図面 (/)

この項目の情報は公開日時点(2020年2月13日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

車輪速センサ高分解能としなくても、回転電機を制御することができる制御装置及び車両駆動システムを提供すること。

解決手段

制御装置137は、固定子巻線を有し、磁性体のティースによるスロットを有さないスロットレス構造固定子、及び、磁石部を有する回転子を備え、走行駆動源として機能する回転電機と、車輪速を検出する車輪速センサ134を含む車両に適用される。この制御装置は、車輪速センサの検出値に基づいて、回転電機の回転角推定により設定する設定部139と、設定部により設定される回転角に基づいて、回転電機の駆動を制御する駆動制御部110を備える。回転電機は、ティースでの磁気飽和がないため、最大トルク引き上げられており、たとえば減速機が配置されない構成となる。したがって、車輪速センサを高分解能としなくても、車輪速センサの出力に基づいて回転角を推定し、回転電機を制御することができる。

概要

背景

特許文献1には、走行用駆動モータレゾルバを、車輪速センサの代わりに用いる装置が開示されている。車両が必要とする出力トルクを得るために、車輪モータとの間には減速機が設けられている。上記装置では、レゾルバにより検出されるモータの回転速度に減速比を乗じることで、車輪速推定している。

概要

車輪速センサを高分解能としなくても、回転電機を制御することができる制御装置及び車両駆動システムを提供すること。制御装置137は、固定子巻線を有し、磁性体のティースによるスロットを有さないスロットレス構造固定子、及び、磁石部を有する回転子を備え、走行駆動源として機能する回転電機と、車輪速を検出する車輪速センサ134を含む車両に適用される。この制御装置は、車輪速センサの検出値に基づいて、回転電機の回転角を推定により設定する設定部139と、設定部により設定される回転角に基づいて、回転電機の駆動を制御する駆動制御部110を備える。回転電機は、ティースでの磁気飽和がないため、最大トルク引き上げられており、たとえば減速機が配置されない構成となる。したがって、車輪速センサを高分解能としなくても、車輪速センサの出力に基づいて回転角を推定し、回転電機を制御することができる。

目的

本開示はこのような課題に鑑みてなされたものであり、車輪速センサを高分解能としなくても、回転電機を制御することができる制御装置及び車両駆動システムを提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

固定子巻線を有し、磁性体のティースによるスロットを有さないスロットレス構造固定子(50)、及び、磁石部を有する回転子(40)を備え、走行駆動源として機能する回転電機(10)と、車輪速を検出する車輪速センサ(134)と、を含む車両に適用され、前記車輪速センサの検出値に基づいて、前記回転電機の回転角推定により設定する設定部(139)と、前記設定部により設定される前記回転角に基づいて、前記回転電機の駆動を制御する駆動制御部(110)と、を備える制御装置

請求項2

前記回転電機が、表面に前記磁石部が配置されたSPM型の前記回転子、極異方性磁石であり、且つ、磁極が互いに異なる第1磁石及び第2磁石が周方向に交互に配置されてなる前記磁石部、周方向の幅寸法より径方向の厚さ寸法が小さい断面扁平状をなす前記固定子巻線、磁束密度分布正弦波整合率が40%以上とされた前記磁石部、複数の素線を寄せ集めて撚った前記固定子巻線、の少なくとも1つを満たす請求項1に記載の制御装置。

請求項3

前記回転電機が、該回転電機の回転角を検出する回転角センサ(135)を備える請求項1又は請求項2に記載の制御装置であって、前記設定部は、前記回転角センサの検出値に基づいて、前記車輪速を推定し、前記車輪速センサの検出値と前記回転角センサの検出値とに基づいて、前記車輪速センサ及び前記回転角センサのいずれかに異常が生じたことを検出し、前記回転角センサが正常な場合には前記回転角センサの検出値に基づいて前記回転角を設定し、前記回転角センサが異常な場合には前記回転角の推定値を前記回転角として設定し、前記車輪速センサが正常な場合には前記車輪速センサの検出値に基づいて前記車輪速を設定し、前記車輪速センサが異常な場合には前記車輪速の推定値を前記車輪速として設定し、前記設定部により設定される前記車輪速に基づいて、所定処理を実行する処理実行部をさらに備える制御装置。

請求項4

前記処理実行部は、前記回転電機に対するトルク指令を生成する指令生成部(140)を含み、前記駆動制御部は、前記回転角センサが正常な場合に、前記トルク指令及び前記回転角センサの検出値に基づいて前記回転電機の駆動を制御し、前記回転角センサが異常な場合に、前記トルク指令及び前記回転角の推定値に基づいて前記回転電機の駆動を制御し、前記指令生成部は、前記車輪速センサが正常な場合に、前記車輪速センサの検出値に基づいて前記トルク指令を生成し、前記車輪速センサが異常な場合に、前記車輪速の推定値に基づいて前記トルク指令を生成する請求項3に記載の制御装置。

請求項5

前記車輪速センサ及び前記回転角センサの少なくとも一方を複数備え、前記設定部は、前記車輪速センサの検出値と前記回転角センサの検出値とに基づいて、前記車輪速センサ及び前記回転角センサのいずれかに異常が生じたことを検出する請求項3又は請求項4に記載の制御装置。

請求項6

前記設定部は、前記車両の旋回情報に基づいて、前記車輪速センサ及び前記回転角センサのいずれかに異常が生じたことを検出する請求項3〜5いずれか1項に記載の制御装置。

請求項7

前記車両が含む前記回転電機が、回転角センサを備えないセンサレス構造とされている請求項1又は請求項2に記載の制御装置。

請求項8

前記固定子巻線に生じる誘起電圧を検出する誘起電圧検出部(141)と、前記誘起電圧に基づいて、前記回転電機の回転角を検出する回転角検出部(142)をさらに備え、前記設定部は、前記車両の走行中に、前記回転角検出部の検出値と前記回転角の推定値との同期をとり、前記車両の停止時における前記回転角の推定値を、停止中の前記回転角である停止角として設定し、前記回転電機の起動後は、前記回転角検出部の検出値に基づいて前記回転角を設定する請求項7に記載の制御装置。

請求項9

前記設定部は、前記回転角検出部の検出値に基づいて、前記車輪速を推定し、前記回転角検出部の検出値に基づいて、前記車輪速センサの異常を検出するとともに、前記車輪速センサが正常な場合には前記車輪速センサの検出値に基づいて前記車輪速を設定し、前記車輪速センサが異常な場合には前記車輪速の推定値を前記車輪速として設定する請求項8に記載の制御装置。

請求項10

車輪速を検出する車輪速センサ(134)を備えた車両に適用され、固定子巻線を備え、磁性体のティースによるスロットを有さないスロットレス構造の固定子(50)と、磁石部を備えた回転子(40)と、を有し、走行駆動源として機能する回転電機(10)と、前記車輪速センサの検出値に基づいて、前記回転電機の回転角を推定により設定する設定部(139)と、前記設定部により設定される前記回転角に基づいて、前記回転電機の駆動を制御する駆動制御部(110)と、有する制御装置(137)と、を備える車両駆動システム

技術分野

0001

この明細書における開示は、制御装置及び車両駆動システムに関する。

背景技術

0002

特許文献1には、走行用駆動モータレゾルバを、車輪速センサの代わりに用いる装置が開示されている。車両が必要とする出力トルクを得るために、車輪モータとの間には減速機が設けられている。上記装置では、レゾルバにより検出されるモータの回転速度に減速比を乗じることで、車輪速推定している。

先行技術

0003

特開2013−68592号公報

発明が解決しようとする課題

0004

駆動モータと車輪との間には、減速比分の回転数の差が生じる。車輪速センサとして一般に磁気抵抗効果素子MR素子)が用いられており、車輪速センサの分解能はレゾルバよりも低い。車輪速センサの分解能を高めると、製造コストの増加や体格の増大などが問題となる。

0005

本開示はこのような課題に鑑みてなされたものであり、車輪速センサを高分解能としなくても、回転電機を制御することができる制御装置及び車両駆動システムを提供することを目的とする。

課題を解決するための手段

0006

本開示は、上記目的を達成するために以下の技術的手段を採用する。なお、括弧内の符号は、ひとつの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、技術的範囲を限定するものではない。

0007

本開示のひとつである制御装置は、
固定子巻線を有し、磁性体のティースによるスロットを有さないスロットレス構造固定子(50)、及び、磁石部を有する回転子(40)を備え、走行駆動源として機能する回転電機(10)と、車輪速を検出する車輪速センサ(134)と、を含む車両に適用され、
車輪速センサの検出値に基づいて、回転電機の回転角を推定により設定する設定部(139)と、
設定部により設定される回転角に基づいて、回転電機の駆動を制御する駆動制御部(110)と、
を備える。

0008

この制御装置は、スロットレス構造の回転電機を備えた車両に適用される。回転電機は、ティースでの磁気飽和がないため、最大トルク引き上げられている。すなわち、高トルク化されている。したがって、回転電機と車輪との間に減速機が配置されない構成、若しくは、配置されたとしても従来より減速比が小さい構成となる。これにより、車輪と回転電機との回転数差が従来よりも小さくなる、若しくは、無くなる。したがって、車輪速センサを高分解能としなくても、車輪速センサの出力に基づいて回転角を推定し、ひいては回転電機を制御することができる。

0009

本開示の他のひとつである車両駆動システムは、
車輪速を検出する車輪速センサ(134)を備えた車両に適用され、
固定子巻線を備え、磁性体のティースによるスロットを有さないスロットレス構造の固定子(50)と、磁石部を備えた回転子(40)と、を有し、走行駆動源として機能する回転電機(10)と、
車輪速センサの検出値に基づいて、回転電機の回転角を推定により設定する設定部(139)と、設定部により設定される回転角に基づいて、回転電機の駆動を制御する駆動制御部(110)と、有する制御装置(137)と、
を備える。

0010

この車両駆動システムでは、回転電機を、スロットレス構造としている。磁性体のティースでの磁気飽和がないため、回転電機の最大トルクを引き上げることができる。すなわち、回転電機を高トルク化することができる。このような回転電機を用いることで、回転電機と車輪との間に減速機が配置されない構成、若しくは、配置されたとしても従来より減速比が小さい構成となる。これにより、車輪と回転電機との回転数差が従来よりも小さくなる、若しくは、無くなる。したがって、車輪速センサを高分解能としなくても、車輪速センサの出力に基づいて回転角を推定し、ひいては回転電機を制御することができる。

図面の簡単な説明

0011

第1実施形態に適用される回転電機の縦断面斜視図。
回転電機の縦断面図。
図2のIII−III線断面図。
図3の一部を拡大して示す断面図。
回転電機の分解図。
インバータユニットの分解図。
固定子巻線のアンペアターントルク密度との関係を示すトルク線図
回転子及び固定子の横断面図。
図8の一部を拡大して示す図。
固定子の横断面図。
固定子の縦断面図。
固定子巻線の斜視図。
導線の構成を示す斜視図。
素線の構成を示す模式図。
n層目における各導線の形態を示す図。
n層目とn+1層目の各導線を示す側面図。
実施形態の磁石について電気角磁束密度との関係を示す図。
比較例の磁石について電気角と磁束密度との関係を示す図。
回転電機の制御システム電気回路図。
制御装置による電流フィードバック制御処理を示す機能ブロック図。
制御装置によるトルクフィードバック制御処理を示す機能ブロック図。
比較例を示す図。
第1実施形態の車両駆動システムを示す図。
制御装置を示す機能ブロック図。
第2実施形態の車両駆動システムを示す図。
制御装置を示す機能ブロック図。
設定部が実行する処理を示すフローチャート
第3実施形態の車両駆動システムを示す図。
制御装置を示す機能ブロック図。
設定部が実行する処理を示すフローチャート。
車輪速算出処理を示すフローチャート。
常時処理を示すフローチャート。
第2回転角センサの異常時処理を示すフローチャート。
第1回転角センサの異常時処理を示すフローチャート。
車輪速センサの異常時処理を示すフローチャート。
第4実施形態の制御装置を示す機能ブロック図。
操舵角所定値αとの関係を示す図。
第5実施形態の制御装置を示す機能ブロック図。
誘起電圧検出部を示す回路図。
各相電圧位置検出タイミングを示す図。
設定部が実行する処理を示すフローチャート。
走行設定処理を示すフローチャート。
同期処理を示すフローチャート。
別例における回転子及び固定子の横断面図。
図44の一部を拡大して示す図。
磁石部における磁束の流れを具体的に示す図。
別例における固定子の断面図。
別例における固定子の断面図。
別例における固定子の断面図。
別例における固定子の断面図。
別例においてn層目とn+1層目の各導線を示す側面図。
別例における固定子の断面図。

実施例

0012

以下、実施形態を図面に基づいて説明する。以下の各実施形態相互において、互いに同一又は均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。

0013

(第1実施形態)
本実施形態の回転電機は、たとえば車両動力源、すなわち走行駆動源として用いられるものとなっている。ただし、回転電機は、産業用車両用家電用、OA機器用、遊技機用などとして広く用いられることが可能となっている。

0014

(回転電機の概略構成
図1図5に基づき、回転電機10の概略構成について説明する。図1は、回転電機10の縦断面斜視図である。図2は、回転電機10の回転軸11に沿う方向での縦断面図である。図3は、回転軸11に直交する方向での回転電機10の横断面図(図2のIII−III線断面図)である。図4は、図3の一部を拡大して示す断面図である。図5は、回転電機10の分解図である。図3では、図示の都合上、回転軸11を除き、切断面を示すハッチングを省略している。以下の記載では、回転軸11が延びる方向を軸方向とし、回転軸11の中心から放射状に延びる方向を径方向とし、回転軸11を中心として円周状に延びる方向を周方向とする。

0015

本実施形態の回転電機10は、同期式多相交流モータであり、アウタロータ構造、すなわち外転構造となっている。回転電機10は、大別して、軸受部20と、ハウジング30と、回転子40と、固定子50と、インバータユニット60を備えている。これら各部材は、いずれも回転軸11とともに同軸上に配置され、所定順序で軸方向に組み付けられることで回転電機10が構成されている。

0016

軸受部20は、軸方向に互いに離間して配置される2つの軸受21,22と、その軸受21,22を保持する保持部材23を有している。軸受21,22は、たとえばラジアル玉軸受であり、それぞれ外輪25と、内輪26と、それら外輪25及び内輪26の間に配置された複数の玉27とを有している。保持部材23は円筒状をなしており、その径方向内側に軸受21,22が組み付けられている。そして、軸受21,22の径方向内側に、回転軸11及び回転子40が回転自在に支持されている。

0017

ハウジング30は、円筒状をなす周壁部31と、周壁部31の軸方向両端部の一方に設けられた端面部32を有している。周壁部31の両端部のうち、端面部32の反対側は開口部33となっており、ハウジング30は、端面部32の反対側が開口部33により全面的に開放された構成となっている。端面部32には、その中央に円形の孔34が形成されており、その孔34に軸受部20を挿通させた状態で、ネジリベット等の固定具により軸受部20が固定されている。

0018

ハウジング30内、すなわち周壁部31及び端面部32により区画された内部スペースには、回転子40と固定子50とが収容されている。本実施形態では回転電機10がアウタロータ式であり、ハウジング30内には、筒状をなす回転子40の径方向内側に固定子50が配置されている。回転子40は、軸方向において端面部32の側で回転軸11に片持ち支持されている。

0019

回転子40は、中空筒状に形成された回転子本体41と、その回転子本体41の径方向内側に設けられた環状の磁石部42を有している。回転子本体41は、略カップ状をなし、磁石保持部材としての機能を有する。回転子本体41は、筒状をなす磁石保持部43と、同じく筒状をなしかつ磁石保持部43よりも小径の固定部44と、それら磁石保持部43及び固定部44を繋ぐ部位となる中間部45を有している。磁石保持部43の内周面に磁石部42が取り付けられている。

0020

固定部44の貫通孔44aには回転軸11が挿通されており、その挿通状態で回転軸11に対して固定部44が固定されている。つまり、固定部44により、回転軸11に対して回転子本体41が固定されている。なお、固定部44は、凹凸を利用したスプライン結合キー結合溶接、又はかしめ等により回転軸11に対して固定されているとよい。これにより、回転子40が回転軸11と一体に回転する。

0021

固定部44の径方向外側には、軸受部20の軸受21,22が組み付けられている。上記のとおり、軸受部20はハウジング30の端面部32に固定されているため、回転軸11及び回転子40は、ハウジング30に回転可能に支持されるものとなっている。これにより、ハウジング30内において回転子40が回転自在となっている。

0022

回転子40には、軸方向両側のうち片側にのみ固定部44が設けられており、これにより、回転子40が回転軸11に片持ち支持されている。ここで、回転子40の固定部44は、軸受部20の軸受21,22により、軸方向に異なる2位置で回転可能に支持されている。すなわち、回転子40は、回転子本体41における軸方向両端部の一方の側において、軸方向2箇所の軸受21,22により回転可能に支持されている。そのため、回転子40が回転軸11に片持ち支持される構造であっても、回転子40の安定回転が実現されるようになっている。この場合、回転子40の軸方向中心位置に対して片側にずれた位置で、回転子40が軸受21,22により支持されている。

0023

また、軸受部20において回転子40の中心寄り(図の下側)の軸受22と、その逆側(図の上側)の軸受21とは、外輪25及び内輪26と玉27との間の隙間寸法が相違している。たとえば軸受22のほうが、軸受21よりも隙間寸法が大きいものとなっている。この場合、回転子40の中心寄りの側において、回転子40の振れや、部品公差に起因するインバランスによる振動が軸受部20に作用しても、その振れや振動の影響が良好に吸収される。

0024

具体的には、軸受22において予圧により遊び寸法(隙間寸法)を大きくしていることで、片持ち構造において生じる振動がその遊び部分により吸収される。前記予圧は、定位置予圧でもよいが、軸受22の軸方向外側(図の上側)の段差予圧用バネウェーブワッシャ等を挿入することで与えてもよい。

0025

中間部45は、径方向中心側とその外側とで軸方向の段差を有する構成となっている。中間部45において、径方向の内側端部と外側端部とは、軸方向の位置が相違しており、これにより、軸方向において磁石保持部43と固定部44とが一部重複している。つまり、固定部44の基端部(図の下側の奥側端部)よりも軸方向外側に、磁石保持部43が突出するものとなっている。本構成では、中間部45が段差無し平板状に設けられる場合に比べて、回転子40の重心近くの位置で、回転軸11に対して回転子40を支持させることが可能となり、回転子40の安定動作が実現できるものとなっている。

0026

上記した中間部45の構成により、回転子40には、径方向において固定部44を囲み、中間部45の内寄りとなる位置に、軸受部20の一部を収容する軸受収容凹部46が環状に形成されている。また、径方向において軸受収容凹部46を囲み、中間部45の外寄りとなる位置に、後述する固定子50の固定子巻線51のコイルエンド部54を収容するコイル収容凹部47が形成されている。そして、これら各収容凹部46,47が、径方向の内外で隣り合うように配置されるようになっている。つまり、軸受部20の一部と、固定子巻線51のコイルエンド部54とが径方向内外に重複するように配置されている。これにより、回転電機10において軸方向の長さ寸法の短縮が可能となっている。

0027

コイルエンド部54は、径方向の内側又は外側に曲げられることで、そのコイルエンド部54の軸方向寸法を小さくすることができ、固定子軸長を短縮することが可能である。コイルエンド部54の曲げ方向は、回転子40との組み付けを考慮したものであるとよい。回転子40の径方向内側に固定子50を組み付けることを想定すると、その回転子40に対する挿入先端側では、コイルエンド部54が径方向内側に曲げられるとよい。その逆側の曲げ方向は任意でよいが、空間的に余裕のある外径側が製造上好ましい。

0028

磁石部42は、磁石保持部43の径方向内側において、周方向に沿って磁極が交互に変わるように配置された複数の磁石により構成されている。磁石部42の詳細については後述する。

0029

固定子50は、回転子40の径方向内側に設けられている。固定子50は、略筒状に巻回形成された固定子巻線51と、その径方向内側に配置された固定子コア52を有している。固定子巻線51は、所定のエアギャップを挟んで円環状の磁石部42に対向するように配置されている。固定子巻線51は、複数の相巻線よりなる。各相巻線は、周方向に配列された複数の導線が所定ピッチで互いに接続されることで構成されている。本実施形態では、U相、V相及びW相の3相巻線と、X相、Y相及びZ相の3相巻線とを用い、それら3相2組の相巻線を用いることで、固定子巻線51が6相の相巻線として構成されている。

0030

固定子コア52は、軟磁性材からなる積層鋼板により円環状に形成されており、固定子巻線51の径方向内側に組み付けられている。

0031

固定子巻線51は、軸方向において固定子コア52に重複する部分であり、固定子コア52の径方向外側となるコイルサイド部53と、軸方向において固定子コア52の一端側及び他端側にそれぞれ張り出すコイルエンド部54,55を有している。コイルサイド部53は、径方向において固定子コア52と回転子40の磁石部42にそれぞれ対向している。回転子40の内側に固定子50が配置された状態では、軸方向両側のコイルエンド部54,55のうち軸受部20の側(図の上側)となるコイルエンド部54が、回転子40の回転子本体41により形成されたコイル収容凹部47に収容されている。固定子50の詳細については後述する。

0032

インバータユニット60は、ハウジング30に対してボルト等の締結具により固定されるユニットベース61と、ユニットベース61に組み付けられる電気コンポーネント62を有している。ユニットベース61は、ハウジング30の開口部33側の端部に対して固定されるエンドプレート部63と、エンドプレート部63に一体に設けられ、軸方向に延びるケーシング部64を有している。エンドプレート部63は、その中心部に円形の開口部65を有しており、開口部65の周縁部から起立するようにしてケーシング部64が形成されている。

0033

ケーシング部64の外周面には、固定子50が組み付けられている。つまり、ケーシング部64の外径寸法は、固定子コア52の内径寸法と同じか、又は、固定子コア52の内径寸法よりも僅かに小さい寸法になっている。ケーシング部64の外側に固定子コア52が組み付けられることで、固定子50とユニットベース61とが一体化されている。また、ユニットベース61がハウジング30に固定されることからすると、ケーシング部64に固定子コア52が組み付けられた状態では、固定子50がハウジング30に対して一体化された状態となっている。

0034

ケーシング部64の径方向内側は、電気コンポーネント62を収容する収容空間となっており、その収容空間には、回転軸11を囲むようにして電気コンポーネント62が配置されている。ケーシング部64は、収容空間形成部としての役目を有している。電気コンポーネント62は、インバータ回路を構成する半導体モジュール66や、制御基板67、コンデンサモジュール68を備えている。

0035

(インバータユニットの詳細)
図1図6に基づき、インバータユニット60の構成について、さらに説明する。図6は、インバータユニット60の分解図である。

0036

ユニットベース61において、ケーシング部64は、筒状部71と、筒状部71における軸方向両端部の一方(軸受部20側の端部)に設けられた端面部72を有している。端面部72の反対側は、エンドプレート部63の開口部65を通じて全面的に開放されている。端面部72には、その中央に円形の孔73が形成されており、その孔73に回転軸11が挿通可能となっている。

0037

ケーシング部64の筒状部71は、その径方向外側に配置される回転子40及び固定子50と、その径方向内側に配置される電気コンポーネント62との間を仕切る仕切り部となっている。回転子40及び固定子50と、電気コンポーネント62とは、筒状部71を挟んで径方向内外に並ぶように、それぞれ配置されている。

0038

電気コンポーネント62は、インバータ回路を構成する電気部品であり、固定子巻線51の各相巻線に対して所定順序で電流を流して回転子40を回転させる力行機能と、回転軸11の回転にともない固定子巻線51に流れる3相交流電流を入力し、発電電力として外部に出力する発電機能とを有している。電気コンポーネント62は、力行機能と発電機能とのうち、いずれか一方のみを有するものであってもよい。発電機能は、たとえば回転電機10が車両用動力源として用いられる場合、回生電力として外部に出力する回生機能である。

0039

電気コンポーネント62の具体的な構成として、回転軸11の周りには、中空円筒状をなすコンデンサモジュール68が設けられており、コンデンサモジュール68の外周面上に、複数の半導体モジュール66が周方向に並べて配置されている。コンデンサモジュール68は、互いに並列接続された平滑用のコンデンサ68aを複数備えている。具体的には、コンデンサ68aは、複数枚フィルムコンデンサが積層されてなる積層型フィルムコンデンサであり、横断面が台形状をなしている。コンデンサモジュール68は、12個のコンデンサ68aが環状に並べて配置されることで構成されている。

0040

コンデンサ68aの製造過程においては、たとえば、複数のフィルムが積層されてなる所定幅長尺フィルムを用いる。フィルム幅方向を台形高さ方向とし、台形の上底下底とが交互になるように、長尺フィルムを等脚台形状に切断することで、コンデンサ素子が作られる。そして、コンデンサ素子に電極等を取り付けることで、コンデンサ68aが作製される。

0041

半導体モジュール66は、たとえばMOSFETやIGBT等の半導体スイッチング素子を有し、略板状に形成されている。本実施形態では、回転電機10が2組の3相巻線を備えており、その3相巻線ごとにインバータ回路が設けられている。電気コンポーネント62は、計12個の半導体モジュール66を有している。

0042

半導体モジュール66は、ケーシング部64の筒状部71とコンデンサモジュール68との間に挟まれた状態で配置されている。半導体モジュール66の外周面は筒状部71の内周面に接触し、半導体モジュール66の内周面はコンデンサモジュール68の外周面に接触している。この場合、半導体モジュール66で生じた熱は、ケーシング部64を介してエンドプレート部63に伝わり、エンドプレート部63から放出される。

0043

径方向において、半導体モジュール66と筒状部71との間に、スペーサ69が配置されるとよい。コンデンサモジュール68では軸方向に直交する横断面の断面形状が正12角形である一方、筒状部71の内周面の横断面形状が円形であるため、スペーサ69は、内周面が平坦面、外周面が曲面となっている。スペーサ69は、各半導体モジュール66の径方向外側において円環状に連なるように一体に設けられていてもよい。なお、筒状部71の内周面の横断面形状をコンデンサモジュール68と同じ12角形にすることも可能である。この場合、スペーサ69の内周面及び外周面がいずれも平坦面であるとよい。

0044

本実施形態では、ケーシング部64の筒状部71に、冷却水流通させる冷却水通路74が形成されており、半導体モジュール66で生じた熱は、冷却水通路74を流れる冷却水に対しても放出される。つまり、ケーシング部64は水冷機構を備えている。図3図4に示すように、冷却水通路74は、電気コンポーネント62(半導体モジュール66及びコンデンサモジュール68)を囲むように環状に形成されている。半導体モジュール66は筒状部71の内周面に沿って配置されており、その半導体モジュール66に対して径方向内外に重なる位置に冷却水通路74が設けられている。

0045

筒状部71の外側には固定子50が配置され、内側には電気コンポーネント62が配置されている。したがって、筒状部71に対しては、その外側から固定子50の熱が伝わるとともに、内側から半導体モジュール66の熱が伝わる。この場合、固定子50と半導体モジュール66とを同時に冷やすことが可能となっており、回転電機10における発熱部材の熱を効率良く放出することができる。

0046

電気コンポーネント62は、軸方向において、コンデンサモジュール68の一方の端面に設けられた絶縁シート75と、他方の端面に設けられた配線モジュール76を備えている。コンデンサモジュール68の軸方向両端面の一方(軸受部20側の端面)は、ケーシング部64の端面部72に対向しており、絶縁シート75を挟んだ状態で端面部72に重ね合わされている。また、他方の端面(開口部65側の端面)には、配線モジュール76が組み付けられている。

0047

配線モジュール76は、合成樹脂材よりなり円形板状をなす本体部76aと、その内部に埋設された複数のバスバー76b,76cを有しており、バスバー76b,76cにより、半導体モジュール66やコンデンサモジュール68と電気的接続がなされている。具体的には、半導体モジュール66は、その軸方向端面から延びる端子66aを有しており、その端子66aが、本体部76aの径方向外側においてバスバー76bに接続されている。バスバー76cは、本体部76aの径方向外側においてコンデンサモジュール68とは反対側に延びており、図2に示すように、その先端部にて配線部材79に接続されるようになっている。

0048

上記のとおりコンデンサモジュール68の軸方向両側に絶縁シート75と配線モジュール76とがそれぞれ設けられた構成によれば、コンデンサモジュール68の放熱経路として、コンデンサモジュール68の軸方向両端面から端面部72及び筒状部71に至る経路が形成される。これにより、コンデンサモジュール68において半導体モジュール66が設けられた外周面以外の端面部からの放熱が可能になっている。つまり、径方向への放熱だけでなく、軸方向への放熱も可能となっている。

0049

コンデンサモジュール68は中空円筒状をなし、その内周部には所定の隙間を有して回転軸11が配置される。したがって、コンデンサモジュール68の熱は、その中空部からも放出可能となっている。この場合、回転軸11の回転により空気の流れが生じることにより、その冷却効果が高められるようになっている。

0050

配線モジュール76には、円板状の制御基板67が取り付けられている。制御基板67は、所定の配線パターンが形成されたプリント基板(PCB)を有しており、プリント基板上には各種ICや、マイコン等からなる制御装置77が実装されている。制御基板67は、ネジ等の固定具により配線モジュール76に固定されている。制御基板67は、その中央部に、回転軸11を挿通させる挿通孔67aを有している。

0051

なお、配線モジュール76の軸方向両側のうち、コンデンサモジュール68の反対側に制御基板67が設けられ、制御基板67の両面の一方側から他方側に配線モジュール76のバスバー76cが延びる構成となっている。かかる構成において、制御基板67には、バスバー76cとの干渉を回避する切欠が設けられているとよい。たとえば、円形状をなす制御基板67の外縁部の一部が切り欠かれているとよい。

0052

このように、ケーシング部64に囲まれた空間内に電気コンポーネント62が収容され、その外側に、ハウジング30、回転子40、及び固定子50が層状に配置されている。この構成によれば、インバータ回路で生じる電磁ノイズが好適にシールドされる。インバータ回路では、所定のキャリア周波数によるPWM制御を利用して各半導体モジュール66でのスイッチング制御が行われ、そのスイッチング制御により電磁ノイズが生じることが考えられるが、その電磁ノイズを、電気コンポーネント62の径方向外側のハウジング30、回転子40、固定子50等により好適にシールドできる。

0053

筒状部71においてエンドプレート部63の付近には、その外側の固定子50と内側の電気コンポーネント62とを電気的に接続する配線部材79を挿通させる貫通孔78が形成されている。図2に示すように、配線部材79は、圧着、溶接などにより、固定子巻線51の端部と配線モジュール76のバスバー76cとにそれぞれ接続されている。配線部材79は、たとえばバスバーであり、その接合面は平たく潰されていることが望ましい。貫通孔78は、1カ所又は複数箇所に設けられているとよく、本実施形態では2カ所に設けられている。2カ所に貫通孔78が設けられる構成では、2組の3相巻線から延びる巻線端子を、それぞれ配線部材79により容易に結線することが可能となり、多相結線を行う上で好適なものとなっている。

0054

ハウジング30内には、図4に示すように径方向外側から順に回転子40、固定子50が設けられ、固定子50の径方向内側にインバータユニット60が設けられている。ここで、ハウジング30の内周面の半径をdとすると、回転中心からd×0.705の距離よりも径方向外側に、回転子40及び固定子50が配置されている。この場合、固定子50の内周面、すなわち固定子コア52の内周面から径方向内側となる領域を第1領域X1、固定子50の内周面からハウジング30までの間の領域を第2領域X2とすると、第1領域X1の横断面の面積は、第2領域X2の横断面の面積よりも大きい構成となっている。また、軸方向において回転子40の磁石部42及び固定子巻線51が重複する範囲で見て、第1領域X1の容積が第2領域X2の容積よりも大きい構成となっている。

0055

なお、回転子40及び固定子50を磁気回路コンポーネントとすると、ハウジング30内において、その磁気回路コンポーネントの内周面から径方向内側となる第1領域X1が、径方向において磁気回路コンポーネントの内周面からハウジング30までの間の第2領域X2よりも容積が大きい構成となっている。

0056

(回転子及び固定子の詳細)
一般に、回転電機における固定子の構成として、積層鋼板よりなり、円環状をなす固定子コアに、周方向に複数のスロットを設け、そのスロット内に固定子巻線を巻装するものが知られている。具体的には、固定子コアは、ヨーク部から所定間隔で径方向に延びる複数のティースを有しており、周方向に隣り合うティース間にスロットが形成されている。そして、スロット内に、たとえば径方向に複数層の導線が収容され、その導線により固定子巻線が構成されている。

0057

ただし、上記した固定子構造では、固定子巻線の通電時において、固定子巻線の起磁力が増加するのにともない固定子コアのティース部分で磁気飽和が生じ、それに起因して回転電機のトルク密度が制限されることが考えられる。つまり、固定子コアにおいて、固定子巻線の通電により生じた回転磁束がティースに集中することで、磁気飽和が生じると考えられる。

0058

また、一般的に、回転電機におけるIPMロータの構成として、永久磁石がd軸に配置され、q軸にロータコアが配置されたものが知られている。このような場合、d軸近傍の固定子巻線が励磁されることで、フレミングの法則により固定子から回転子のq軸に励磁磁束が流入される。そしてこれにより、回転子のq軸コア部分に、広範囲の磁気飽和が生じると考えられる。

0059

図7は、固定子巻線の起磁力を示すアンペアターン[AT]とトルク密度[Nm/L]との関係を示すトルク線図である。破線が一般的なIPMロータ型の回転電機における特性を示す。図7に示すように、一般的な回転電機では、固定子において起磁力を増加させていくことにより、スロット間のティース部分及びq軸コア部分の2カ所で磁気飽和が生じ、それが原因でトルクの増加が制限されてしまう。このように、当該一般的な回転電機では、アンペアターン設計値がX1で制限されることになる。

0060

そこで本実施形態では、磁気飽和に起因するトルク制限を解消すべく、回転電機10において、以下に示す構成を付与するものとしている。すなわち、第1の工夫として、固定子において固定子コアのティースで生じる磁気飽和をなくすべく、固定子50においてスロットレス構造を採用し、かつIPMロータのq軸コア部分で生じる磁気飽和をなくすべく、SPMロータを採用している。第1の工夫によれば、磁気飽和が生じる上記2カ所の部分をなくすことができるが、低電流域でのトルクが減少することが考えられる(図7の一点鎖線参照)。そのため、第2の工夫として、SPMロータの磁束増強を図ることでトルク減少を挽回すべく、回転子40の磁石部42において磁石磁路を長くして磁力を高めた極異方構造を採用している。

0061

また、第3の工夫として、固定子巻線51のコイルサイド部53において導線の径方向厚さを小さくした扁平導線構造を採用してトルク減少の挽回を図っている。ここで、上記した極異方構造によって、対向する固定子巻線51には、より大きな渦電流が発生することが考えられる。しかしながら、第3の工夫によれば、径方向に薄い扁平導線構造のため、固定子巻線51における径方向の渦電流の発生を抑制することができる。このように、これら第1〜第3の各構成によれば、図7実線で示すように、磁力の高い磁石を採用してトルク特性の大幅な改善を見込みつつも、磁力の高い磁石ゆえに生じ得る大きい渦電流発生の懸念も改善できるものとなっている。

0062

さらに、第4の工夫として、極異方構造を利用し正弦波に近い磁束密度分布を有する磁石部42を採用している。これによれば、後述するパルス制御等によって正弦波整合率を高めてトルク増強を図ることができるとともに、ラジアル磁石と比べ緩やかな磁束変化のため渦電流損もさらに抑制することができる。

0063

また、第5の工夫として、固定子巻線51を複数の素線を寄せ集めて撚った素線導体構造としている。これによれば、基本波成分集電されて大電流が流せるとともに、扁平導線構造で周方向に広がった導線で発生する周方向に起因する渦電流の発生を、素線それぞれの断面積が小さくなるため、第3の工夫による径方向に薄くする以上に効果的に抑制することができる。そして、複数の素線が撚り合っていることで、導体からの起磁力に対しては、電流通電方向に対して右ネジ法則で発生する磁束に対する渦電流を相殺することができる。

0064

このように、第4の工夫、第5の工夫をさらに加えると、第2の工夫である磁力の高い磁石を採用しながら、さらにその高い磁力に起因する渦電流損を抑制しながらトルク増強を図ることができる。

0065

以下に、固定子50のスロットレス構造、固定子巻線51の扁平導線構造、及び磁石部42の極異方構造について個別に説明を加える。

0066

先ずは、スロットレス構造と扁平導線構造について説明する。図8は、回転子40及び固定子50の横断面図であり、図9は、図8に示す回転子40及び固定子50の一部を拡大して示した図である。図10は、固定子50の横断面を示す断面図であり、図11は、固定子50の縦断面を示す断面図である。また、図12は、固定子巻線51の斜視図である。なお、図8及び図9には、磁石部42における磁石の磁化方向を矢印にて示している。

0067

図8図11に示すように、固定子コア52は、軸方向に複数の電磁鋼板が積層され、径方向に所定の厚さを有する円筒状をなしており、径方向外側に固定子巻線51が組み付けられるものとなっている。固定子コア52の外周面が導線設置部となっている。固定子コア52の外周面は凹凸のない曲面状をなしており、その外周面において周方向に並べて複数の導線群81が配置されている。

0068

固定子コア52は、回転子40を回転させるための磁気回路の一部となるバックヨークとして機能する。この場合、周方向に隣り合う各導線群81の間には軟磁性材からなるティース(つまり、鉄心)が設けられていない構成、すなわちスロットレス構造となっている。本実施形態において、各導線群81の間隙56には、封止部57の樹脂材料入り込む構造となっている。つまり、封止部57の封止前の状態で言えば、固定子コア52の径方向外側には、それぞれ導線間領域である間隙56を隔てて周方向に所定間隔で導線群81が配置されており、これによりスロットレス構造の固定子50が構築されている。

0069

なお、周方向に並ぶ各導線群の間においてティースが設けられている構成とは、ティースが、径方向に所定厚さを有し、周方向に所定幅を有することで、各導線群の間に磁気回路の一部、すなわち磁石磁路を形成する構成であると言える。この点において、本実施形態のように各導線群81の間にティースが設けられていない構成とは、上記の磁気回路の形成がなされていない構成であると言える。

0070

図10及び図11に示すように、固定子巻線51は、封止部57により封止されている。図10の横断面で見れば、封止部57は、各導線群81の間、すなわち間隙56に合成樹脂材が充填されて設けられており、封止部57により、各導線群81の間に絶縁部材が介在する構成となっている。つまり、間隙56において封止部57が絶縁部材として機能する。封止部57は、固定子コア52の径方向外側において、各導線群81を全て含む範囲、すなわち径方向の厚さ寸法が各導線群81の径方向の厚さ寸法よりも大きくなる範囲で設けられている。

0071

また、図11の縦断面で見れば、封止部57は、固定子巻線51のターン部84を含む範囲で設けられている。固定子巻線51の径方向内側では、固定子コア52の端面の少なくとも一部を含む範囲で封止部57が設けられている。この場合、固定子巻線51は、各相の相巻線の端部、すなわちインバータ回路との接続端子を除く略全体で樹脂封止されている。

0072

封止部57が固定子コア52の端面を含む範囲で設けられた構成では、封止部57により、固定子コア52の積層鋼板を軸方向内側に押さえ付けることができる。これにより、封止部57を用いて、各鋼板積層状態を保持することができる。なお、本実施形態では、固定子コア52の内周面を樹脂封止していないが、これに代えて、固定子コア52の内周面を含む固定子コア52の全体を樹脂封止する構成としてもよい。

0073

回転電機10が車両動力源として使用される場合には、封止部57が、高耐熱フッ素樹脂や、エポキシ樹脂PPS樹脂PEEK樹脂、LCP樹脂シリコン樹脂PAI樹脂PI樹脂等により構成されていることが好ましい。また、膨張差による割れ抑制の観点から線膨張係数を考えると、固定子巻線51の導線の外被膜と同じ材質であることが望ましい。すなわち、線膨張係数が、一般的に他樹脂の倍以上であるシリコン樹脂は望ましくは除外される。なお、電気車両の如く、燃焼を利用した機関を持たない電気製品においては、180℃程度の耐熱性を持つPPO樹脂フェノール樹脂FRP樹脂も候補となる。回転電機10の周囲温度が100℃未満と見做せる分野においては、この限りではない。

0074

回転電機10のトルクは磁束の大きさに比例する。ここで、固定子コアがティースを有している場合には、固定子での最大磁束量がティースでの飽和磁束密度に依存して制限される。これに対し、本実施形態のように固定子コア52がティースを有していない場合には、固定子50での最大磁束量が制限されない。そのため、固定子巻線51に対する通電電流を増加して回転電機10のトルク増加を図る上で、有利な構成となっている。

0075

固定子コア52の径方向外側における各導線群81は、断面が扁平矩形状をなす複数の導線82が径方向に並べて配置されて構成されている。各導線82は、横断面において「径方向寸法<周方向寸法」となる向きで配置されている。これにより、各導線群81において径方向の薄肉化が図られている。また、径方向の薄肉化を図るとともに、導体領域が、ティースが従来あった領域まで平らに延び、扁平導線領域構造となっている。これにより、薄肉化により断面積が小さくなることで懸念される導線の発熱量の増加を、周方向に扁平化して導体の断面積を稼ぐことで抑えている。なお、複数の導線を周方向に並べ、それらを並列結線とする構成であっても、導体被膜分の導体断面積低下は起こるものの、同じ理屈による効果が得られる。

0076

スロットがないことから、本実施形態における固定子巻線51では、その周方向の一周における導体領域を、隙間領域より大きく設計することができる。なお、従来の車両用回転電機は、固定子巻線の周方向の一周における導体領域/隙間領域は1以下であるのが当然であった。一方、本実施形態では、導体領域が隙間領域と同等又は導体領域が隙間領域よりも大きくなるようにして、各導線群81が設けられている。ここで、図10に示すように、周方向において導線82(つまり、後述する直線部83)が配置された導線領域をWA、隣り合う導線82の間となる導線間領域をWBとすると、導線領域WAは、導線間領域WBより周方向において大きいものとなっている。

0077

回転電機10のトルクは、導線群81の径方向の厚さに略反比例する。この点、固定子コア52の径方向外側において導線群81の厚さを薄くしたことにより、回転電機10のトルク増加を図る上で有利な構成となっている。その理由としては、回転子40の磁石部42から固定子コア52までの距離、すなわち鉄の無い部分の距離を小さくして磁気抵抗下げることができるためである。これによれば、永久磁石による固定子コア52の鎖交磁束を大きくすることができ、トルクを増強することができる。

0078

導線82は、導体82aの表面が絶縁被膜82bにより被覆された被覆導線よりなり、径方向に互いに重なる導線82同士の間、及び、導線82と固定子コア52との間においてそれぞれ絶縁性が確保されている。絶縁被膜82bの厚さはたとえば80μmであり、これは一般に使用される導線の被膜厚さ(20〜40μm)よりも厚肉となっている。これにより、導線82と固定子コア52との間に絶縁紙等を介在させなくても、これら両者の間の絶縁性を確保することができる。

0079

なお、導線82により構成される各相巻線は、接続のための露出部分を除き、絶縁被膜82bによる絶縁性が保持されるものとなっている。露出部分としては、たとえば、入出力端子部や、星形結線とする場合の中性点部分である。導線群81では、樹脂固着や自己融着被覆線を用いて、径方向に隣り合う各導線82が相互に固着されている。これにより、導線82同士が擦れ合うことによる絶縁破壊や、振動、音が抑制される。

0080

本実施形態では、導体82aが複数の素線86の集合体として構成されている。具体的には、図13に示すように、導体82aは、複数の素線86を撚ることで撚糸状に形成されている。また、図14に示すように、素線86は、細い繊維状の導電材87を束ね複合体として構成されている。たとえば、素線86はCNTカーボンナノチューブ)繊維の複合体であり、CNT繊維として、炭素の少なくとも一部をホウ素で置換したホウ素含有微細繊維を含む繊維が用いられている。炭素系微細繊維としては、CNT繊維以外に、気相成長法炭素繊維(VGCF)等を用いることができるが、CNT繊維を用いることが好ましい。なお、素線86の表面は、エナメルなどの高分子絶縁層で覆われている。

0081

導体82aは、複数の素線86が撚り合わされて構成されているため、各素線86での渦電流の発生が抑えられ、導体82aにおける渦電流の低減を図ることができる。また、各素線86がられていることで、1本の素線86において磁界印加方向が互いに逆になる部位が生じて逆起電圧が相殺される。そのため、やはり渦電流の低減を図ることができる。特に、素線86を繊維状の導電材87により構成することで、細線化することと捻り回数を格段に増やすこととが可能になり、渦電流をより好適に低減することができる。

0082

上記したように導線82は、断面が扁平矩形状をなし、径方向に複数並べて配置されるものとなっており、たとえば複数の素線86を撚った状態で集合させ、その状態で合成樹脂等により所望の形状に固めて成形するとよい。

0083

各導線82は、周方向に所定の配置パターンで配置されるように折り曲げ形成されており、これにより、固定子巻線51として相ごとの相巻線が形成されている。図12に示すように、固定子巻線51では、各導線82のうち軸方向に直線状に延びる直線部83によりコイルサイド部53が形成され、軸方向においてコイルサイド部53よりも両外側に突出するターン部84によってコイルエンド部54,55が形成されている。

0084

各導線82は、直線部83とターン部84とが交互に繰り返されることにより、波巻状の一連の導線として構成されている。直線部83は、磁石部42に対して径方向に対向する位置に配置されており、磁石部42の軸方向外側となる位置において所定間隔を隔てて配置される同相の直線部83同士が、ターン部84により互いに接続されている。直線部83は、磁石部42に対して径方向に対向する磁石対向部である。

0085

本実施形態では、固定子巻線51が分布巻きにより円環状に巻回形成されている。この場合、コイルサイド部53では、相ごとに、磁石部42の1極対に対応するピッチで周方向に直線部83が配置され、コイルエンド部54,55では、相ごとの各直線部83が、略V字状に形成されたターン部84により互いに接続されている。1極対に対応して対となる各直線部83は、それぞれ電流の向きが互いに逆になるものとなっている。また、一方のコイルエンド部54と他方のコイルエンド部55とでは、ターン部84により接続される一対の直線部83の組み合わせがそれぞれ相違しており、そのコイルエンド部54,55での接続が周方向に繰り返されることにより、固定子巻線51が略円筒状に形成されている。

0086

より具体的には、固定子巻線51は、各相2対ずつの導線82を用いて相ごとの巻線を構成しており、固定子巻線51のうち一方の3相巻線(U相、V相、W相)と他方の3相巻線(X相、Y相、Z相)とが径方向内外の2層に設けられるものとなっている。この場合、巻線の相数をS、導線82の対数をmとすれば、極対ごとに2×S×m=2Sm個の導線群81が形成されることになる。本実施形態では、相数Sが3、対数mが2であり、8極対(16極)の回転電機10であることから、2×3×2×8=96の導線群81が周方向に配置されている。

0087

図12に示す固定子巻線51では、コイルサイド部53において、径方向内外の2層で直線部83が重ねて配置されるとともに、コイルエンド部54,55において、径方向内外に重なる各直線部83から、互いに周方向逆となる向きでターン部84が周方向に延びる構成となっている。つまり、径方向に隣り合う各導線82では、コイル端となる部分を除き、ターン部84の向きが互いに逆となっている。

0088

ここで、固定子巻線51における導線82の巻回構造を具体的に説明する。本実施形態では、波巻にて形成された複数の導線82を、径方向内外に複数層(たとえば2層)に重ねて設ける構成としている。図15は、n層目における各導線82の形態を示す図であり、(a)には、固定子巻線51の側方から見た導線82の形状を示し、(b)には、固定子巻線51の軸方向一側から見た導線82の形状を示している。なお、図15では、導線群81が配置される位置をそれぞれD1,D2,D3,…と示している。また、説明の便宜上、3本の導線82のみを示しており、それを第1導線82_A、第2導線82_B、第3導線82_Cとしている。

0089

各導線82_A〜82_Cでは、直線部83が、いずれもn層目の位置、すなわち径方向において同じ位置に配置され、周方向に6位置(3×m対分)ずつ離れた直線部83同士がターン部84により互いに接続されている。換言すると、各導線82_A〜82_Cでは、いずれも回転子40の軸心を中心とする同一のピッチ円上において、5個おきの直線部83がターン部84により互いに接続されている。たとえば第1導線82_Aでは、一対の直線部83がD1,D7にそれぞれ配置され、その一対の直線部83同士が、逆V字状のターン部84により接続されている。また、他の導線82_B,82_Cは、同じn層目において周方向の位置を1つずつずらしてそれぞれ配置されている。この場合、各導線82_A〜82_Cは、いずれも同じ層に配置されるため、ターン部84が互いに干渉することが考えられる。そのため本実施形態では、各導線82_A〜82_Cのターン部84に、その一部を径方向にオフセットした干渉回避部を形成することとしている。

0090

具体的には、各導線82_A〜82_Cのターン部84は、同一のピッチ円上で周方向に延びる部分である傾斜部84aと、傾斜部84aからその同一のピッチ円よりも径方向内側(図15(b)において上側)にシフトし、別のピッチ円上で周方向に延びる部分である頂部84b、傾斜部84c、及び戻り部84dとを有している。頂部84b、傾斜部84c及び戻り部84dが干渉回避部に相当する。なお、傾斜部84cは、傾斜部84aに対して径方向外側にシフトする構成であってもよい。

0091

つまり、各導線82_A〜82_Cのターン部84は、周方向の中央位置である頂部84bを挟んでその両側に、一方側の傾斜部84aと他方側の傾斜部84cとを有しており、それら各傾斜部84a,84cの径方向の位置が互いに相違するものとなっている。なお、各傾斜部84a,84cの径方向の位置とは、図15(a)では紙面後方向の位置、図15(b)では上下方向の位置である。たとえば第1導線82_Aのターン部84は、n層のD1位置を始点位置として周方向に沿って延び、周方向の中央位置である頂部84bで径方向(たとえば径方向内側)に曲がった後、周方向に再度曲がることで、再び周方向に沿って延び、さらに戻り部84dで再び径方向(たとえば径方向外側)に曲がることで、終点位置であるn層のD9位置に達する構成となっている。

0092

上記構成によれば、導線82_A〜82_Cでは、一方の各傾斜部84aが、上から第1導線82_A→第2導線82_B→第3導線82_Cの順に上下に並ぶとともに、頂部84bで各導線82_A〜82_Cの上下が入れ替わり、他方の各傾斜部84cが、上から第3導線82_C→第2導線82_B→第1導線82_Aの順に上下に並ぶ構成となっている。そのため、各導線82_A〜82_Cが互いに干渉することなく周方向に配置できるようになっている。

0093

ここで、複数の導線82を径方向に重ねて導線群81とする構成において、複数層の各直線部83のうち径方向内側の直線部83に接続されたターン部84と、径方向外側の直線部83に接続されたターン部84とが、それら各直線部83同士よりも径方向に離して配置されているとよい。また、ターン部84の端部、すなわち直線部83との境界部付近で、複数層の導線82が径方向の同じ側に曲げられる場合に、その隣り合う層の導線82同士の干渉により絶縁性が損なわれることが生じないようにするとよい。

0094

たとえば図15のD7〜D9では、径方向に重なる各導線82が、ターン部84の戻り部84dでそれぞれ径方向に曲げられる。この場合、図16に示すように、n層目の導線82とn+1層目の導線82とで、曲がり部の曲げアールを相違させるとよい。具体的には、径方向内側(n層目)の導線82の曲げアールR1を、径方向外側(n+1層目)の導線82の曲げアールR2よりも小さくする。

0095

また、n層目の導線82とn+1層目の導線82とで、径方向のシフト量を相違させるとよい。具体的には、径方向内側(n層目)の導線82のシフト量S1を、径方向外側(n+1層目)の導線82のシフト量S2よりも大きくする。

0096

上記構成により、径方向に重なる各導線82が同じ向きに曲げられる場合であっても、各導線82の相互干渉を好適に回避することができる。これにより、良好な絶縁性が得られることとなる。

0097

次に、回転子40における磁石部42の構造について説明する。本実施形態では、磁石部42を構成する永久磁石として、残留磁束密度Br=1.0[T]、保磁力bHc=400[kA/m]以上のものを想定している。5000〜10000[AT]が相間励磁により掛かるものであるから、1極対で25[mm]の永久磁石を使えば、bHc=10000[A]となり、減磁をしないことが伺える。ここで、本実施形態においては、配向により磁化容易軸コントロールした永久磁石を利用しているから、その磁石内部の磁気回路長を、従来1.0[T]以上を出す直線配向磁石の磁気回路長と比べて、長くすることができる。すなわち、1極対あたりの磁気回路長を、少ない磁石量で達成できる他、従来の直線配向磁石を利用した設計と比べ、過酷な高熱条件に曝されても、その可逆減磁範囲を保つことができる。また、本願発明者は、従来技術の磁石を用いても、極異方性磁石と近しい特性を得られる構成を見いだした。

0098

図8及び図9に示すように、磁石部42は、円環状をなしており、回転子本体41の内側、詳しくは磁石保持部43の径方向内側に設けられている。磁石部42は、第1磁石91及び第2磁石92を有している。第1磁石91及び第2磁石92は、それぞれ極異方性磁石であり、磁極が互いに異なる。第1磁石91及び第2磁石92は、周方向に交互に配置されている。第1磁石91は、回転子40においてN極となる磁石であり、第2磁石92は、回転子40においてS極となる磁石である。第1磁石91及び第2磁石92は、たとえばネオジム磁石等の希土類磁石からなる永久磁石である。

0099

各磁石91,92では、それぞれ磁極中心であるd軸と磁極境界であるq軸との間において磁化方向が円弧状に延びている。各磁石91,92それぞれにおいて、d軸側では磁化方向が径方向とされ、q軸側では磁化方向が周方向とされている。磁石部42では、各磁石91,92により、隣接するN,S極間を円弧状に磁束が流れるため、たとえばラジアル異方性磁石に比べて磁石磁路が長くなっている。このため、図17に示すように、磁束密度分布が正弦波に近いものとなる。その結果、図18に比較例として示すラジアル異方性磁石の磁束密度分布とは異なり、磁極位置に磁束を集中させることができ、回転電機10のトルクを高めることができる。なお、図17及び図18において、横軸は電気角を示し、縦軸は磁束密度を示す。また、図17及び図18において、横軸の90°はd軸(すなわち磁極中心)を示し、横軸の0°,180°はq軸を示す。

0100

磁束密度分布の正弦波整合率は、たとえば40%以上の値とされていればよい。このようにすれば、正弦波整合率が30%程度であるラジアル配向磁石パラレル配向磁石を用いる場合に比べ、確実に波形中央部分の磁束量を向上させることができる。また、正弦波整合率を60%以上とすれば、ハルバッハ配列と呼ばれる磁束集中配列と比べ、確実に波形中央部分の磁束量を向上させることができる。

0101

図18に示す比較例では、q軸付近において磁束密度が急峻に変化する。磁束密度の変化が急峻なほど、固定子巻線51に発生する渦電流が増加してしまう。これに対し、本実施形態では、磁束密度分布が正弦波に近い。このため、q軸付近において、磁束密度の変化が、ラジアル異方性磁石の磁束密度の変化よりも小さい。これにより、渦電流の発生を抑制することができる。

0102

ところで、磁石部42では、各磁石91,92のd軸付近(すなわち磁極中心)において磁極面に直交する向きで磁束が生じ、その磁束は、磁極面から離れるほど、d軸から離れるような円弧状をなす。また、磁極面に直交する磁束ほど、強い磁束となる。この点において、本実施形態の回転電機10では、上記のとおり各導線群81を径方向に薄くしたため、導線群81の径方向の中心位置が磁石部42の磁極面に近づくことになり、固定子50において回転子40から強い磁石磁束を受けることができる。

0103

また、固定子50には、固定子巻線51の径方向内側、すなわち固定子巻線51を挟んで回転子40の逆側に円筒状の固定子コア52が設けられている。そのため、各磁石91,92の磁極面から延びる磁束は、固定子コア52に引きつけられ、固定子コア52を磁路の一部として用いつつ周回する。この場合、磁石磁束の向き及び経路を適正化することができる。

0104

(回転電機の効果)
上記した回転電機10では、固定子50において、固定子巻線51の周方向に隣り合う直線部83の間、すなわち隣り合う磁石対向部の間に、軟磁性材からなるティースが設けられていない構成とした。上記構成によれば、各直線部83の間にティースが設けられている場合に比べて、隣り合う各直線部83を近づけることで導体断面積を大きくすることができ、固定子巻線51の通電にともない生じる発熱を低減することができる。各直線部83の間にティースが設けられていない、いわゆるスロットレス構造では、直線部83間のティースがないことで磁気飽和の解消が可能となり、固定子巻線51への通電電流を増大させることが可能となる。この場合において、その通電電流の増大にともない発熱量が増えることに好適に対処することができる。以上により、固定子50での放熱性能を適正化することが可能になっている。

0105

固定子巻線51に固定子コア52を組み付け、その組み付け状態において、周方向に隣り合う直線部83の間に、軟磁性材からなるティースが設けられていない構成とした。この場合、回転子40に対して径方向反対側に設けられた固定子コア52がバックヨークとして機能することで、各直線部83の間にティースが存在していなくても、適正な磁気回路の形成が可能となる。

0106

固定子巻線51を封止部57により封止し、これにより固定子巻線51において周方向に隣り合う直線部83の間に絶縁部材を設ける構成とした。これにより、各直線部83が周方向に互いに近い位置に配置されていても、その直線部83において良好な絶縁性を確保することができる。

0107

固定子巻線51において導線82を扁平状にして直線部83における径方向厚さを薄くしたため、直線部83において径方向の中心位置を回転子40の磁石部42に近づけることができる。これにより、スロットレス構造の採用による固定子50での磁気飽和の抑制を図りつつ、固定子巻線51の直線部83における磁束密度を高めてトルクの増強を図ることが可能となる。また、上記のとおり周方向に隣り合う直線部83同士を互いに近づけることが可能となっているため、導線82を扁平状にしても導体断面積を確保できるものとなっている。

0108

固定子巻線51の各導線82を複数の素線86の集合体としたため、導線82における電流流通経路の細線化を図ることができる。これにより、磁石部42からの磁界が導線82と鎖交した場合に渦電流が生じても、その渦電流に対する導線82の渦電流抑制効果を得ることができる。その結果、導線82に流れる渦電流を低減することができる。

0109

また、各導線82は、素線86が撚り合わせられて構成されているため、各素線86において磁界の印加方向が互いに逆になる部位が生じ、鎖交磁界に起因した逆起電圧が相殺される。その結果、導線82を流れる渦電流の低減効果を高めることができる。

0110

各素線86を繊維状の導電材87により構成したため、導線82における電流流通経路をより細線化でき、また、電流流通経路の撚り回数をより増大できる。これにより、渦電流の低減効果を高めることができる。なお、素線86は、少なくともカーボンナノチューブ繊維で構成されているとよい。

0111

スロットレス構造を有する固定子50では、ティースが設けられていない分、導線間領域WBに比べて導線領域WAを周方向に拡張できる。これにより、周方向において導線領域WAが導線間領域WBより大きいとする構成を好適に実現できる。

0112

固定子巻線51のターン部84が、径方向にシフトされ、他のターン部84との干渉を回避する干渉回避部を有することから、異なるターン部84同士を径方向に離して配置することができる。これにより、ターン部84においても放熱性の向上を図ることができ、ひいては固定子50での放熱性能をより一層高めることが可能となる。

0113

固定子50の同一のピッチ円上で、各導線82のターン部84における相互干渉を回避する構成として、ターン部84が、同一のピッチ円上で周方向に延びる部分である傾斜部84a(第1部分に相当)と、傾斜部84aからその同一のピッチ円よりも径方向内側にシフトし、別のピッチ円上で周方向に延びる部分である頂部84b、傾斜部84c及び戻り部84d(第2部分に相当)とを有する構成とした。これにより、ターン部84における相互干渉を適正に回避することができる。

0114

複数層の各直線部83のうち径方向内側の直線部83に接続されたターン部84と、径方向外側の直線部83に接続されたターン部84とを、それら直線部83同士よりも径方向に離して配置したため、ターン部84における放熱性能を高めることができる。

0115

ターン部84における曲がり部の曲げアールを、径方向内側の直線部83に接続されたターン部84と、径方向外側の直線部83に接続されたターン部84とで異ならせたため、それら各ターン部84を好適に離して配置することができる。

0116

ターン部84において曲がり部における直線部83からの径方向シフト量を、径方向内側の直線部83に接続されたターン部84と、径方向外側の直線部83に接続されたターン部84とで異ならせたため、それら各ターン部84を好適に離して配置することができる。

0117

なお、インナロータ構造(内転構造)の回転電機に上記した構成を適用することも可能である。この場合、たとえばハウジング30内において、径方向外側から順に固定子50、回転子40が設けられる。そして、回転子40の径方向内側に、インバータユニット60を設けてもよい。

0118

(回転電機の制御システム)
図19図21に基づき、回転電機10を制御する制御システムの構成について説明する。図19は、回転電機10の制御システムの電気回路図であり、図20は、駆動制御部110による電流フィードバック制御処理を示す機能ブロック図である。図21は、駆動制御部110によるトルクフィードバック制御処理を示す機能ブロック図である。

0119

図19では、固定子巻線51として2組の3相巻線51a,51bが示されている。3相巻線51aは、U相巻線、V相巻線、及びW相巻線よりなり、3相巻線51bは、X相巻線、Y相巻線、及びZ相巻線よりなる。3相巻線51a,51bごとに、第1インバータ101と第2インバータ102とがそれぞれ設けられている。インバータ101,102は、相巻線の相数と同数上下アームを有するフルブリッジ回路により構成されており、各アームに設けられたスイッチ(半導体スイッチング素子)のオンオフにより、固定子巻線51の各相巻線において通電電流が調整される。

0120

各インバータ101,102には、直流電源103と平滑用のコンデンサ104とが並列に接続されている。直流電源103は、たとえば複数の単電池直列接続された組電池により構成されている。なお、インバータ101,102の各スイッチが、図1等に示す半導体モジュール66に相当し、コンデンサ104が、図1等に示すコンデンサモジュール68に相当する。

0121

駆動制御部110は、CPUや各種メモリからなるマイコンを備えており、回転電機10における各種の検出情報や、力行駆動及び発電の要求に基づいて、インバータ101,102における各スイッチのオンオフにより通電制御を実施する。駆動制御部110が、図6に示す制御装置77に相当する。回転電機10の検出情報には、たとえば、レゾルバ等の角度検出器により検出される回転子40の回転角度電気角情報)や、電圧センサにより検出される電源電圧インバータ入力電圧)、電流センサにより検出される各相の通電電流が含まれる。駆動制御部110は、インバータ101,102の各スイッチを操作する操作信号を生成して出力する。なお、発電の要求は、たとえば回転電機10が車両用動力源として用いられる場合、回生駆動の要求である。

0122

第1インバータ101は、U相、V相及びW相からなる3相において上アームスイッチSpと下アームスイッチSnとの直列接続体をそれぞれ備えている。各相の上アームスイッチSpの高電位側端子は直流電源103の正極端子に接続され、各相の下アームスイッチSnの低電位側端子は直流電源103の負極端子グランド)に接続されている。各相の上アームスイッチSpと下アームスイッチSnとの間の中間接続点には、それぞれU相巻線、V相巻線、W相巻線の一端が接続されている。これら各相巻線は星形結線(Y結線)されており、各相巻線の他端は中性点にて互いに接続されている。

0123

第2インバータ102は、第1インバータ101と同様の構成を有しており、X相、Y相及びZ相からなる3相において上アームスイッチSpと下アームスイッチSnとの直列接続体をそれぞれ備えている。各相の上アームスイッチSpの高電位側端子は直流電源103の正極端子に接続され、各相の下アームスイッチSnの低電位側端子は直流電源103の負極端子(グランド)に接続されている。各相の上アームスイッチSpと下アームスイッチSnとの間の中間接続点には、それぞれX相巻線、Y相巻線、Z相巻線の一端が接続されている。これら各相巻線は星形結線(Y結線)されており、各相巻線の他端は中性点で互いに接続されている。

0124

図20には、U,V,W相の各相電流を制御する電流フィードバック制御処理と、X,Y,Z相の各相電流を制御する電流フィードバック制御処理とが示されている。ここではまず、U,V,W相側制御処理について説明する。

0125

図20において、電流指令値設定部111は、トルク−dqマップを用い、回転電機10に対する力行トルク指令値又は発電トルク指令値や、電気角θを時間微分して得られる電気角速度ωに基づいて、d軸の電流指令値とq軸の電流指令値とを設定する。なお、電流指令値設定部111は、U,V,W相側及びX,Y,Z相側において共通に設けられている。なお、発電トルク指令値は、たとえば回転電機10が車両用動力源として用いられる場合、回生トルク指令値である。

0126

dq変換部112は、相ごとに設けられた電流センサによる電流検出値(各相電流)を、界磁方向をd軸とする直交2次元回転座標系の成分であるd軸電流とq軸電流とに変換する。

0127

軸電流フィードバック制御部113は、d軸電流をd軸の電流指令値にフィードバック制御するための操作量としてd軸の指令電圧を算出する。q軸電流フィードバック制御部114は、q軸電流をq軸の電流指令値にフィードバック制御するための操作量としてq軸の指令電圧を算出する。これら各フィードバック制御部113,114では、d軸電流及びq軸電流の電流指令値に対する偏差に基づき、PIフィードバック手法を用いて指令電圧が算出される。

0128

3相変換部115は、d軸及びq軸の指令電圧を、U相、V相及びW相の指令電圧に変換する。なお、上記の各部111〜115が、dq変換理論による基本波電流のフィードバック制御を実施するフィードバック制御部であり、U相、V相及びW相の指令電圧がフィードバック制御値である。

0129

操作信号生成部116は、周知の三角波キャリア比較方式を用い、3相の指令電圧に基づいて、第1インバータ101の操作信号を生成する。具体的には、操作信号生成部116は、3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号デューティ信号)を生成する。

0130

また、X,Y,Z相側においても同様の構成を有しており、dq変換部122は、相ごとに設けられた電流センサによる電流検出値(各相電流)を、界磁方向をd軸とする直交2次元回転座標系の成分であるd軸電流とq軸電流とに変換する。

0131

d軸電流フィードバック制御部123はd軸の指令電圧を算出し、q軸電流フィードバック制御部124はq軸の指令電圧を算出する。3相変換部125は、d軸及びq軸の指令電圧を、X相、Y相及びZ相の指令電圧に変換する。そして、操作信号生成部126は、3相の指令電圧に基づいて、第2インバータ102の操作信号を生成する。具体的には、操作信号生成部126は、3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号(デューティ信号)を生成する。

0132

ドライバ117は、操作信号生成部116,126にて生成されたスイッチ操作信号に基づいて、各インバータ101,102における各3相のスイッチSp,Snをオンオフさせる。

0133

続いて、トルクフィードバック制御処理について説明する。この処理は、たとえば高回転領域及び高出力領域等、各インバータ101,102の出力電圧が大きくなる運転条件において、主に回転電機10の高出力化損失低減の目的で用いられる。駆動制御部110は、回転電機10の運転条件に基づいて、トルクフィードバック制御処理及び電流フィードバック制御処理のいずれか一方の処理を選択して実行する。

0134

図21には、U,V,W相に対応するトルクフィードバック制御処理と、X,Y,Z相に対応するトルクフィードバック制御処理とが示されている。なお、図21において、図20と同じ構成については、同じ符号を付して説明を省略する。ここではまず、U,V,W相側の制御処理について説明する。

0135

電圧振幅算出部127は、回転電機10に対する力行トルク指令値又は発電トルク指令値と、電気角θを時間微分して得られる電気角速度ωとに基づいて、電圧ベクトルの大きさの指令値である電圧振幅指令を算出する。

0136

トルク推定部128aは、dq変換部112により変換されたd軸電流とq軸電流とに基づいて、U,V,W相に対応するトルク推定値を算出する。なお、トルク推定部128aは、d軸電流、q軸電流及び電圧振幅指令が関係付けられたマップ情報に基づいて、電圧振幅指令を算出すればよい。

0137

トルクフィードバック制御部129aは、力行トルク指令値又は発電トルク指令値にトルク推定値をフィードバック制御するための操作量として、電圧ベクトルの位相の指令値である電圧位相指令を算出する。トルクフィードバック制御部129aでは、力行トルク指令値又は発電トルク指令値に対するトルク推定値の偏差に基づき、PIフィードバック手法を用いて電圧位相指令が算出される。

0138

操作信号生成部130aは、電圧振幅指令、電圧位相指令及び電気角θに基づいて、第1インバータ101の操作信号を生成する。具体的には、操作信号生成部130aは、電圧振幅指令、電圧位相指令及び電気角θに基づいて3相の指令電圧を算出し、算出した3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号を生成する。

0139

ちなみに、操作信号生成部130aは、電圧振幅指令、電圧位相指令、電気角θ及びスイッチ操作信号が関係付けられたマップ情報であるパルスパターン情報、電圧振幅指令、電圧位相指令並びに電気角θに基づいて、スイッチ操作信号を生成してもよい。

0140

また、X,Y,Z相側においても同様の構成を有しており、トルク推定部128bは、dq変換部122により変換されたd軸電流とq軸電流とに基づいて、X,Y,Z相に対応するトルク推定値を算出する。

0141

トルクフィードバック制御部129bは、力行トルク指令値又は発電トルク指令値にトルク推定値をフィードバック制御するための操作量として、電圧位相指令を算出する。トルクフィードバック制御部129bでは、力行トルク指令値又は発電トルク指令値に対するトルク推定値の偏差に基づき、PIフィードバック手法を用いて電圧位相指令が算出される。

0142

操作信号生成部130bは、電圧振幅指令、電圧位相指令及び電気角θに基づいて、第2インバータ102の操作信号を生成する。具体的には、操作信号生成部130bは、電圧振幅指令、電圧位相指令及び電気角θに基づいて3相の指令電圧を算出し、算出した3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号を生成する。ドライバ117は、操作信号生成部130a,130bにて生成されたスイッチ操作信号に基づいて、各インバータ101,102における各3相のスイッチSp,Snをオンオフさせる。

0143

ちなみに、操作信号生成部130bは、電圧振幅指令、電圧位相指令、電気角θ及びスイッチ操作信号が関係付けられたマップ情報であるパルスパターン情報、電圧振幅指令、電圧位相指令並びに電気角θに基づいて、スイッチ操作信号を生成してもよい。

0144

(制御装置及び車両駆動システム)
図22図24に基づき、制御装置及び車両駆動システムについて説明する。図22及び図23では、便宜上、インナロータ構造の回転電機を示している。しかしながら、図1などに示したアウターロータ構造にも適用することも可能である。図22に示す比較例では、本実施形態に示す要素の符号末尾にrを加算した符号を付与している。

0145

図22に示す比較例の回転電機10rは従来構成となっており、磁気飽和によって回転電機10rのトルクに制限がかかる。このため、車輪131rと回転電機10rとの間に、遊星歯車などの減速機132rを設け、減速機132rによって要求される車輪トルク(車両に要求されるトルク)まで、トルクの増幅を図っている。回転電機10rの回転軸11rは、減速機132rを介して車軸133rに接続されている。車輪131rの回転速度は車輪速センサ134rにて検出され、回転電機10rの回転子の回転角(電気角)は回転角センサ135rにて検出される。

0146

このように、従来の回転電機10rを用いた構成では、回転電機10rと車輪131rとの間に、減速比分の回転数の差が生じる。減速比としては、たとえば10程度が設定される。また、車輪速センサ134rとして一般に磁気抵抗効果素子(MR素子)が用いられており、回転角センサ135rとしてレゾルバが用いられている。車輪速センサ134rの分解能は、レゾルバよりも低い。このため、回転角センサ135rの代わりに車輪速センサ134rを用いるには、車輪速センサ134rの分解能を高める必要があり、製造コストの増加や体格の増大などが問題となる。

0147

これに対し、本実施形態の回転電機10は、上記したようにスロットレス構造などによって磁気飽和が抑制されており、トルクの増強が図られている(図7参照)。したがって、回転電機10と車輪131との間に、減速機が配置されない構成、若しくは、配置されたとしても従来より減速比が小さい構成とすることができる。本実施形態では、図23に示すように、回転電機10と車輪131との間に減速機が介在しない構成となっている。回転電機10の回転軸11は、減速機を介さずに車軸133に連なっており、回転電機10と車輪131の回転速度がほぼ一致する。

0148

車両駆動システム136は、回転電機10と、制御装置137を備えている。この回転電機10は、回転角センサ(レゾルバ)を有していない。すなわち、センサレスの回転電機10を採用している。

0149

図24に示すように、制御装置137は、上記した駆動制御部110と、ECU138を備えて構成されている。ECUは、Electronic Control Unitの略称である。ECU138は、設定部139と、指令生成部140を有している。すなわち、制御装置137が、設定部139と、駆動制御部110を備える制御装置に相当する。ECU138は、マイコンを備えて構成されている。

0150

設定部139は、車輪速センサ134の検出値に基づいて電気角θを推定し、推定値を電気角θとして設定する。そして、設定した電気角θ(推定値)を駆動制御部110に出力する。指令生成部140は、車輪速センサ134の検出値やアクセル開度などに基づいて、トルク指令値を生成する。そして、生成したトルク指令値を駆動制御部110に出力する。

0151

駆動制御部110は、上記したように、ECU138にて生成されたトルク指令値及び設定された電気角θに基づいて、回転電機10の駆動を制御する。

0152

このように、本実施形態では、たとえば磁性体のティースでの磁気飽和がないため、回転電機10の最大トルクを引き上げることができる。すなわち、回転電機10を高トルク化することができる。このような回転電機10を用いることで、回転電機10と車輪131との間に減速機が配置されない構成、若しくは、配置されたとしても従来より減速比が小さい構成が可能となる。これにより、車輪131と回転電機10との回転数差が従来よりも小さくなる、若しくは、無くなる。したがって、車輪速センサ134を高分解能としなくても、車輪速センサ134の出力に基づいて電気角θを推定し、ひいては回転電機10を制御することができる。また、レゾルバなどの回転角センサを設けてなくともよいため、部品点数の削減、コストの低減などを図ることができる。

0153

制御装置137は、少なくとも設定部139と駆動制御部110を備えればよい。ECU138を有さず、設定部139を、駆動制御部110を構成する回路と一体的に設けてもよい。

0154

車両駆動システム136は、回転電機10及び制御装置137に加え、車輪速センサ134を備えてもよい。車輪速センサ134の数は1つに限定されず、複数でも良い。

0155

(第2実施形態)
本実施形態は、先行実施形態を参照できる。このため、先行実施形態に示した回転電機10、車両駆動システム136、及び制御装置137と共通する部分についての説明は省略する。

0156

図25に示すように、本実施形態の回転電機10は、回転角センサ135を備えている。回転角センサ135としては、レゾルバや、ホール素子を用いたホールセンサ採用することができる。

0157

本実施形態の設定部139は、車輪速センサ134の検出値から電気角θを推定して設定する機能以外にも、複数の機能を有している。図26に示すように、設定部139は、回転角センサ135の検出値から車輪速Nwを推定する機能を有している。設定部139は、車輪速センサ134の検出値と回転角センサ135の検出値とに基づいて、車輪速センサ134及び回転角センサ135のいずれか1つの異常が生じたことを検出する機能を有している。

0158

設定部139は、回転角センサ135が正常な場合、回転角センサ135の検出値に基づいて電気角θを設定し、回転角センサ135が異常な場合、車輪速センサ134による電気角の推定値を回転角として設定する。また、設定部139は、車輪速センサ134が正常な場合、車輪速センサ134の検出値に基づいて車輪速Nwを設定し、車輪速センサ134が異常な場合、回転角センサ135による車輪速の推定値を車輪速として設定する。

0159

このように、設定部139は、車輪速センサ134又は回転角センサ135の異常を検出し、異常の発生状態に応じた電気角θ、車輪速Nwを設定する。そして、設定した電気角θ、車輪速Nwを出力する。

0160

指令生成部140は、設定部139にて設定された車輪速Nw及びアクセル開度などに基づいてトルク指令値を生成し、生成したトルク指令値を駆動制御部110に出力する。このため、指令生成部140が、設定部139により設定される車輪速Nwに基づいて、所定処理を実行する処理実行部に相当する。駆動制御部110は、指令生成部140にて生成されたトルク指令値及び設定部139にて設定された電気角θに基づいて、回転電機10の駆動を制御する。

0161

図27は、設定部139が実行する処理を示すフローチャートである。設定部139は、以下に示す処理を所定周期で繰り返し実行する。ここでは、車輪速センサ134が、異常の自己診断機能を有する例を示す。また、異常検出比較対象を車輪速とする例を示す。

0162

先ず設定部139は、車輪速センサ134の検出値を取得する(ステップS10)。そして、取得した検出値に基づいて、車輪速センサ134に異常が生じているか否かを判定する(ステップS11)。上記したように、車輪速センサ134は自己診断機能(自身の異常検出機能)を有しており、車輪速センサ134の出力には、車輪速センサ134自身の異常有無を示す情報が含まれている。車輪速センサ134は、たとえば車両停止時における検出値と閾値との比較や、車載カメラGPSデータに基づく推定車速との比較によって、異常の有無を自己診断することができる。設定部139は、車輪速センサ134の検出値を取得することで、車輪速センサ134の異常有無を判定することができる。

0163

車輪速センサ134に異常が生じていると判定すると、設定部139は、回転角センサ135の検出値を取得する(ステップS12)。そして、取得した検出値に基づいて、車輪速の推定値Nw2を算出し(ステップS13)、車輪速Nwとして推定値Nw2を設定する(ステップS14)。また、設定部139は、ステップS12で取得した回転角センサ135の検出値に基づいて電気角θ1を算出し(ステップS15)、電気角θとしてθ1を設定する(ステップS16)。

0164

このように、車輪速センサ134に異常が生じている場合、設定部139は、推定された車輪速Nw2及び検出値に基づく電気角θ1を設定し、出力する。ステップS16の処理を実行すると、一連の処理を終了する。

0165

一方、ステップS11において車輪速センサ134に異常が生じていないと判定すると、設定部139は、ステップS10で取得した車輪速センサ134の検出値に基づいて、車輪速Nw1を算出する(ステップS17)。次いで、設定部139は、回転角センサ135の検出値を取得し(ステップS18)、取得した検出値に基づいて、車輪速の推定値Nw2を算出する(ステップS19)。そして、車輪速Nw1,Nw2の差分の絶対値が、予め設定された所定値α未満であるか否か、すなわち回転角センサ135が正常か否かを判定する(ステップS20)。車輪速Nw1,Nw2の差分の絶対値を、以下において、単に差分と示す。

0166

差分が所定値α未満、すなわち回転角センサ135が正常であると判定すると、設定部139は、ステップS18で取得した回転角センサ135の検出値に基づいて電気角θ1を算出し(ステップS21)、電気角θとしてθ1を設定する(ステップS22)。次いで、設定部139は、ステップS17で算出した値Nw1を車輪速Nwとして設定する(ステップS23)。

0167

このように、車輪速センサ134及び回転角センサ135のいずれにも異常が生じていない場合、設定部139は、検出値に基づく車輪速Nw1及び検出値に基づく電気角θ1を設定し、出力する。ステップS23の処理を実行すると、一連の処理を終了する。

0168

差分が所定値α以上、すなわち回転角センサ135に異常が生じていると判定すると、設定部139は、ステップS10で取得した車輪速センサ134の検出値に基づいて電気角の推定値θ2を算出し(ステップS24)、電気角θとしてθ2を設定する(ステップS25)。次いで、設定部139は、上記したステップS23の処理を実行する。

0169

このように、回転角センサ135に異常が生じている場合、設定部139は、検出値に基づく車輪速Nw1及び推定された電気角θ2を設定し、出力する。

0170

駆動制御部110は、車輪速センサ134及び回転角センサ135に異常が生じていない場合、車輪速センサ134の検出値に基づいて設定されたトルク指令値と、回転角センサ135の検出値に基づいて設定された電気角θ1を用いて、回転電機10の駆動を制御する。車輪速センサ134に異常が生じている場合、回転角センサ135の検出値から推定される車輪速Nw2に基づいて設定されたトルク指令値と、回転角センサ135の検出値に基づいて設定された電気角θ1を用いて、回転電機10の駆動を制御する。回転角センサ135に異常が生じている場合、車輪速センサ134の検出値に基づいて設定されたトルク指令値と、車輪速センサ134の検出値から推定された電気角θ2を用いて、回転電機10の駆動を制御する。

0171

本実施形態の制御装置137及び車両駆動システム136によれば、車輪速センサ134に異常が生じた場合、回転角センサ135にて代用することができる。また、回転角センサ135に異常が生じた場合、車輪速センサ134にて代用することができる。このように、車輪速センサ134と回転角センサ135を双方向に代用することができる。すなわち、相互互換性を確保することができる。

0172

異常検出のための比較対象を車輪速としたが、電気角(回転角)を比較対象としてもよい。

0173

車輪速センサ134が異常の自己診断機能を有する例を示したが、回転角センサ135に異常の自己診断機能を持たせてもよい。

0174

設定部139による処理の実行順は、上記例に限定されない。ステップS12の終了後、ステップS13,S14の処理を実行する前に、ステップS15,S16の処理を実行してもよい。また、ステップS23の処理順については、ステップS17の処理以降であればよい。

0175

車両駆動システム136は、回転電機10及び制御装置137に加え、車輪速センサ134や回転角センサ135を備えてもよい。車輪速センサ134及び回転角センサ135の少なくとも一方を複数備える構成に適用することもできる。たとえば複数の車輪速センサ134と1つの回転角センサ135を備える構成において、複数の車輪速センサ134に異常が生じた場合、回転角センサ135にて代用することができる。

0176

処理実行部としてトルク指令値を生成する指令生成部140の例を示したが、これに限定されない。処理実行部としては、設定部139により設定される車輪速に基づいて所定の処理を実行するものであればよい。たとえば、車両のブレーキ制御を実行するブレーキ制御部や、車両の姿勢を制御する姿勢制御部などを、処理実行部としてもよい。指令生成部140とともに、他の処理実行部を有してもよい。

0177

車輪速センサ134や回転角センサ135の異常を検出した場合、異常が生じたことを乗員に通知するようにしてもよい。自動運転機能や、クルーズコントロールなどの運転支援機能を有する車両において、異常を検出した場合に運転権限運転者譲渡するようにしてもよい。また、異常を検出した場合に退避走行移行するようにしてもよい。たとえば、車輪速センサ134及び回転角センサ135の一方に異常が生じたときの代用を、たとえば退避走行時のみに用いてもよい。

0178

(第3実施形態)
本実施形態は、先行実施形態を参照できる。このため、先行実施形態に示した回転電機10、車両駆動システム136、及び制御装置137と共通する部分についての説明は省略する。

0179

図28に示すように、本実施形態では、車両が備える4つの車輪131のうち、車両前方の車輪131a、すなわち前輪駆動輪とされ、車両後方の車輪131b、すなわち後輪従動輪とされている。車両は、回転角センサ135を備えた回転電機10を2つ備えている。以下では、回転電機10の1つを回転電機10a、別の1つを回転電機10bとも称する。また、回転角センサ135の1つを第1回転角センサ135a、回転角センサ135の別の1つを第2回転角センサ135bとも称する。

0180

駆動輪である車輪131aの1つが回転電機10aによって駆動され、車輪131aの別の1つが回転電機10bによって駆動される。車輪速センサ134は、図28に示すように、従動輪である車輪131bの1つに対応して設けられている。

0181

図29に示すように、本実施形態の設定部139は、車輪速センサ134の検出値、第1回転角センサ135aの検出値、及び第2回転角センサ135bの検出値に基づいて、車輪速Nw及び電気角θa,θbを設定する。電気角θaは、回転電機10aの電気角であり、電気角θbは回転電機10bの電気角である。

0182

図30図35は、設定部139が実行する処理を示すフローチャートである。図30に示すように、先ず設定部139は、車輪速算出処理を実行する(ステップS30)。

0183

図31は、車輪速算出処理(ステップS30の処理)を示すフローチャートである。設定部139は、車輪速センサ134の検出値を取得し(ステップS300)、取得した検出値に基づいて車輪速Nw1を算出する(ステップS301)。次いで、設定部139は、第1回転角センサ135aの検出値を取得し(ステップS302)、取得した検出値に基づいて車輪側の推定値Nw2を算出する(ステップS303)。また、設定部139は、第2回転角センサ135bの検出値を取得し(ステップS304)、取得した検出値に基づいて車輪側の推定値Nw3を算出する(ステップS305)。そして、図30に示すメインフローに戻る。

0184

車輪速算出処理が終了すると、設定部139は、タイヤスリップが生じているか否かを判定する(ステップS31)。スリップ空転)が発生すると、車輪131の回転速度が急激に上昇し、回転速度に比例して逆起電力が増加する。これにより電流が変動する。したがって、たとえば回転電機10に流れる電流(相電流)を監視し、電流の変動に基づいてタイヤのスリップを検知することができる。

0185

タイヤスリップが生じている場合、異常判定処理を行わない。一例として、設定部139は、電気角θa、θb及び車輪速Nwとして前回設定した値を設定する(ステップS32)。すなわち、前回値を保持する。そして、一連の処理を終了する。

0186

一方、ステップS31において、タイヤスリップが生じていないと判定すると、設定部139は、車輪速Nw1と推定値Nw2との差分の絶対値が、予め設定された所定値αA未満か否かを判定する(ステップS33)。車輪速Nw1と推定値Nw2との差分の絶対値を、以下、第1差分と示す。

0187

第1差分が所定値αA未満の場合、次いで設定部139は、車輪速Nw1と推定値Nw3との差分の絶対値が、予め設定された所定値αB未満か否かを判定する(ステップS34)。車輪速Nw1と推定値Nw3との差分の絶対値を、以下、第2差分と示す。なお、αBをαAと等しい値にすると、メモリに共通値として記憶させておくことができる。たとえば判定の精度を上げるために、αBをαAとは異なる値としてもよい。

0188

第2差分が所定値αB未満の場合、車輪速センサ134及び回転角センサ135a,135bのいずれにも異常が生じていないと判定し、設定部139は、正常時処理を実行する(ステップS35)。

0189

図32は、正常時処理(ステップS35の処理)を示すフローチャートである。設定部139は、ステップS302で取得した第1回転角センサ135aの検出値に基づいて電気角θa1を算出し(ステップS350)、回転電機10aの電気角θaとしてθa1を設定する(ステップS351)。

0190

次いで設定部139は、ステップS304で取得した第2回転角センサ135bの検出値に基づいて電気角θb1を算出し(ステップS352)、回転電機10bの電気角θbとしてθb1を設定する(ステップS353)。そして、車輪速Nwとして、ステップS301で算出したNw1を設定し(ステップS354)、メインフローに戻る。そして、一連の処理を終了する。

0191

ステップS34において第2差分が所定値αB以上の場合、推定値Nw3、すなわち第2回転角センサ135bに異常が生じていると判定し、設定部139は、第2回転角センサ135bの異常時処理を実行する(ステップS36)。

0192

図33は、第2回転角センサ135bの異常時処理(ステップS36の処理)を示すフローチャートである。ステップS360,S361は、上記したステップS350,S351と同じ処理である。

0193

ステップS361の実行後、設定部139は、ステップS300で取得した車輪速センサ134の検出値に基づいて回転電機10bの電気角θbの推定値θb2を算出し(ステップS362)、電気角θbとしてθb2を設定する(ステップS363)。ステップS364は、上記したステップS354と同じ処理である。ステップS364の実行後、メインフローに戻り、一連の処理を終了する。

0194

ステップS33において第1差分が所定値αA以上の場合、次いで設定部139は、ステップS37の処理を実行する。ステップS37は、ステップS34と同じ処理である。ステップS37において第2差分が所定値αB未満の場合、第1回転角センサ135aに異常が生じていると判定し、設定部139は、第1回転角センサ135aの異常時処理を実行する(ステップS38)。

0195

図34は、第1回転角センサ135aの異常時処理(ステップS38の処理)を示すフローチャートである。先ず設定部139は、ステップS300で取得した車輪速センサ134の検出値に基づいて回転電機10aの電気角θaの推定値θa2を算出し(ステップS380)、電気角θaとしてθa2を設定する(ステップS381)。

0196

次いで設定部139は、ステップS382,S383,S384の処理を順に実行する。ステップS382,S383,S384は、上記したステップS352,S353,S354の処理と同じである。ステップS384の実行後、メインフローに戻り、一連の処理を終了する。

0197

ステップS37において第2差分が所定値αB以上の場合、車輪速Nw1、すなわち車輪速センサ134に異常が生じていると判定し、設定部139は、車輪速センサ134の異常時処理を実行する(ステップS39)。

0198

図35は、車輪速センサの134の異常時処理(ステップS39の処理)を示すフローチャートである。設定部139は、ステップS390,S391,S392,S393の処理を順に実行する。ステップS390,S391,S392,S393は、上記したステップS350,S351,S352,S353と同じ処理である。

0199

ステップS393の実行後、設定部139は、ステップS303で算出した推定値Nw2を車輪速Nwとして設定する(ステップS394)。そして、メインフローに戻り、一連の処理を終了する。

0200

このように、本実施形態によれば、車輪速センサ134及び回転角センサ135a,135bに異常の自己診断機能を持たせなくても、車輪速センサ134及び回転角センサ135a,135bのいずれかに生じた異常を検出することができる。これにより、車両駆動システム136が車輪速センサ134及び回転角センサ135a,135bを含む構成において、コストを低減することができる。また、先行実施形態同様、車輪速センサ134と回転角センサ135a,135bとを双方向に代用することができるため、相互互換性を確保することができる。

0201

なお、回転角センサ135を備える回転電機10の数は上記例に限定されない。回転角センサ135を備える回転電機10を3つ以上含む構成にも適用できる。また、車輪速センサ134を複数含む構成、たとえばABS用のセンサとして各輪にセンサを備える構成にも適用できる。すなわち、車輪速センサ134及び回転角センサ135の少なくとも一方を複数含む構成に適用できる。たとえば2つの車輪速センサ134と1つの回転角センサ135との組み合わせにも適用できる。

0202

異常検出のための比較対象を車輪速としたが、電気角(回転角)を比較対象としてもよい。

0203

設定部139による処理の実行順は、上記例に限定されない。第2差分と所定値αBとの比較を先に実行し、次いで第1差分と所定値αAとの比較を実施してもよい。車輪速算出処理において、車輪速Nw1及び推定値Nw2,Nw3の算出順は上記した例に限定されない。正常時処理、第2回転角センサ135bの異常時処理、第1回転角センサ135aの異常時処理、及び車輪速センサ134の異常時処理の少なくとも1つにおいて、電気角θa,θb及び車輪速Nwの設定順は上記した例に限定されない。

0204

車輪速センサ134に異常が生じた場合に、第1回転角センサ135aの検出値に基づく推定値Nw2を車輪速Nwとして設定する例を示したが、第2回転角センサ135bの検出値に基づく推定値Nw3を車輪速Nwとして設定してもよい。

0205

第1回転角センサ135aに異常が生じた場合に、第2回転角センサ135bの検出値に基づいて回転電機10aの電気角θaの推定値を算出し、算出した推定値を電気角θaとして設定してもよい。同じく、第2回転角センサ135bに異常が生じた場合に、第1回転角センサ135aの検出値に基づいて回転電機10bの電気角θbの推定値を算出し、算出した推定値を電気角θbとして設定してもよい。

0206

(第4実施形態)
本実施形態は、先行実施形態を参照できる。このため、先行実施形態に示した回転電機10、車両駆動システム136、及び制御装置137と共通する部分についての説明は省略する。

0207

本実施形態では、図36に示すように、設定部139が、車両の旋回情報に基づいて、車輪速センサ134及び回転角センサ135のいずれか1つに異常が生じたことを検出する。車両の旋回情報を用いることで、たとえばコーナーカーブ)走行時において内外輪速度差が異なる点を考慮して、異常を検出することができる。

0208

本実施形態では、旋回情報として、図示しない操舵角センサから操舵角を取得する。そして、操舵角に応じて、異常判定にも用いる所定値α(たとえば図27図30参照)を切り替える。具体的には、図37に示すように、操舵角が閾値未満の場合、所定値αとして基準値であるα0を設定し、操舵角が閾値以上を示すと基準値α0よりも大きいα1に切り替える。これにより、コーナー走行時に内外輪の速度差の影響で、直線走行時より車輪速Nw1と推定値(Nw2又はNw3)との差分の絶対値が大きくなっても、所定値αを切り替えにより異常を精度良く検出することができる。

0209

なお、車両の旋回情報としては、上記した操舵角に限定されない。たとえば車載カメラやGPS情報に基づく旋回情報、具体的には、車両が走行する地点曲率半径情報を取得し、これにより所定値αを切り替えてもよい。

0210

また、所定値αの切り替えは2段に限定されない。3段以上としてもよい。また、操舵角を変数とする所定の関数により所定値αを無段階に設定するようにしてもよい。たとえばα=a×操舵角+bにより設定することができる。

0211

旋回情報により異常判定の閾値である所定値αを切り替える例を示したが、これに限定されない。たとえば、旋回情報に基づいて、車輪速Nw1を補正してもよい。

0212

(第5実施形態)
本実施形態は、先行実施形態を参照できる。このため、先行実施形態に示した回転電機10、車両駆動システム136、及び制御装置137と共通する部分についての説明は省略する。

0213

本実施形態では、図38に示すように、制御装置137が、各相の固定子巻線51に生じる誘起電圧を検出する誘起電圧検出部141と、検出された誘起電圧に基づいて回転電機10の電気角(回転角)を検出する回転角検出部142を備えている。一例として、図38では、ECU138が回転角検出部142を有している。

0214

回転電機10は、回転角センサ135を備えないセンサレス構造となっている。設定部139は、車輪速センサ134の検出値及び回転角検出部142の検出値に基づいて、電気角θを設定する。

0215

図39に示すように、誘起電圧検出部141は、U相の誘起電圧検出部141uと、V相の誘起電圧検出部141vと、W相の誘起電圧検出部141wを有している。誘起電圧検出部141のそれぞれは、各相の誘起電圧と基準電圧とを比較し、誘起電圧が基準電圧よりも高い場合にハイレベルの信号、誘起電圧が基準電圧よりも小さい場合にローレベルの信号を出力する。なお、図39では、便宜上、UVW相側のみを図示しているが、XYZについても同様である。

0216

図40は、各相の誘起電圧の波形と位置検出タイミング(ゼロクロス)を示している。U相が通電されない駆動パターンP3,P6に対応する電気角が120度〜180度の間、300度〜360度の間において、誘起電圧が出力される。この期間において、U相電圧極性が切り替わる。すなわち、ゼロクロスが存在する。

0217

V相が通電されない駆動パターンP1,P4に対応する電気角が0度〜60度の間、180度〜240度の間において、誘起電圧が出力される。この期間において、V相電圧の極性が切り替わる。すなわち、ゼロクロスが存在する。

0218

W相が通電されない駆動パターンP2,P5に対応する電気角が60度〜120度の間、240度〜300度の間において、誘起電圧が出力される。この期間において、W相電圧の極性が切り替わる。すなわち、ゼロクロスが存在する。したがって、1回転の間にゼロクロスが6回存在する。

0219

回転角検出部142は、誘起電圧検出部141から出力された信号に基づいて、回転電機10の電気角θを検出する。上記したように、各相の出力信号は、ゼロクロスにおいてハイレベルとローレベルとが切り替わる。したがって、出力信号のレベルが切り替わるタイミングに基づいて、電気角θを検出することができる。

0220

図41は、設定部139が車両の発進後に実行する処理を示すフローチャートである。設定部139は、以下に示す処理を所定周期で繰り返し実行する。

0221

先ず設定部139は、車両が走行中か否かを判定する(ステップS40)。走行中と判定した場合、設定部139は、走行時設定処理を実行する(ステップS41)。

0222

図42は、走行時設定処理を示すフローチャートである。先ず設定部139は、車輪速センサ134の検出値を取得する(ステップS410)。そして、取得した検出値に基づいて、車輪速Nw1を算出する(ステップS411)。

0223

次いで設定部139は、回転角検出部142から電気角θ1を取得する(ステップS412)。そして、取得した電気角θ1に基づいて、車輪速の推定値Nw2を算出する(ステップS413)。

0224

次いで設定部139は、車輪速Nw1と推定値Nw2の差分の絶対値が、所定値α未満か否かを判定する(ステップS414)。所定値α未満の場合、車輪速センサ134が正常であると判定し、設定部139は、車輪速Nwとして算出値Nw1を設定する(ステップS415)。次いで、電気角θとして電気角θ1を設定し(ステップS416)、図41に示すメインフローに戻る。

0225

一方、ステップS414において所定値α以上と判定した場合、すなわち車輪速センサ134に異常が生じていると判定した場合、設定部139は、車輪速Nwとして推定値Nw2を設定する(ステップS417)。そして、上記したステップS416の処理を実行し、メインフローに戻る。

0226

走行時設定処理が終了すると、設定部139は同期処理を実行する(ステップS42)。図43は、同期処理を示すフローチャートである。

0227

同期処理において、先ず設定部139は、車輪速センサ134が正常か否かを判定する(ステップS430)。車輪速センサ134が異常な場合、すなわち上記したステップS414でNO判定の場合、メインフローに戻り、一連の処理を終了する。

0228

車輪速センサ134が正常な場合、すなわち上記した差分の全体値が所定値α未満の場合、設定部139は、車両が減速中か否かを判定する(ステップS431)。減速中ではない場合、メインフローに戻り、一連の処理を終了する。

0229

減速中の場合、設定部139は、回転角検出部142から電気角θ1を取得する(ステップS432)。次いで、車輪速センサ134の検出値を取得し(ステップS433)、取得した検出値に基づいて推定値θ2を算出する(ステップS434)。そして、設定部139は、電気角の同期処理を実行する(ステップS435)。設定部139は、取得した電気角θ1と算出した推定値θ2との同期をとる。誘起電圧に基づく電気角θ1を絶対位置とし、推定値θ2が電気角θ1に一致するように推定値θ2を補正する。この同期処理以降は、この補正を加味して推定値θ2を算出するため、同期処理後の所定期間において、推定値θ2は電気角θ1にほぼ一致することとなる。ステップS435が終了すると、メインフローに戻り、一連の処理を終了する。

0230

図41に示すステップS40において、走行中ではないと判定すると、設定部139は、車両が走行状態から停止状態に移行したか否かを判定する(ステップS43)。停止状態に移行したと判定すると、設定部139は、車輪速センサ134の検出値を取得し(ステップS44)、取得した検出値に基づいて推定値θ2を算出する(ステップS45)。そして、算出した推定値θ2を車両が停止したときの電気角である停止角として保持し(ステップS46)、一連の処理を終了する。

0231

ステップS43において、停止状態に移行していないと判定すると、設定部139は、車両(回転電機10)を起動させるタイミングか否かを判定する(ステップS47)。すなわち、車両が、停止状態から走行状態に移行するタイミングか否かを判定する。起動時と判定すると、設定部139は、電気角θとして、保持していた停止角、すなわち推定値θ2を設定する(ステップS48)。次いで、設定部139は、車輪速センサ134の検出値を取得し(ステップS49)、この検出値に基づいて車輪速Nw1を算出する(ステップS50)。走行する直前であるため、車輪速Nw1はゼロとなる。そして、車輪速Nwとして算出値Nw1を設定し(ステップS51)、一連の処理を終了する。

0232

このように、本実施形態によれば、回転角センサ135を備えないセンサレス構造の回転電機10を採用しながらも、車輪速センサ134の検出値に基づいて電気角θを推定し、回転電機10の駆動を制御することができる。

0233

従来のセンサレス構造の回転電機では、誘起電圧による位置検出が回転電機の停止状態ではできないため、回転電機の起動時には、位置を検出するために回転電機10を回転させる必要があり、車両の飛び出しが発生してしまう。

0234

これに対し、本実施形態では、走行中に車輪速センサ134の検出値に基づく推定値θ2と誘起電圧に基づく電気角θ1の同期をとっておき、車両停止時に算出した推定値θ2を停止角として保持する。そして、この停止角を用いて回転電機10を起動させる。このように、車輪速センサ134の検出値を用いることで、車両停止時の停止角(電気角)を検出できるため、起動時における車両の飛び出しを抑制することができる。特に本実施形態では、車両の減速時に同期処理を実行するため、車両停止時における推定値θ2と電気角との乖離を抑制することができる。

0235

また、本実施形態では、回転角検出部142の検出値に基づいて、車輪速センサ134の異常を検出することができる。したがって、車輪速センサ134に異常の自己診断機能を持たせなくてもよい。これにより、コストを低減することができる。また、車輪速センサ134が異常な場合には、回転角検出部142の検出値に基づいて推定した推定値Nw2を車輪速Nwとして設定する。したがって、車輪速Nwを用いた制御を継続することができる。なお、車輪速センサ134を複数備える構成にも適用できる。

0236

なお、低インダクタンスによって誘起電圧が小さく、誘起電圧によるセンサレス駆動が困難な場合には、誘起電圧検出部141及び回転角検出部142を備えない構成としてもよい。この場合、起動時のみならず、車輪速センサ134の検出値に基づいて電気角θを推定し、回転電機10の駆動を制御すればよい。

0237

ECU138が回転角検出部142を有する例を示したが、これに限定されない。たとえば、誘起電圧検出部141及び回転角検出部142を、駆動制御部110を構成する回路と一体的に設けてもよい。設定部139を駆動制御部110と一体的に設けてもよい。

0238

走行時設定処理は上記例に限定されない。たとえばステップS410,S411を実行する前に、ステップS412,S413を実行してもよい。

0239

同期処理は上記例に限定されない。たとえばステップS432を実行する前に、ステップS433,S434の処理を実行してもよい。

0240

なお、この明細書における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様包含する。たとえば、開示は、実施形態において示された部品及び/又は要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品及び/又は要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品及び/又は要素の置き換え、又は組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。

0241

磁石部42の極異方構造は上記実施形態の例に限定されない。図44及び図45に示す例では、磁石部42が、ハルバッハ配列と称される磁石配列を用いて構成されている。磁石部42は、磁化方向(磁極の向き)を径方向とする第1磁石151と、磁化方向(磁極の向き)を周方向とする第2磁石152を有している。周方向に所定間隔で第1磁石151が配置されるとともに、周方向において隣り合う第1磁石151の間となる位置に第2磁石152が配置されている。第1磁石151及び第2磁石152は、たとえばネオジム磁石等の希土類磁石からなる永久磁石である。

0242

第1磁石151は、固定子50に対向する側(径方向内側)の極が交互にN極、S極となるように周方向に互いに離間して配置されている。また、第2磁石152は、各第1磁石151の隣において周方向の磁極の向きが交互に逆向きとなるように配置されている。

0243

また、第1磁石151の径方向外側、すなわち回転子本体41の磁石保持部43の側には、軟磁性材料よりなる磁性体153が配置されている。たとえば磁性体153は、電磁鋼板や軟鉄圧粉鉄心材料により構成されているとよい。この場合、磁性体153の周方向の長さは、第1磁石151の周方向の長さ、特に第1磁石151の外周部の周方向の長さと同じである。また、第1磁石151と磁性体153とを一体化した状態でのその一体物の径方向の厚さは、第2磁石152の径方向の厚さと同じである。換言すれば、第1磁石151は、第2磁石152よりも磁性体153の分だけ径方向の厚さが薄くなっている。各磁石151,152と磁性体153とは、たとえば接着材により相互に固着されている。磁石部42において第1磁石151の径方向外側は、固定子50とは反対側である。磁性体153は、径方向における第1磁石151の両側のうち、固定子50とは反対側(反固定子側)に設けられている。

0244

磁性体153の外周部には、径方向外側、すなわち回転子本体41の磁石保持部43の側に突出する凸部としてのキー154が形成されている。また、磁石保持部43の内周面には、磁性体153のキー154を収容する凹部としてのキー溝155が形成されている。キー154の突出形状とキー溝155の溝形状とは同じであり、各磁性体153に形成されたキー154に対応して、キー154と同数のキー溝155が形成されている。

0245

キー154及びキー溝155の係合により、第1磁石151及び第2磁石152と回転子本体41との周方向(回転方向)の位置ずれが抑制されている。なお、キー154及びキー溝155(凸部及び凹部)を、回転子本体41の磁石保持部43及び磁性体153のいずれに設けるかは任意でよく、上記とは逆に、磁性体153の外周部にキー溝155を設けるとともに、回転子本体41の磁石保持部43の内周部にキー154を設けることも可能である。

0246

ここで、磁石部42では、第1磁石151と第2磁石152とを交互に配列することにより、第1磁石151での磁束密度を大きくすることが可能となっている。そのため、磁石部42において、磁束の片面集中を生じさせ、固定子50寄りの側での磁束強化を図ることができる。

0247

また、第1磁石151の径方向外側、すなわち反固定子側に磁性体153を配置したことにより、第1磁石151の径方向外側での部分的な磁気飽和を抑制でき、ひいては磁気飽和に起因して生じる第1磁石151の減磁を抑制できる。これにより、結果的に磁石部42の磁力を増加させることが可能となっている。本実施形態の磁石部42は、言うなれば、第1磁石151において減磁が生じ易い部分を磁性体153に置き換えた構成となっている。

0248

図46は、磁石部42における磁束の流れを具体的に示す図であり、(a)は、磁石部42において磁性体153を有していない従来構成を用いた場合を示し、(b)は、磁石部42において磁性体153を有している本実施形態の構成を用いた場合を示している。なお、図46では、回転子本体41の磁石保持部43及び磁石部42を直線状に展開して示しており、図の下側が固定子側、上側が反固定子側となっている。

0249

図46(a)の構成では、第1磁石151の磁極面と第2磁石152の側面とが、それぞれ磁石保持部43の内周面に接触している。また、第2磁石152の磁極面が第1磁石151の側面に接触している。この場合、磁石保持部43には、第2磁石152の外側経路を通って第1磁石151との接触面に入る磁束F1と、磁石保持部43と略平行で、かつ第2磁石152の磁束F2を引きつける磁束との合成磁束が生じる。そのため、磁石保持部43において第1磁石151と第2磁石152との接触面付近において、部分的に磁気飽和が生じることが懸念される。

0250

これに対し、図46(b)の構成では、第1磁石151の反固定子側において第1磁石151の磁極面と磁石保持部43の内周面との間に磁性体153が設けられているため、その磁性体153で磁束の通過が許容される。したがって、磁石保持部43での磁気飽和を抑制でき、減磁に対する耐力が向上する。

0251

また、図46(b)の構成では、図46(a)とは異なり、磁気飽和を促すF2を消すことができる。これにより、磁気回路全体のパーミアンスを効果的に向上させることができる。このように構成することで、その磁気回路特性を、過酷な高熱条件下でも保つことができる。

0252

また、従来のSPMロータにおけるラジアル磁石と比べて、磁石内部を通る磁石磁路が長くなる。そのため、磁石パーミアンスが上昇し、磁力を上げ、トルクを増強することができる。さらに、磁束がd軸の中央に集まることにより、正弦波整合率を高くすることができる。特に、PWM制御により、電流波形を正弦波や台形波とする、又は120度通電スイッチングICを利用すると、より効果的にトルクを増強することができる。

0253

上記実施形態では、固定子コア52の外周面を凹凸のない曲面状とし、その外周面に所定間隔で複数の導線群81を並べて配置する構成としたが、これを変更してもよい。たとえば、図47に示す例では、固定子コア52が、固定子巻線51の径方向両側のうち回転子とは反対側(図の下側)に設けられた円環状のヨーク部161と、そのヨーク部161から、周方向に隣り合う直線部83の間に向かって突出するように延びる突起部162を有している。突起部162は、ヨーク部161の径方向外側、すなわち回転子40側に所定間隔で設けられている。固定子巻線51の各導線群81は、突起部162と周方向において係合しており、突起部162を位置決め部として用いつつ周方向に並べて配置されている。

0254

突起部162は、ヨーク部161からの径方向の厚さ寸法が、径方向内外の複数層の直線部83のうち、ヨーク部161に径方向に隣接する直線部83の径方向の厚さ寸法の1/2(図のH1)よりも小さい構成となっている。こうした突起部162の厚さ制限により、周方向に隣り合う導線群81(すなわち直線部83)の間において突起部162がティースとして機能せず、ティースによる磁路形成がなされないようになっている。突起部162は、周方向に並ぶ各導線群81の間ごとに全て設けられていなくてもよく、周方向に隣り合う少なくとも1組の導線群81の間に設けられていればよい。突起部162の形状は、矩形状、円弧状など任意の形状でよい。

0255

なお、固定子コア52の外周面では、直線部83が一層で設けられていてもよい。したがって、広義には、突起部162におけるヨーク部161からの径方向の厚さ寸法は、直線部83における径方向の厚さ寸法の1/2よりも小さいものであればよい。

0256

回転軸11の軸心を中心とし、かつヨーク部161に径方向に隣接する直線部83の径方向の中心位置を通る仮想円を想定すると、突起部162は、その仮想円の範囲内においてヨーク部161から突出する形状、換言すれば仮想円よりも径方向外側(すなわち回転子40側)に突出しない形状をなしているとよい。

0257

上記構成によれば、突起部162は、径方向の厚さ寸法が制限されており、周方向に隣り合う直線部83の間においてティースとして機能するものでないため、各直線部83の間にティースが設けられている場合に比べて、隣り合う各直線部83を近づけることができる。これにより、導体断面積を大きくすることができ、固定子巻線51の通電にともない生じる発熱を低減することができる。かかる構成では、ティースがないことで磁気飽和の解消が可能となり、固定子巻線51への通電電流を増大させることが可能となる。この場合において、その通電電流の増大にともない発熱量が増えることに好適に対処することができる。また、固定子巻線51では、ターン部84が、径方向にシフトされ、他のターン部84との干渉を回避する干渉回避部を有することから、異なるターン部84同士を径方向に離して配置することができる。これにより、ターン部84においても放熱性の向上を図ることができる。以上により、固定子50での放熱性能を適正化することが可能になっている。

0258

また、固定子コア52のヨーク部161と、回転子40の磁石部42(すなわち各磁石91,92)とが所定距離以上離れていれば、突起部162の径方向の厚さ寸法は、図47のH1に縛られるものではない。具体的には、ヨーク部161と磁石部42とが2mm以上離れていれば、突起部162の径方向の厚さ寸法は、図47のH1以上であってもよい。たとえば、直線部83の径方向厚み寸法が2mmを越えており、かつ導線群81が径方向内外の2層の導線82により構成されている場合に、ヨーク部161に隣接していない直線部83、すなわちヨーク部161から数えて2層目の導線82の半分位置までの範囲で、突起部162が設けられていてもよい。この場合、突起部162の径方向厚さ寸法が「H1×3/2」までになっていれば、導線群81における導体断面積を大きくすることで、前記効果を少なからず得ることはできる。

0259

また、固定子コア52は、図48に示す構成であってもよい。なお、図48では、封止部57を省略しているが、封止部57が設けられていてもよい。図48では、便宜上、磁石部42及び固定子コア52を直線状に展開して示している。

0260

図48の構成では、固定子50は、周方向に隣接する導線82(すなわち直線部83)の間に、巻線間部材としての突起部162を有している。ここで、磁石部42の1極分の範囲において固定子巻線51の通電により励磁される突起部162の周方向の幅寸法をWt、突起部162の飽和磁束密度をBs、磁石部42の1極分の周方向の幅寸法をWm、磁石部42の残留磁束密度をBrとすると、
突起部162は、Wt×Bs≦Wm×Br …(1)
となる磁性材料により構成されている。

0261

詳しくは、本実施形態では、固定子巻線51の3相巻線が分布巻であり、その固定子巻線51では、磁石部42の1極に対して、突起部162の数、すなわち各導線群81の間となる間隙56の数が「3×m」個となっている。なお、mは導線82の対数である。この場合、固定子巻線51が各相所定順序で通電されると、1極内において2相分の突起部162が励磁される。したがって、磁石部42の1極分の範囲において固定子巻線51の通電により励磁される突起部162の周方向の幅寸法Wtは、突起部162(つまり、間隙56)の周方向の幅寸法をAとすると、「2×A×m」となる。そして、こうして幅寸法Wtが規定された上で、固定子コア52において、突起部162が、上記(1)の関係を満たす磁性材料として構成されている。なお、幅寸法Wtは、1極内において比透磁率が1よりも大きくなりえる部分の周方向寸法でもある。

0262

なお、固定子巻線51を集中巻とする場合には、固定子巻線51において、磁石部42の1極対(つまり2極)に対して、突起部162の数、すなわち各導線群81の間となる間隙56の数が「3×m」個となっている。この場合、固定子巻線51が各相所定順序で通電されると、1極内において1相分の突起部162が励磁される。したがって、磁石部42の1極分の範囲において固定子巻線51の通電により励磁される突起部162の周方向の幅寸法Wtは、「A×m」となる。そして、こうして幅寸法Wtが規定された上で、突起部162が、上記(1)の関係を満たす磁性材料として構成されている。

0263

ちなみに、ネオジム磁石やサマリウムコバルト磁石フェライト磁石といったBH積が20[MGOe(kJ/m3)]以上の磁石ではBd=1.0強[T]、鉄ではBr=2.0強[T]である。そのため、高出力モータとしては、固定子コア52において、突起部162が、Wt<1/2×Wmの関係を満たす磁性材料であればよい。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 株式会社e-Gleの「 アウターロータ型モータおよび電気自動車」が 公開されました。( 2020/04/30)

    【課題】高トルクであってコギングトルクを低減させたアウターロータ型モータと、このモータを備えた電気自動車を提供する。【解決手段】アウターロータ型モータ100は、環状の固定子ヨーク11の径方向外側に放射... 詳細

  • 伊東孝彦の「 直流機」が 公開されました。( 2020/04/30)

    【課題】多数の整流子片を有する直流機を無整流子化あるいはブラシレス化することによって、電流利用率が高い直流機を提供する。【解決手段】直流機101は、2m極(mは整数)のN極とS極の磁極を有する回転子と... 詳細

  • 日産自動車株式会社の「 ハイブリッド車両の制御方法及びハイブリッド車両の制御装置」が 公開されました。( 2020/04/30)

    【課題】バッテリのSOCが高い場合にも、待機運転を実施可能なハイブリッド車両の制御方法及びハイブリッド車両の制御装置を提供する。【解決手段】車両を走行させるための走行モータと、走行モータに電力を供給す... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ