図面 (/)

技術 ガス化ガスの処理設備及びガス化ガスの処理方法

出願人 三菱重工エンジニアリング株式会社
発明者 吉田香織菅利喜雄掛迫誠治
出願日 2018年7月26日 (2年5ヶ月経過) 出願番号 2018-139965
公開日 2020年1月30日 (11ヶ月経過) 公開番号 2020-015824
状態 未査定
技術分野 工業ガス
主要キーワード 熱交換ステップ 循環ステップ 構成設備 補給水系統 排出系統 蒸気利用設備 蒸気抜 所望圧力
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2020年1月30日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (6)

課題

精製ガスを十分に高温化しつつ、塩化アンモニウム析出を抑制可能なガス化ガス処理設備を提供する。

解決手段

ガス化ガスから少なくともアンモニア及び塩化水素の除去により得られる精製ガスと、飽和温度蒸気との間で熱交換を行うための第1熱交換器11と、ガス化ガスと、少なくとも、前記熱交換により生成した凝縮水との間で熱交換を行うための第2熱交換器12と、第1熱交換器11と第2熱交換器12との間で、蒸気又は凝縮水のうちの少なくとも一方を含む循環流体循環させるための循環系統13と、を備え、循環系統13は、第1熱交換器11で生成した凝縮水を少なくとも含む循環流体を第2熱交換器12に供給するように構成されるとともに、第2熱交換器12で生成した蒸気を少なくとも含む循環流体を第1熱交換器11に供給するように構成される。

概要

背景

燃料石炭、重質油等)のガス化により得られたガス化ガスには、一酸化炭素水素等が含まれる。そのため、ガス化ガスは、例えばガスタービン等のガス化ガス利用設備において利用できる。しかし、燃料のガス化に伴い、ガス化ガスには、例えばアンモニア塩化水素等の成分が含まれる。そこで、例えば燃料としてガス化ガスを利用する前に、ガス化ガスの精製処理により、アンモニア、塩化水素等の成分を除去することが好ましい。

ガス化ガスの精製処理技術として、特許文献1に記載の技術が知られている。特許文献1には、石炭のガス化により生成したガス化ガスであって、アンモニア及び塩化水素を含むガス化ガスの処理設備が記載されている(例えば段落0019参照)。この処理設備では、ガス化ガスに対し、洗浄等の処理が行われることで、精製ガスが得られる(例えば段落0025、段落0040参照)。得られた精製ガスは、熱交換器においてガス化ガスの熱による加熱後、ガスタービンに供給される(例えば段落0041、0051参照)。

概要

精製ガスを十分に高温化しつつ、塩化アンモニウム析出を抑制可能なガス化ガスの処理設備を提供する。ガス化ガスから少なくともアンモニア及び塩化水素の除去により得られる精製ガスと、飽和温度蒸気との間で熱交換を行うための第1熱交換器11と、ガス化ガスと、少なくとも、前記熱交換により生成した凝縮水との間で熱交換を行うための第2熱交換器12と、第1熱交換器11と第2熱交換器12との間で、蒸気又は凝縮水のうちの少なくとも一方を含む循環流体循環させるための循環系統13と、を備え、循環系統13は、第1熱交換器11で生成した凝縮水を少なくとも含む循環流体を第2熱交換器12に供給するように構成されるとともに、第2熱交換器12で生成した蒸気を少なくとも含む循環流体を第1熱交換器11に供給するように構成される。

目的

本発明は上記の課題に鑑みて為されたものであり、本発明が解決しようとする課題は、精製ガスを十分に高温化しつつ、塩化アンモニウムの析出を抑制可能なガス化ガスの処理設備及びガス化ガスの処理方法を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

燃料ガス化により得られたガス化ガス処理設備であって、前記ガス化ガスから少なくともアンモニア及び塩化水素の除去により得られる精製ガスと、飽和温度蒸気との間で熱交換を行うための第1熱交換器と、前記ガス化ガスと、少なくとも、前記熱交換により生成した凝縮水との間で熱交換を行うための第2熱交換器と、前記第1熱交換器と前記第2熱交換器との間で、前記蒸気又は前記凝縮水のうちの少なくとも一方を含む循環流体循環させるための循環系統と、を備え、前記循環系統は、前記第1熱交換器で生成した前記凝縮水を少なくとも含む前記循環流体を前記第2熱交換器に供給するように構成されるとともに、前記第2熱交換器で生成した蒸気を少なくとも含む前記循環流体を前記第1熱交換器に供給するように構成されたことを特徴とする、ガス化ガスの処理設備。

請求項2

前記循環系統に蒸気を供給するための第1蒸気系統と、前記循環系統から前記凝縮水を抜き出すための凝縮水系統とを備え、前記第1蒸気系統は第1流量調整弁を含み、前記凝縮水系統は第2流量調整弁を含むことを特徴とする、請求項1に記載のガス化ガスの処理設備。

請求項3

前記循環系統から蒸気を抜き出すための蒸気抜き出し系統を備え、前記蒸気抜き出し系統は第3流量調整弁を含むことを特徴とする、請求項1又は2に記載のガス化ガスの処理設備。

請求項4

前記第2熱交換器の前段に、前記ガス化ガスとの熱交換により蒸気を生成させるための第3熱交換器と、前記第3熱交換器において生成した蒸気を蒸気利用設備に供給するための第2蒸気系統と、を備えることを特徴とする、請求項1〜3の何れか1項に記載のガス化ガスの処理設備。

請求項5

前記蒸気利用設備は、前記第1熱交換器を含むことを特徴とする、請求項4に記載のガス化ガスの処理設備。

請求項6

前記飽和温度は、塩化アンモニウム析出温度よりも5℃以上高い温度であることを特徴とする、請求項1〜5の何れか1項に記載のガス化ガスの処理設備。

請求項7

燃料のガス化により得られたガス化ガスの処理方法であって、前記ガス化ガスから少なくともアンモニア及び塩化水素の除去により得られる精製ガスと、飽和温度の蒸気との間で第1熱交換器により熱交換を行う第1熱交換ステップと、前記ガス化ガスと、少なくとも、前記熱交換により生成した凝縮水との間で第2熱交換器により熱交換を行う第2熱交換ステップと、前記第1熱交換器で生成した前記凝縮水を少なくとも含む循環流体を前記第2熱交換器に供給するとともに、前記第2熱交換器で生成した蒸気を少なくとも含む前記循環流体を前記第1熱交換器に供給する循環ステップと、を含むことを特徴とする、ガス化ガスの処理方法。

請求項8

前記第2熱交換器は、前記凝縮水を溜めるための内部空間を有する筐体と、前記ガス化ガスが流れる伝熱管であって前記内部空間に露出して配置された伝熱管と、を備え、前記ガス化ガスの処理方法は、前記第1熱交換器での蒸気との熱交換により飽和温度の凝縮水を生成させる凝縮水生成ステップと、前記第2熱交換器の前記内部空間に、前記凝縮水生成ステップで生成した前記凝縮水を基準水位にまで溜める貯留ステップと、を含むことを特徴とする、請求項7に記載のガス化ガスの処理方法。

請求項9

蒸気生成設備によって蒸気を生成させる蒸気生成ステップと、生成した前記蒸気を前記第1熱交換器に供給する蒸気供給ステップとを含むことを特徴とする、請求項8に記載のガス化ガスの処理方法。

請求項10

前記循環ステップは、前記循環系統の圧力が基準圧力以上になるように前記循環系統を流れる前記循環流体の量を制御することを特徴とする、請求項7〜9の何れか1項に記載のガス化ガスの処理方法。

技術分野

0001

本開示は、ガス化ガス処理設備及びガス化ガスの処理方法に関する。

背景技術

0002

燃料石炭、重質油等)のガス化により得られたガス化ガスには、一酸化炭素水素等が含まれる。そのため、ガス化ガスは、例えばガスタービン等のガス化ガス利用設備において利用できる。しかし、燃料のガス化に伴い、ガス化ガスには、例えばアンモニア塩化水素等の成分が含まれる。そこで、例えば燃料としてガス化ガスを利用する前に、ガス化ガスの精製処理により、アンモニア、塩化水素等の成分を除去することが好ましい。

0003

ガス化ガスの精製処理技術として、特許文献1に記載の技術が知られている。特許文献1には、石炭のガス化により生成したガス化ガスであって、アンモニア及び塩化水素を含むガス化ガスの処理設備が記載されている(例えば段落0019参照)。この処理設備では、ガス化ガスに対し、洗浄等の処理が行われることで、精製ガスが得られる(例えば段落0025、段落0040参照)。得られた精製ガスは、熱交換器においてガス化ガスの熱による加熱後、ガスタービンに供給される(例えば段落0041、0051参照)。

先行技術

0004

特許第3764568号公報

発明が解決しようとする課題

0005

ところで、ガス化ガスの温度は、ガス化設備運転状態により変動する。ここでいう運転状態は、例えば、燃料の種類及び組成燃料供給量等を含む。そのため、ガス化ガスの温度が予定していた温度よりも低くなった場合、上記熱交換器での熱交換により得られる熱量が少なくなり、精製ガス温度が予定していた温度よりも低くなる。この結果、精製ガスが例えばガスタービンに供給される場合には、精製ガスの低温化に起因してガスタービンの動作が不安定化する。

0006

また、ガス化ガスの組成も、ガス化設備の運転状態により変動する。例えば、ガス化ガス中のアンモニア濃度及び塩化水素濃度が高い場合、塩化アンモニウム析出し易くなる。そこで、塩化アンモニウムの析出抑制のために、ガス化ガスは十分な温度に保持されることが好ましい。そのため、ガス化ガスの温度が当該十分な温度になるようにガス化ガスを上記熱交換器において冷却すると、精製ガスへの熱供給量が低下し、精製ガスの温度が低下する。この結果、上記の場合と同様に、例えばガスタービンの動作が不安定化する。

0007

本発明は上記の課題に鑑みて為されたものであり、本発明が解決しようとする課題は、精製ガスを十分に高温化しつつ、塩化アンモニウムの析出を抑制可能なガス化ガスの処理設備及びガス化ガスの処理方法を提供することである。

課題を解決するための手段

0008

(1)本発明の少なくとも一実施形態に係るガス化ガスの処理設備は、
燃料のガス化により得られたガス化ガスの処理設備であって、
前記ガス化ガスからアンモニア及び塩化水素の除去により得られる精製ガスと、飽和温度蒸気との間で熱交換を行うための第1熱交換器と、
前記ガス化ガスと、少なくとも、前記熱交換により生成した凝縮水との間で熱交換を行うための第2熱交換器と、
前記第1熱交換器と前記第2熱交換器との間で、前記蒸気又は前記凝縮水のうちの少なくとも一方を含む循環流体循環させるための循環系統と、を備え、
前記循環系統は、前記第1熱交換器で生成した前記凝縮水を少なくとも含む前記循環流体を前記第2熱交換器に供給するように構成されるとともに、前記第2熱交換器で生成した蒸気を少なくとも含む前記循環流体を前記第1熱交換器に供給するように構成された
ことを特徴とする。

0009

上記(1)の構成によれば、飽和温度の蒸気による精製ガスの加熱により、精製ガスの高温化を図ることができる。また、精製ガスの加熱により飽和温度の蒸気の潜熱が奪われ、これにより生成した飽和温度の凝縮水によりガス化ガスを冷却できる。このため、ガス化ガスを飽和温度以上に冷却でき、ガス化ガスの温度を、安定して飽和温度以上に保持することができる。これにより、蒸気温度の調整によりガス化ガスの温度を塩化アンモニウムの析出温度以上にでき、塩化アンモニウムの析出を抑制できる。さらには、蒸気が第2熱交換器から第1熱交換器に供給されることで循環流体が循環するため、新たな蒸気供給量を削減できる。

0010

(2)幾つかの実施形態では、上記(1)の構成において、
前記循環系統に蒸気を供給するための第1蒸気系統と、
前記循環系統から前記凝縮水を抜き出すための凝縮水系統とを備え、
前記第1蒸気系統は第1流量調整弁を含み、
前記凝縮水系統は第2流量調整弁を含む
ことを特徴とする。

0011

上記(2)の構成によれば、蒸気の供給量と凝縮水の抜き出し量とを調整できる。

0012

(3)幾つかの実施形態では、上記(1)又は(2)の構成において、
前記循環系統から蒸気を抜き出すための蒸気抜き出し系統を備え、
前記蒸気抜き出し系統は第3流量調整弁を含む
ことを特徴とする。

0013

上記(3)の構成によれば、循環系統の圧力が所望圧力以上になった場合に、循環系統の圧力を所望の圧力に低下できる。また、抜き出した蒸気は、ガス化ガスの処理設備内で利用できる。特に、抜き出した蒸気を利用することで例えば蒸気タービンからの抽気量を低減でき、蒸気タービンにより発電する際の発電効率を向上できる。

0014

(4)幾つかの実施形態では、上記(1)〜(3)の何れか1の構成において、
前記第2熱交換器の前段に、前記ガス化ガスとの熱交換により蒸気を生成させるための第3熱交換器と、
前記第3熱交換器において生成した蒸気を蒸気利用設備に供給するための第2蒸気系統と、を備える
ことを特徴とする。

0015

上記(4)の構成によれば、精製ガス温度が所望温度以上であるために熱が余剰になっている場合に、ガス化ガスの熱を利用して蒸気を生成できる。これにより、生成した蒸気をガス化ガスの処理設備内で利用できる。特に、生成した蒸気を利用することで例えば蒸気タービンからの抽気量を低減でき、蒸気タービンにより発電する際の発電効率を向上できる。

0016

(5)幾つかの実施形態では、上記(4)の構成において、
前記蒸気利用設備は、前記第1熱交換器を含む
ことを特徴とする。

0017

上記(5)の構成によれば、第1熱交換器への外部からの蒸気供給量を削減できる。

0018

(6)幾つかの実施形態では、上記(1)〜(5)の何れか1の構成において、
前記飽和温度は、塩化アンモニウムの析出温度よりも5℃以上高い温度である
ことを特徴とする。

0019

上記(6)の構成によれば、より確実に塩化アンモニウムの析出を抑制できる。

0020

(7)本発明の少なくとも一実施形態に係るガス化ガスの処理方法は、
燃料のガス化により得られたガス化ガスの処理方法であって、
前記ガス化ガスからアンモニア及び塩化水素の除去により得られる精製ガスと、飽和温度の蒸気との間で第1熱交換器により熱交換を行う第1熱交換ステップと、
前記ガス化ガスと、少なくとも、前記熱交換により生成した凝縮水との間で第2熱交換器により熱交換を行う第2熱交換ステップと、
前記第1熱交換器で生成した前記凝縮水を少なくとも含む循環流体を前記第2熱交換器に供給するとともに、前記第2熱交換器で生成した蒸気を少なくとも含む前記循環流体を前記第1熱交換器に供給する循環ステップと、を含む
ことを特徴とする。

0021

上記(7)の構成によれば、飽和温度の蒸気による精製ガスの加熱により、精製ガスの高温化を図ることができる。また、精製ガスの加熱により飽和温度の蒸気の潜熱が奪われ、これにより生成した飽和温度の凝縮水によりガス化ガスを冷却できる。このため、ガス化ガスを飽和温度以上に冷却でき、ガス化ガスの温度を、安定して飽和温度以上に保持することができる。これにより、蒸気温度の調整によりガス化ガスの温度を塩化アンモニウムの析出温度以上にでき、塩化アンモニウムの析出を抑制できる。さらには、蒸気が第2熱交換器から第1熱交換器に供給されることで循環流体が循環するため、新たな蒸気供給量を削減できる。

0022

(8)幾つかの実施形態では、上記(7)の方法において、
前記第2熱交換器は、前記凝縮水を溜めるための内部空間を有する筐体と、前記ガス化ガスが流れる伝熱管であって前記内部空間に露出して配置された伝熱管と、を備え、
前記ガス化ガスの処理方法は、
前記第1熱交換器での蒸気との熱交換により飽和温度の凝縮水を生成させる凝縮水生成ステップと、
前記第2熱交換器の前記内部空間に、前記凝縮水生成ステップで生成した前記凝縮水を基準水位にまで溜める貯留ステップと、を含む
ことを特徴とする。

0023

上記(8)の方法によれば、ガス化ガスの処理設備の起動運転時に、飽和温度の凝縮水を第2熱交換器の内部空間での基準水位にまで溜めることができる。これにより、第2熱交換器の温度を凝縮水の飽和温度にまで速やかに昇温でき、起動時間を短くできる。

0024

(9)幾つかの実施形態では、上記(8)の方法において、
蒸気生成設備によって蒸気を生成させる蒸気生成ステップと、
生成した前記蒸気を前記第1熱交換器に供給する蒸気供給ステップとを含む
ことを特徴とする。

0025

上記(9)の方法によれば、蒸気生成設備において生成した蒸気を第1熱交換器に供給できる。

0026

(10)幾つかの実施形態では、上記(7)〜(9)の何れか1の方法において、
前記循環ステップは、前記循環系統の圧力が基準圧力以上になるように前記循環系統を流れる前記循環流体の量を制御する
ことを特徴とする。

0027

上記(10)の方法によれば、循環系統の圧力を基準圧力以上にでき、循環流体の飽和温度を高くできる。

発明の効果

0028

本発明の少なくとも一実施形態によれば、精製ガスを十分に高温化しつつ、塩化アンモニウムの析出を抑制可能なガス化ガスの処理設備及びガス化ガスの処理方法を提供できる。

図面の簡単な説明

0029

本発明の第1実施形態に係るガス化ガスの処理設備を示す系統図である。
図1に示す処理設備に備えられる第2熱交換器の断面図である。
本発明の第1実施形態に係るガス化ガスの処理方法を示すフローチャートである。
貯留ステップにおける第2熱交換器での水位変化を示すグラフである。
本発明の第2実施形態に係るガス化ガスの処理設備を示す系統図である。

実施例

0030

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、以下に実施形態として記載されている内容又は図面に記載されている内容は、あくまでも例示に過ぎず、本発明の要旨を逸脱しない範囲内で、任意に変更して実施することができる。また、各実施形態は、2つ以上を任意に組み合わせて実施することができる。さらに、各実施形態において、共通する部材については同じ符号を付すものとし、説明の簡略化のために重複する説明は省略する。

0031

また、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。

0032

図1は、本発明の第1実施形態に係るガス化ガスの処理設備1を示す系統図である。処理設備1は、石炭、重質油等の燃料のガス化により得られたガス化ガスを処理するためのものである。燃料のガス化は、例えば流動床炉等のガス化設備(図示しない)において行われる。また、ガス化ガスの処理は、ガス化ガス中の硫化カルボニル、アンモニア、塩化水素等の窒素分及び硫黄分の除去により行われる。ガス化ガスの処理により、水素、一酸化炭素等を含む精製ガスが得られる。そして、精製ガスは、例えばガスタービン等のガス化ガス利用設備に供給される。

0033

処理設備1は、ガス化ガスが有する熱を利用して精製ガスを加熱するための加熱設備10と、ガス化ガスの洗浄を行うための洗浄設備3と、硫化水素吸収設備4とを備える。はじめに、ガス化ガスの処理設備1の全体構成についてガス流れを中心に説明し、次いで、処理設備1に備えられる加熱設備10の構成を説明する。

0034

ガス化設備(図示しない)で生成したガス化ガスは、ガス化ガス系統30を通じ、熱交換器2に供給される。熱交換器2は、例えばガスガス熱交換器を含んで構成される。ガス化ガスの温度は例えば300℃〜500℃程度であり、熱交換器2では、ガス化ガスが有する熱により、精製ガスが例えば250℃〜350℃程度にまで加熱される。この加熱により、ガス化ガスの温度は例えば200℃〜300℃程度にまで低下する。温度低下後のガス化ガスは、ガス化ガス系統30において、第2熱交換器12(後記する)の前段に備えられたCOS変換器(図示しない)に供給される。COS変換器は変換触媒(図示しない)を備え、変換触媒により、ガス化ガス中の硫化カルボニルが硫化水素に変換される。硫化水素への変換は、例えば、200℃〜400℃程度で行うことができる。

0035

生成した硫化水素を含むガス化ガスは、ガス化ガス系統30を通じて、加熱設備10に備えられる第2熱交換器12に供給される。第2熱交換器12では、ガス化ガスと、後記する第1熱交換器11で生成した飽和温度の凝縮水との間で熱交換が行われる。これにより、凝縮水が加熱されて蒸気に相変化するとともに、ガス化ガスが冷却されてガス化ガスの温度が低下する。具体的には、ガス化ガスの温度は、循環系統13の圧力での飽和温度にまで低下する。例えば、循環系統13の圧力が例えば30kPa程度であれば、ガス化ガスの第2熱交換器12の出口温度は、例えば250℃〜280℃程度である。従って、この場合、第2熱交換器12は、ガス化ガスを冷却するための冷却器として機能する。

0036

なお、詳細は後記するが、加熱設備10の第1熱交換器11では、ガス化ガスが有する熱と、第1蒸気系統14を通じて供給された蒸気が有する熱とにより、精製ガスが、循環系統13の圧力での飽和温度にまで加熱される。この場合、第1熱交換器11は、精製ガスを加熱するための加熱器として機能する。加熱の際、蒸気の潜熱が奪われることで、蒸気の少なくとも一部が凝縮し、飽和温度の凝縮水が生成する。そして、第1熱交換器11で生成した飽和温度の凝縮水は、上記のように第2熱交換器12に供給される。

0037

第2熱交換器12で熱交換された後のガス化ガスは、ガス化ガス系統30を通じ、洗浄設備3に供給される。洗浄設備3は、例えばスクラバを含んで構成され、洗浄水とガス化ガスとを接触させることで、ガス化ガス中のアンモニア及び塩化水素が除去される。また、ガス化ガス中の硫化水素の一部も、洗浄水に溶解する。なお、除去されたアンモニア及び塩化水素は洗浄水に溶解し、溶解したアンモニア、塩化水素及び硫化水素は処理装置(図示しない)において処理される。

0038

アンモニア等を除去後のガス化ガスは、例えば40℃程度にまで冷却された後、ガス化ガス系統31を通じて、硫化水素吸収設備4に供給される。硫化水素吸収設備4は、例えばを含んで構成され、アミン水溶液とガス化ガスとを接触させることで、ガス化ガス中の硫化水素が除去される。

0039

硫化水素除去後のガス化ガスである精製ガスは、精製ガス系統32を通じて、加熱設備10に備えられる第1熱交換器11に供給される。そして、加熱設備10では、精製ガスは、上記のようにガス化ガスが有する熱と、第1蒸気系統14(後記する)を通じて供給された蒸気が有する熱とにより、例えば250℃程度にまで加熱される。加熱後の精製ガスは、精製ガス系統32を通じて熱交換器2に供給され、ガス化ガスの熱により、上記のように例えば250℃〜350℃程度にまで加熱される。そして、加熱後の精製ガスは、ガスタービン等のガス利用設備(図示しない)に供給される。

0040

上記の処理設備1において精製ガスを加熱するための加熱設備10は、第1熱交換器11と、第2熱交換器12と、循環系統13とを備える。なお、以下の説明において、加熱設備10に備えられる設備及び系統は、いずれも、処理設備1に備えられる設備及び系統である。

0041

第1熱交換器11は、ガス化ガスから少なくともアンモニア及び塩化水素(これらに加えて、本発明の一実施形態では例えば硫化水素も除去される)の除去により得られる精製ガスと、飽和温度の蒸気との間で熱交換を行うためのものである。具体的には、飽和温度の蒸気により、精製ガスが加熱される。精製ガスの加熱により蒸気の潜熱が奪われることで、蒸気が凝縮し、凝縮水が生成する。なお、ここでいう飽和温度とは、例えば、塩化アンモニウムの析出温度よりも5℃以上高い温度であり、好ましくは10℃以上、より好ましくは20℃以上高い温度である。飽和温度をこのような温度にすることで、より確実に塩化アンモニウムの析出を抑制できる。

0042

また、第2熱交換器12は、ガス化ガスと、少なくとも、上記熱交換により生成した凝縮水との間で熱交換を行うためのものである。具体的には、ガス化ガスの熱により、飽和温度の凝縮水が加熱される。これにより、飽和温度の凝縮水が相変化し、飽和温度の蒸気が生成する。

0043

第1熱交換器11は、例えばガス−ガス熱交換器を含んで構成される。また、第2熱交換器12は、例えば、所謂ケトル型の熱交換器を含んで構成される。第2熱交換器12の構造について、図2を参照しながら説明する。

0044

図2は、上記図1に示す処理設備1に備えられる第2熱交換器12の断面図である。なお、第2熱交換器12の構造は図示の例に限られるものではなく、例えば導入口141の位置を上下反対にする等、その構造は任意に変更できる。

0045

第2熱交換器12は、第1熱交換器11で生成し、循環系統13(後記する)を流れた凝縮水を溜めるための内部空間121Aを有する筐体121と、ガス化ガスが流れる伝熱管122であって内部空間121Aに露出して配置された伝熱管122と、を備える。これらのうち、筐体121は、下面が水平方向に延在するとともに、上面の一部が上方に膨らむような形状を有している。

0046

筐体121の上面には、蒸気を排出するための排出口142と、熱交換させるためのガス化ガスを導入するための導入口146とが備えられる。また、筐体121の下面には、補給水、凝縮水、蒸気を内部空間121Aに導入するための導入口141と、内部空間121Aから排出するための排出口143と、熱交換後のガス化ガスを排出するための排出口145が備えられる。これらのうち、導入口141と排出口142と内部空間121Aを含むことで、循環系統13(図1参照)が構成される。また、排出口143には、凝縮水系統15(図1参照)が接続される。さらに、導入口146と、空間151と、伝熱管122と、空間150と、排出口145とを含むことで、ガス化ガス系統30が構成される。

0047

第2熱交換器12は、内部空間121Aに溜まった凝縮水Lの水位を測定するための水位センサ36を備える。そして、処理設備1の通常運転時(即ち、加熱設備10の通常運転時)には、水位センサ36により測定される水位が基準水位よりも低い場合、水位が基準水位になるように、補給水系統33に備えられた流量調整弁34を開けて補給水の供給が行われる。なお、補給水の供給量制御は、流量計35により測定された流量に基づくフィードバック制御により行われる。なお、水位センサ36により測定される水位が基準水位よりも高くなった場合には、水位が基準水位になるように、図示しない排出系統を通じて凝縮水Lの抜き出しが行われる。

0048

基準水位は、伝熱管122の全体が浸かるような位置に設定される。従って、導入口146を通じて空間151に導入されたガス化ガスは、伝熱管122を流れる際、飽和温度の凝縮水Lとの間で熱交換される。そして、熱交換後のガス化ガスは、空間150及び排出口145を通じて、第2熱交換器12の外部に排出される。

0049

図1戻り、循環系統13は、第1熱交換器11と第2熱交換器12との間で、蒸気又は凝縮水のうちの少なくとも一方を含む循環流体を循環させるためのものである。即ち、循環系統13は、第1熱交換器11で生成した凝縮水を少なくとも含む循環流体を第2熱交換器12に供給するように構成される。さらには、循環系統13は、第2熱交換器12で生成した蒸気を少なくとも含む循環流体を第1熱交換器11に供給するように構成される。

0050

また、循環系統13を循環する循環流体は、循環系統13の圧力における飽和温度になっている。さらに、循環系統13は、循環系統13への蒸気の供給及び循環系統13から蒸気の排出により、系内の圧力が一定(例えば30kPa程度)になるように構成される。

0051

第1熱交換器11、第2熱交換器12及び循環系統13を備えることで、飽和温度の蒸気による精製ガスの加熱により、精製ガスの高温化を図ることができる。また、精製ガスの加熱により飽和温度の蒸気の潜熱が奪われ、これにより生成した飽和温度の凝縮水によりガス化ガスを冷却できる。このため、ガス化ガスを飽和温度以上に冷却でき、ガス化ガスの温度を、安定して飽和温度以上に保持することができる。これにより、蒸気温度の調整によりガス化ガスの温度を塩化アンモニウムの析出温度以上にでき、塩化アンモニウムの析出を抑制できる。さらには、蒸気が第2熱交換器から第1熱交換器に供給されることで循環流体が循環するため、新たな蒸気供給量を削減できる。

0052

また、加熱設備10は、循環系統13に蒸気を供給するための第1蒸気系統14と、循環系統13からブローダウン水としての凝縮水を抜き出すための凝縮水系統15とを備える。これらのうち、凝縮水系統15は、第2熱交換器12の排出口143(図2参照)に接続される。これにより、循環系統13を流れる凝縮水は、第2熱交換器12及び排出口143を介して、外部に抜き出される。

0053

また、第1蒸気系統14は第1流量調整弁18を含み、凝縮水系統15は第2流量調整弁17を含む。第1流量調整弁18及び第2流量調整弁17を備えることで、蒸気の供給量と凝縮水の抜き出し量とを調整できる。

0054

第1蒸気系統14を通じた循環系統13への蒸気供給は、流量計20により測定される流量が一定になるように制御される。蒸気供給量制御は、第1流量調整弁18の開度制御により行われる。また、循環系統13からの凝縮水抜き出しも、流量計19により測定される流量が一定になるように制御される。凝縮水抜き出し量制御は、第2流量調整弁17の開度制御により行われる。

0055

また、加熱設備10は、循環系統13から蒸気を抜き出すための蒸気抜き出し系統21を備え、蒸気抜き出し系統21は第3流量調整弁22を含む。さらに、加熱設備10は、循環系統13の圧力を測定するための圧力計23を備える。そして、圧力計23により測定される循環系統13の圧力が一定になるように、循環系統13の圧力が一定に制御される。

0056

蒸気抜出し系統21及び第3流量調整弁22を備えることで、循環系統13の圧力が所望圧力以上になった場合に、循環系統13の圧力を所望の圧力に低下できる。また、抜き出した蒸気は、ガス化ガスの処理設備1内で利用できる。特に、抜き出した蒸気を利用することで例えば蒸気タービンからの抽気量を低減でき、蒸気タービンにより発電する際の発電効率を向上できる。なお、循環系統13の圧力が下がった場合には、第1蒸気系統14を通じた蒸気の供給量を増加させる制御が行われる。

0057

加熱設備10を含む処理設備1の制御は、演算制御装置(図示しない)により行われる。演算制御装置は、いずれも図示しないが、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、I/F(InterFace)、制御回路等を備え、ROMに格納されている所定の制御プログラムがCPUによって実行されることにより具現化される。

0058

図3は、本発明の第1実施形態に係るガス化ガスの処理方法を示すフローチャートである。以下、本発明の第1実施形態に係るガス化ガスの処理方法を、単に「第1実施形態の処理方法」という。第1実施形態の処理方法は、例えば図1に示す処理設備を用いて行うことができる。そこで、以下の説明においては、適宜、図1及び図2を参照するものとする。

0059

第1実施形態の処理方法は、燃料のガス化により得られたガス化ガスの処理方法である。第1実施形態の処理方法は、蒸気生成ステップS1と、蒸気供給ステップS2と、凝縮水生成ステップS3と、貯留ステップS4と、第1熱交換ステップS5と、第2熱交換ステップS6と、循環ステップS7とを含む。これらのうち、蒸気生成ステップS1と、蒸気供給ステップS2と、凝縮水生成ステップS3と、貯留ステップS4とは、処理設備1の起動運転時に行われる。また、第1熱交換ステップS5と、第2熱交換ステップS6と、循環ステップS7とは、処理設備1の通常運転時に行われる。

0060

ここで、通常運転及び起動運転について説明する。
処理設備1(図1参照)は、例えば、石炭ガス化複合発電IGCC)の一部として設置される。そして、IGCCを構成するガス化炉(ガス化設備)で生成したガス化ガスについて、上記の精製処理が行われ、精製ガスが得られる。得られた精製ガスは、同じくIGCCを構成するガスタービン(ガス化ガス利用設備)に供給され、発電が行われる。また、ガスタービンでの排熱排熱回収ボイラ回収され、蒸気が生成する。生成した蒸気は蒸気タービンに供給され、発電が行われる。そして、ガスタービン及び蒸気タービンにより定常的に発電している状態が、本明細書における通常運転に相当する。従って、通常運転時には、上記の処理設備1において、ガス化炉で生成したガス化ガスの精製処理が行われる。

0061

一方、例えばメンテナンス等により運転停止していた状態から、通常運転を行うためには、処理設備1を含めたIGCCの起動運転が行われる。起動運転として、具体的にはまず、処理設備1以外のIGCCの各構成設備(例えばガス化炉、ガスタービン、蒸気タービン等。以下「主機」(図示しない)という)において、運転前準備(各種設備への電力供給開始等)が行われる。また、処理設備1では、例えば各種設備の運転前準備(循環系統13への蒸気注入による循環流体の循環開始、各種設備への電力供給開始等)が行われる。これにより、循環系統13では、飽和温度の循環流体(蒸気又は凝縮水のうちの少なくとも一方を含む)の循環が開始する。

0062

次いで、主機において、蒸気タービンが起動されるとともに、ガスタービンへの点火が行われる。一方で、処理設備1では、図示しない圧縮機を用いた加圧空気の供給により、ガス化ガス系統30,31及び精製ガス系統32の加圧が行われる。その後、主機に含まれるガス化炉への点火が行われる。ガス化炉での点火に際して使用される燃料は、起動時には例えば灯油軽油等の補助燃料である。ガス化炉での補助燃料の燃焼により、比較的低温(例えば100℃程度)のガス精製通ガスが生成する。そして、精製したガス精製通ガスをガス化ガス系統30,31及び精製ガス系統32に流すことで、ガス化ガス系統30,31及び精製ガス系統32の温度が上昇する。

0063

ただし、ガス精製通ガスの温度は、上記のように比較的低温である。従って、この場合では、第2熱交換器12は、ガス精製通ガスを加熱するための加熱器として機能する。そのため、飽和温度の循環流体が流れる循環系統13と、第1熱交換器11及び第2熱交換器12のそれぞれとの間で熱交換が行われると、循環系統13に供給された蒸気はそれぞれの熱交換器において凝縮水に変化する。そして、第1熱交換器11及び第2熱交換器12で生成した凝縮水は、上記の図2を参照しながら説明した第2熱交換器12の内部空間121Aに溜まる(この点の詳細は図4を参照しながら後記する)。

0064

また、第1熱交換器11では、第1蒸気系統14を通じて供給された蒸気を含む循環流体により、ガス精製通ガスが加熱される。そのため、精製ガス系統32を通じてガス化ガス利用設備(例えばガスタービン)に供給されるガス精製通ガス温度を速やかに昇温できる。これにより、起動時間を短縮できる。

0065

第1熱交換器11での加熱によりガス精製通ガスの温度が十分に昇温すると、ガス化炉で燃焼させる燃料が石炭に変更される。これにより、ガス化炉では、石炭の燃焼により、上記のガス精製通ガスの温度よりも高いガス化ガス(例えば上記のように300℃〜500℃程度)が生成し始める。生成したガス化ガスは、ガス化ガス系統30,31及び精製ガス系統32を流れ始め、ガス化ガス系統30,31及び精製ガス系統32の温度がさらに上昇する。そして、燃焼させる石炭量を増加させることで負荷を上昇させ、所望の負荷になった時点で起動運転が完了する。起動運転完了後、上記の通常運転が行われる。

0066

蒸気の図3に示す第1実施形態の処理方法において、蒸気生成ステップS1は、例えば補助ボイラ等の蒸気生成設備(図示しない)によって蒸気を生成させるステップである。また、蒸気供給ステップS2は、生成した上記蒸気を第1熱交換器11に供給するステップである。蒸気生成ステップS1及び蒸気供給ステップS2を経ることで、補助ボイラ等の蒸気生成設備において生成した蒸気を第1熱交換器11に供給できる。

0067

凝縮水生成ステップS3は、第1熱交換器11での蒸気との熱交換により飽和温度の凝縮水を生成させるものである。ここでいう飽和温度は、上記の図1を参照しながら説明した飽和温度と同義である。また、貯留ステップS4は、第2熱交換器12の内部空間121A(図2参照)に、凝縮水生成ステップS3で生成した凝縮水を基準水位にまで溜めるものである。凝縮水生成ステップS3で生成した凝縮水は、循環系統13を通じて、筐体121の導入口141(図2参照)から内部空間121Aに導入される。貯留ステップS4について、図4を参照しながら説明する。

0068

図4は、貯留ステップS4における第2熱交換器12での水位変化を示すグラフである。ただし、このグラフは模式的なものであり、実際の水位がこのグラフの形状と必ずしも一致するものではない。

0069

貯留ステップS4では、第1熱交換器11での蒸気との熱交換により飽和温度の凝縮水が、第2熱交換器12の内部空間121Aに溜まる。なお、上記のように、第2熱交換器12においても凝縮水が生成するため、内部空間121Aには、第2熱交換器12で生成した凝縮水も溜まる。そのため、起動運転時には、少なくとも第1熱交換器11で生成した凝縮水が溜まることで、内部空間121Aでの水位(上記の水位センサ36により測定される)は上昇する。

0070

そして、起動運転完了後、通常運転時には、上記のように、一定量の蒸気が循環系統13に供給されるとともに、一定量の凝縮水が内部空間121Aから抜き出される。これにより、内部空間121Aでの水位が基準水位で一定になるようにして、通常運転が行われる。

0071

凝縮水生成ステップS3及び貯留ステップS4を経ることで、ガス化ガスの処理設備の起動運転時に、飽和温度の凝縮水を第2熱交換器12の内部空間121Aでの基準水位にまで溜めることができる。これにより、第2熱交換器12の温度を凝縮水の飽和温度にまで速やかに昇温でき、起動時間を短くできる。なお、起動運転時には、第2熱交換器12は、ガス化ガスを加熱するための加熱器として機能する。

0072

図3に戻って、第1熱交換ステップS5は、ガス化ガスから少なくともアンモニア及び塩化水素(これらに加えて、本発明の一実施形態では硫化水素も除去される)の除去により得られる精製ガスと、飽和温度の蒸気との間で第1熱交換器11により熱交換を行うものである。また、第2熱交換ステップS6は、ガス化ガスと、少なくとも、第1熱交換ステップS5での熱交換により生成した凝縮水との間で第2熱交換器12により熱交換を行うものである。さらに、循環ステップS7は、第1熱交換器11で生成した凝縮水を少なくとも含む循環流体を第2熱交換器12に供給するとともに、第2熱交換器12で生成した蒸気を少なくとも含む循環流体を第1熱交換器11に供給するものである。循環流体の第1熱交換器11への供給は、循環系統13を通じて行われる。

0073

第1熱交換ステップS5、第2熱交換ステップS6及び循環ステップS7を経ることで、飽和温度の蒸気による精製ガスの加熱により、精製ガスの高温化を図ることができる。また、精製ガスの加熱により飽和温度の蒸気の潜熱が奪われ、これにより生成した飽和温度の凝縮水によりガス化ガスを冷却できる。このため、ガス化ガスを飽和温度以上に冷却でき、ガス化ガスの温度を、安定して飽和温度以上に保持することができる。これにより、蒸気温度の調整によりガス化ガスの温度を塩化アンモニウムの析出温度以上にでき、塩化アンモニウムの析出を抑制できる。さらには、蒸気が第2熱交換器から第1熱交換器に供給されることで循環流体が循環するため、新たな蒸気供給量を削減できる。

0074

また、第1実施形態の処理方法では、循環ステップS7は、循環系統13の圧力が基準圧力以上になるように循環系統13を流れる循環流体(蒸気又は凝縮水のうちの少なくとも一方)の量を制御する。これにより、循環系統13の圧力を基準圧力以上にでき、循環流体の飽和温度を高くできる。

0075

図5は、本発明の第2実施形態に係るガス化ガスの処理設備1Aを示す系統図である。処理設備1Aは、上記の処理設備1と同様に、加熱設備10Aを備える。ただし、処理設備1Aは、上記の加熱設備10の構成に加えて、第2熱交換器12の前段に、ガス化ガスとの熱交換により蒸気を生成させるための第3熱交換器51と、第3熱交換器51において生成した蒸気を蒸気利用設備(第1熱交換器11及び蒸気タービン(図示しない))に供給するための第2蒸気系統62と、を備える。

0076

ガスタービン等のガス化ガス利用設備に供給される精製ガス温度の要求値が、通常よりも低い場合がある。この場合、ガス化ガス利用設備に供給される精製ガス温度は要求値を満たすとともに、ガス化ガスが有する熱が余剰になる。そのため、ガス化ガスの熱を、精製ガスの加熱以外に利用できる。そこで、このような場合には、第3熱交換器51においてガス化ガスの熱を回収し、回収された熱により蒸気が生成するようになっている。

0077

第3熱交換器51は、上記の第2熱交換器12と同様に、所謂ケトル型の熱交換器を含んで構成される(図2を参照)。そのため、第3熱交換器51には、第3熱交換器51を構成する筐体の内部空間(図示しない)に補給水を供給するための補給水系統61と、第3熱交換器51に溜まった凝縮水を抜き出すための凝縮水系統64とが接続される。補給水系統61による補給水の供給は、補給水系統61に備えられた流量調整弁53を開けることで行う。補給水の供給量制御は、流量計54により測定された流量に基づくフィードバック制御により行われる。また、凝縮水系統64による凝縮水の抜き出しは、流量計56により測定される流量が一定になるように制御される。凝縮水抜き出し量制御は、第4流量調整弁55の開度制御により行われる。

0078

また、第3熱交換器51は、内部空間に溜まった凝縮水の水位を測定するための水位センサ57を備える。そして、処理設備1Aの通常運転時(即ち、加熱設備10Aの通常運転時)には、水位センサ57により測定される水位が基準水位よりも低い場合、水位が基準水位になるように、上記のようにして補給水の供給が行われる。なお、水位センサ57により測定される水位が基準水位よりも高くなった場合には、水位が基準水位になるように、図示しない排出系統を通じて凝縮水の抜き出しが行われる。

0079

第3熱交換器51及び第2蒸気系統62を備えることで、精製ガス温度が所望温度以上であるために熱が余剰になっている場合に、ガス化ガスの熱を利用して蒸気を生成できる。これにより、生成した蒸気をガス化ガスの処理設備1内で利用できる。特に、生成した蒸気を利用することで例えば蒸気タービンからの抽気量を低減でき、蒸気タービンにより発電する際の発電効率を向上できる。

0080

また、第3熱交換器51で生成した蒸気が供給される蒸気利用設備は、処理設備1のほか、第1熱交換器11を含む。従って、第3熱交換器51で生成した蒸気は、蒸気抜き出し系統21を通じてプラント内各設備(図示しない)に供給されるほか、第2蒸気系統62を通じて循環系統13に入り、第1熱交換器11に供給される。第3熱交換器51で生成した蒸気が第1熱交換器11に供給されることで、第1熱交換器11への外部からの蒸気供給量を削減できる。

0081

さらに、第3熱交換器51で生成した蒸気は、第3熱交換器51に供給される補給水の加熱にも利用される。具体的には、第2蒸気系統62から分岐して、第3蒸気系統63が接続される。第3蒸気系統63には給水ヒータ52が備えられる。給水ヒータ52では、蒸気が有する熱により、補給水が加熱される。一方で、熱を奪われた蒸気は、温度が低下することで凝縮水となり、外部に排出される。そして、加熱された補給水が補給水系統61を通じて第3熱交換器51に供給され、第3熱交換器51での水位の回復が行われる。

0082

以上の構成を有する処理設備1Aによっても、上記の処理設備1と同様に、精製ガスを十分に高温化しつつ、塩化アンモニウムの析出を抑制できる。

0083

1,1A処理設備
2熱交換器
3洗浄設備
4硫化水素吸収設備
10,10A加熱設備
11 第1熱交換器
12 第2熱交換器
13循環系統
14 第1蒸気系統
15,64凝縮水系統
17 第2流量調整弁
18 第1流量調整弁
19,20,35,54,56流量計
21蒸気抜き出し系統
22 第3流量調整弁
23圧力計
30,31ガス化ガス系統
32精製ガス系統
33,61補給水系統
34,53 流量調整弁
36,57水位センサ
51 第3熱交換器
52 給水ヒータ
55 第4流量調整弁
62 第2蒸気系統
63 第3蒸気系統
121筐体
121A 内部空間
122伝熱管
141,146 導入口
142,143,145 排出口
150,151 空間
L 凝縮水
S1蒸気生成ステップ
S2蒸気供給ステップ
S3 凝縮水生成ステップ
S4貯留ステップ
S5 第1熱交換ステップ
S6 第2熱交換ステップ
S7 循環ステップ

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ