例1においては、空気軸受用円筒部材11、12の位置決め用に回転軸1にストッパ部9、10が形成されているが、他の手段により空気軸受用円筒部材11、12の位置決めができるのであれば、ストッパ部9、10は必要ない。

0016

また、実施例1においては、スラスト方向の空気軸受を実現するために、空気軸受用円筒部材12の方にだけフランジ13を形成しているが、もう一つの空気軸受用円筒部材11側にも形成してもよい。この場合、それぞれのフランジの片面だけを空気軸受として、二つのフランジで双方向のスラスト方向の空気軸受としてもよい。

0017

実施例2
次に、本発明の実施例2を説明する。図3は実施例2となるガルバノモータの図1と同様の概略断面図である。図1と同じものについては、同じ番号を付けてある。
実施例1と異なるのは、ガルバノモータのフランジ13より内部側にある空気吹き出し口7を用いる側の空気軸受を磁気軸受にした点である。
図3において、固定子側構造体4の空気吹き出し口7があった部分に永久磁石14を、またフランジ13の永久磁石14の対面位置に永久磁石15を取付け、永久磁石14と15とでスラスト方向の磁気軸受を形成してある。

0018

図4(a)、(b)の各々は、固定子側構造体4側に取付けた永久磁石14の例を示すもので、固定子側構造体4の永久磁石14側を見た側面図である。(a)に示すように円弧形の永久磁石14を2個、あるいは(b)に示すように四角形の永久磁石14を2個、互いに180度離れて配置したものでよい。

0019

また図5(a)、(b)、(c)の各々は、フランジ13側に取付けた永久磁石15の例を示すもので、フランジ13の永久磁石15側を見た側面図である。(a)に示すように円形の永久磁石15を2個、(b)に示すように四角形の永久磁石14を2個、あるいは(c)に示すように四角形と円形の永久磁石15を、互いに180度離れて配置したものでよい。
なお、フランジ13の慣性2次モーメントを小さくするために、フランジ13側の永久磁石15は固定子側構造体4側の永久磁石14よりも小型軽量なものが望ましい。

0020

永久磁石15はフランジ13と同心円の帯形状のもの、永久磁石14もこれに合わせた形状にしてもよいが、ガルバノモータにおいては回転軸1が1回転することはなく、限られた角度範囲で動作するものであるから、永久磁石14と15の形状は帯形状とせずに、上記の例のように小さくしてもよい。
ただしこの場合、永久磁石14、15のいずれかの円周方向の長さは、ガルバノモータが最大角度で動作しても、磁気軸受を構築できるように設定しておく必要がある。

実施例

0021

以上の実施例2においても、フランジ13を回転軸1自身に形成せず回転軸1を覆う空気軸受用円筒部材12に形成しているので、加工費を抑えることができる。
また、空気吹き出し口7を用いる空気軸受の場合、図1での部分P1における回転軸方向の固定子側構造体4の厚みTが大きいが、実施例2によれば、この部分を磁気軸受にしたことにより、図3での部分P2におけるこの厚みが小さくなり、ガルバノモータの回転軸方向の長さを短くでき、小型軽量化を図ることができる。

0022

1:回転軸2、14、15:永久磁石3:コイル4:固定子側構造体
5〜8:空気吹き出し口 9、10:ストッパ部 11、12:空気軸受用円筒部材
13:フランジ

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ